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Abstract. For every integer k there exists a bound B = B(k) such that if the characteristic
polynomial of g ∈ SLn(q) is the product of ≤ k pairwise distinct monic irreducible polynomials over
Fq, then every element x of SLn(q) of support at least B is the product of two conjugates of g. We
prove this and analogous results for the other classical groups over finite fields; in the orthogonal and
symplectic cases, the result is slightly weaker. With finitely many exceptions (p, q), in the special

case that n = p is prime, if g has order qp−1
q−1

, then every non-scalar element x ∈ SLp(q) is the

product of two conjugates of g. The proofs use the Frobenius formula together with upper bounds
for values of unipotent and quadratic unipotent characters in finite classical groups.
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1. Introduction

A conjecture of Thompson states that each finite simple groupG contains a conjugacy class C ⊆ G
such that C2 = G. Inspired by this, we would like to study an asymptotic version of Thompson’s
conjecture when G is one of the finite classical groups SLn(q), SUn(q), Sp2n(q), SO2n+1(q), and
SO±

2n(q), which are all closely related to simple groups. This asymptotic version treats target
elements of sufficiently large support. We prove that regular semisimple conjugacy classes C = gG

satisfy our asymptotic version of Thompson’s conjecture whenever the characteristic polynomial of
g is close to being irreducible.

If G = Cl(V ) is a finite classical group, with natural module V = Fn
q , we define the support

supp(x) of an element x ∈ G to be the codimension of the largest eigenspace of x on V ⊗Fq Fq. The
following is one of our main results and generalizes [LT, Theorem 7.8].

Theorem 1.1. For all integers k ∈ Z⩾1 there exists an explicit constant B = B(k) > 0 such
that for all n ∈ Z⩾1 and all prime powers q the following statement holds. Suppose G is one of
SLn(q), SUn(q), Sp2n(q), SO2n+1(q), and SO±

2n(q), and g ∈ G is a regular semisimple element
whose characteristic polynomial on the natural module is a product of k pairwise distinct irreducible
polynomials, of pairwise distinct degrees if G is of type Sp or SO. Then gG · gG contains every
element x ∈ [G,G] with supp(x) ⩾ B.

In fact, in the Sp and SO cases, we prove a slightly stronger result, see Theorem 10.2. We also
note that the assumption x ∈ [G,G] is superfluous in the SL, SU, and Sp cases (since G = [G,G] in
these cases, aside from known exceptions with n ≤ 3), but necessary in the SO case (since in this
case [G,G] has index 2 in G and so gG · gG ⊆ [G,G]).

In a special family of particularly favorable cases, Theorem 10.7 shows that all non-central ele-
ments of G lie in C2.

If Irr(G) denotes the set of the complex irreducible characters of G, then the well-known formula
of Frobenius states that x ∈ G is contained in gG · gG if and only if

(1.1)
∑

χ∈Irr(G)

χ(g)2χ(x−1)

χ(1)
̸= 0

To show that this is the case we need sufficiently good upper bounds on |χ(g)|. To get these we
realise our group as the fixed point subgroup GF of a Frobenius endomorphism F : G → G on a
connected reductive algebraic group G and use the Deligne–Lusztig theory [DL].

To illustrate our techniques suppose GF = Sp2n(q) or SO2n+1(q). To each element w of the Weyl
group W ∼= C2 ≀Sn of G, Deligne and Lusztig have associated a virtual character Rw of GF whose
irreducible constituents are called unipotent characters. The subspace Class0(G

F ) ⊆ Class(GF )
of all C-valued class functions spanned by {Rw | w ∈ W} is the space of uniform unipotent class
functions.

If χ is a unipotent character then the (uniform) projection of χ onto Class0(G
F ) is known to

have the form

Rfχ =
1

|W |
∑
w∈W

fχ(w)Rw

for some class function fχ ∈ Class(W ), which is not irreducible in general. If g ∈ GF is semisimple
then its characteristic function is uniform, which means χ(g) = Rfχ(g) for all χ.

Our first step towards understanding Rfχ(g) is to show that fχ satisfies a version of the recursive
Murnaghan–Nakayama rule (or MN-rule), see Theorem 4.8. This is a consequence of a fundamental
combinatorial result of Asai [A1], [A2] that relates the classical MN-rule for the irreducible characters
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of W and Lusztig’s Fourier transform, whose proof we give in Section 3. If g ∈ GF is a regular
semisimple element such that C◦

G(g) is a torus of type w then |χ(g)| = |Rfχ(g)| = |fχ(w)| and we
recover the MN-rule of Lübeck–Malle [LüMa, Thm. 3.3].

By working with uniform projections we may apply these results to non-unipotent characters,
and we do so to obtain bounds on |χ(g)| whenever χ is a quadratic unipotent character and the cycle
type of g ∈ GF is a product of k ⩾ 1 pairwise distinct cycles (see §8 for precise definitions). In fact,
following an argument of Larsen–Shalev [LaSh] we obtain a bound on |χ(g)| that depends only on
k, see Corollary 8.2 in the quadratic unipotent case. Bounds for arbitrary characters, involving k
and n, are given in Corollary 7.6 and Corollary 7.8.

Now treating all characters χ in (1.1) involves a reduction to Levi subgroups using Deligne–
Lusztig induction. The characters that contribute to the sum the most have a heavily restricted
form. Our character bounds allow us to obtain sufficiently good bounds on the sum. Aside from
these immediate applications, we believe our character bounds for regular semisimple elements will
be useful in other situations as well.

2. Combinatorics

For any set X we will denote by Pow(X) the set of all subsets of X of finite cardinality. This is
naturally an F2-vector space under symmetric difference, which we denote by A ⊖ B = (A ∪ B) −
(A∩B) for any A,B ∈ Pow(X). Moreover, it is equipped with a nondegenerate symmetric bilinear
form ⟨−,−⟩ : Pow(X)× Pow(X) → Z/2Z given by ⟨A,B⟩ = |A ∩B| (mod 2). If e ∈ Z then we let
Powe(X) = {A ∈ Pow(X) | |A| ≡ e (mod 2)}.

We set X(2) = X × Z/2Z. If X ⊆ Y then X(2) ⊆ Y (2). Elements of X(2) will be identified with

their representatives in X × {0, 1}. We denote by δ : X(2) → Z/2Z the projection onto the second
factor.

Set N = {1, 2, 3, . . . } and N0 = N ∪ {0}. If A ∈ Pow(N0) then we define the rank of A to be

ρ(A) =
∑

a∈A a−
(|A|

2

)
. For each k ∈ N0 we define a map (−)→k : Pow(N0) → Pow(N0) by setting

A→k = {0, . . . , k − 1} ⊔ {a + k | a ∈ A}. This gives an equivalence relation ∼ by setting A ∼ B if
A = B→k or B = A→k for some k ∈ N0.

We denote by [A] the equivalence class containing A and B = Pow(N0)/∼ the set of all equivalence
classes. These are called β-sets. The rank ρ([A]) = ρ(A) of [A] ∈ B is well defined. If n ∈ N0 then
Bn ⊆ B denotes all β-sets of rank n.

2.1. Arrays. The elements of Pow(Z(2)) will be called arrays. They will be identified with their

images under the natural bijection Pow(Z(2)) → Pow(Z)× Pow(Z) given by X ↦→ (X0, X1), where
Xi = {x ∈ Z | (x, i) ∈ X}. We say X0 is the top row of X and X1 the bottom row of X.

Following Lusztig [Lu], and modifying the notation of [W], we consider elements of P̃ = Pow(N(2)
0 ) ⊆

Pow(Z(2)). Recall the rank of X ∈ P̃ is defined to be

(2.1) rk(X) =
∑

x0∈X0

x0 +
∑

x1∈X1

x1 −

⌊(
|X| − 1

2

)2
⌋
= ρ(X0) + ρ(X1) +

⌊(
defX

2

)2
⌋

where def(Λ) = |X0| − |X1| is the defect of Λ.

For d ∈ Z we let P̃d ⊆ P̃ be the set of arrays of defect d. We set P̃od =
⨆

d∈Z P̃2d+1 and

P̃ev =
⨆

d∈Z P̃2d so that P̃ = P̃od ⊔ P̃ev. For n ∈ N0 we let P̃n ⊆ P̃ be the set of arrays of rank n.

We then set P̃d
n = P̃n ∩ P̃d, P̃od

n = P̃n ∩ P̃od, and P̃ev
n = P̃n ∩ P̃ev.
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Each X ∈ P̃ gives rise to the following subsets of N0: X∪ := X0 ∪ X1, X∩ = X0 ∩ X1,
X⊖ = X0 ⊖X1. We let Sim(X) = {Y ∈ P̃ | Y ∪ = X∪ and Y ∩ = X∩} be the similarity class of X.
All elements of Sim(X) have the same rank but different defects.

2.2. Fourier transform. We associate to each X ∈ P̃ an associated special array

(2.2) Xsp := {(y, 0), (y, 1) | y ∈ X∩} ∪ {(x, |X⊖|+ ⟨X⊖, {0, . . . , x}⟩) | x ∈ X⊖}.

Note that if Y ∈ Sim(X) then Ysp = Xsp. Moreover, if x ∈ X⊖ then we have

(2.3) ⟨Xsp, {x}⟩ ≡ |X⊖|+ ⟨X⊖, {0, . . . , x}⟩.

The defect def(Xsp) ∈ {0, 1} of this array satisfies def(Xsp) ≡ |X⊖| (mod 2). Thus we have an
integer

s(X) = 2(|X
⊖|−def(Xsp))/2 ∈ N.

We have a map ♯ : P̃ → Pow(N0) given by Y ♯ = Y 1 ⊖ Y 1
sp ⊆ Y ⊖. This restricts to a bijection

♯ : Sim(X) → Pow(X⊖) for any X ∈ P̃. With this we define a C-linear map R̃ : C[P̃] → C[P̃] by
setting

R̃(X) =
1

s(X)

∑
Y ∈Sim(X)

(−1)⟨X
♯,Y ♯⟩Y.

Here C[P̃] denotes the free C-module with basis P̃ and ⟨−,−⟩ is the symmetric F2-bilinear form
defined above. Up to scaling this is the Fourier transform of the abelian group Pow(X⊖).

Remark 2.1. We briefly make a few comments regarding the conventions and definitions in [Lu].
If M = X1 ∩X⊖ and M0 = X1

sp ∩X⊖ then we have X♯ =M ⊖M0, which is denoted by M ♯ in [Lu,

§4.5, §4.6]. We have another set M ′
0 = X0

sp ∩X⊖ = X⊖ −M0. If |X⊖| is even then M0 and M ′
0 are

distinguished by the condition that
∑

x∈M0
x <

∑
x∈M ′

0
x.

