

Interplay of surface and subsurface contributions in electrocatalysis

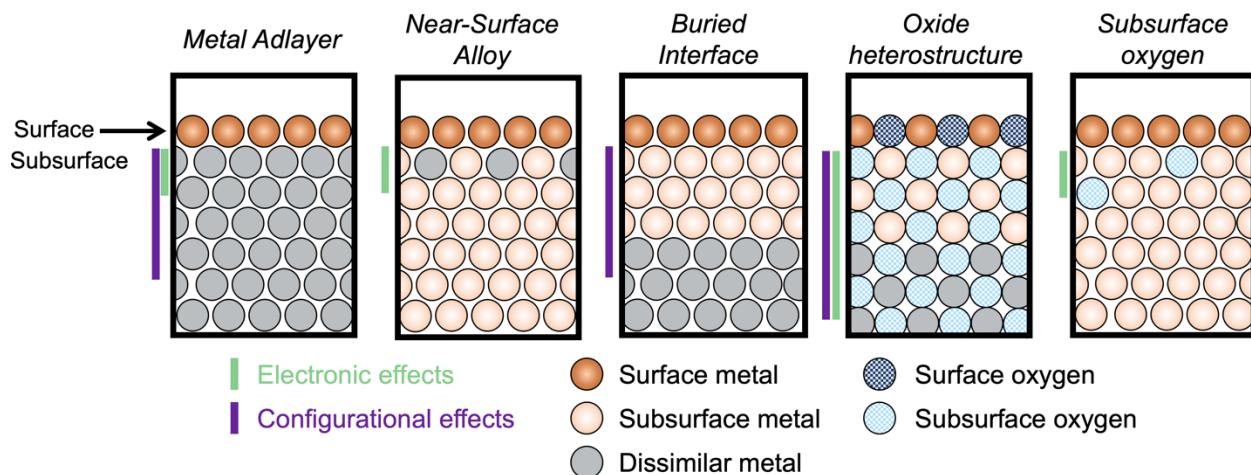
Molly Vitale-Sullivan,¹ Kelsey A. Stoerzinger^{1,2,*}

¹School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA

²Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99254, USA

*Kelsey.stoerzinger@oregonstate.edu

Abstract


Heterogeneous electrocatalysts stabilize adsorbed reaction intermediates at their surfaces and promote electron transfer to facilitate reaction rates. Although immense efforts—both experimentally and computationally—look to identify and understand the active site, many bulk descriptors have found utility in reactions such as the O₂ reduction and evolution and CO₂ reduction reactions. In parallel, studies modifying catalyst supports and other bulk parameters indicate a more complex picture in understanding heterogeneous electrocatalyst reactivity. Here we highlight the interplay between the subsurface and surface in electrocatalysis, including charge transfer, strain, and possible reconstruction of the active surface. These impacts illustrate the importance of considering not only the active site but also its surroundings in designing and understanding electrocatalysts.

