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This paper addresses the viscous flow developing about an array of equally spaced
identical circular cylinders aligned with an incompressible fluid stream whose velocity
oscillates periodically in time. The focus of the analysis is on harmonically oscillating
flows with stroke lengths that are comparable to or smaller than the cylinder radius,
such that the flow remains two-dimensional, time-periodic and symmetric with respect
to the centreline. Specific consideration is given to the limit of asymptotically small
stroke lengths, in which the flow is harmonic at leading order, with the first-order
corrections exhibiting a steady-streaming component, which is computed here along
with the accompanying Stokes drift. As in the familiar case of oscillating flow over
a single cylinder, for small stroke lengths, the associated time-averaged Lagrangian
velocity field, given by the sum of the steady-streaming and Stokes-drift components,
displays recirculating vortices, which are quantified for different values of the two relevant
controlling parameters, namely, the Womersley number and the ratio of the inter-cylinder
distance to the cylinder radius. Comparisons with results of direct numerical simulations
indicate that the description of the Lagrangian mean flow for infinitesimally small values
of the stroke length remains reasonably accurate even when the stroke length is comparable
to the cylinder radius. The numerical integrations are also used to quantify the streamwise
flow rate induced by the presence of the cylinder array in cases where the periodic
surrounding motion is driven by an anharmonic pressure gradient, a problem of interest in
connection with the oscillating flow of cerebrospinal fluid around the nerve roots located
along the spinal canal.
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1. Introduction

The interaction of an oscillating stream with velocity U∞ cos(ωt′) with a fixed solid body
is known to result in a time-averaged steady-streaming motion (Riley 2001). The solution
that appears depends on the velocity amplitude U∞, the typical size of the object a, the
oscillation frequency ω and the kinematic viscosity of the fluid ν, which can be used to
define two controlling parameters, namely, a dimensionless stroke length

ε = U∞/ω

a
(1.1)

and a Womersley number

M =
(
a2ω
ν

)1/2

, (1.2)

related to the Reynolds number according to Re = U∞a/ν = εM2. For small values of ε,
the problem is amenable to a theoretical description, wherein the velocity components
are expressed as an asymptotic expansion involving powers of ε. The leading-order
terms, satisfying convection-free linear equations, are harmonic functions with zero
time-averaged values, while the first-order corrections have a non-zero steady-streaming
component (Riley 2001). The resulting motion involves fundamentally two different time
scales, a short time scale ω−1, associated with the fast oscillations of small amplitude εa
occurring at leading order, and a slow-drift long-time scale a/(εU∞) = ε−2ω−1, required
for the steady-streaming velocity, of order ∼ εU∞, to produce displacements of order a.
For the canonical case of two-dimensional flow over a circular cylinder of radius a,

an analytical description of the Eulerian velocity for ε � 1 was found by Holtsmark
et al. (1954), with expressions given for the leading-order harmonic velocity and for the
first-order velocity corrections (errors in the latter were subsequently corrected by Chong
et al. (2013)). In the distinguished regime M ∼ 1 considered by Holtsmark et al. (1954),
the magnitude of the resulting steady-streaming velocity is comparable to that of the
so-called Stokes drift, as demonstrated by Raney, Corelli & Westervelt (1954), so that the
description of the drift experienced by the fluid particles requires consideration of both
effects. Owing to the symmetry of the problem, the resulting Lagrangian mean motion
displays identical recirculatory patterns in all four quadrants. ForM below a critical value,
a single vortex appears in each quadrant, with the motion directed towards the cylinder
along the oscillation axis. A second vortex, external to the original vortex, appears for
sufficiently large values of M, an interesting feature of the analytical solution verified by
accompanying experiments (Holtsmark et al. 1954). This outer vortex increases in strength
as M increases, while the inner vortex shrinks in size, such that, for M � 1, the latter is
confined to a thin near-surface Stokes layer. The theoretical description of the flow arising
for ε � 1 and M � 1 uses the distinguished limit of order-unity streaming Reynolds
numbers Res = ε2M2 ∼ 1 (Stuart 1963, 1966; Riley 1965, 1967). The steady-streaming
flow is seen to be determined in that case from the full equations of motion for steady
viscous flow at Reynolds number Res, with limiting solutions arising for Res � 1 and
Res � 1 (Riley 1967).
While the oscillating flow for ε � 1 remains periodic and symmetric about the

oscillation axis, the solution encountered when ε takes values that are not sufficiently
small is known to be more complicated. The periodic viscous flow becomes unstable
to axially periodic vortices above a critical value of ε that depends on M (Hall 1984),
leading to an asymmetrical flow with vortex shedding. (Note that most of the literature
investigating velocity amplitudes that are not small use the oscillation period 2π/ω
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and the cylinder diameter 2a as characteristic scales of time and length, so that the
Keulegan–Carpenter number KC = U∞(2π/ω)/(2a) = πε and the Stokes number β =
(2a)2/(ν2π/ω) = (2/π)M2 replace ε andM in the parametric description of the solution.)
This symmetry breaking is apparent in the experiments of Tatsuno & Bearman (1990). The
emerging flow exhibits a three-dimensional structure (Honji 1981), with turbulent motion
arising as the Reynolds number Re = εM2 exceeds a critical value (Tatsuno & Bearman
1990).
Although the circular cylinder has attracted considerable attention, analyses of

oscillating flows involving obstacles of differing shape are also available, including
non-circular cylinders (Bearman et al. 1985), spheres (Lane 1955; Riley 1966), cylindrical
posts confined between parallel walls (Rallabandi et al. 2015), three-dimensional
multi-curvature bodies (Bhosale et al. 2022; Chan et al. 2022), cylinder pairs with either
equal (Williamson 1985; Coenen & Riley 2008; Chong et al. 2016; Coenen 2016) or
unequal radii (Coenen 2013) and three-cylinder arrays in different arrangements (Chong
et al. 2016). Multiple circular cylinders arranged in periodic, regular lattices have also been
investigated, including square arrays of identical cylinders (House, Lieu & Schwartz 2014)
and square arrays involving cylinders with two different radii (Bhosale, Parthasarathy &
Gazzola 2020). A linear array of equally spaced identical circular cylinders performing
harmonic oscillations in the transverse direction in a fluid that is otherwise at rest
was considered in the numerical and experimental work of Yan, Ingham & Morton
(1993, 1994). The resulting steady streaming, identical to that found when a fixed cylinder
array is placed perpendicular to a harmonically oscillating stream, was evaluated in the
limit ε � 1 with Res ∼ 1.
To the best of our knowledge, situations in which the obstacle array is aligned