This definite choice of M0 over M ′
0, using Xsp, is used in [Lu, §4.18]. Moreover, our definition

of Xsp agrees with the convention in [Lu2, 17.2], that the smallest entry of X⊖ occurs in the lower
row of Xsp. This is different to the definition of a distinguished symbol given in [GeMa, 4.4.3].

2.3. Hooks. Each (d, i) ∈ Z(2) determines an injective function Dd,i : Z(2) → Z(2) given by

Dd,i((x, j)) = (x− d, i+ j). This induces a map Dd,i : Pow(Z(2)) → Pow(Z(2)) that is F2-linear. For

any X,H ∈ Pow(Z(2)) we define

X ∖d,i H = X ⊖H ⊖Dd,i(H) ∈ Pow(Z(2)).

We write this as X ∖H when (d, i) is clear from the context or by X ∖d,i λ = X ∖λ when H = {λ}
is a singleton. For brevity we write the map D0,1 simply as (−)op.

If X ∈ P̃ then the elements of the set

Hd,i(X) = {λ ∈ X | Dd,i(λ) ∈ N(2)
0 −X}

are called the (d, i)-hooks of X. Elsewhere in the literature (d, 0)-hooks and (d, 1)-hooks, with
d > 0, are called d-hooks and d-cohooks respectively. Following [W] we define the leg parity of
λ = (x, j) ∈ Hd,i(X) to be

ld,i(λ,X) = ⟨{0, . . . , x}, Xj⟩+ ⟨{0, . . . , x− d}, (X ∖d,i λ)
i+j⟩.

If d > 0 and i = 0 then this has the same parity as the usual notion of the leg length of a hook.
This is also easily seen to agree with the definitions in [GeMa, 4.4.10].
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Remark 2.2. The similarity relation can be rephrased in terms of (0, 1)-hooks. Specifically, we have
bijections H0,1(X) → X⊖ and H0,1(X) → Sim(X) given by H ↦→ H∪ = H⊖ and H ↦→ X ∖0,1 H
respectively. Moreover, if Y = X ∖0,1 H then we have Y j = Xj ⊖H⊖ for any j ∈ {0, 1}.

Recall that δ : X(2) → Z/2Z is the second projection map. For a pair (d, i) ∈ Z(2), with d ̸= 0,

and j ∈ {0, 1} we define a C-linear map H̃j
d,i : C[P̃] → C[P̃] by setting

H̃j
d,i(X) =

∑
λ∈Hd,i(X)

(−1)jδ(λ)+ld,i(λ,X)X ∖d,i λ

for any X ∈ P̃. Note that if Y = X ∖d,i λ, with λ ∈ Hd,i(X), then def(Y ) = def(X) − 2i(−1)δ(λ)

so def(Y ) ≡ def(X) ≡ |X⊖| (mod 2).

2.4. Symbols. The map (−)→k : Pow(N0) → Pow(N0) defined above, for k ∈ N0, extends to map

P̃ → P̃ given by (A,B)→k = (A→k, B→k). As before this yields an equivalence relation on P̃. We

denote by [X] the equivalence class containing X ∈ P̃ and S̃ the set of equivalence classes. The
equivalence class [X] is called an (ordered) symbol.

Given λ = (x, j) ∈ Z(2) and k ∈ Z let λ+ k = (x+ k, j). If X ∈ P̃ and k ∈ N0 then it is readily
checked that:

• Hd,i(X
→k) = {λ+ k | λ ∈ Hd,i(X)},

• X→k ∖d,i (λ+ k) = (X ∖d,i λ)
→k

• ld,i(λ+ k,X→k) = ld,i(λ,X).

Thus the maps R̃ and H̃j
d,i preserve the kernel of the natural quotient map C[P̃] → C[S̃] and so

factor through endomorphisms of C[S̃] which we denote in the same way.

Recall that X ∈ P̃ is degenerate if X0 = X1. We let

S = {JXK | X ∈ P̃ and X0 ̸= X1} ∪ {JXK± | X ∈ P̃ and X0 = X1}
where JXK = {[X] , [Xop]}. We take the rank and defect of JXK ∈ S to be rk(JXK) = rk(X) and
def(JXK) = |def(X)|. We can then partition S with respect to the rank and defect as in Section 2.1.

3. More combinatorics

3.1. A combinatorial result of Asai. We will now prove the following fundamental combinatorial

observation of Asai that relates the maps R̃ and H̃j
d,i. This was first stated by Asai in [A1, Lem. 2.8.3]

and [A2, Lem. 1.5.3] where it is left as a “direct calculation”. However, as pointed out by Lübeck–
Malle [LüMa, §3.4] a sign is missing in the statement in [A1].

Waldspurger also states a version of this result [W, §2], where it is left as “un calcul fastidieux mais
élémentaire”, but the conventions of [W] are different leading to a different statement. Specifically

the analogue of our map R̃, denoted by F in [W], is not the same, as can be seen by evaluating it
on the similarity class {(∅, {1, 2}), ({1}, {2}), ({2}, {1}), ({1, 2}, ∅)}.

Aside from being an important ingredient in our work here, Asai’s combinatorics form a core
basis for the block theory of finite reductive groups and solutions of Lusztig’s conjecture on almost
characters for classical groups. In this second application the correctness of signs is crucial. In light
of the importance of Asai’s statements, we provide some details regarding the proof.

We note that some of the main ideas of the proof have recently appeared in [M, Prop. 6], where
a weaker statement, leading essentially to Theorem 4.8, is proved. Unfortunately there are several
errors in the proofs of [M] that are corrected by our arguments here.

Theorem 3.1 (Asai). For any 0 ̸= d ∈ Z we have the following equalities of linear endomorphisms

of C[P̃]:
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(i) H̃0
d,0 ◦ R̃ = R̃ ◦ H̃0

d,0,

(ii) H̃1
d,0 ◦ R̃ = −Θ ◦ R̃ ◦ H̃0

d,1,

where Θ : C[P̃] → C[P̃] is the C-linear map defined by Θ(X) = (−1)def(X)X.

From now on 0 ̸= d ∈ Z and i ∈ {0, 1} are fixed. Given x ∈ N we denote by X (X,x) the
set of pairs (H,λ) with H ⊆ H0,1(X), and λ ∈ Hd,0(X ∖ H) is such that λ = (x, j) for some
j ∈ {0, 1}. Correspondingly we denote by Y (X,x) the set of pairs (µ,G) where G ⊆ H0,1(X), and
µ ∈ Hd,i(X ∖G) satisfies µ = (x, j) for some j ∈ {0, 1}.

Given X ∈ P̃ we then have

(3.1) H̃i
d,0(R̃(Λ)) =

∑
x∈N

∑
(H,λ)∈X (X,x)

1

s(X)
(−1)iδ(λ)+⟨X♯,(X∖H)♯⟩+ld,0(λ,X∖H)X ∖H ∖ λ

and

(3.2) R̃(H̃0
d,i(Λ)) =

∑
x∈N

∑
(µ,G)∈Y (Λ,x)

1

s(X ∖ µ)
(−1)⟨(X∖µ)♯,(X∖µ∖G)♯⟩+ld,i(µ,X)X ∖ µ∖G.

Before proving (i) of Theorem 3.1 we start with a lemma.

Lemma 3.2. Assume i = 0 and (H,λ) ∈ X (X,x) and (µ,G) ∈ Y (X,x) are two terms satisfying
one of the following:

(i) (µ,G⊖) = (λ,H⊖) and ⟨{x, x− d}, H⊖⟩ = 0,
(ii) (µ,G⊖) = (λop, H⊖ ⊖ {x, x− d}) and ⟨{x, x− d}, H⊖⟩ = ⟨{x, x− d}, X⊖⟩ = 1.

Then we have

(−1)⟨X
♯,(X∖H)♯⟩+ld,0(λ,X∖H) = (−1)⟨(X∖µ)♯,(X∖µ∖G)♯⟩+ld,0(µ,X).

Proof. Let Y = X ∖0,1 H, U = X ∖d,0 µ, and V = U ∖0,1 G. We have

⟨X♯, Y ♯⟩+ ⟨U ♯, V ♯⟩ = |X1|+ |U1|+ |X1
sp|+ |U1

sp|+ ⟨X♯, H⊖⟩+ ⟨U ♯, G⊖⟩

because V ♯ = U ♯⊖G⊖ and Y ♯ = X♯⊖H⊖. The sum of the first four terms is 0 because |X1| = |U1|,
as µ is a (d, 0)-hook, and a straightforward check shows that |U1

sp| = |X1
sp|. We thus have

⟨X♯, Y ♯⟩+ ⟨U ♯, V ♯⟩ = ⟨U1, H⊖ ⊖G⊖⟩+ ⟨U1
sp, H

⊖ ⊖G⊖⟩+ ⟨X1 ⊖ U1, H⊖⟩+ ⟨X1
sp ⊖ U1

sp, H
⊖⟩.

As U δ(µ) = Xδ(µ) ⊖ {x, x− d} and Y δ(λ) = Xδ(λ) ⊖H⊖, it is straightforward to see that

ld,0(λ, Y ) + ld,0(µ,X) = ⟨{0, . . . , x} ⊖ {0, . . . , x− d}, Xδ(λ) ⊖Xδ(µ) ⊖H⊖⟩.
We have to show the sum of these two expressions is 0.

For any z ∈ U⊖ ∩X⊖ it follows from Eq. (2.3) that

⟨U1
sp ⊖X1

sp, {z}⟩ = ⟨U⊖ ⊖X⊖, {0, . . . , z}⟩ = ⟨{0, . . . , x} ⊖ {0, . . . , x− d}, {z}⟩

because U⊖ ⊖X⊖ = {x− d, x} so |X⊖| ≡ |U⊖| (mod 2). Thus for any subset Z ⊆ U⊖ ∩X⊖ we get

⟨U1
sp ⊖X1

sp, Z⟩ = ⟨{0, . . . , x} ⊖ {0, . . . , x− d}, Z⟩.

Note that X1 ⊖ U1 is either ∅ or {x, x − d} depending on whether δ(µ) = 0 or 1. Hence
the statement clearly follows if (i) holds. So assume (ii) holds. As H⊖ ⊆ X⊖ we must have
H⊖ ∩ {x, x − d} = X⊖ ∩ {x, x − d}. We will assume this is {x} as the case where it is {x − d} is
identical. This means x− d ̸∈ X∪ because x− d ̸∈ X∩.