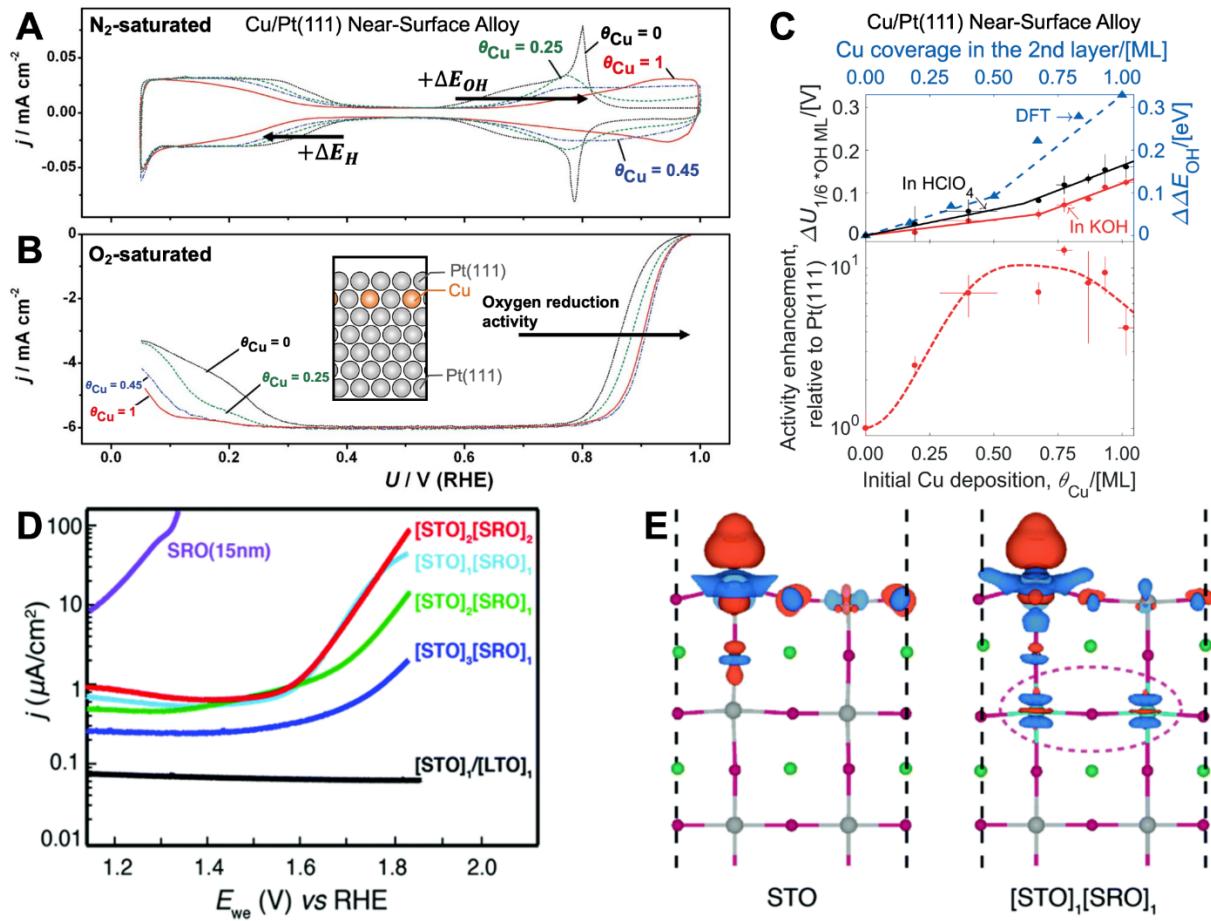
Introduction

In heterogeneous electrocatalysis, reactions occur by electron transfer at a complex interface between a reactant (liquid or gas within an ion-conducting media) and solid catalyst. The catalyst further tailors the reaction pathway—generally lowering activation barriers as a result—through chemical bonding. Thus, understanding the catalytic activity in such systems justifiably seeks an understanding of the catalyst surface and bonds that form on them.¹ However, decades of research have made great strides in understanding electrocatalytic processes through consideration of bulk (volume-averaged) descriptors,² such as electronic parameters like d-band center in metals³ and O 2p-band center in oxides,⁴ lattice parameter in metal alloys,⁵ and generally composition. These advances suggest a connection between bulk and surface properties enables the utility of bulk descriptors in catalyst design. In parallel, other findings have shown that material processing (manipulating defects like grain boundaries⁶ and strain⁷) can also impact catalytic activity, and studies of adlayers⁸⁻⁹ and epitaxial films¹⁰⁻¹¹ point to an underlying role of the subsurface in numerous reactions as well. Here we highlight the interplay of surface and subsurface contributions in electrocatalysis, focusing on examples from the O₂ reduction and evolution reaction (ORR, OER) and CO₂ reduction reaction (CO₂RR) literature.

We define “surface” as the terminal layer of a catalyst directly in contact with the electrolyte. Atoms on the surface form bonds with reactive intermediates, while the “subsurface” is the region beneath this layer that can interact with the terminal surface. We reserve the term “bulk” for volume-averaged properties. The dimensions of the subsurface depend on two things: 1) the type of coupling under discussion (i.e. electronic or configurational, such as epitaxially-induced strain) and 2) the type of

catalyst material (here metal or oxide, however similarities can be drawn to other solids with non-metal bonding). The surface and subsurface of several catalyst systems discussed herein are shown in **Figure 1**. We here consider examples that attempt to isolate subsurface couplings that are electronic¹² (shorter length scale) and configurational¹³⁻¹⁴ (longer length scale) in nature, but note that the resultant effects such as electron transfer and strain are inherently correlated. We consider materials ranging from metals (shorter electron screening and relaxation lengths) to oxides (longer electron screening and relaxation lengths). As such, the subsurface region, impacting catalysis at the surface though not directly exposed to the electrolyte, can range from 1-2 atomic layers in metals for electronic effects and up to 10s of nanometers in oxides for configurational effects like strain (**Figure 1**).¹⁵⁻¹⁶ While experimental characterization techniques are often volume-averaged (commonly referred to in the literature as “bulk”) and consider the catalyst *ex situ*, we highlight the utility of considering not only the active surface, but also the subsurface beneath it as an integral part to understanding and designing active and robust catalysts.

Figure 1. Schematic of surface and subsurface for different types of electrocatalysts. The relevant lengthscale of the subsurface is shown as a bar (schematically, for comparison purposes): green for electronic effects (shorter length scales) and purple for configurational effects like epitaxial strain (longer); for metals (shorter) and oxides (longer).


Electronic effects

Although reactants and intermediates bond to the catalyst surface, the terminal atomic layer is rarely isolated from the subsurface beneath it. The electronic structure of the surface is inherently linked to the atomic plane(s) beneath it. We first consider electronic effects in the case of metal adlayers (noting that some configurational effects, such as in-plane strain, are also at play in cases with lattice mismatch¹⁷). We then discuss cases where foreign atoms are present in the subsurface of metals, and extend to considering oxide heterostructures and supported materials.

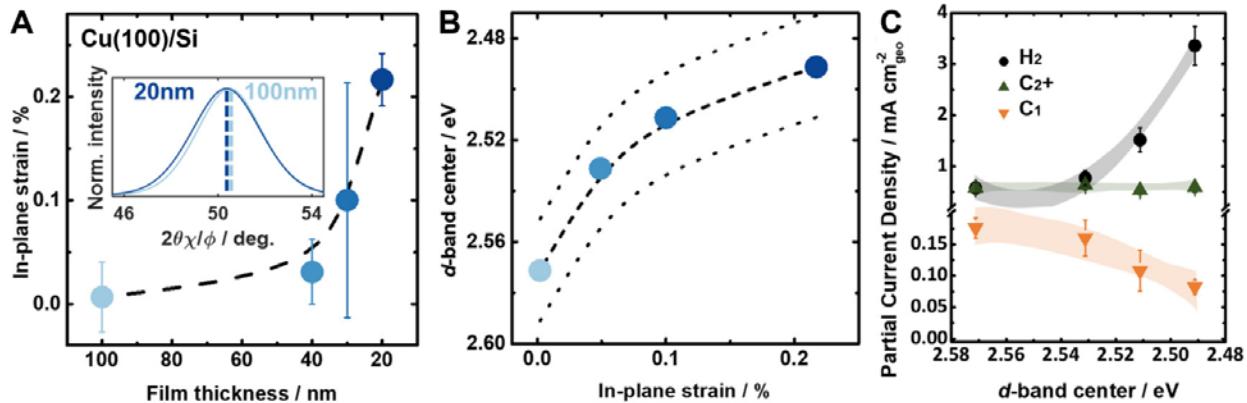
In metals, high electron density results in a short screening length, with such electronic interactions typically limited to adjacent planes.¹⁸⁻¹⁹ For metal adlayers,²⁰ or electrodes where the surface is “modified” with a different element (historically referred to as modified electrodes), the catalytic