with the oscillating stream have not yet been considered. As a first step to elucidate
the associated dynamics, the present study considers the canonical configuration
schematically represented in figure 1, involving a row of uniformly spaced circular
cylinders aligned with the oscillating stream. This flow configuration can be seen as a
variant of the problem considered by Yan et al. (1993, 1994), in which the cylinder array
was oscillating perpendicular to the array axis. Attention is directed to configurations
with Womersley numbers M >∼ 1 and values of the stroke length that are either ε � 1
or ε ∼ 1. This parametric range corresponds to a regime of moderate Reynolds numbers
Re = U∞a/ν = εM2 where the solution is free from asymmetric vortex shedding (Tatsuno
& Bearman 1990; Yan et al. 1993, 1994), so that the associated two-dimensional
time-periodic flow displays symmetry with respect to the oscillation axis.
The analysis of steady streaming in the array configuration analysed here is relevant

in connection with microscale fluid devices, including applications targeting particle
manipulation (Lutz, Chen & Schwartz 2005, 2006; Chong et al. 2013; Huang et al. 2013;
House et al. 2014). Oscillating flows featuring interactions with streamwise obstacle arrays
are found in other problems, an example being the flow of cerebrospinal fluid (CSF) in the
spinal subarachnoid space, a slender annular canal that surrounds the spinal cord. The
pulsating motion of CSF, driven by the pressure oscillations induced by the cardiac and
respiratory cycles (Linninger et al. 2016), exhibits velocities that vary along the canal. For
example, for the cardiac-driven flow, the peak velocity decays from values of the order
of a few centimetres per second in the cervical region to values of the order of a few
millimetres per second in the lumbar region (Coenen et al. 2019, figure 2). This pulsatile
motion is affected by the presence of nerve roots, which has been found to enhance steady
streaming (Khani et al. 2018) and local mixing (Pahlavian et al. 2014), thereby promoting
the transport of solutes along the canal (Stockman 2006, 2007). These nerve roots, which
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a

U∞ cos (ωt′)

L

x
θy

r

Figure 1. Schematic illustration of the cylinder array for � = L/a = 2, including the streamlines
corresponding to the potential-flow solution.

branch off the spinal cord to deliver nerve signals to the rest of the body (Sass et al.
2017), are arranged in quasi-periodic rows aligned along the canal, with the axial distance
between subsequent nerve roots determined by the inter-vertebra spacing. Each nerve root
consists of multiple rootlets arranged in bundles, forming a structure whose streamwise
length varies from about 1 mm near the external dura membrane, where the nerve root
is more round, to about 1 cm at the root base near the spinal cord (Mendez et al. 2021,
figures 1 and 2). The resulting pulsatile flow about the nerve root is characterized by
moderately large values of the Womersley number in the range 6 < M < 15, as can be
seen by evaluating (1.2) with the cardiac angular frequency ω = 2π s−1 and the CSF
kinematic viscosity ν = 0.7 mm2 s−1 for an obstacle of size a = 2–5 mm. The value of
the dimensionless stroke length ε evaluated from (1.1) is of order unity in the cervical
region (e.g. ε � 1.6 for U∞ = 2 cm s−1 and a = 2 mm) and small in the lumbar region
(e.g. ε � 0.16 for U∞ = 2 mm s−1 and a = 2 mm).
The rest of the paper is organized as follows. After formulating the problem in § 2, we

address in § 3 the limit of small stroke lengths ε � 1. Following the standard asymptotic
treatment of steady-streaming problems (Riley 2001), the solution uses expansions for the
different variables in powers of ε, leading to a hierarchy of problems that can be solved
sequentially, with the steady-streaming velocity obtained by time-averaging the first-order
velocity corrections. Unlike the case of a single cylinder, for which closed-form analytic
solutions are available (Holtsmark et al. 1954; Chong et al. 2013), for the cylinder array
numerical computation is needed to solve the problems that emerge at the different orders.
For the case M ∼ 1 considered here, it will be shown that the resulting steady-streaming
velocity is comparable to the Stokes drift, in agreement with previous results (Raney
et al. 1954; Chong et al. 2013). Direct numerical simulations (DNS) will be used in
§ 4 to investigate the mean Lagrangian motion arising for ε ∼ 1 and to test the range
of validity of the ε � 1 description. Besides harmonically oscillating streams, resulting
in steady-streaming patterns with closed recirculating streamlines, similar to those found
earlier (Holtsmark et al. 1954), consideration will be given in § 5 to configurations with
periodic anharmonic flow, that being the case of the oscillating motion in the spinal
canal. An important related question addressed below is whether the interactions of an
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obstacle row with an anharmonic oscillating stream of zero mean velocity may produce a
non-zero streamwise net flow rate, which might explain previous observations regarding
transport-rate enhancement along the canal (Stockman 2006, 2007). Finally, concluding
remarks are given in § 6.

2. Formulation

Let us consider the flow configuration depicted in figure 1, emerging when an
incompressible fluid stream with harmonic velocity U∞ cos(ωt′) flows past an infinite
array of equally spaced identical cylinders aligned with the unperturbed flow. The
semi-distance L between the centres of contiguous cylinders is assumed to be comparable
to the cylinders radius a, their ratio defining the geometrical parameter � = L/a � 1.
As previously anticipated, the two controlling flow parameters are the dimensionless
stroke length ε, defined in (1.1), and the Womersley number M, defined in (1.2). DNS
corresponding to order-unity values of the three parameters �,M and ε are to be presented
below along with results corresponding to the small-stroke-length asymptotic limit ε � 1,
when the velocity displays a harmonic temporal dependence at leading order, while the
first-order corrections, of order εU∞, contain a steady contribution.
The problem is scaled with use of a, ω−1, U∞ and ρωaU∞ as characteristic values of

length, time, velocity and spatial pressure difference, with ρ denoting the fluid density.
Correspondingly, the unperturbed flow velocity of the external oscillating stream becomes
u∞ = cos t with t = ωt′. Since the resulting velocity v is periodic in the streamwise
direction, the solution can be described by considering the flow about an individual
cylinder, with the origin of the coordinate system placed at the cylinder centre. The
description employs Cartesian coordinates x = (x, y) and Cartesian velocity components
v = (u, v), with x aligned in the direction of the unperturbed flow and r = (x2 + y2)1/2
denoting the distance to the cylinder centre, as indicated in figure 1. Since, in the regime
ε <∼ 1 and M ∼ 1 investigated below, the flow can be anticipated to remain symmetric
about the y = 0 plane, in the computations it suffices to consider the integration domain
extending for x2 + y2 > 1 with y > 0 and −� < x < �. The velocity must satisfy the
continuity and momentum equations

∇ · v = 0, (2.1)