Clearly x ̸∈ U∪ and x− d ∈ U⊖ so

⟨U1, H⊖ ⊖G⊖⟩+ ⟨X1 ⊖ U1, H⊖⟩ = ⟨U1, {x− d}⟩+ ⟨X1, {x}⟩ = 0.
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Now ⟨U1
sp, H

⊖ ⊖G⊖⟩+ ⟨X1
sp ⊖ U1

sp, {x}⟩ = ⟨U1
sp, {x− d}⟩+ ⟨X1

sp, {x}⟩ is the same as

⟨{x, x− d}, {0, . . . , x− d}⟩+ ⟨X⊖, {0, . . . , x} ⊖ {0, . . . , x− d}⟩,

and the first term is equivalent to ⟨{x}, {0, . . . , x} ⊖ {0, . . . , x− d}⟩. Adding this to

⟨X1
sp ⊖ U1

sp, H
⊖ ⊖ {x}⟩

gives the statement because H⊖ ⊖ {x} ⊆ U⊖ ∩X⊖. □

Proof of Theorem 3.1(i). We can assume x ∈ X∪ since otherwise X (X,x) and Y (X,x) are empty,
and there is nothing to show. Similarly, this is the case if x−d ∈ X∩. The proof divides into several
cases distinguished by the distribution of x− d and x amongst the rows of X.

Case 1: x ∈ X⊖ and x− d ̸∈ X∪. We have a bijection X (X,x) → Y (X,x) given by

(H,λ) ↦→ (µ,G) :=

{
(λ,H) if H⊖ ∩ {x, x− d} = ∅
(λop, H ⊖ {λop,Dd,0(λ

op)}) if H⊖ ∩ {x, x− d} = {x}

such that X∖H∖λ = X∖µ∖G. Now (X∖µ)⊖ = (X⊖−{x})⊔{x−d}, so we have s(X∖µ) = s(X).
Hence, by Lemma 3.2 the coefficients of X ∖H ∖ λ and X ∖ µ∖G in Eqs. (3.1) and (3.2) are the
same.

Case 2: x ∈ X∩ and x − d ̸∈ X∪. We have a fixed-point free involution ′ : Y (Λ, x) → Y (Λ, x)
given by (µ,G)′ = (µop, G′), where G′ is defined by

G⊖G′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{µ,Dd,0(µ

op)} if G⊖ ∩ {x, x− d} = ∅
{µop,Dd,0(µ

op)} if G⊖ ∩ {x, x− d} = {x}
{µ,Dd,0(µ)} if G⊖ ∩ {x, x− d} = {x− d}
{µop,Dd,0(µ)} if G⊖ ∩ {x, x− d} = {x, x− d}.

This bijection satisfies

X ∖ µ∖G = X ∖ µop ∖G′ and ⟨{x, x− d}, G⊖⟩ = ⟨{x, x− d}, G′⊖⟩

because G⊖⊖G′⊖ = {x, x−d}. Given e ∈ {0, 1} we let Y e(Λ, x) be the set of pairs {(µ,G), (µ,G)′}
with ⟨{x, x− d}, G⊖⟩ = ē, where bar indicates reduction (mod 2).

We claim the coefficients of V = X ∖ µ ∖ G and V ′ = X ∖ µop ∖ G′ in Eq. (3.2) differ by

(−1)⟨{x,x−d},G⊖⟩. If U = X ∖ µ and U ′ = X ∖ µop then as in Lemma 3.2 we get that

⟨U ♯, V ♯⟩+ ⟨U ′♯, V ′♯⟩ = ⟨U ♯, G⊖⟩+ ⟨U ′♯, G′⊖⟩.

As G⊖ ⊖G′⊖ = {x, x− d}, this term can be written as

⟨U1, {x, x− d}⟩+ ⟨U1
sp, {x, x− d}⟩+ ⟨U1 ⊖ U ′1, G⊖⟩+ ⟨U1

sp ⊖ U ′1
sp, G

⊖⟩
= 1 + ⟨U⊖, {0, . . . , x} ⊖ {0, . . . , x− d}⟩+ ⟨{x, x− d}, G⊖⟩+ 0

= ⟨X⊖, {0, . . . , x} ⊖ {0, . . . , x− d}⟩+ ⟨{x, x− d}, G⊖⟩.

Finally, as in Lemma 3.2,

ld,0(µ,X) + ld,0(µ
op, X) = ⟨{0, . . . , x} ⊖ {0, . . . , x− d}, X⊖⟩.

Therefore, given a pair {(µ,G), (µop, G′)} ∈ Y 1(X,x), the corresponding terms X ∖ µ ∖ G and
X ∖ µop ∖ G′ in Eq. (3.2) cancel. We have a bijection X (X,x) → Y 0(Λ, x) given by (H,λ) ↦→
{(λ,H), (λ,H)′} such that X ∖H ∖ λ = X ∖ λ∖H. Now s(X ∖ λ) = 2s(X) because (X ∖ λ)⊖ =
X⊖⊔{x, x−d}, but the coefficients of X∖λ∖H and X∖λop∖H ′ combine to yield the coefficient
of X ∖H ∖ λ by Lemma 3.2.
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Case 3: x ∈ X⊖ and x − d ∈ X⊖. Identically to Case 2 we have a fixed-point free involution
′ : X (X,x) → X (X,x) denoted by (H,λ)′ = (H ′, λop). This bijection satisfies

X ∖H ′ ∖ λop = X ∖H ∖ λ and ⟨{x, x− d}, H⊖⟩ = ⟨{x, x− d}, H ′⊖⟩.

One can check that when the terms exist, the coefficients of X∖H∖λ and X∖H ′∖λop in Eq. (3.1)

differ by (−1)1+⟨{x,x−d},X1⟩. Given e ∈ {0, 1} we let X e(X,x) be the set of pairs {(H,λ), (H,λ)′}
with ⟨{x, x− d}, H⊖⟩ = ē.

If x−d and x occur in the same row of X then we must have X 0(X,x) = {∅} and Y (X,x) = {∅}.
Moreover, each pair in X 1(X,x) gives rise to terms in Eq. (3.1) that cancel. If x−d and x occur in
opposite rows of X then we must have X 1(X,x) = {∅}. Moreover, we have a bijection Y (X,x) →
X 0(Λ, x) given by (µ,G) ↦→ {(G,µ), (G,µ)′} such that X ∖ µ ∖ G = X ∖ G ∖ µ = X ∖ G′ ∖ µop.
In this case (X ∖ µ)⊖ = X⊖ − {x, x− d} so 2s(X ∖ µ) = s(X) but X ∖H ∖ λ and X ∖H ′ ∖ λop

have the same coefficient in Eq. (3.1). Thus, the coefficients of X ∖ µ ∖ G = X ∖ G ∖ µ agree by
Lemma 3.2

Case 4: x ∈ X∩ and x − d ∈ X⊖. As in Case 1, we have a bijection X (X,x) → Y (X,x) given
by

(H,λ) ↦→ (µ,G) :=

{
(λ,H) if H⊖ ∩ {x, x− d} = ∅
(λop, H ⊖ {λ,Dd,0(λ)}) if H⊖ ∩ {x, x− d} = {x− d}

such that X ∖H ∖ λ = X ∖ µ∖G. Clearly (X ∖ µ)⊖ = (X⊖ −{x− d})⊔ {x} so s(X ∖ µ) = s(X).
Again, by Lemma 3.2 the coefficients of X ∖H ∖ λ and X ∖ µ∖G in Eqs. (3.1) and (3.2) are the
same. □

We now consider the proof of (ii) of Theorem 3.1. The argument is exactly the same as (i),
proceeding through the same cases. The bijection in Case (ii) is defined identically simply replacing
Dd,0 with Dd,1. Instead of providing a direct analogue of Lemma 3.2 we instead check directly
in each case that the signs of the corresponding coefficients agree. As an example, we treat the
analogue of Case 1, leaving the remaining cases to the reader.

Proof of Theorem 3.1(ii). Assume x ∈ X⊖ and x − d ̸∈ X∪. We have a bijection X (X,x) →
Y (X,x) given by

(H,λ) ↦→ (µ,G) :=

{
(λ,H ⊖ {Dd,1(λ)}) if H⊖ ∩ {x, x− d} = ∅
(λop, H ⊖ {λop}) if H⊖ ∩ {x, x− d} = {x}

such that X ∖H ∖ λ = X ∖ µ∖G. As in the proof of (i) of Theorem 3.1, we need only check that

the sign of the coefficient of Y ∖ λ in Eq. (3.1) and (−1)1+def(V ) times the sign of the coefficient of
V = U ∖G in Eq. (3.2) agree, where Y = X ∖H and U = X ∖ µ. We check this directly.

As µ is a (d, 1)-hook, we have |U1| = |X1| ± 1, so arguing as in the proof of Lemma 3.2, we see
that 1 + def(V ) + ⟨X♯, Y ♯⟩+ ⟨U ♯, V ♯⟩ is

def(V ) + ⟨U1, H⊖ ⊖G⊖⟩+ ⟨U1
sp, H

⊖ ⊖G⊖⟩+ ⟨X1 ⊖ U1, H⊖⟩+ ⟨X1
sp ⊖ U1

sp, H
⊖⟩.

Moreover, this time ld,0(λ, Y ) + ld,1(µ,X) is

⟨{0, . . . , x} ⊖ {0, . . . , x− d}, Xδ(λ) ⊖Xδ(µ) ⊖H⊖⟩+ ⟨{0, . . . , x− d}, X⊖ ⊖ {x}⟩.

We consider the two cases of the bijection above separately.
Suppose first that H⊖ ∩ {x, x− d} = ∅. Clearly ⟨X1 ⊖ U1, H⊖⟩ = 0, and as H⊖ ⊆ U⊖, we have

⟨U1
sp ⊖X1

sp, H
⊖⟩ = ⟨{0, . . . , x− d} ⊖ {0, . . . , x}, H⊖⟩ as in Lemma 3.2. Now

⟨U1
sp, H

⊖⊖G⊖⟩ = ⟨U1
sp, {x−d}⟩ = |U⊖|+⟨U⊖, {0, . . . , x−d}⟩ = def(V )+⟨X⊖⊖{x, x−d}, {0, . . . , x−d}⟩
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because x ̸∈ U∪. Summing the above terms it suffices to show that

(−1)δ(λ) = (−1)1+⟨U1,H⊖⊖G⊖⟩ = (−1)1+⟨U1,{x−d}⟩,

and this is straightforward.
Finally we assume that H⊖ ∩ {x, x− d} = {x}. This time H⊖ ⊖ {x} ⊆ X⊖ ∩ U⊖ so

⟨U1
sp ⊖X1

sp, H
⊖ ⊖ {x}⟩ = ⟨{0, . . . , x− d} ⊖ {0, . . . , x}, H⊖ ⊖ {x}⟩.