activity can differ dramatically via electronic interaction with the subsurface. We consider the case of Pd overlayers on Pt(111)—nearly lattice matched to better isolate electronic from configurational effects. Convoluting variables such as in-plane strain and strain-relaxation related defects may complicate the interpretation of data for cases where the adlayer and substrate lattice parameters differ significantly. The electrochemical behavior of a single Pd monolayer at the surface (atop a Pt subsurface), also called an adlayer (**Figure 1**), is clearly distinct from that of elemental Pt²¹ or Pd,²² but multiple Pd layers behave similarly.²³⁻²⁴ Electronic interactions between the surface (Pd) and subsurface (Pt) can be observed through shifts in the point of zero charge²⁴ and underpotential deposition of Cu and H.²³ Density functional theory (DFT) calculations show that electron transfer from Pt to the Pd monolayer leads to a downshift of the d-band center relative to the Fermi level, improving ORR activity by weakening O₂ bonding compared to Pd(111).²² Computational models provide resolution of electronic effects at the surface and subsurface challenging to achieve by experimental characterization, and play an important role in understanding physical origins of modified electrochemical behavior. However, such conclusions from DFT calculations rely on characterization of the surface and subsurface during (or at least following) electrochemical reactions, as the conditions for electrocatalysis and interaction with the electrolyte can sometimes change the composition and structure.²⁵

Additional examples of such surface-subsurface charge transfer or so called “ligand effects”¹⁷ are found in the case of subsurface layers¹⁵ or near-surface alloys (NSA).²⁶ For example, the activity of a Pt(111) surface can be modified through the introduction of a foreign metal in the adjacent layer of the subsurface (an NSA) with the remainder of the catalyst comprised of Pt(111) to limit geometric effects arising from lattice strain (**Figure 2a-c**). The Cu/Pt(111) NSA was observed to tailor the binding of OH* intermediates on a Pt-terminated surface experimentally and theoretically, resultant in improved ORR activity (**Figure 2a-c**).²⁶ The degree of electron donation or withdrawal is a function of distance from the surface layer, and Stephens *et al.* (2011) found that imbedding Cu in the fourth atomic layer had a negligible effect on activity. The order of magnitude activity improvement resultant from 0.45 monolayers of Cu in the subsurface illustrates the importance of such electronic coupling and necessity for electrochemists to consider the composition of the subsurface in addition to that of the surface and bulk.

Figure 2. The subsurface can transfer charge to/from the surface, sometimes referred to as a ligand or support effect. In Pt, near-surface Cu tailors (A) the binding of OH^* and (B) ORR activity in 0.1 M HClO_4 electrolyte. The upper plot of panel (C) shows the potential shift of $1/6$ monolayer OH^* adsorption experimentally and from DFT from ref. ²⁶ and the lower plot in panel (C) highlights the ORR activity enhancement in 0.1 M KOH for the $\text{Cu/Pt}(111)$ NSA. (D) OER Tafel plots of (001) - $[\text{SrTiO}_3]_n/[\text{SrRuO}_3]_m$ oxide heterostructure (where n and m subscripts denote the number of unit cells) in alkaline electrolyte. (E) Differential valence-electron charge density calculations for O^* on a surface Ti atom show the charge redistribution upon addition of a single subsurface unit cell of SrRuO_3 (right) with regions of charge depletion (blue) and accumulation (orange). Panels A-B are adapted with permission from ref. ²⁶. Copyright 2011 American Chemical Society. Panel C reprinted with permission from ref. ²⁷. Copyright 2018 Angewandte Chemie. Panels D-E reprinted with permission from ref. ¹⁰. Copyright 2018 Energy & Environmental Science.

For more ionic materials such as oxide semiconductors, electronic coupling like charge transfer and band bending can extend to length scales up to several unit cells.²⁸ Such effects have been observed both for conformal catalyst layers that are impermeable to the electrolyte as well as for electrodeposited layers that are less-defined in length scale and interaction with the electrolyte. While bulk SrTiO_3 is a poor OER electrocatalyst due to its large bandgap, adding a subsurface unit cell of SrRuO_3 (Figure 2d) donates electrons toward surface Ti atoms (Figure 2e), increasing activity of the SrTiO_3 surface for OER.¹⁰ The


resulting (001)-SrTiO₃/SrRuO₃ oxide heterostructure demonstrates that activation an otherwise electrocatalytically-inactive material by the ligand effect is possible, a strategy that can be extended to core-shell systems as well.