∂v

∂t
+ εv · ∇v = −∇p + 1

M2∇2v, (2.2)

subject to the non-slip condition

v = 0 at r = 1, (2.3)

the far-field condition

v = (cos t, 0) as y → ∞ for − � � x � �, (2.4)

the centreline symmetry condition

∂u
∂y

= v = 0 at y = 0 for 1 � |x| � � (2.5)

and the condition of 2� spatial periodicity in the x direction. The free-stream velocity
condition (2.4) is consistent with a far-field pressure distribution approaching p = x sin t
as y → ∞.
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The above problem was integrated numerically using the immersed boundary method
with the projection approach given by Taira & Colonius (2007) in a Cartesian non-uniform
staggered mesh extending up to y = 30. The value of the associated grid spacing Δ,
smaller near the cylinder surface, was reduced for increasing values of the Womersley
number as needed to resolve the associated near-wall Stokes layer with sufficient accuracy,
yielding, for instance, Δ = 0.04 for M = 1 and Δ = 0.01 for M = 16. The spatial width
of the cylinder nodes employed in the implementation of the immersed boundary method
was selected to be equal to the smallest spacing of the Cartesian mesh. The time step
δt was correspondingly adjusted to give a Courant number δt/Δ below 0.25. Following
standard practice (see e.g. Alaminos-Quesada 2021), the implementation of the far-field
condition (2.4) was facilitated in the simulations by rewriting the problem in terms of the
axial velocity perturbation u′ = u − cos t, which satisfies u′ = − cos t at r = 1 and u′ → 0
as y → ∞ along with the symmetry and periodicity conditions stated above. As explained
in Appendix A, the numerical method was validated through comparisons with previously
reported results corresponding to a single cylinder.

3. The limit of small stroke lengths

Following standard practice, the flow description in the limit ε � 1 utilizes expansions
for the different flow variables in powers of ε, i.e. v = v0 + εv1 + · · · and
p = p0 + εp1 + · · · . As seen below, the leading-order solution has a zero time average, i.e.
〈v0〉 = 0, with 〈·〉 = (1/2π)

∫ t+2π
t · dt, whereas the first-order correction v1, accounting

for the effects of convective acceleration, includes a non-zero steady-streaming component
vSS = 〈v1〉.

3.1. Leading-order oscillatory flow
At leading order in the limit ε � 1, convective acceleration does not enter in the
momentum balance equation (2.2). The resulting linear problem can be conveniently
solved by introducing v0 = Re(eitV ) and p0 = Re(eitP)with V (x, y) = (U,V) and P(x, y)
representing complex functions satisfying

∇ · V = 0, iV = −∇P + 1
M2∇2V , (3.1a,b)

with boundary conditions

V = 0 at r = 1,
V = (1, 0) as y → ∞ for − � � x � �,

∂U/∂y = V = 0 at y = 0 for 1 � |x| � �,

⎫⎬
⎭ (3.2)

as follows from (2.1)–(2.5), along with the condition of 2� spatial periodicity in the x
direction.
Except for the limiting case � � 1, which reduces to that of flow over a single cylinder

(Holtsmark et al. 1954; Chong et al. 2013), no analytic solution is available, and the above
problem must be solved numerically. To that aim, (3.1a,b) were written in weak form
and implemented in the finite element solver COMSOL Multiphysics. Solutions were
computed on an unstructured triangular mesh that extended laterally to y = 30. Mesh
elements were clustered near the cylinder surface, the typical element size ranging from
0.01 at that surface to 0.2 near the far-field boundary. It was checked that further increases
in lateral domain extension as well as in mesh refinement did not alter the results.
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For a general value of M, the resulting complex velocity V (x, y) has real and
imaginary parts. Note, however, that, in the inviscid limit M � 1, the solution contains
an imaginary part only in the thin Stokes layer of thickness 1/M that develops on the
cylinder surface, outside of which the flow is irrotational, such that V (x, y) = ∇Φ. The
associated velocity potential Φ, a real function, satisfies ∇2Φ = 0 subject to ideal-flow
boundary conditions stemming from (3.2), including, for instance, the no-penetration
condition ∂Φ/∂r = 0 at r = 1. The problem was considered recently by Crowdy (2016),
who provided a quasi-analytical solution for the corresponding complex potential. For
illustrative purposes, the streamlines of the potential flow corresponding to the specific
case � = 2 are included in the schematic of figure 1.

3.2. Steady streaming
The steady-streaming velocity vSS = 〈v1〉 = (uSS, vSS) is determined from the problem
that arises at the following order. Collecting terms of order ε in (2.1) and (2.2) and taking
the time average leads to

∇ · vSS = 0,
1
2
Re(V · ∇V ∗) = −∇〈 p1〉 + 1

M2∇2vSS, (3.3a,b)

after writing 〈v0 · ∇v0〉 = 1
2 Re(V · ∇V ∗), which follows from the identity

〈Re(eitA)Re(eitB)〉 = Re(AB∗)/2, (3.4)

applying to any generic time-independent complex functions A and B, with the asterisk ∗
denoting complex conjugates. The resulting recirculating cells, symmetric about the x = 0
plane, can be correspondingly obtained by integrating (3.3a,b) in the first quadrant subject
to the boundary conditions

vSS = 0 at r = 1,
vSS → 0 as y → ∞ for 0 � x � �,

∂uSS/∂y = vSS = 0 at y = 0 for1 � x � �,

⎫⎬
⎭ (3.5)

consistent with (2.3)–(2.5), and the condition of 2� spatial periodicity in the x direction.
At this order, the steady-streaming pressure 〈 p1〉 vanishes in the far field, as is consistent
with the velocity condition vSS → 0 as y → ∞.
Equations (3.3a,b) were integrated using the numerical method employed earlier for

the leading-order problem. Representative results are shown in figure 2 for four values of
the inter-cylinder spacing �, including as extreme cases the configuration with touching
cylinders (� = 1) and the familiar single-cylinder case, recovered in the present array
configuration when � = ∞. Because of the condition of flow periodicity and the symmetry
of the cylinder array, the vertical lines x = 0, 1 � y < ∞ and x = �, 0 � y < ∞ are
streamlines of the steady-streaming flow. Only the first quadrant is shown in figure 2,
since the flow structure is identical in all four quadrants. Streamlines are plotted using
a fixed increment δψ of the streamfunction ψSS computed from ∂ψSS/∂y = uSS and
∂ψSS/∂x = −vSS, with ψSS = 0 on the domain boundary. The spacing is δψ = 0.005
for � = 1.5 and � = 3.0, with a smaller spacing δψ = 0.002 used for � = 1, as needed
to represent the associated weak motion, and a larger spacing δψ = 0.01 for � = ∞,
in accordance with the associated vigorous motion. In addition to streamlines, colour
contours are used to represent the vorticity Ω = ∂v/∂x − ∂u/∂y, with the level indicated
in the colour bar on the far right.
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Figure 2. Streamlines and colour contours of vorticity Ω corresponding to the steady-streaming motion
with different inter-cylinder distance � for M = 2 (a) and M = 16 (b). Streamlines are represented using a
constant spacing δψ , with δψ = 0.002 for � = 1, δψ = 0.005 for � = 1.5 and 3, and δψ = 0.01 for � = ∞.
Corresponding vorticity levels are indicated in the colour bar on the right.