Moreover, ⟨X1
sp ⊖ U1

sp, {x}⟩ = ⟨X1
sp, {x}⟩ = def(V ) + ⟨X⊖, {0, . . . , x}⟩ and ⟨U1, H⊖ ⊖ G⊖⟩ =

⟨U1
sp, H

⊖ ⊖G⊖⟩ = 0 because H⊖ ⊖G⊖ = {x} and x ̸∈ U∪. As before it suffices to show that

(−1)δ(λ) = (−1)1+⟨X1⊖U1,H⊖⟩ = (−1)1+⟨X1⊖U1,{x}⟩,

and again this is straightforward. □

3.2. More symbols. We have a linear map J−K : C[P̃] → C[S] defined such that if X ∈ P̃ is
nondegenerate then JXK ∈ S and if X is degenerate then JXK = JXK+ + JXK−. This clearly

factors through a map C[S̃] → C[S]. The image of J−K has a natural complement in C[S], namely

⟨JXK+ − JXK− | X ∈ P̃ is degenerate⟩C.
We wish to understand to what extent the endomorphisms R̃ and H̃j

d,i of C[S̃] factor through

J−K. As the term arises frequently we let

d(X) = (def(X)− def(Xsp))/2 ∈ N0

for any X ∈ P̃. We then define a C-linear map ε : C[S̃] → C[S̃] by setting ε([X]) = (−1)d(X) [X].
The following easy observations are stated in [W, §2].

Lemma 3.3. For any (d, i) ∈ Z(2) and j ∈ {0, 1} we have the following equalities of linear endo-

morphisms of C[S̃]:
(i) R̃ ◦ (−)op = ε ◦ R̃,

(ii) (−)op ◦ R̃ = R̃ ◦ ε,
(iii) (−)op ◦ H̃j

d,i = (−1)jH̃j
d,i ◦ (−)op,

(iv) ε ◦ (−)op = Θ ◦ (−)op ◦ ε.

Proof. (i). If X ∈ P̃ then Sim(X) = Sim(Xop) = Sim(X)op. As (Xop)♯ = X⊖⊖X♯, we see that the

coefficient of Y ∈ Sim(Λ) in R̃(Xop) is (−1)⟨X
⊖,Y ♯⟩ = (−1)⟨X

⊖,Y 1⟩+⟨X⊖,X1
sp⟩ times the corresponding

coefficient in R̃(X). Now,

2d(X) = (|X⊖| − 2|Y 1 ∩X⊖|)− (|X⊖| − 2|X1
sp ∩X⊖|)

= 2(|X1
sp ∩X⊖| − |Y 1 ∩X⊖|).

(ii). This is similar to (i) using that ⟨X♯, Y ♯ ⊖ (Y op)♯⟩ = ⟨X♯, X⊖⟩.
(iii). It is straightforward to check that for any X ∈ P̃, we have Hd,i(X

op) = Hd,i(X)op and
ld,i(λ,X) = ld,i(λ

op, Xop), which gives the statement.
(iv). As def(Xop) = −def(X), we have d(Xop) = d(X)− def(X). □

We define for each integer e ∈ Z the set

P̃≡e = {X ∈ P̃ | d(X) ≡ e (mod 2)}.

This gives a partition P̃ = P̃≡0 ⊔ P̃≡1 and partitions P̃od = P̃od,0 ⊔ P̃od,1 and P̃ev = P̃ev,0 ⊔ P̃ev,1.
Note that (−)op swaps P̃od,0 and P̃od,1 but stabilises P̃ev,0 and P̃ev,1. Thus we get a partition

Sev = Sev,0 ⊔ Sev,1, where Sev,0 contains all JXK± with X ∈ P̃ev,0 degenerate.
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If X ∈ P̃ then we let Sime(X) = Sim(X) ∩ P̃≡e. Under the map ♯ : P̃ → Pow(N0), we have

X ∈ P̃≡e if and only if |X♯| ≡ e (mod 2). Now we define R̃e : C[P̃] → C[P̃] by setting

R̃e(X) =
1

s(X)

∑
Y ∈Sime(X)

(−1)⟨X
♯,Y ♯⟩Y

so that R̃ = R̃0 + R̃1.

Lemma 3.4. For any X ∈ P̃ and e ∈ Z we have:

(i) R̃e(X
op) = (−1)eR̃e(X),

(ii) R̃e(X)op = (−1)d(X)R̃e+def(X)(X)

In particular, for any X ∈ P̃≡1 we have JR̃e(X)K = 0.

Proof. This follows by projecting (i) and (ii) of Lemma 3.3 onto each summand of the decomposition

C[P̃] = C[P̃≡0] ⊕ C[P̃≡1]. Here we use that Sime(X)op = Sime+def(X)(X), which follows from the

above remarks. For the final statement note that (ii) shows that if X ∈ P̃≡1 then JR̃e(X)K =

−JR̃e+def(X)(X)K = −JR̃e(X)K. □

By (i) of Lemma 3.4 we have R0 factors through J−K to give an endomorphism of its image. We
extend this to an endomorphism of C[S] by letting it fix pointwise the complement defined above

(in other words, R0(JXK±) = JXK± for all degenerate X ∈ P̃). We also denote this by R0. We
consider the subspaces C[Sod] and C[Sev] separately. First let A od = U od = C[Sod].

Note that R0(JXK) is simply the Fourier transform on the abelian group Pow0(X
⊖). As such R2

0

is the identity on C[Sod]. To have a compatible notation we consider R0 as a map U od → A od and
denote by Q0 : A od → U od its inverse.

Assume (d, i) ∈ Z(2) with d ̸= 0. It follows from Lemma 3.3 that the restriction of the map H̃0
d,i

to C[S̃od] factors through a well-defined endomorphism of U od and A od which we denote by H0
d,i.

Similarly H̃1
d,i ◦ ε factors through an endomorphism which we denote by H1

d,i. The following is now
simply a consequence of Theorem 3.1.

Proposition 3.5. For any (d, i) ∈ Z(2), with d ̸= 0, we have commutative diagrams

A od U od

A od U od

H0
d,i

Q0

Hi
d,0

Q0

U od A od

U od A od

H0
d,i

R0

Hi
d,0

R0

If X ∈ P̃ has even defect then Sim0(X) = Sim0(X)op. As remarked in the proof of Lemma 3.3

we have (Y op)♯ = Y ♯ ⊖X⊖ so ⟨X♯, (Y op)♯⟩ = ⟨X♯, Y ♯⟩ for any Y ∈ Sim0(X). Thus if X ∈ P̃ev is
nondegenerate then

R0(JXK) =
2

s(X)

∑
Y ∈Sim0(X)

(−1)⟨X
♯,Y ♯⟩JY K

where Sime(X) = {{Y, Y op} | Y ∈ Sime(X)}. This is the Fourier transform on the abelian group
Pow0(X

⊖) = Pow0(X
⊖)/{∅, X⊖}.

If e ∈ 2Z is an even integer then we let A ev,e = U ev,e = C[Sev,0] ⊆ C[Sev]. The map R0 restricts
to an involution on the subspace C[Sev,0]. As above we consider R0 as a map A ev,e → U ev,e with
inverse Q0 : U ev,e → A ev,e.
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Let P̃ev,nd ⊆ P̃ev,0 be the subset of nondegenerate arrays. For any odd integer e ∈ 2Z+ 1 we let
U ev,e = C[Sev,1] and define the quotient space

A ev,e = C[P̃ev,nd]/⟨[X] + [Xop] | X ∈ P̃ev,nd⟩C.

By Lemma 3.4 the map R̃e factors through a map A ev,e → U ev,e which we denote by Re. We
define a right inverse Qe : U ev,e → A ev,e of this map by setting

Qe(JXK) =
1

s(X)

∑
Y ∈Sim0(X)

(−1)⟨X
♯,Y ♯⟩⟨⟨Y ⟩⟩ = 2

s(X)

∑
Y ∈Sim0(X)

(−1)⟨X
♯,Y ♯⟩⟨⟨Y ⟩⟩

where ⟨⟨−⟩⟩ : C[P̃ev,nd] → A ev,e is the natural quotient map.

It follows easily from Lemma 3.3 that the endomorphism H̃i
d,0 of C[P̃ev,nd] factors through a well

defined map Hi
d,0 : A ev,e → A ev,e+i for each e ∈ Z. Similarly we have H0

d,i factors through a map

U ev,e → U ev,e+i.

Proposition 3.6. For any (d, i) ∈ Z(2), with d ̸= 0, and any e ∈ Z we have commutative diagrams

U ev,e A ev,e

U ev,e+i A ev,e+i

(−1)iH0
d,i

Qe

Hi
d,0

Qe+i

A ev,e U ev,e

A ev,e+i U ev,e+i

Hi
d,0

Re

(−1)iH0
d,i

Re+i

4. Hyperoctahedral groups

Assume (I,≺) is a finite totally ordered set of cardinality |I| = 2n. Denote by † : I → I the
unique order reversing bijection on I. We say a ∈ I is positive or negative if a ≻ a† or a ≺ a†

respectively. This gives a decomposition I = I+ ⊔ I− into subsets of cardinality n. If O ⊆ I is a
subset then (O,≺) is also a totally ordered set.

Example 4.1. We could take I = {−n ≺ · · · ≺ −1 ≺ 1 ≺ · · · ≺ n} then for any a ∈ I we have
a† = −a so I+ = {1, . . . , n} and I− = {−1, . . . ,−n}.

If SI is the symmetric group on I then we define WI = CSI (σ) to be the centraliser of the
involution σ =

∏
a∈I+(a, a†). Let δI : SI → Z/2Z be the unique non-trivial homomorphism. Given

e ∈ {0, 1} we let W e
I = {w ∈WI | δI(w) = e} so that we have a decomposition WI =W 0

I ⊔W 1
I into

the cosets of W 0
I ◁WI . Note we have a semidirect product decomposition WI = NI ⋊HI where

NI = ⟨(a, a†) | a ∈ I+⟩ and HI = {w ∈WI | wI+ = I+} ∼= SI+ .
For any σ-stable subset O ⊆ I, equivalently O = O†, we have a natural injective homomorphism

WO →WI whose image is the pointwise stabiliser of I ∖O. We identify WO with its image in WI .
We say w ∈ WI is an I-cycle if the subgroup ⟨w, σ⟩ ⩽ WI acts transitively on I. Thus w = nh,

with n ∈ NI and h ∈ HI acting on I+ as cycle of length n. The following is an elementary
calculation.