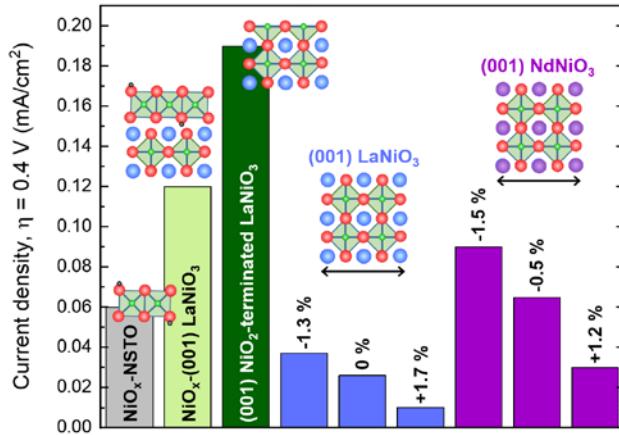
While we have thus-far highlighted studies of model systems designed to investigate electronic interactions between the surface and subsurface, such effects are pertinent in more complex catalysts as well.²⁹ For example, the local electronic structure of a metallic surface can be modified by the presence of residual oxygen in the subsurface (**Figure 1**). This subsurface oxygen has been observed to modify activity and/or product selectivity for CO₂RR³⁰⁻³² and ORR³³. We also highlight that electronic interactions between the subsurface and surface layer need not arise from heterogeneity but can also be manifested as size-dependent effects resultant from electron delocalization. For example, electron redistribution with nm-scale changes in the size of Co oxide particles modified the extent of Co oxidation during OER, triggering changes in terminal oxygen chemistry and differences in OER activity.³⁴ Electronic interactions between the subsurface and surface can also be considered in the case of single atom catalysts, however this picture is more complex given exposure of the support to the electrolyte as well (here deviating from our definition of the subsurface). Together, the breadth of electronic interactions in both model and complex systems illustrate the importance of considering the subsurface layer in design of active and stable catalyst surfaces.

Configurational effects

The subsurface can also interact with the surface and modify the electrocatalysis occurring on it through configurational effects, such as strain and its relaxation. We first consider this in as-fabricated heterostructures in which strain results from epitaxy at a buried interface. We subsequently consider metal alloy catalysts that demonstrate segregation³⁵ to form a strained overlayer. Depending on the thickness of this layer, electronic effects can also be at play.¹³ Regardless of whether internal strain arises from fabricated interfaces or ones which form during cycling, strain alters the width and center of the d-band, leading to strengthening or weakening of chemisorption of reactants for compressive and tensile strain, respectively.³⁶

Studies of epitaxial systems provide well-defined systems where strain—extending to the surface—is introduced through lattice mismatch at an interface located within the subsurface. The lengthscale of such effects depends on the degree of lattice mismatch, with larger strains resulting in smaller relaxation lengths. For large strains, or thicknesses above the relaxation length in epitaxial systems, strain relaxes via the formation of defects, which can also impact catalytic activity and selectivity (though possibly convoluted with change in site density).³⁷ Considering epitaxial oxides, strain was first shown to impact ORR and OER activity in LaCoO₃¹⁶ for thicknesses up to the relaxation length—on the order of 10s of nm for low strain conditions. While small strains can be introduced from the subsurface over lengths typically larger than electronic effects of charge transfer, we note that strain in oxides can also change the degeneracy of transition metal d-states, as shown in the case of NdNiO₃³⁸, impacting in- vs out-of-plane bonding to oxygen. Strain from epitaxial mismatch can also be introduced in metals, for example Cu(001) grown on single-crystal Si substrates (**Figure 3**). Considering activity and selectivity for the CO₂RR, tensile strain and its resulting upshift of the Cu d-band center increased CO insertion and hydrogenation via changes in adsorbate binding.³⁹ Like subsurface-driven ligand effects,⁴⁰ strain effects can also be scaled to high surface area materials in core-shell particles.⁴¹

Figure 3. The subsurface can introduce strain at the catalyst surface, such as in epitaxial Cu(100) on Si. A) Thinner films have larger residual in-plane strain, leading to B) an upshift in the d-band center. C) The upshift in d-band center increases the ratio of C_2/C_1 products in CO2RR. Adapted with permission from ref. ³⁹. Copyright 2021 American Chemical Society.


Strain can also result from buried interfaces that form during synthesis or electrochemical cycling of alloy catalysts. Examples include surface segregation from differences in surface energy and/or immiscibility,³⁵ electrolyte-induced leaching of less-noble elements, and changes in metal-metal distances resultant from variations in particle size⁴². Such leaching is well-observed in Pt-lanthanide alloy catalysts for ORR,⁴³ leading to a strained Pt-overlayer ~1 nm thick with a volcano-trend in activity described by Pt-Pt distance.⁵ Depending on the thickness of this layer, ligand effects can also contribute.¹³ Similar surface leaching of lanthanide and alkaline earth elements (A-sites in the ABO_3 perovskite family) is observed in some complex oxides employed as OER catalysts in alkaline media,⁴⁴ leading to surfaces rich in first row transition metal oxides.⁴⁵ Open questions remain as to the extent the resulting oxide surface is configurationally influenced by the subsurface, which likely depends not only on the thickness of the A-site depleted layer, but also the dynamic nature of the redox-active surface. Together, the breath of configurational interactions resultant in both thin films⁴³ and particles⁴⁶ highlight the importance of considering the subsurface layer in catalyst design.