As seen in figure 2, the streaming structure arising for finite values of � is qualitatively
similar to that of a single cylinder (Holtsmark et al. 1954). For M = 2 the flow displays
one vortex in each quadrant, with the clockwise circulation (negative vorticity) exhibited
by the vortex in the first quadrant corresponding to fluid approaching the cylinder along the
oscillation axis y = 0. This vortex is known to progressively approach the cylinder wall on
increasingM (Holtsmark et al. 1954) and, for the caseM = 16 shown in figure 2(b), is seen
to be embedded in the high-vorticity Stokes layer that develops near the cylinder surface. A
second vortex with opposite circulation, clearly visible in the results for M = 16, appears
outside in configurations with M exceeding a critical value Mc. For the case of a single
cylinder, the valueMc � 6.08 can be determined from the exact solution (Holtsmark et al.
1954) as the value of M for which the streamfunction ψSS vanishes in the far field. From
our numerical computations, it was seen that the value of Mc is somewhat larger for the
cylinder array (e.g. Mc � 7 for � = 2).
The presence of the neighbouring cylinders has a noticeable effect on the shape of the

resulting vortices, as can be seen by comparing the results for � = (1, 1.5, 3) with the
canonical case of a single cylinder (� = ∞) shown in the last column of figure 2. For
M = 2 the core of the vortex, which for � = ∞ is located along the π/4 ray, is displaced
towards the vertical axis x = 0 on decreasing the inter-cylinder spacing, producing vortices
that are much more slender, with the case � = 1 displaying the largest distortion. For
M = 16, the outer vortex, which for the single cylinder exhibits open streamlines with no
vortex core, displays for � /=∞ a well-defined core surrounded by closed streamlines. This
qualitative change, also observed in the flow about an oscillating cylinder when enclosed
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Oscillating flow past a linear array of circular cylinders

by a concentric cylindrical surface (Holtsmark et al. 1954), is attributable to the effect of
confinement, which also produces a drastic reduction in the magnitude of the streaming
motion. The extent of the reduction can be quantified by comparing the peak value of the
streamfunction, given byψSS,peak = −0.1602 forM = 2 andψSS,peak = (−0.0493/0.243)
(inner/outer vortex) for M = 16 in the case of the isolated cylinder (� = ∞) and
ψSS,peak = −0.0041 for M = 2 and by ψSS,peak = (−0.0438/0.0022) (inner/outer vortex)
for M = 16 in the case of an array of touching cylinders (� = 1).

3.3. Mean Eulerian velocity for finite stroke lengths
The steady-streaming velocity vSS = 〈v1〉 provides the leading-order description for the
mean Eulerian velocity 〈v〉 = εvSS in the asymptotic limit ε � 1. In principle, the
description can be improved by computing higher-order terms in the asymptotic expansion
for 〈v〉 = ε〈v1〉 + ε2〈v2〉 + ε3〈v3〉 + · · · . The development must begin by computing the
unsteady component of the first-order velocity correction v1, which can be shown to be
of the form v1 − 〈v1〉 = Re(e2itV 1), where V 1(x, r) is a complex function, the expression
of which was obtained by Chong et al. (2013) for the case of a single isolated cylinder.
The equations that determine 〈v2〉, analogous to (3.3a,b), with the convective term in
the momentum equation replaced by 〈v0 · ∇v1〉 + 〈v1 · ∇v0〉, are to be integrated with
the homogeneous boundary conditions stated in (3.5), with 〈v2〉 replacing vSS. Since
v0 = Re(eitV ) and v1 = 〈v1〉 + Re(e2itV 1), it follows that 〈v0 · ∇v1〉 + 〈v1 · ∇v0〉 = 0,
with the consequence that integration of the steady-streaming problem that arises at
order ε2 yields 〈v2〉 = 0. Therefore, the corrections to the mean Eulerian velocity would
enter only at the following order, i.e. 〈v〉 = ε〈v1〉 + ε3〈v3〉 + · · · , indicating that the
leading-order expression 〈v〉 = εvSS = ε〈v1〉 computed here contains small relative errors
of order ε2.
The accuracy of the asymptotic description 〈v〉 = εvSS was tested through comparisons

with the mean Eulerian velocity 〈v〉 = (1/2π)
∫ t+2π
t v dt determined in direct integrations

of the complete problem (2.1)–(2.5). Selected numerical results corresponding to � = 2
andM = 2 are shown in figure 3(b–e) for ε = (0.1, 0.5, 1.0, 2.0). Since the time-averaged
velocity can be anticipated to be of order ε, as suggested by the asymptotic analysis for ε �
1, the rescaled velocity 〈v〉/ε is used in computing the streamlines and vorticity contours
shown in figure 3. The results are to be compared with those of the steady-streaming
velocity vSS, shown in figure 3(a). Close agreement is found between the DNS results
for ε = 0.1 and the ε � 1 predictions, with the associated velocity fields being nearly
identical, as seen in figure 3. A quantitative measure of the existing differences, of the
order of 1% for ε = 0.1, consistent with the relative errors of order ε2 anticipated in the
discussion of the preceding paragraph, is provided by the peak values of the corresponding
streamfunctions at the vortex centre, given by ψSS = −0.0419 for ε � 1 and 〈ψ〉/ε =
−0.0416 for ε = 0.1. It is remarkable that, although larger differences are found as the
oscillation amplitude becomes comparable to the cylinder radius, the ε � 1 description
remains reasonably accurate even for ε = 0.5, for which 〈ψ〉/ε = −0.0390 at the vortex
centre. For completeness, a figure showing the spatial distribution of |ψSS − 〈ψ〉/ε| is
included in Appendix B.

3.4. Stokes drift
As pointed out by Raney et al. (1954) when addressing oscillating flow over a cylinder,
the Lagrangian mean motion of the fluid particles comes partly from the Eulerian mean
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Figure 3. Streamlines and colour contours of vorticity Ω for � = 2 andM = 2. Besides results corresponding
to the steady-streaming velocity vSS, shown in panel (a), results are given for the rescaled time-averaged
Eulerian velocity 〈v〉/ε determined in the DNS computations for ε = (0.1, 0.5, 1.0, 2.0) in panels (b)–(e).
Streamlines are represented using a constant spacing δψ = 0.005. Corresponding vorticity levels are indicated
in the colour bar on the right.

motion (i.e. 〈v〉 = εvSS) and partly from the so-called Stokes drift (Stokes 1847), a
purely kinematic effect arising in non-uniform oscillating flows. As a result, streamlines
visualized in experiments by tracing the motion of dyed fluid do not coincide in general
with those determined from the steady-streaming velocity (Raney et al. 1954; Larrieu,
Hinch & Charru 2009; Chong et al. 2013). Since the velocity of the Lagrangian mean
motion vSS + vSD, where

vSD =
〈∫

v0 dt · ∇v0

〉
(3.6)

represents the contribution of the Stokes drift, determines the convective transport
of solutes, there is interest in quantifying numerically vSD for the cylinder array,
thereby complementing the analytical results developed previously for the single cylinder
(Holtsmark et al. 1954; Raney et al. 1954; Chong et al. 2013).
The expression (3.6) for the Stokes-drift velocity, which can be systematically derived

using a two-time-scale analysis, as shown in Appendix C, can be written in the form

vSD = 1
2 Im(V · ∇V ∗), (3.7)

by using v0 = Re(eitV ) along with the identity 〈Re(ieitA)Re(eitB)〉 = −Im(AB∗)/2. It is
of interest that the real part of the complex function 1

2V · ∇V ∗ determines the steady
streaming, as revealed by (3.3a,b), whereas its imaginary part is the Stokes-drift velocity
(3.7). Note that, as mentioned before, for large values of M viscous forces are confined to
a thin Stokes layer, outside of which the flow is potential and the function V is real, so that
the associated Stokes drift can be expected to vanish for M � 1, as follows from (3.7).