Lemma 4.2. If w ∈ WI is an I-cycle then CWI (w) = ⟨w⟩ if δI(w) = 1 and CWI (w) = ⟨w⟩⋊ ⟨σ⟩
if δI(w) = 0. In either case |CWI (w)| = |I| = 2n.

Now suppose w ∈ WI and I/⟨w, σ⟩ = {O1, . . . ,Ok}. Then we can write w = w1 · · ·wk as a
pairwise commuting product with wi ∈ WOi an Oi-cycle. Such a decomposition, which we call a
cycle decomposition, is unique up to reordering. We call k ⩾ 1 the cycle length.

There is a unique ordering of the orbits such that (−1)δO1
(w1)|O+

1 | ⩾ · · · ⩾ (−1)δOk
(wk)|O+

k |. With

this ordering we call ((−1)δO1
(w1)|O+

1 |, . . . , (−1)δOk
(wk)|O+

k |) the signed cycle type of the element.
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It determines the conjugacy class ClWI (w) uniquely. If these inequalities are all strict then we say
w has pairwise distinct cycles.

Lemma 4.3. Let w ∈WI be as above and let I = I1⊔· · ·⊔Im be a decomposition into σ-stable sets
such that P = WI1 · · ·WIm ⩽ WI contains w. If w has pairwise distinct cycles then the following
hold:

(i) CWI (w) = CWO1
(w1) · · ·CWOk

(wk),

(ii) |CWI (w)| ⩽ 2k · nk,
(iii) CP (w) = CW (w).

Proof. Part (i) is given by the uniqueness of the cycle decomposition. Part (ii) follows from (i) and
Lemma 4.2. Part (iii) follows from (i) because ⟨w, σ⟩ stabilises each Ij , so they must be a union of
the Oi. □

Recall from Section 2 that we have define the β-sets Bn. After [GP, §6.4.1] we have a bijection
Bn → Irr(SI+) which we denote by [A] ↦→ χ[A]. Under the natural isomorphism SI+

∼= HI+ we get
a bijection Bn → Irr(HI).

If δ ∈ {0, 1} then this yields a bijection S̃δ
n → Irr(WI), denoted by [X] ↦→ ρ[X], defined as follows.

First note that for any [X] ∈ S̃δ
n we have rk(

[
X0

]
) + rk(

[
X1

]
) = n by Eq. (2.1). Now choose a

σ-stable partition I = I0 ⊔ I1 such that |Ij | = 2 · rk(Xj) with j ∈ {0, 1} (note these subsets may
be empty). We then have

ρ[X] = IndWI
WI0WI1

(χ̃[X0] ⊠ (εI1χ̃[X1]))

where χ̃[Xj ] is the inflation of χ[Xj ] ∈ Irr(HIj ) under the map WIj → HIj . These characters satisfy

the following MN-rule (or Murnaghan–Nakayama rule).

Proposition 4.4. Let O ∈ I/⟨w,NI⟩ be an orbit for some element w ∈ WI . Then we have a
unique decomposition w = w1w2 = w2w1 with w1 ∈ WO and w2 ∈ WI\O. If (d, j) = (|O+|, δO(w1))

then for any [X] ∈ S̃δ
n, with δ ∈ {0, 1}, we have

ρ[X](w) =
∑

λ∈Hd,0(X)

(−1)jδ(λ)+ld,0(λ,X)ρ[X∖λ](w2),

Proof. We refer the reader to [GP, Thm. 10.3.1]. For the correspondence between hooks of partitions
and hooks of β-sets see [O, §I.1]. □

In [LaSh, Theorem 7.2], a bound is given for the character values of the symmetric group at a
given element in terms of its cycle length. The argument in [LaSh] is a consequence of the MN-rule
together with analogues of the following easy observations.

Lemma 4.5. Let X ∈ P̃ be an array with an (e, j)-hook λ ∈ He,j(X) for some (e, j) ∈ N(2)
0 . Then

for any (d, i) ∈ N(2)
0 we have

Hd,i(X) ⊆ Hd,i(X ∖e,j λ) ∪ {λ,De−d,i+j(λ)}.

Proof. Let µ ∈ Hd,i(X) so Dd,i(µ) ∈ N(2)
0 . If µ ̸= λ then µ ∈ Y := X ∖e,j λ, and if µ is not a

(d, i)-hook of Y then clearly Dd,i(µ) ∈ Y −X = {De,j(λ)}. □

Lemma 4.6. If (n, i) ∈ N(2)
0 then X ∈ P̃n has at most one (n, i)-hook.

Proof. Suppose λ ∈ Hn,i(X) is such a hook. Then X∖n,iλ is of rank 0 and so has no hooks. Hence,
by the previous lemma the only possible (n, i)-hooks are λ and λop. But it is easily seen that if λop

were a hook of X then it would also be one of X ∖n,i λ, which is impossible. □
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Theorem 4.7. Fix an integer 1 ⩽ k ⩽ n. Then for each element w ∈ WI of cycle length k and
each irreducible character χ ∈ Irr(WI) we have

|χ(w)| ⩽ 2k−1 · k!.
Moreover, if w ∈W 0

I then for all χ ∈ Irr(W 0
I ) we have |χ(w)| ⩽ (2k + 1) · 2k−1 · k! ⩽ 22k · k!.

Proof. Let χ = ρ[X] with [X] ∈ S̃1
n. We argue by induction on k. Suppose k = 1. If χ(w) ̸= 0

then by Proposition 4.4, [X] has an (n, 0)-hook, but by Lemma 4.6, there is at most one such hook,
so |χ(w)| ⩽ 1. So assume k > 1. We have I/⟨w, σ⟩ = {O1, . . . ,Ok} and we set di = |Oi| for any
1 ⩽ i ⩽ k. We also let w = w1w2 with w1 ∈WO1 and w2 ∈WI∖O1 .

Clearly we may assume that χ(w) ̸= 0. By Proposition 4.4 and the induction hypothesis we see
that

|χ(w)| ⩽
∑

λ∈Hd1,0
(X)

|ρ[X∖λ](w2)| ⩽ |Hd1,0(X)| · 2k−2 · (k − 1)!

So it suffices to show that |Hd1,0(X)| ⩽ 2k.

Repeatedly applying Proposition 4.4, we see that there exist arrays X = X0, X1, . . . , Xk ∈ P̃
such that for 1 ⩽ i ⩽ k we have Xi = Xi−1 ∖di,0 λi for some hook λi ∈ Hdi,0(Xi−1). As

rk(Xi) = rk(X0)− (d1 + · · ·+ di),

we have rk(Xk) = 0, so Hd1,0(Xk) = ∅. By Lemma 4.5 we have |Hd1,0(Xi)| ⩽ |Hd1,0(Xi+1)| + 2,
which yields the desired bound.

Now assume χ ∈ Irr(W 0
I ). If χ extends to WI then we are done so assume this is not the case.

Then χ = ResWI
W 0

I
(ρ[X]) for some degenerate symbol [X] ∈ S̃0

n and is the sum χ++χ− of two distinct

irreducible characters. Clearly χ±(w) = 1
2(χ(w) + ∆(w)) where ∆ = χ+ − χ− is the difference

character.
If ∆(w) = 0 then we are done, so we may assume that ∆(w) ̸= 0. A result of Stembridge [S,

Theorem 7.5] shows that, in this case, |∆(w)| = 2k|χ[A](x)| for some character χ[A] ∈ Irr(SI+) and
some element x ∈ SI+ which is a product of k disjoint cycles. Hence, by [LaSh, Theorem 7.2], we
have |∆(w)| ⩽ 22k−1 · k!, which easily gives the bound. □

For an ordered symbol [X] ∈ S̃n of rank n we define a corresponding class function

ϕ[X] =
1

s(X)

∑
Y ∈Sim(X)

def(Y )=def(Ysp)

(−1)⟨X
♯,Y ♯⟩ρ[Y ] ∈ Class(WI).

Note that {Y ∈ Sim(X) | def(Y ) = def(Ysp)} ⊆ Sim0(X) so this is essentially the projection of

the Fourier transform R̃0(X) onto the subspace Q[S̃δ
n], where δ = def(Xsp). Somewhat remarkably

these functions also satisfy a version of the MN-rule, which is the main point of Theorem 3.1.

Theorem 4.8. Let O ∈ I/⟨w,NI⟩ be an orbit for some element w ∈ WI . Then we have a unique
decomposition w = w1w2 = w2w1 with w1 ∈ WO and w2 ∈ WI\O. If (d, j) = (|O+|, δO(w1)) then

for any [X] ∈ S̃n, we have

ϕ[X](w) = (−1)j(1+def(X))
∑

λ∈Hd,j(X)

(−1)ld,j(λ,X)ϕ[X∖λ](w2).

Proof. By Proposition 4.4 we have

ϕ[X](w) =
1

s(X)

∑
Y ∈Sim(X)

def(Y )=def(Xsp)

∑
λ∈Hd,0(Y )

(−1)jδ(λ)+⟨X♯,Y ♯⟩+ld,0(λ,X)ρ[Y ∖λ](w2).
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Let δ = def(Xsp) ∈ {0, 1}. Under the isomorphism Q[Irr(WI∖O)]
∼−→ Q[S̃δ

n−d] defined above the

right hand side is identified with an expression in Q[S̃].
Under the decomposition Q[S̃] =

⨁
e∈ZQ[S̃e] this is the projection of H̃j

d,0(R̃([X])) onto the

subspace Q[S̃δ]. If def(X) is odd then by Theorem 3.1 we have H̃j
d,0(R̃([X])) = R̃(H̃0

d,j([X])) and

projecting the right hand side of this onto Q[S̃δ] gives us that

ϕ[X](w) =
∑

λ∈Hd,δ(X)

1

s(X ∖ λ)

∑
Y ∈Sim(X∖λ)

def(Y )=def(Ysp)

(−1)⟨(X∖λ)♯,Y ♯⟩+ld,j(λ,X)ρ[Y ](w2)

=
∑

λ∈Hd,δ(X)

(−1)ld,j(λ,X)ϕ[X∖λ](w2).