Subsurface templating of the reactive surface

Many studies, including some highlighted here, report that the active surface during electrocatalysis differs from the volume-averaged bulk. This difference can be solely configurational, as in the case of pure metals,⁴⁷ or compositional as well. Such surface changes represents a complex balance between interactions with the subsurface and electrolyte and depend on electrode free charge, possibly occurring over long timescales. Even so, the subsurface structure and composition can be leveraged to design a ‘pre-catalyst’ that triggers transformation (or reconstruction) toward an active terminal surface. Here the subsurface provides a structural template from which some elements may leach out of, resulting in a unique active catalyst surface that could be influenced electronically and configurationally by the subsurface layer (depending on the length scale of such transformations). In some cases, such as Pt alloys for ORR, this is widely accepted and the active surface is well-characterized both for well-defined

systems⁴⁸⁻⁴⁹ and high surface area particles^{46, 50}. In other cases, such as oxides for OER, reports are mixed as to the extent that oxide surfaces might change under reaction conditions.^{44-45, 51} Here we highlight that even in the case where oxides might yield similar active surfaces during OER—for example transition metal oxide/oxyhydroxide phases⁴⁵—interplay with the subsurface can still impact activity. The established utility of volume-averaged (bulk) descriptors to accurately describe reactivity trends further highlights this fact.⁴

As an example, we take the case of Ni oxides for OER. Electrodeposited films are widely reported to form a NiOOH active phase during OER, the activity of which can be modified by the presence of an Au support.⁵²⁻⁵³ Recent reports suggest that other Ni containing oxides, such as perovskites, in some cases lose crystallinity in the top (few) atomic layer(s).⁵⁴ Epitaxial films enable the comparison of NiO_x surfaces with comparable Ni density but differences in subsurface composition and lattice constant, resultant in OER activity differences of about an order of magnitude (**Figure 4**). The activity of a unit cell of NiO_x increases when supported on LaNiO_3 versus a conductive Nb: SrTiO_3 substrate (illustrating electronic effects), but is surpassed still by the NiO_2 -termination of epitaxial (100) LaNiO_3 film (expected to have contributions from both electronic and geometric effects).⁵⁵ For LaNiO_3 films with unresolved termination, tensile strain from epitaxial growth increases activity⁵⁶, and activity can be increased further still by A-site substitution considering strained NdNiO_3 (mixed electronic and geometric effects)³⁸. These comparisons illustrate that even if all catalysts are terminated with a NiO_x surface under OER conditions, the interplay with the subsurface via crystallographic templating, epitaxial strain, and the ligand effect still have notable influence on the resultant activity.

Figure 4. Influence of the subsurface on catalytic activity in 0.1 M KOH at 1.63 V vs RHE on (001) nickelate perovskite films persists despite possible reconstruction. Comparison of 1 u.c. NiO_x on Nb-doped SrTiO_3 (NSTO, gray) and LaNiO_3 (light green), and NiO_2 -terminated LaNiO_3 (dark green) from ref. ⁵⁵. Tensile strain increases activity in LaNiO_3 from ref. ⁵⁶ (blue), and substitution at the A-site to give NdNiO_3 increases activity further in ref. ³⁸ (magenta).

Further cases of complex catalysts where the subsurface might template formation of an active surface and influence its activity include materials such as phosphides, selenides, and sulfides that result in dissimilar surfaces under reaction conditions. For example, metal phosphides form an oxidized surface under ORR and OER conditions,⁵⁷⁻⁵⁸ the activity of which is likely influenced by the subsurface though yet

to be understood from well-controlled investigations. Similarly, many growing research communities such as nitrate reduction consider oxide catalysts⁵⁹ under conditions thermodynamically expected to result in their reduction. We encourage researchers to draw from understanding in e.g. the CO2RR community regarding potential electronic effects of subsurface oxygen, in addition to more gross effects such as changing surface area.

Conclusion

We highlight here that the active surface must not be viewed in isolation from the subsurface that interacts with it electronically and impacts the geometry of surrounding atoms. Just as volume-averaged (or “bulk”) characterizations of catalysts are insufficient to fully understand activity and selectivity, so too is consideration of solely the surface layer or active sites. While in high surface area systems such interactions between the subsurface and active sites might be intractable to characterize fully due to heterogeneity, model systems—such as metal single crystals, and oxide epitaxial films—offer the opportunity to better understand this interplay. Characterization techniques that probe composition and structure as a function of depth can help researchers understand catalytic activity in a more comprehensive way. Computational approaches including DFT analyses and machine learning from large material databases have the potential to help disentangle multiple phenomena at play to improve understanding of subsurface effects. As heterogeneous electrocatalysis continues to advance, designing electrocatalysts that leverage subsurface interactions via core-shell architectures and mechanical strain can provide forward-looking opportunities to maximize activity, selectivity, and stability in electrocatalysts.

Acknowledgements

The authors acknowledge support from the National Science Foundation under Grant No. 2151049.

Declaration of Interest

None.

References

1. Bandarenka, A. S.; Koper, M. T. M., Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts. *Journal of Catalysis* **2013**, *308*, 11-24.
2. Calle-Vallejo, F.; Díaz-Morales, O. A.; Kolb, M. J.; Koper, M. T. M., Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides? *ACS Catalysis* **2015**, *5* (2), 869-873.
3. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K., Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. *Angewandte Chemie International Edition* **2006**, *45* (18), 2897-2901.

4. Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. *Energy & Environmental Science* **2015**, 8 (5), 1404-1427.

5. *Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I., Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. *Science* **2016**, 352 (6281), 73-76.

* The strain induced at the platinum surface by lanthanide inclusion in an alloy subsurface changes the electronic structure and resultant bonding to intermediates, resulting in a volcano relationship of ORR activity with Pt-Pt distance.

6. Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W., Selective increase in CO₂ electroreduction activity at grain-boundary surface terminations. *Science* **2017**, 358 (6367), 1187-1192.

7. Janssonius, R. P.; Reid, L. M.; Virca, C. N.; Berlinguette, C. P., Strain Engineering Electrocatalysts for Selective CO₂ Reduction. *ACS Energy Letters* **2019**, 4 (4), 980-986.

8. Zhou, W.-P.; Yang, X.; Vukmirovic, M. B.; Koel, B. E.; Jiao, J.; Peng, G.; Mavrikakis, M.; Adzic, R. R., Improving Electrocatalysts for O₂ Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd₃Fe(111) Single-Crystal Alloy. *Journal of the American Chemical Society* **2009**, 131 (35), 12755-12762.

9. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R., Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. *Angewandte Chemie International Edition* **2005**, 44 (14), 2132-2135.

10. **Akbashev, A. R.; Zhang, L.; Mefford, J. T.; Park, J.; Butz, B.; Luftman, H.; Chueh, W. C.; Vojvodic, A., Activation of ultrathin SrTiO₃ with subsurface SrRuO₃ for the oxygen evolution reaction. *Energy & Environmental Science* **2018**, 11 (7), 1762-1769.

** Considering epitaxial films of known orientation and low surface roughness, the presence of subsurface SrRuO₃ activates an SrTiO₃ surface layer for OER, demonstrating how electronic interactions from the subsurface can influence electrocatalysis.

11. Lee, J.; Adiga, P.; Lee, S. A.; Nam, S. H.; Ju, H.-A.; Jung, M.-H.; Jeong, H. Y.; Kim, Y.-M.; Wong, C.; Elzein, R.; Addou, R.; Stoerzinger, K. A.; Choi, W. S., Contribution of the Sub-Surface to Electrocatalytic Activity in Atomically Precise La_{0.7}Sr_{0.3}MnO₃ Heterostructures. *Small* **2021**, 17 (49), 2103632.

12. Exner, K. S.; Anton, J.; Jacob, T.; Over, H., Ligand Effects and Their Impact on Electrocatalytic Processes Exemplified with the Oxygen Evolution Reaction (OER) on RuO₂(110). *ChemElectroChem* **2015**, 2 (5), 707-713.

13. *Jennings, P. C.; Lysgaard, S.; Hansen, H. A.; Vegge, T., Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis. *Physical Chemistry Chemical Physics* **2016**, 18 (35), 24737-24745.

This paper demonstrates the power of first principles calculations for decoupling ligand and strain effects in complex Pt-Au-M (where M is a transition metal) ternary nanoparticle systems for oxygen reduction. Of particular significance is the ability of Cr, Co, and Cu transition metal cores, which demonstrate weakened binding energy of OH, a decrease in the d-band center toward the Fermi level, and potential for increased stability and activity in an icosahedral nanoparticle structure compared to pure Pt surfaces.

14. Pašti, I. A.; Fako, E.; Dobrota, A. S.; López, N.; Skorodumova, N. V.; Mentus, S. V., Atomically Thin Metal Films on Foreign Substrates: From Lattice Mismatch to Electrocatalytic Activity. *ACS Catalysis* **2019**, 9 (4), 3467-3481.

15. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G., Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. *The Journal of Chemical Physics* **2004**, *120* (21), 10240-10246.

16. Stoerzinger, K. A.; Choi, W. S.; Jeen, H.; Lee, H. N.; Shao-Horn, Y., Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO₃ Thin Films. *The Journal of Physical Chemistry Letters* **2015**, *6* (3), 487-492.

17. Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M., Tuning Reaction Rates by Lateral Strain in a Palladium Monolayer. *Angewandte Chemie International Edition* **2005**, *44* (14), 2080-2084.

18. Roudgar, A.; Groß, A., Local reactivity of metal overlayers: Density functional theory calculations of Pd on Au. *Physical Review B* **2003**, *67* (3), 033409.

19. Soliman, K. A.; Kibler, L. A.; Kolb, D. M., Electrocatalytic Behaviour of Epitaxial Ag(111) Overlayers Electrodeposited onto Noble Metals: Electrooxidation of d-Glucose. *Electrocatalysis* **2012**, *3* (3), 170-175.

20. Adžić, R. R., Electrocatalysis on Surfaces Modified by Foreign Metal Adatoms. *Israel Journal of Chemistry* **1979**, *18* (1-2), 166-181.

21. Climent, V.; Marković, N. M.; Ross, P. N., Kinetics of Oxygen Reduction on an Epitaxial Film of Palladium on Pt(111). *The Journal of Physical Chemistry B* **2000**, *104* (14), 3116-3120.

22. Shao, M. H.; Huang, T.; Liu, P.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Adzic, R. R., Palladium Monolayer and Palladium Alloy Electrocatalysts for Oxygen Reduction. *Langmuir* **2006**, *22* (25), 10409-10415.

23. Baldauf, M.; Kolb, D. M., Formic Acid Oxidation on Ultrathin Pd Films on Au(hkl) and Pt(hkl) Electrodes. *The Journal of Physical Chemistry* **1996**, *100* (27), 11375-11381.

24. El-Aziz, A. M.; Hoyer, R.; Kibler, L. A.; Kolb, D. M., Potential of zero free charge of Pd overlayers on Pt(111). *Electrochimica Acta* **2006**, *51* (12), 2518-2522.

25. Gao, L.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z., Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. *Chemical Society Reviews* **2021**, *50* (15), 8428-8469.

26. **Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J.; Chorkendorff, I., Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying. *Journal of the American Chemical Society* **2011**, *133* (14), 5485-5491.

** The presence of Cu in the immediate layer below a Pt surface enables the ligand effect to be probed without substantial influence from strain, tailoring surface Pt electronic structure, resultant bonding to OH, and yielding a volcano relationship with ORR activity.

27. Jensen, K. D.; Tymoczko, J.; Rossmeisl, J.; Bandarenka, A. S.; Chorkendorff, I.; Escudero-Escribano, M.; Stephens, I. E. L., Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. *Angewandte Chemie International Edition* **2018**, *57* (11), 2800-2805.

28. Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lü, W. M.; Zhou, J.; Biegalski, M. D.; Christen, H. M.; Ariando; Venkatesan, T.; Shao-Horn, Y., Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale. *Energy & Environmental Science* **2013**, *6* (5), 1582-1588.