3.5. Evaluation of the Lagrangian mean velocity
The expression (3.7) was used to evaluate the Stokes-drift velocity vSD for a cylinder array
with � = 2, with associated streamlines and vorticity contours given in the middle column
of figure 4. The first two columns of figure 4 show the corresponding steady-streaming
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Figure 4. Streamlines and colour contours of vorticity Ω corresponding to the steady-streaming velocity vSS,
Stokes-drift velocity vSD and steady mean Lagrangian velocity vL = vSS + vSD for � = 2 and M = 1 (a),
M = 2 (b) and M = 16 (c). Corresponding DNS results for ε = 0.1 are also shown, including the rescaled
time-averaged Eulerian velocity field 〈v〉/ε (first column) and the rescaled Lagrangian velocity vL/ε (fifth
column). For each value of M, streamlines are represented using a constant spacing δψ = 0.002 (M = 1) and
δψ = 0.005 (M = 2 and M = 16), with the corresponding vorticity levels indicated in the colour bar on the
right.

velocity vSS (second column from the left) along with the rescaled time-averaged Eulerian
velocity 〈v〉/ε determined in DNS computations with ε = 0.1 (leftmost column), the two
sets of results being nearly indistinguishable. Besides the two Womersley numbersM = 2
andM = 16 considered earlier in the computations of figure 2, figure 4 includes results for
M = 1, a case for which the Stokes drift is stronger than the steady-streaming motion. To
facilitate comparisons, in plotting the streamlines for each value of M, the spacing of the
Stokes-drift streamfunction ψSD is that used for the corresponding steady-streaming plot.
As can be seen, the Stokes-drift results for M = 1 display a primary clockwise-rotating

vortex occupying most of the quadrant, along with a much weaker counter-rotating vortex
of negligibly small circulation near the oscillation axis y = 0. For this value of M, this
primary vortex is significantly stronger than the corresponding steady-streaming vortex.
This can be verified by comparing the magnitude |ψpeak| of the peak values of the
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Figure 5. The variation with M of the magnitude |ψpeak| of the local peak values of the streamfunction ψSS
(dashed curves), ψSD (dotted curves) and ψSS + ψSD (solid curves) at the centre of the outer (o) and inner
(i) vortices for the � = 2 configuration.

associated streamfunctions at the vortex centre. Since ψ is defined to be zero on the
cylinder surface, the value of |ψpeak|, whose variation with M is represented in figure 5,
gives a measure of the volume flow rate driven by the recirculating vortex motion. As can
be seen, for M = 1 the peak value of ψSD is significantly larger than that of ψSS, with
the result that the Lagrangian velocity vSS + vSD is largely determined by its Stokes-drift
component, as reflected in the shape of the corresponding Lagrangian vortex, shown in the
fourth column of figure 4(a).
The Stokes-drift motion develops an additional vortex, external to the primary vortex,

when the Womersley number is increased to values exceeding a critical value (e.g. M �
1.5 for � = 2). As seen in the plots of peak streamfunction in figure 5, this external
Stokes-drift vortex, clearly visible in figure 4(b), increases in strength for increasing M to
prevail over the inner vortex for M >∼ 2.5. Figure 5 also reveals that, for the cases M = 2
andM = 16 of figures 4(b) and 4(c), the Stokes drift is significantly weaker than the steady
streaming, so that the Lagrangian motion is largely determined by the latter.
Figure 5 also shows the peak value of the streamfunction ψSS + ψSD associated with the

Lagrangian motion. Regarding the resulting curve, it is of interest that, since the inner and
outer vortices have opposite circulation, leading to peak values of the streamfunction with
different sign, there is an intermediate range of values of M for which the strength of the
Lagrangian vortex is smaller than that of the steady-streaming vortex. The comparison of
the different curves in figure 5 reveals that the Stokes drift prevails for sufficiently small
values of the Womersley number M � 1, for which ψSS � ψSD, whereas in the opposite
limitM � 1 the Stokes-drift motion fades away, as anticipated above, below (3.7), so that
ψSS � ψSD. The trends identified in figure 5 therefore confirm that the Stokes drift can be
neglected only if M � 1, whereas for M <∼ 1 it must be necessarily accounted for when
seeking an accurate description of the Lagrangian motion, in agreement with previous
findings (Raney et al. 1954; Chong et al. 2013).
To validate the asymptotic prediction vSS + vSD, the Lagrangian velocity vL was

evaluated from the DNS velocity field for ε = 0.1. The value of vL(x, y) at each location
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(x, y) was determined by computing the displacement (δx, δy) of a tracer particle,
located initially at (x, y), over a cycle (i.e. from t to t + 2π), and the resulting velocity
vL(x, y) = (δx, δy)/(2π), appropriately rescaled according to vL/ε, was then used to
compute the streamlines and vorticity distributions shown in the last column of figure 4,
to be compared with the asymptotic predictions shown in the adjacent column. As can
be seen, the results are practically indistinguishable, especially for the cases M = 1
and M = 2, thereby giving additional confidence in the mathematical development. The
somewhat larger departures found with M = 16, characterized by relative differences in
peak streamfunction in the inner and outer vortices of the order of 5%, are to be expected,
since, for these values of ε = 0.1 and M = 16, the relative ordering of the asymptotic
development breaks down, in that the viscous term in (2.2) becomes smaller than the
convective term. The quantification of these large-Womersley-number configurations can
benefit from consideration of the double distinguished limit ε � 1 and M � 1 with
Res = ε2M2 ∼ 1 proposed in the seminal analyses of Stuart (1963, 1966) and Riley
(1965, 1967).