If def(X) is even then the same holds. but we must multiply through by (−1)j . □

Theorem 4.9. Fix an integer 1 ⩽ k ⩽ n. Then for each element w ∈ WI of cycle length k and
each symbol [X] ∈ S̃n of rank n, we have

|ϕ[X](w)| ⩽ 2k−1 · k!.
Proof. The proof is identical to that of Theorem 4.7. □

We now associate functions to unordered symbols as follows. If JXK ∈ Sod
n has odd defect then

we simply let ϕJXK = ϕ[X] ∈ Class(WI). Now fix e ∈ {0, 1}. Then for any JXK ∈ Sev,e
n we let

ϕJXK = ResWI
W e

I
(ϕ[X]) =

1

s(X)

∑
Y ∈Sim(X)
def(Y )=0

(−1)⟨X
♯,Y ♯⟩ResWI

W e
I
(ρ[Y ]) ∈ Class(W e

I ).

Note that ResWI
W e

I
(ρ[Y op]) = (−1)eResWI

W e
I
(ρ[Y ]) so these functions are nonzero.

Remark 4.10. With some additional justifications, the statement in Theorem 4.8 may now equally
be seen to hold for the class functions ϕJXK. If JXK has odd defect then the same statement holds
verbatim.

Assume now in the statement of Theorem 4.8 that δ(w) = e, so that w ∈ W e
I . Then it makes

sense to consider ϕJXK(w) for any JXK ∈ Sev,e
n . Clearly w2 ∈ W e+j

I , and if λ ∈ Hd,j(X) then

JX ∖ λK ∈ Sev,e+j
n , so the term ϕJX∖λK(w2) makes sense. Hence, restricting the symbols to Sev,2e

n ,
the statement in Theorem 4.8 continues to hold.

5. Lusztig series

In the next few sections we consider a general connected reductive group G defined over F = Fp

with Frobenius endomorphism F : G → G. We will follow the setup in [Lu], see also the exposition
in [GeMa, Chap. 2]. This setting, whilst a little less frequently used, is more convenient as we
wish to discuss character values of Deligne–Lusztig characters. In this section we just outline some
notation.

Let T ⩽ B ⩽ G be a fixed F -stable maximal torus and Borel subgroup of G. Let X = X(T) =
Hom(T,Gm), which we view as a Z-module. For any ϕ : T → T a morphism of algebraic groups
we denote by ϕ∗ : X → X the map given by ϕ∗(χ) = χ ◦ ϕ for all χ ∈ X.

For each w ∈ W := NG(T)/T we fix an element nw ∈ NG(T) such that w = nwT. Let
ιg : G → G, with g ∈ G, be the inner automorphism given by ιg(x) = gxg−1. Then Fw := Fιnw

and wF := ιnwF are also Frobenius endomorphisms of G stabilising T. We write w∗ instead of
(ιnw |T)∗ and for brevity we let wλ = w∗−1(λ) for all w ∈W and λ ∈ X.
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If Z(p) is the localisation of Z at the prime ideal (p) ⊆ Z containing p then V = Z(p) ⊗Z X is a
free Z(p)-module of finite rank. We will identify X with its image in V under the canonical map
x ↦→ 1⊗ x and similarly any homomorphism γ : X → X is identified with 1⊗ γ : V → V .

The quotient V/X is a torsion Z-module. Given λ ∈ V and w ∈ W we let λw = F ∗λ− wλ ∈ V .
For any z ∈W a straightforward calculation shows that

(5.1) F−1(z)λw = (zλ)F−1(z)wz−1 .

We consider the set ZW (λ, F ) = {w ∈ W | λw ∈ X} = {w ∈ W | F ∗λ − wλ ∈ X}. This is either
empty or a coset wW (λ) of the group W (λ) = {x ∈W | λ− xλ ∈ X}. If ZΦ ⊆ X is the submodule
generated by the roots then we defineW ◦(λ) to be the kernel of the homomorphismW (λ) → X/ZΦ
given by w ↦→ λ− wλ+ ZΦ; see [DM, Lem. 11.2.1].

Denote by CW (X,F ) (resp. DW (X,F )) the set of all pairs (λ̄, w) (resp. (λ̄, a)) with λ ∈ V and
w ∈ ZW (λ, F ) (resp. a = wW ◦(λ) ⊆ ZW (λ, F )). Here λ̄ denotes the image of λ in V/X. By (5.1),
we have a natural action of W on CW (X,F ) via

x · (λ,w) = (xλ, F−1(x)wx−1)

and a similar action on DW (X,F ) as W (zλ) = zW (λ) for any z ∈W and λ ∈ V .
We now fix an injective homomorphism κ : F× → C×. As TwF is a p′-group, we have a bijection

X(TwF ) → Irr(TwF ) given by χ ↦→ κ ◦ χ. Given a pair (λ,w) ∈ CW (X,F ) we set

λwF = κ ◦ (λw|TwF ) ∈ Irr(TwF ).

The following is straightforward; see [Lu, Lem. 6.2] and [GeMa, Lem. 2.4.8].

Lemma 5.1. Fix w ∈ W and let V (w) = {λ ∈ V | λw ∈ X}. Then the map V (w) → Irr(TwF )
defined by λ ↦→ λwF is a surjective Z-module homomorphism with kernel X ⊆ V (w).

Given w ∈W and θ ∈ Irr(TwF ) we denote by RG
w (θ) the virtual character of GF defined in [DL,

Def. 1.9]. As usual we extend this by linearity to a map on all class functions. Moreover, for any
(λ,w) ∈ CW (X,F ) we set RG

w (λ) := RG
w (λwF ). We then define for any pair (λ, a) ∈ DW (X,F ) the

set
E(GF , λ, a) = {ρ ∈ Irr(GF ) | ⟨RG

w (λ), ρ⟩ ≠ 0 for some w ∈ a}.
This is a rational Lusztig series of GF contained in the geometric series

E(GF , λ) = {ρ ∈ Irr(GF ) | ⟨RG
w (λ), ρ⟩ ≠ 0 for some w ∈ ZW (λ, F )}

indexed by λ ∈ V . We have E(GF , λ, a) = E(GF , µ, b) if and only if (λ, a) and (µ, b) are in the same
W -orbit.

Suppose now that ι : G → G̃ is a regular embedding. Then T̃ = T ·Z(G) is an F -stable maximal

torus of G̃ and if we let X̃ = X(T̃) then we have a surjective Z-module homomorphism ι∗ : X̃ → X

given by ι∗(χ) = χ ◦ ι. Note this maps the roots of G̃ in X̃ bijectively onto the roots of G in X.

Through ι we identify W with the Weyl group NG̃(T̃)/T̃ of G̃.

Lemma 5.2. For any (λ̃, a) ∈ DW (X̃, F ) we have W (λ̃) =W ◦(λ̃) =W ◦(λ) and

E(GF , λ, a) = {ρ ∈ Irr(GF ) | ⟨ρ,ResG̃F

GF (ρ̃)⟩ ≠ 0 for some ρ̃ ∈ E(G̃F , λ̃, a)}

where λ = ι∗(λ̃).

Proof. By the above remark we have λ̃− wλ̃ ∈ ZΦ if and only if λ− wλ = ι∗(λ̃− wλ̃) ∈ ZΦ which

shows that W ◦(λ̃) =W ◦(λ). From the proof of [DM, Lem. 11.2.1] we see that the image of the map

W (λ̃) → X̃/ZΦ has p′-order but as Z(G̃) is connected the quotient X̃/ZΦ has trivial p′-torsion so

W (λ̃) =W ◦(λ̃). The second statement is [B, Prop. 11.7]. □
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6. A character bound from the Mackey formula

We denote by W :F the semidirect product of W with the group ⟨F ⟩ ⩽ Aut(W ) such that
FwF−1 = F (w) for all w ∈W . The unique coset WF ⊆W :F of W containing F is a W -set under
conjugation and for w ∈W we write CW (wF ) for the stabiliser of wF under this action.

For each w ∈W we choose an element gw ∈ G such that g−1
w F (gw) = nw ∈ NG(T). As usual the

map wF ↦→ Tw := gwT yields a bijection between the orbits ofW acting onWF and the GF -classes
of F -stable maximal tori. Note that t ↦→ gwt gives an isomorphism TwF → TF

w .

Remark 6.1. For θ ∈ Irr(TF
w) we have a Deligne–Lusztig character RG

Tw
(θ) defined as in [DL, 1.20]

which satisfies RG
Tw

(θ) = RG
w (g

−1
w θ). We will implicitly use this equality in what follows.

We have an action of CW (wF ) on Irr(TwF ) by setting zθ = θ ◦ ι−1
nz

for any z ∈ CW (wF ) and

θ ∈ Irr(TwF ). We denote by CW (wF, θ) ⩽ CW (wF ) the stabiliser of θ ∈ Irr(TwF ). Now for any
(λ,w) ∈ CW (X,F ) and z ∈W it follows from (5.1) that z(λwF ) = (F (z)∗−1λ)zwFz−1 . Therefore,

(6.1) F (CW (wF, λwF )) = CW (λ)(Fw),

where the latter stabiliser is calculated with respect to the action of W (λ) on FZW (λ, F ).
A regular semisimple element g ∈ GF is said to be of type wF ∈WF if C◦

G(g) is GF -conjugate
to Tw. Of course, the type is only determined up to W -conjugacy. Moreover, an element g of type
wF is then GF -conjugate to an element of the form gwt with t ∈ TwF .

As in [DM], if H is a finite group then we denote by πHh ∈ Class(H) the function taking the
value |CH(h)| on ClH(h) and the value 0 on H − ClH(h). For any f ∈ Class(H) we then have
⟨f, πHh ⟩ = f(h). We also write [g, h] = g−1h−1gh for the commutator of g, h ∈ H.

Theorem 6.2. Assume g ∈ GF is a regular semisimple element of type wF . Fix a pair (λ, a) ∈
DW (X,F ) and let

Xw(λ, a) := {z ∈W | [z, Fw]w−1a =W ◦(λ)}.
If χ ∈ E(GF , λ, a) and x ∈ a then

|χ(g)| ⩽
∑

z∈CW (Fw)\Xw(λ,a)/CW (Fx,λ)

(
|CW (Fw)|/|CW (zλ)(Fw)|

1
2
)
⩽ |W | · |CW (Fw)|

Proof. Assume t ∈ TwF is such that gwt ∈ ClGF (g). By [DL, Prop. 9.18], see also [DM, Prop. 10.3.6],

we have πG
F

g = RG
w (πT

wF

t ) =
∑

θ∈Irr(TwF ) θ(t
−1)RG

w (θ). For any θ ∈ Irr(TwF ) we have by the

Mackey formula for tori, see [DL, Thm. 6.8] or [DM, Cor. 9.3.1], that∑
χ∈Irr(GF )

⟨χ,RG
w (θ)⟩2 = ⟨RG

w (θ), RG
w (θ)⟩ = |CW (wF, θ)|.