29. Hu, F.; Yang, L.; Jiang, Y.; Duan, C.; Wang, X.; Zeng, L.; Lv, X.; Duan, D.; Liu, Q.; Kong, T.; Jiang, J.; Long, R.; Xiong, Y., Ultrastable Cu Catalyst for CO₂ Electroreduction to Multicarbon Liquid Fuels by Tuning C–C Coupling with CuTi Subsurface. *Angewandte Chemie International Edition* **2021**, *60* (50), 26122-26127.

30. Eilert, A.; Cavalca, F.; Roberts, F. S.; Osterwalder, J.; Liu, C.; Favaro, M.; Crumlin, E. J.; Ogasawara, H.; Friebel, D.; Pettersson, L. G. M.; Nilsson, A., Subsurface Oxygen in Oxide-Derived Copper

Electrocatalysts for Carbon Dioxide Reduction. *The Journal of Physical Chemistry Letters* **2017**, *8* (1), 285-290.

31. Wang, H.-Y.; Soldemo, M.; Degerman, D.; Lömek, P.; Schlueter, C.; Nilsson, A.; Amann, P., Direct Evidence of Subsurface Oxygen Formation in Oxide-Derived Cu by X-ray Photoelectron Spectroscopy. *Angewandte Chemie International Edition* **2022**, *61* (3), e202111021.

32. *Liu, G.; Lee, M.; Kwon, S.; Zeng, G.; Eichhorn, J.; Buckley, A. K.; Toste, F. D.; Goddard, W. A.; Toma, F. M., CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment. *Proceedings of the National Academy of Sciences* **2021**, *118* (23), e2012649118.

* Experiment and theory show that subsurface O in Cu is essential to promoting the rate of C₂ production in CO₂RR, where depletion of subsurface O with prolonged cycling yields only H₂, consistent with calculations for a pure Cu electrocatalyst.

33. Mohanty, S. K.; Kim, S. J.; Kim, J. S.; Lim, Y. J.; Kim, S.; Yang, M.; Park, Y.; Jeong, J.; Ihm, K.; Cho, S. K.; Park, K. H.; Shin, H. C.; Lee, H.; Nam, K. M.; Yoo, H. D., Electrochemical Generation of Mesopores and Residual Oxygen for the Enhanced Activity of Silver Electrocatalysts. *The Journal of Physical Chemistry Letters* **2021**, *12* (24), 5748-5757.

34. **Haase, F. T.; Bergmann, A.; Jones, T. E.; Timoshenko, J.; Herzog, A.; Jeon, H. S.; Rettenmaier, C.; Cuenya, B. R., Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. *Nature Energy* **2022**.

** The intrinsic OER activity of cobalt oxide nanoparticles is size dependent, where its increase for particles below 5 nm in diameter is attributed to accumulated oxidative charge.

35. Liao, H.; Fisher, A.; Xu, Z. J., Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering. *Small* **2015**, *11* (27), 3221-3246.

36. Alsaç, E. P.; Bodappa, N.; Whittingham, A. W. H.; Liu, Y.; Lazzari, A. d.; Smith, R. D. L., Structure–property correlations for analysis of heterogeneous electrocatalysts. *Chemical Physics Reviews* **2021**, *2* (3), 031306.

37. Adiga, P.; Nunn, W.; Wong, C.; Manjeshwar, A. K.; Nair, S.; Jalan, B.; Stoerzinger, K. A., Breaking OER and CER scaling relations via strain and its relaxation in RuO₂ (101). *Materials Today Energy* **2022**, 101087.

38. Wang, L.; Stoerzinger, K. A.; Chang, L.; Yin, X.; Li, Y.; Tang, C. S.; Jia, E.; Bowden, M. E.; Yang, Z.; Abdelsamie, A.; You, L.; Guo, R.; Chen, J.; Rusydi, A.; Wang, J.; Chambers, S. A.; Du, Y., Strain Effect on Oxygen Evolution Reaction Activity of Epitaxial NdNiO₃ Thin Films. *ACS Applied Materials & Interfaces* **2019**, *11* (13), 12941-12947.

39. Kim, T.; Kumar, R. E.; Brock, J. A.; Fullerton, E. E.; Fenning, D. P., How Strain Alters CO₂ Electroreduction on Model Cu(001) Surfaces. *ACS Catalysis* **2021**, *11* (11), 6662-6671.

40. Strickler, A. L.; Escudero-Escribano, M. a.; Jaramillo, T. F., Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution. *Nano Letters* **2017**, *17* (10), 6040-6046.

41. *Xie, S.; Choi, S.-I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y., Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction. *Nano Letters* **2014**, *14* (6), 3570-3576.

*A scalable, layer-by-layer atomic layer deposition (ALD) method was developed to control the conformal coating of 1-6 atomic layers of Pt on Pd nanocubes, which demonstrated a volcano trend for ORR activity with a maximum at 2-3 atomic layers of Pt. DFT calculations confirmed the specific activity trend and attributed ORR activity improvements to coupled ligand and strain effects.

42. Takahashi, M.; Ohara, K.; Yamamoto, K.; Uchiyama, T.; Tanida, H.; Itoh, T.; Imai, H.; Sugawara, S.; Shinohara, K.; Uchimoto, Y., Observation of Subsurface Structure of Pt/C Catalyst Using Pair Distribution Function and Simple Modeling Techniques. *Bulletin of the Chemical Society of Japan* **2020**, 93 (1), 37-42.