4. Fluid-particle drift for finite stroke lengths

The above velocity description, in which the Lagrangian mean motion is the result of
the superposition of the steady-streaming and Stokes-drift velocity fields, is rigorously
valid only in configurations with small stroke lengths ε � 1, with representative results
presented earlier for ε = 0.1 in figure 4. There is interest in testing the accuracy with which
the asymptotic prediction vSS + vSD describes the fluid-particle drift as the stroke length
ε increases to larger values. To that end, we computed numerically the trajectories of fluid
particles undergoing multiple oscillatory cycles by integrating

dxp
dt

= εv(xp, t), (4.1)

subject to the initial condition xp = xi at t = ti, where xp(t) represents the fluid-particle
location scaled with a. The integrations employed the periodic Eulerian velocity v(x, t)
obtained in DNS computations of pulsating flows with moderate stroke lengths ε ∼ 1.
Clearly, for a given initial location xi, the resulting trajectory xp(t) depends on the specific
selection of initial time t = ti, so that some care must be taken when defining the mean
Lagrangian drift when ε is not small, as explained below. For a general discussion of
Lagrangian mean flow pertaining to nonlinear waves, the reader is referred to the seminal
paper of Andrews & McIntyre (1978).
To illustrate the complications arising in defining the mean Lagrangian drift when

ε ∼ 1, we plot in figure 6 the results of a representative trajectory calculation,
corresponding to oscillatory flow withM = 2 and ε = 1 about a cylinder array with � = 2.
Figure 6 shows the path followed by a fluid particle located at xi = (−0.55, 2.95) at
t = ti = π/2, corresponding to the instant of time when the outer velocity u∞ = cos t,
decreasing, reaches a zero velocity u∞ = 0. For illustrative purposes, stars are used to
mark the initial location xi (red star) as well as the location x = (−2.62, 2.87) (blue star)
occupied by the fluid particle at time t = 3π/2, when the outer velocity, now increasing
from negative values, becomes zero again. The drift motion follows a recirculatory pattern,
so that, after a large number of cycles, which would be proportional to ε−1 for ε � 1, the
fluid particle returns to occupy a location close to (but not necessarily equal to) the initial
location xi.
Different options are available regarding the characterization of the Lagrangian drift.

One could, for instance, consider the series of locations xn = xp(ti + 2πn) occupied by
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Figure 6. The grey curves represent the oscillatory trajectories determined numerically by integration of (4.1)
with initial condition xi = (−0.55, 2.95) (marked with a red star) at ti = π/2 for M = 2, � = 2 and ε = 1.0.
The blue star denotes the particle location at t = 3π/2. The squares mark the fluid-particle locations xp(π/2 +
2πn) (red squares) and xp(3π/2 + 2πn) (blue squares) for n = 1, 2, . . ., while the circles are the time averages
evaluated with use of (4.2) for ti = π/2 (red circles) and ti = 3π/2 (blue circles).

the fluid particle at the end of subsequent cycles n = 1, 2, . . .. This series, marked in
figure 6 by red squares, serves to delineate the long-time drifting motion of the particle as it
circles back towards its initial location following a large number of cycles. One can readily
see a problem with this definition, in that, if we had considered instead the fluid particle
located at xi = (−2.62, 2.87) (marked by the blue star) at ti = 3π/2, the path followed
would be identical, but the Lagrangian drift described by the corresponding sequence of
locations xn = xp(ti + 2πn), indicated by blue squares, would be radically different, as
seen in figure 6.
In trying to characterize the particle drift in a non-ambiguous way, it is therefore better

to use instead the average location of the fluid particle during a given cycle n, computed
according to

xn = 1
2π

∫ ti+2πn

ti+2π(n−1)
xp dt. (4.2)

As can be seen in figure 6, the values of xn corresponding to xi = (−0.55, 2.95) and
ti = π/2, marked by red circles, and those obtained for xi = (−2.62, 2.87) and ti = 3π/2,
marked by blue circles, describe the same path, thereby removing the above-mentioned
arbitrariness.
As shown in the fourth column of figure 4, for ε � 1 the Lagrangian mean motion

features recirculating vortices, whose centre xc can be determined by computing the
location where the Lagrangian streamfunction ψSS + ψSD shows a local extremum.
Similar recirculating patterns are found for ε ∼ 1. In that case, the corresponding vortex
centre can be obtained numerically by identifying the location xc that satisfies xn = xc, so
that the fluid particle describes exactly the same trajectory over subsequent cycles, with
zero net drift.
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Figure 7. The variation with the inter-cylinder distance � of the location of the Lagrangian
vortex centre xc for M = 2 as determined in the limit ε � 1 and as determined from the
DNS computations with ε = (0.5, 1.0, 1.5). The symbols represent the results corresponding to � =
(1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 6, 8, 10, 15, ∞).

The location of the vortex centre xc of the Lagrangian mean flow is shown in figure 7
for oscillatory motion with infinitesimally small values of the stroke length ε � 1 and
also with finite values ε = (0.5, 1.0, 1.5). For the Womersley number M = 2 considered
in figure 7, there exists a single vortex, whose centre occupies a location that depends on
the inter-cylinder spacing �. As can be seen, the results are in general agreement with
those displayed in figure 2 for the steady-streaming motion, in that, as � is reduced,
the vortex centre migrates from a location near the π/4 ray towards the vertical axis
x = 0. As expected, the DNS results for increasing stroke lengths ε progressively depart
from the ε � 1 predictions, with the vortex centre moving downwards while maintaining
approximately the same horizontal location.
The increasing downward displacement of the vortex centre for increasing ε shown

in figure 7 is accompanied by a progressive distortion of the Lagrangian vortex. This
is illustrated in figure 8 for � = 2, with the vortex shape characterized by plotting the
time-averaged path of fluid-particle trajectories initiated at points located at increasing
vertical distances from the vortex centre, indicated in the figure caption. For each fluid
particle, the plot shows a sequence of 80 cycles. Since the Lagrangian velocity is larger
for larger ε (i.e. vL ∝ ε for ε � 1, as demonstrated in figure 4), for the same number of
cycles, the Lagrangian displacement increases with increasing ε, so that, for instance, the
fluid particle closer to the vortex centre describes two laps for ε = 0.5 and about 10 laps
for ε = 1.5.
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Figure 8. Lagrangian mean motion for � = 2 and M = 2, including streamlines ψSS + ψSD = const. with
δψ = 0.004 for ε � 1 and time-averaged fluid-particle locations xn for ε = (0.5, 1.0.1.5) computed using
(4.2) for the trajectories determined by integrating (4.1) with initial condition x = xi at t = 0. In computing
the trajectories, the initial locations xi were selected at fixed vertical distances δy above the Lagrangian
vortex centre xc, the latter indicated with an asterisk. Five different trajectories corresponding to δy =
(0.2, 0.4, 0.6, 0.8, 1.0) are plotted for ε = 0.5 and ε = 1.0, whereas, to avoid cluttering, only three trajectories
corresponding to δy = (0.2, 0.6, 1.0) are shown in the case ε = 1.5.