Applying this to ⟨χ, πGF

g ⟩ we get

(6.2) |χ(g)| ⩽
∑

θ∈Irr(TwF )

|⟨χ,RG
w (θ)⟩| ⩽

∑
θ∈Irr(TwF )

|CW (wF, θ)|
1
2 .

Let V (w) be as in Lemma 5.1 so that V (w)/X ∼= Irr(TwF ). If µ ∈ V (w) is such that ⟨χ,RG
w (µ)⟩ ≠

0 then we must have (µ,wW ◦(µ)) and (λ, a) are in the same W -orbit by the disjointness of Lusztig
series. This happens if and only if there exists a z ∈W such that µ− zλ ∈ X and

F−1(z)az−1 = wW ◦(µ) = wzW ◦(λ)z−1.

This last condition is equivalent to z ∈ Xw(λ, a).
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If z ∈ Xw(λ, a) and v ∈ CW (Fx, λ) then one checks easily that zv ∈ Xw(λ, a), and clearly
zvλ = zλ. Hence, the sum in (6.2) can be taken over Xw(λ, a)/CW (Fx, λ) with θ replaced by
(zλ)wF . The group CW (Fw) = F (CW (wF )) acts on Xw(λ, a) by left multiplication, and the term
in the sum is constant on orbits. Hence, we can sum as in the statement once we multiply through
by the size of the orbit |CW (Fw)/CW (zλ)(Fw)|. We now cancel terms using (6.1). □

Remark 6.3. The above follows the same argument as [GM, Thm. 5.4] where one finds the bound
|CW (Fw)|. The above yields this bound when the sum contains only one term. However, this does
not hold in general so this should be corrected as above. In the extreme cases where W (λ) =W or
W ◦(λ) = {1} then this does give the bound |CW (Fw)|.

7. Further bounds from Deligne–Lusztig characters

The following result giving the value of a Deligne–Lusztig character at a regular semisimple
element is well known. We simply translate this into the setup we utilise herel see [Ge, Prop. 4.5.8]
for an equivalent formulation.

Proposition 7.1. Assume g ∈ GF is a regular semisimple element of type wF and let t ∈ TwF be
such that gwt ∈ ClGF (g). Then for any (x, λ) ∈ CW (X,F ) we have

RG
x (λ)(g) =

∑
µ∈V (w)/X

(µ,x)∈ClW (λ,w)

|CW (µ)(Fw)|µwF (t) = |CW (λ)(Fx)|
∑

z∈W/CW (λ)(Fx)

Fw=zFxz−1

(zλ)wF (t).

In particular, we have |RG
x (λ)(g)| ⩽ |CW (Fw)|.

Proof. As noted in the proof of Theorem 6.2 we simply have to calculate ⟨RG
x (λ), RG

w (πT
wF

t )⟩. The
statement now follows immediately from the inner product formula for Deligne–Lusztig characters
and the identification V (w)/X ∼= Irr(TwF ). □

To make invoking Lusztig’s classification results for the irreducible characters ofGF simpler it will
be beneficial to assume that Z(G) is connected. As usual we invoke a regular embedding to achieve
this. We note that for our purposes we do not need the significantly more difficult multiplicity
freeness results obtained by Lusztig.

Lemma 7.2. Assume G → G̃ is a regular embedding and let χ ∈ Irr(GF ) be an irreducible

constituent of ResG̃
F

GF (χ̃) for some χ̃ ∈ Irr(G̃F ). Then for any semisimple element g ∈ GF we
have

|χ(g)| ⩽ |G̃F /G̃F
χ |−1|χ̃(g)| ⩽ |χ̃(g)|,

where G̃F
χ is the stabiliser of χ in G̃F .

Proof. Let T ⩽ G be an F -stable maximal torus and θ ∈ Irr(TF ). We then have T̃ = T ·Z(G̃) is an

F -stable maximal torus of G̃. Let θ̃ ∈ Irr(T̃F ) be an irreducible character such that ResT̃
F

TF (θ̃) = θ.

By [B, Prop. 10.10] we have ResG̃
F

GF (R
G̃
T̃
(θ̃)) = RG

T (θ). Therefore, by Frobenius reciprocity,

⟨χ,RG
T (θ)⟩ = ⟨IndG̃F

GF (χ), R
G̃
T̃
(θ̃)⟩.

This shows that for any c ∈ G̃F we have cχ ∈ Irr(GF ) and χ have the same uniform projection. As

πG
F

g is a uniform function this means that χ(g) = ⟨χ, πGF

g ⟩ = ⟨cχ, πGF

g ⟩ = cχ(g). Now by Clifford’s
Theorem we have

ResG̃
F

GF (χ̃) = e
∑

c∈G̃F /G̃F
χ

cχ
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for some integer e ⩾ 1. Hence χ̃(g) = e|G̃F /G̃F
χ |χ(g) giving the bound. □

Fix a pair (λ, a) ∈ DW (X,F ). For a class function f ∈ Class(Fa) on the coset of W ◦(λ) we
define a corresponding class function

(7.1) RG
λ,a(f) =

1

|W ◦(λ)|
∑
x∈a

f(Fx)RG
x (λ).

of GF . Clearly this is contained in the subspace of all C-class functions Class(GF , λ, a) spanned
by the Lusztig series E(GF , λ, a). In fact, RG

λ,a gives an isomorphism Class(Fa) → Class0(G
F , λ, a)

onto the subspace spanned by {RG
x (λ) | x ∈ a}; see the arguments in [DM, §11.6].

Suppose we choose a representative a = wW ◦(λ) of the coset. We may then form the semidirect
product W ◦(λ):Fw by the group ⟨Fw⟩ ⩽ Aut(W ◦(λ)) as above. The coset of W ◦(λ) in W ◦(λ):Fw
containing Fw can be identified, W ◦(λ)-equivariantly, with the same coset in W :F .

We denote by Irr(Fw.W ◦(λ)) the set of restrictions Res
W ◦(λ):Fw
Fa (ϕ̃), where ϕ̃ ∈ Irr(W ◦(λ):Fw)

restricts irreducibly to W ◦(λ). These functions on the coset Fa depend on our choice of represen-
tative w, so we include a period to indicate this choice. There is, however, a natural choice wa ∈ a
which is the element of minimal length (determined by our choice of Borel subgroup B).

Lemma 7.3. Assume g ∈ GF is a regular semisimple element of type wF . For any irreducible
character ϕ ∈ Irr(Fx.W ◦(λ)), with x ∈ a, we have

|RG
λ,a(ϕ)(g)| ⩽ |CW (Fw)|

Proof. By Proposition 7.1 we have

|RG
λ,a(ϕ)(g)| ⩽ |CW (Fw)|

⎛⎝ 1

|W ◦(λ)|
∑

y∈W ◦(λ)

|ϕ(Fxy)|

⎞⎠ ,

but by [I, Lem. 8.14(c)], the sum on the right hand side is equal to 1. □

Lemma 7.4. Assume g ∈ GF is a regular semisimple element of type wF . Then for any class
function f ∈ Class(Fa) we have

RG
λ,a(f)(g) =

∑
z∈CW (Fw)\W/W ◦(λ)

Fx=z−1Fwz∈Fa

f(Fx) ·RG
x (λ)(g)

|CW ◦(λ)(Fx)|
.

Proof. By Proposition 7.1 we may restrict the sum over x ∈ a, found in the definition of RG
λ,a(f),

to those elements satisfying Fx ∈ ClW (Fw). Alternatively, via the bijection CW (Fw)\W →
ClW (Fw), given by CW (Fw)z ↦→ z−1Fwz, we can sum over all cosets CW (Fw)z ∈ CW (Fw)\W
such that z−1Fwz ∈ Fa. Grouping together elements in the sameW ◦(λ)-orbit and bringing |W ◦(λ)|
into the sum gives the statement. □

Observe that, if W ◦(λ) = W and w ∈ a then RG
λ,a(f)(g) = f(Fw)λwF (t), see [LM, Prop. 3.3].

Together with Theorem 4.9, this implies

Corollary 7.5. Suppose G is a simple classical group. If g ∈ GF is a regular semisimple element
of cycle length k and χ ∈ Irr(GF ) is a unipotent character, then |χ(g)| ≤ 2k−1 · k!.

Now suppose [G,G] is quasisimple of type An−1. In this case we have W is isomorphic to Sn

and F induces an inner automorphism on W , which is either trivial or conjugation by the longest
element. Hence, the coset WF can be identified with W so it makes sense to speak of the cycle
type of an element of WF .
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Corollary 7.6. Assume all the quasi-simple components of G are of type A. If g ∈ GF is a regular
semisimple element of type wF then

|χ(g)| ⩽ |CW (Fw)|
for any χ ∈ Irr(GF ). Moreover, suppose [G,G] is quasisimple of type An−1 with n ⩾ 2. If wF has
cycle length k ⩾ 1 then |χ(g)| ⩽ k! · nk for any χ ∈ Irr(GF ).

Proof. By Lemma 7.2, we can assume that Z(G) is connected. In that case every irreducible
character is, up to sign, of the form RG

λ,a(ϕ) with ϕ ∈ Irr(Fw.W (λ)) so this is just Lemma 7.3.

For the final statement we need only show that |CSn(w)| ⩽ k! · nk. If all cycles have the same
length, say m ⩾ 1, then CSn(w)

∼= Cm ≀ Sk so |CSn(w)| = k! ·mk. Now an arbitrary w may be
written as a pairwise commuting product w = w1 · · ·wr such that for each 1 ⩽ i ⩽ r we have wi is a
product of ki ⩾ 1 disjoint cycles of length mi ⩾ 1 and the lengths m1, . . . ,mr are pairwise distinct.
We then have

CSn(w)
∼= CSk1m1

(w1)× · · · ×CSkrmr
(wr),

and by the previous calculation

|CSn(w)| = (k1! ·mk1
1 ) · · · (kr! ·mkr

r ) ⩽ k! · nk1+···+kr = k! · nk. □

For the next statement we wish to define an integer r(W,F ) ⩾ 0 as follows. Let S ⊆ W be the
set of Coxeter generators determined by our choice of Borel B. Write W = W1 · · ·Wm as a direct
product of its irreducible components, all of which are assumed to be of type A through D. We
then have a corresponding decomposition S = S1 ⊔ · · · ⊔ Sm. The Frobenius F permutes the Wi.
Suppose first that it does so transitively. Then we define

r(W,F ) =

{
0 if W1 is of type An with n ⩾ 0,

|S1| otherwise.