43. Pedersen, A. F.; Ulrikkeholm, E. T.; Escudero-Escribano, M.; Johansson, T. P.; Malacrida, P.; Pedersen, C. M.; Hansen, M. H.; Jensen, K. D.; Rossmeisl, J.; Friebel, D.; Nilsson, A.; Chorkendorff, I.; Stephens, I. E. L., Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. *Nano Energy* **2016**, 29, 249-260.

44. May, K. J.; Carlton, C. E.; Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lee, Y.-L.; Grimaud, A.; Shao-Horn, Y., Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts. *The Journal of Physical Chemistry Letters* **2012**, 3 (22), 3264-3270.

45. Samira, S.; Hong, J.; Camayang, J. C. A.; Sun, K.; Hoffman, A. S.; Bare, S. R.; Nikolla, E., Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. *JACS Au* **2021**, 1 (12), 2224-2241.

46. Velázquez-Palenzuela, A.; Masini, F.; Pedersen, A. F.; Escudero-Escribano, M.; Deiana, D.; Malacrida, P.; Hansen, T. W.; Friebel, D.; Nilsson, A.; Stephens, I. E. L.; Chorkendorff, I., The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. *Journal of Catalysis* **2015**, 328, 297-307.

47. Kim, Y.-G.; Javier, A.; Baricuatro, J. H.; Torelli, D.; Cummins, K. D.; Tsang, C. F.; Hemminger, J. C.; Soriaga, M. P., Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. *Journal of Electroanalytical Chemistry* **2016**, 780, 290-295.

48. Escudero-Escribano, M.; Pedersen, A. F.; Ulrikkeholm, E. T.; Jensen, K. D.; Hansen, M. H.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I., Active-Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence X-Ray Diffraction Study. *Chemistry – A European Journal* **2018**, 24 (47), 12280-12290.

49. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M., Improved Oxygen Reduction Activity on Pt₃Ni(111) via Increased Surface Site Availability. *Science* **2007**, 315 (5811), 493-497.

50. Becknell, N.; Kang, Y.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J.; Markovic, N. M.; Somorjai, G. A.; Stamenkovic, V. R.; Yang, P., Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy. *Journal of the American Chemical Society* **2015**, 137 (50), 15817-15824.

51. Rao, R. R.; Kolb, M. J.; Halck, N. B.; Pedersen, A. F.; Mehta, A.; You, H.; Stoerzinger, K. A.; Feng, Z.; Hansen, H. A.; Zhou, H.; Giordano, L.; Rossmeisl, J.; Vegge, T.; Chorkendorff, I.; Stephens, I. E. L.; Shao-Horn, Y., Towards identifying the active sites on RuO₂(110) in catalyzing oxygen evolution. *Energy & Environmental Science* **2017**, 10 (12), 2626-2637.

52. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W., Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. *Journal of the American Chemical Society* **2014**, 136 (18), 6744-6753.

53. Yeo, B. S.; Bell, A. T., In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen. *The Journal of Physical Chemistry C* **2012**, 116 (15), 8394-8400.

54. Adiga, P.; Wang, L.; Wong, C.; Matthews, B. E.; Bowden, M. E.; Spurgeon, S. R.; Sterbinsky, G. E.; Blum, M.; Choi, M.-J.; Tao, J.; Kaspar, T. C.; Chambers, S. A.; Stoerzinger, K. A.; Du, Y., Correlation between oxygen evolution reaction activity and surface compositional evolution in epitaxial La_{0.5}Sr_{0.5}Ni_{1-x}FexO_{3-δ} thin films. *Nanoscale* **2023**.

55. **Baeumer, C.; Li, J.; Lu, Q.; Liang, A. Y.-L.; Jin, L.; Martins, H. P.; Duchoň, T.; Glöß, M.; Gericke, S. M.; Wohlgemuth, M. A.; Giesen, M.; Penn, E. E.; Dittmann, R.; Gunkel, F.; Waser, R.; Bajdich, M.;

Nemšák, S.; Mefford, J. T.; Chueh, W. C., Tuning electrochemically driven surface transformation in atomically flat LaNiO₃ thin films for enhanced water electrolysis. *Nature Materials* **2021**, *20* (5), 674-682.

** Considering epitaxial films with known orientation and smooth surfaces, the OER activity is shown to vary with (001)-LaO or NiO₂-termination in LaNiO₃, where termination is controlled by growth temperature. Operando UV-vis spectroscopy illustrate similarities between NiO_x films and NiO₂-terminated LaNiO₃ during cycling, however supporting a NiO_x film on a conductive perovskite substrate (Nb-doped SrTiO₃) or LaNiO₃ yields lower activity than NiO₂-terminated LaNiO₃, illustrating the importance of the subsurface perovskite structure in OER activity.

56. Petrie, J. R.; Cooper, V. R.; Freeland, J. W.; Meyer, T. L.; Zhang, Z.; Luterman, D. A.; Lee, H. N., Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO₃ Perovskites. *Journal of the American Chemical Society* **2016**, *138* (8), 2488-2491.
57. Parra-Puerto, A.; Ng, K. L.; Fahy, K.; Goode, A. E.; Ryan, M. P.; Kucernak, A., Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. *ACS Catalysis* **2019**, *9* (12), 11515-11529.
58. Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard, W. A.; Chen, S.; Ren, Z., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. *Nature Communications* **2018**, *9* (1), 2551.
59. Wang, J.; Cai, C.; Wang, Y.; Yang, X.; Wu, D.; Zhu, Y.; Li, M.; Gu, M.; Shao, M., Electrocatalytic Reduction of Nitrate to Ammonia on Low-Cost Ultrathin CoO_x Nanosheets. *ACS Catalysis* **2021**, *11* (24), 15135-15140.