The numerical results for ε = (0.5, 1.0, 1.5) are to be compared with the Lagrangian
streamlines computed in the limit ε � 1 with use of ψSS + ψSD = const. As can be
seen, the Lagrangian vortex for ε = 0.5 is almost indistinguishable from its ε � 1
counterpart and, even for the case ε = 1.0, the asymptotic predictions provide a fairly
good description of the circular drift motion. Departures are more pronounced for ε = 1.5
as a result of the increasing nonlinearity. Contrary to the cases ε = 0.5 and ε = 1.0,
for which all time-averaged locations corresponding to a given fluid particle closely lie
along a well-defined closed path, for ε = 1.5 the locations xn are scattered within a band
surrounding the vortex centre.
The comparisons presented in figures 7 and 8 indicate that the simple velocity

description arising for ε � 1, in which the Lagrangian mean velocity is given by the sum
of distinct steady-streaming and Stokes-drift components, can be used with unexpectedly
good accuracy to quantify the fluid-particle drift in situations in which the stroke length is
as large as the cylinder radius (i.e. order-unity values of ε) provided that the flow remains
symmetric and periodic. In view of previous results pertaining to the single cylinder
(Tatsuno & Bearman 1990), increasing nonlinear effects can be expected to modify
significantly the flow pattern depicted in figure 8 as the Reynolds number Re = εM2

increases to sufficiently large values, with the associated Lagrangian motion eventually
becoming chaotic, as the flow becomes turbulent; these additional nonlinear effects were
not further investigated here.

5. Steady streaming in anharmonically oscillating flows

Most investigations of pulsating flows over cylinders consider outer streams with
harmonically varying velocities, resulting in symmetric streaming flows with closed
streamlines that are identical in all four quadrants. As shown by Davidson & Riley (1972),
the classical analysis can be extended to anharmonic flow by expressing the periodic outer
velocity as a Fourier series u∞ = ∑∞

n=1 Re(Aneint) involving the complex coefficients An.
Correspondingly, the linear problem that arises at leading order in the limit ε � 1 can be
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solved by introducing Fourier-series expansions for the velocity v0 = ∑∞
n=1 Re(AneintV n).

For the cylinder array, the complex function V n corresponding to a given mode n
would be obtained by integrating (3.1a,b) subject to (3.2) for a Womersley number
Mn = (a2nω/ν)1/2. In carrying the analysis to the following order, it is important to
note that the forcing term 〈v0·∇v0〉 that determines the steady streaming through (3.3a,b)
and the Stokes drift vSD = 〈∫ v0 dt · ∇v0〉 are obtained by time averaging the product of
two Fourier series. Since the time average of the product of any two modes of different
frequency is identically zero, the resulting functions become

〈v0 · ∇v0〉 = 1
2

∞∑
n=1

|An|2 Re(Vn · ∇V ∗
n) and vSD = 1

2

∞∑
n=1

|An|2
n

Im(V n · ∇V ∗
n),

(5.1a,b)

involving the sum of the separate contributions of each mode, with no inter-mode
interactions. As a consequence, the steady streaming and Stokes drift generated by an
anharmonic flow can be obtained simply as the sum of the corresponding steady-streaming
and Stokes-drift velocities of each separate mode. Since each mode gives closed
streamlines that are identical in all four quadrants, as those represented in figures 2
and 4, their linear superposition also gives symmetrical recirculatory patterns that are
qualitatively similar to those obtained in the harmonic case, thereby maintaining the
fore-and-aft symmetry of the flow. It can therefore be concluded that the description of
the expected symmetry breaking arising in the presence of anharmonic flow requires
consideration of the inter-mode interactions occurring at order ε2. These higher-order
terms in the asymptotic expansion, which describe the flow asymmetries induced by
anharmonic flow, have been computed for circular cylinders and spheres undergoing
oscillations with ε � 1 and Res = ε2M2 ∼ 1 (Miyagi & Nakahasi 1975; Tatsuno 1981;
Higa & Takahashi 1987).
Many oscillatory flow phenomena of physiological interest display an anharmonic

time dependence, that being, for example, the case of CSF flow along the spinal
canal (Linninger et al. 2016). As revealed by magnetic resonance measurements of
cardiac-driven motion (Coenen et al. 2019; Sincomb et al. 2022), the flow rate exhibits
a non-sinusoidal variation induced by the intracranial pressure, including a short period of
fast caudal flow followed by a longer period of slow flow in the cranial direction. Since this
pulsating stream interacts with nerve roots and ligaments that are aligned with the flow, a
relevant question is whether such interactions can lead to the appearance of a longitudinal
streaming motion, which could explain the enhanced transport rate previously observed
(Stockman 2006, 2007).
To try to shed light on this matter, effects of anharmonicity were investigated in

connection with pulsating flow over the streamwise cylinder array considered here. In
view of the previous comments pertaining to flow over a cylinder, it can be expected
that for ε � 1 the velocity corrections associated with the symmetry breaking are small,
of order ε2 (Miyagi & Nakahasi 1975; Tatsuno 1981; Higa & Takahashi 1987), so that
the appearance of significant asymmetry, possibly leading to a non-zero streamwise flow
rate, requires values of the stroke length comparable to the cylinder radius (i.e. ε ∼ 1),
a problem addressed here with use of DNS simulations. The integrations correspond
to a cylinder array with � = 2 for a simple two-term periodic ambient velocity u∞ =
3 cos(t)/4 + cos(2t)/4, whose anharmonic temporal variation is shown in the inset in
figure 9(a).
The time-averaged Eulerian velocity 〈v〉 computed for ε = 1 was used to determine the

streamlines and vorticity shown for four different values of M in figure 9(b–e). The plots
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Figure 9. Time-averaged DNS results corresponding to a cylinder array with � = 2 and M = (1, 4, 8, 16) for
the ambient periodic velocity u∞ = 3 cos(t)/4 + cos(2t)/4 represented in the inset in panel (a). Panel (a)
shows the variation with ε of the rescaled streamwise flow rateQ/ε2, while panels (b)–(e) represent streamlines
(with spacing δ〈ψ〉 = 0.001 for M = 1 and δ〈ψ〉 = 0.006 for M = 4, 8 and 16) and vorticity contours for
ε = 1.0.

include the first two quadrants, as needed to illustrate the lack of fore-and-aft symmetry,
which is less pronounced for M = 1. For larger values of M, the time-averaged flow
comprises two highly distorted vortices in the vicinity of the cylinder, surrounded by
a region of nearly horizontal flow with velocities that decay slowly with distance. The
comparison of the streaming results for M = 1 and M = 16 with those shown earlier in
the second column of figures 4(a) and 4(c) for the harmonic case clearly indicate that the
effects of anharmonicity are much more important for larger values of M, for which the
outer vortex is replaced by a streamwise current, which is absent in the caseM = 1.
The streamline pattern shown in the plots forM /= 1 is consistent with the existence of a

non-zero streamwise flow rateQ = ∫ ∞
0 〈u〉(�, y) dy (orQ = ∫ ∞

1 〈u〉(0, y) dy). The variation
of Q with ε, determined in the DNS integration from the value of the time-averaged
streamfunction 〈ψ〉 in the far field, is shown in figure 9 for different values of M. The
plot reveals that the proportionality Q ∝ ε2, to be expected for ε � 1, continues to apply
over the whole range of ε considered in the DNS, for which the ratio Q/ε2 remains
approximately constant. The negative value ofQ/ε2, negligibly small forM = 1, increases
in magnitude for increasing M, reaching Q/ε2 � −0.58 forM = 16.
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6. Concluding remarks

The interaction of an oscillating stream with a streamwise linear array of cylinders gives
rise to a stationary motion that has been quantified here for configurations with Womersley
numbers M of order unity and dimensionless stroke lengths ε that are either ε � 1 or
ε ∼ 1, thereby yielding moderately small values of the Reynolds number Re = εM2 =
U∞a/ν, for which the flow remains two-dimensional, time-periodic and symmetric with
respect to the centreline. For infinitesimally small values of ε, the Lagrangian mean
motion is obtained as the sum of the steady-streaming and Stokes-drift components, which
have been computed for different values of M and of the inter-cylinder spacing �. The
description has been validated by comparisons with results of DNS involving finite values
of ε. The comparisons revealed, perhaps unexpectedly, that the simplified description for
ε � 1 continues to give reasonably accurate predictions for the time-averaged Eulerian
velocity and for the Lagrangian mean motion as the stroke length increases to values of
order unity (see, in particular, the results shown for ε = 0.5 in figures 3 and 8).
While most of the analysis focuses on oscillating streams with harmonic velocity,

consideration is also given to the effects of anharmonicity, an analysis motivated by
oscillatory flow phenomena of physiological interest. An important conclusion of our
study is that the interaction of an anharmonic stream with a streamwise obstacle array
can have a profound effect on the convective transport rate, especially in configurations
with ε ∼ 1 and large values of M, for which the presence of the array can be expected to
induce a streamwise flow rate of order U∞a, corresponding to order-unity values of the
dimensionless flow rate Q shown in figure 9.
Further investigation is warranted to assess the importance of these effects in connection

with the motion of CSF in the spinal canal, as needed to improve predictive capabilities
of current flow and transport models (Sánchez et al. 2018; Lawrence et al. 2019; Sincomb
et al. 2022). To enable quantitative predictions, these future investigations should consider
more realistic geometrical configurations, including annular models of the spinal canal
with obstacles arranged longitudinally to represent the ventral and dorsal nerve roots
(Stockman 2006, 2007). The results in § 5 suggest that the contribution of the induced
Lagrangian motion to the streamwise transport rate is likely to be more prominent in the
cervical region, where we find larger values of ε, while associated contributions in the
lumbar region will be necessarily more limited.
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Appendix A. Validation of the numerical scheme

The results of the numerical integrations were validated by comparing the temporal
variation of the resulting cylinder drag coefficient CD for � → ∞ with previous
experimental and numerical values reported in the literature for flow over a single cylinder
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Figure 10. The comparison of the temporal evolution of the cylinder drag coefficient CD for M = 5.6 and
ε = 1.59 reported by Dütsch et al. (1998) and Kim & Choi (2006) with results of numerical integrations of
(2.1)–(2.5) for � = (1.5, 2.5, 5, ∞).

(Dütsch et al. 1998; Kim & Choi 2006). As can be seen in figure 10, the resulting
curves are virtually indistinguishable. In addition to results corresponding to � → ∞, for
completeness, figure 10 includes values of CD obtained numerically for different values
of �. As expected, the presence of the nearby cylinders reduces the flow velocity in the
vicinity of the wall when � /=∞, producing a sheltering effect that reduces the drag as �

decreases. For instance, the peak values of CD for � = 1.5 are seen in figure 10 to be about
half of those of the single cylinder.

Appendix B. Quantification of error

To facilitate the quantitative comparison between the mean Eulerian velocity determined
numerically for finite values of ε and the asymptotic prediction for ε � 1, the
results shown in figure 3 are represented in figure 11 using the relative error
|(ψSS − 〈ψ〉/ε)/ψSS,peak|, where ψSS,peak = −0.0419 is the peak value of ψSS. As
expected, the relative errors, smaller than 1% for ε = 0.1, increase with increasing ε,
reaching values exceeding 25% for ε = 1.

Appendix C. Two-time-scale derivation of the Stokes-drift velocity

The familiar expression (3.6) can be systematically derived by considering the
displacement of a fluid particle undergoing pulsatile motion with ε � 1, computed from
the corresponding trajectory equations

dxp
dt

= εv(xp, t), (C1)

where xp represents the fluid-particle location, scaled with a, and v = v0 + εv1 + · · · is
the Eulerian velocity, which includes a harmonic leading-order term v0 = Re(eitV ) with
zero mean 〈v0〉 = 0 and a first-order correction v1 having a non-zero steady-streaming
component vSS = 〈v1〉.
The existence of two different time scales in the problem, identified above in the

introductory paragraph of § 1, motivates the use of a two-time-scale description in solving
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Figure 11. The relative error |(ψSS − 〈ψ〉/ε)/ψSS,peak| corresponding to � = 2 and M = 2 for different
values of the stroke length ε.

(C1), with the fluid-particle location assumed to be a function xp(t, τ ) of the two time
variables t and τ = ε2t. Following the classical two-time-scale formalism (Bender &
Orszag 1978), we use the chain rule of partial differentiation to write (C1) in the form

∂xp
∂t

+ ε2
∂xp
∂τ

= εv(xp, t) (C2)

and introduce the expansion xp = x0(t, τ ) + εx1(t, τ ) + · · · , with each term assumed to
be 2π-periodic in t. The known Eulerian velocity v(xp, t) appearing on the right-hand
side must be correspondingly expanded in the form v = v0(x0, t) + ε[v1(x0, t) + x1·
∇v0(x0, t)] + · · · , leading upon substitution to a hierarchy of problems that can be solved
sequentially.
Collecting terms in increasing powers of ε yields at leading order to ∂x0/∂t = 0,

indicating that x0 = x̂0(τ ) is a function of only the slow time scale τ . At the following
order (ε), one obtains ∂x1/∂t = v0(x̂0, t), which can be readily integrated to give

x1 =
∫ t

v0(x̂0, t̃) dt̃ + x̂1(τ ), (C3)

where t̃ is a dummy integration variable. The Lagrangian mean motion is determined by
considering the equation that emerges at order ε2, given by

dx̂0
dτ

+ ∂x2
∂t

= v1(x̂0, t) +
∫ t

v0(x̂0, t̃) dt̃ · ∇v0(x̂0, t) + x̂1(τ ) · ∇v0(x̂0, t). (C4)

Taking the time average and accounting for the fact that x2 is periodic in t and that 〈v0〉 = 0
finally provides

dx̂0
dτ

= 〈v1〉(x̂0) +
〈∫ t

v0(x̂0, t̃) dt̃ · ∇v0(x̂0, t)
〉

(C5)

for the Lagrangian mean velocity, which displays the two contributions previously
anticipated, namely, the steady-streaming velocity vSS = 〈v1〉 and the Stokes-drift velocity
(3.6).
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