Here we consider the trivial group as being of type A0.
Now grouping together the Wi we can write W = W (1) · · ·W (n) where each W (i) is an F -stable

subgroup such that F permutes transitively its irreducible components. Hence, we are in the
previous situation and we define r(W,F ) = r(W (1), F ) + · · ·+ r(W (n), F ).

Theorem 7.7. Assume g ∈ GF is a regular semisimple element of type wF and every quasisimple
component of G is of classical type A to D. If F is a Frobenius endomorphism then for any irreducible
character χ ∈ E(GF , λ, a) we have

|χ(g)| ⩽ 2r · |CW (Fw)|
where wa ∈ a is the unique element of minimal length and r = r(W ◦(λ), Fwa) is defined as above.

Proof. Again, by Lemma 7.2 we can assume Z(G) is connected. By Lemma 5.2 this implies that
W (λ) = W ◦(λ) and a = ZW (λ, F ) so E(GF , λ, a) = E(GF , λ). Recall that in [Lu, Chp. 4] Lusztig
has defined a partition of Irr(W (λ)) into families.

Denote by wa ∈ a = ZW (λ, F ) the unique element of minimal length. The automorphism
γ := Fwa of W (λ) permutes the families. Suppose F ⊆ Irr(W (λ)) is a γ-stable family. For each

γ-fixed character ϕ ∈ Fγ we fix an extension ϕ̃ ∈ Irr(W (λ):γ) that is realisable over Q.
Suppose F ⊆ Irr(W (λ)) is γ-stable and let

E(GF , λ,F) = {χ ∈ Irr(GF ) | ⟨χ,RG
λ,a(ϕ̃)⟩ ≠ 0 for some ϕ ∈ Fγ}.

These sets partition E(GF , λ); see [Lu, Thm. 6.17]. Associated to F we have a corresponding finite
group GF .
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As all factors are of classical type, we have GF is a (possibly trivial) elementary abelian 2-group.
We also have two sets M(GF , γ) and M(GF , γ) and a pairing

{−,−} : M(GF , γ)×M(GF , γ) → C.
From the formula for this pairing, we see that

|{x̄, x}| = |GF |−1

for any x̄ ∈ M(GF , γ) and x ∈ M(GF , γ)
By [Lu, Thm. 4.23], we have a bijection E(GF , λ,F) → M(GF , γ), which we denote by χ ↦→ xχ,

and an injection Fγ → M(GF , γ), denoted by ϕ ↦→ xϕ̃. This latter map depends on our choice of

extension. Now, by [Lu, 4.26.1], if χ ∈ E(GF , λ,F) then

χ(g) = ±
∑
ϕ∈Fγ

{x̄χ, xϕ̃}R
G
λ,a(ϕ̃)(g).

The group of roots of unity acts on M(GF , γ), and the number of orbits is the same as |M(GF , γ)| =
|GF |. It follows from [Lu, 4.21.6] that |Fγ | ⩽ |GF |2. We now use Lemma 7.3. □

We assume F is a Frobenius endomorphism. If [G,G] is quasisimple of type Bn or Cn then
W ∼=WI is a hyperoctahedral group, and F induces the identity on W . If [G,G] is quasisimple of
type Dn then W ∼= W 0

I and either F , F 2, or F 3 induces the identity on W . When F 2 induces the
identity on W , we have an embedding W :F →WI . Thus, it makes sense to speak of the cycles of
an element of the coset WF . The following is now just a simple application of Lemma 4.3.

Corollary 7.8. Assume [G,G] is quasisimple of type Bn (n ⩾ 2), Cn (n ⩾ 2), or Dn (n ⩾ 4), and
F is a Frobenius endomorphism with F 2 inducing the identity on W . If wF ∈WF has cycle length
k ⩾ 1 and pairwise distinct cycles, then for any regular semisimple element g ∈ GF of type wF we
have

|χ(g)| ⩽ 2n+k · nk

for all χ ∈ Irr(GF ).

8. Quadratic unipotent characters

Recall that a bound for the values of unipotent characters at regular semisimple elements was
obtained in Corollary 7.5. In this section, we establish a bound for the more general class of
quadratic unipotent characters. Consider a connected reductive group G whose center Z(G) is
connected, of dimension 1, and whose derived subgroupGder = [G,G] ⩽ G is a symplectic or special

orthogonal group. We specify G by its root datum (X,Φ, qX, qΦ). Firstly we have X =
⨁n

i=0 Zei
and qX =

⨁n
i=0 Zqei with perfect pairing ⟨−,−⟩ : X × qX → Z given by ⟨ei, qej⟩ = δij (the Kronecker

delta). We assume n ⩾ 2.
A set of simple roots α1, . . . , αn and corresponding coroots qα1, . . . , qαn are as follows. We have

(α1, qα1) is one of the pairs (−e1,−2qe1), (e0−2e1,−qe1), or (e0−e1−e2,−qe1−qe2). Then for 2 ⩽ i ⩽ n
we let αi = ei−1 − ei and qαi = qei−1 − qei. The choices correspond to whether G is of type Bn, Cn,
or Dn, respectively.

One easily calculates that (⟨αi, qαj⟩) is a Cartan matrix and X/ZΦ ∼= Z is generated by e0 + ZΦ.
Let Xder = X/(Ze0) and qXder =

⨁n
i=1 qei. Denote by : X → Xder the natural quotient map. We

then have (Xder,Φ, qXder, qΦ) is the root datum of Gder.
Fix a prime power q = pa. We describe F by defining F ∗ as an endomorphism of X. For any

0 ⩽ i ⩽ n with i ̸= 1 we have F ∗ei = qei. We then have F ∗e1 is either qe1 or q(e0 − e1) with this
latter case occurring only when GF is of type 2Dn(q).
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If Vder = Z(p) ⊗Z Xder then we have Vder ∼=
⨁n

i=1 Z(p)ei and V ∼=
⨁n+1

i=1 Z(p)ei. The natural

quotient map X → Xder extends to a surjective Z(p)-module homomorphism : V → Vder. Given

λ ∈ V we have W (λ) = W ◦(λ) = W ◦(λ) and if χ ∈ E(GF , λ, a) then all irreducible constituents of
χ are contained in E(GF

der, λ, a), see Lemma 5.2.
Consider the totally ordered set I = {−en ≺ · · · ≺ −e1 ≺ e1 ≺ · · · ≺ en}. Letting F act on X

via q−1F ∗ we get an action of W :F on Xder that gives an injective homomorphism W :F → SI .
We implicitly identify W :F , hence also W , with its image which is contained in WI . Via this
identification we can speak of the signed cycle type of any element of W :F .

Theorem 8.1. Let (λ, a) ∈ DW (X,F ) be such that 2λ ∈ Xder and let g ∈ GF be a regular
semisimple element of type wF . If wF has cycle length k ⩾ 1 and pairwise distinct cycles then

|χ(g)| ⩽ 23k+4 · k!

for any irreducible character χ ∈ E(GF , λ, a).

Proof. Recall that we have an isomorphism RG
λ,a : Class(Fa) → Class0(G

F , λ, a). Thus, if pr :

Class(GF ) → Class(GF ) is the projection onto the subspace of uniform functions then there exists
a unique class function fχ ∈ Class(Fa) such that RG

λ,a(fχ) = pr(χ).

Now pr(χ) and χ have the same value at g, so it suffices to bound the value of RG
λ,a(fχ) at g. By

Proposition 7.1 and Lemma 7.4, we have

|RG
λ,a(fχ)(g)| ⩽

∑
z∈CW (Fw)\W/W (λ)

Fx=z−1Fwz∈Fa

|CW (Fx)|
|CW (λ)(Fx)|

· |fχ(Fx)|.

We can assume RG
λ,a(fχ)(g) ̸= 0 and hence assume that Fx = z−1Fwz ∈ Fa is a conjugate of Fw.

We now bound: |CW (Fx)|/|CW (λ)(Fx)|, the number of terms in the sum, and finally |fχ(Fx)|.
Let us note that the number of terms in the sum is precisely the number of W (λ)-orbits on Fa that
meet the centraliser CW (Fw).

We will take this case by case. First let us note that as wF has pairwise distinct cycles, so does
its conjugate Fx = zF (wF )F−1z−1. Now, by replacing λ with an element in the same Wa-orbit,
we can assume that λ = 1

2(e1 + · · ·+ em) for some 0 ⩽ m ⩽ n where λ = 0 when m = 0.
We set I1 = {±ei | 1 ⩽ i ⩽ m} and I0 = I ∖ I1 and let H = WI0WI1 ⩽ WI . For convenience,

we let πi = (ei,−ei) ∈WI for any 1 ⩽ i ⩽ n.
Type Bn. We have W (λ) = Fa = H. Lusztig has shown that there is an isomorphism

U od
m ⊗C U od

n−m → Class(GF , λ, a)

such that the natural basis {JXK⊗JY K | JXK ∈ Sod
m and JY K ∈ Sod

n−m} maps onto the series E(GF , λ).
The images of the Fourier transforms R0(JXK) ⊗ R0(JY K) are Lusztig’s almost characters. By

[Lu, 4.23], this bijection may be chosen such that if [X] ∈ S̃1
m and [Y ] ∈ S̃1

n−m have defect 1 then

R0(JXK)⊗R0(JY K) ↦→ RG
λ,a(ρ[X] ⊠ ρ[Y ]).

As JXK ⊗ JY K = R0Q0(JXK) ⊗ R0Q0(JY K), we see that if χ is the image of JXK ⊗ JY K then
fχ = ϕJXK ⊠ ϕJY K.

By (iii) of Lemma 4.3, we have CW (Fx) = CH(Fx). Write Fx = x0x1 with xi ∈ WIi . If ki ⩾ 1
is the cycle length of xi then k = k0 + k1. Using Theorem 4.7, we thus get the following bound on
the character value

|fχ(Fx)| = |ϕJXK(x0)| · |ϕJY K(x1)| ⩽ (2k0−1 · k0!) · (2k1−1 · k1!) ⩽ 2k−2 · k!.
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If α = (α1, . . . , αk0) and β = (β1, . . . , βk1) are the signed cycle types of x0 and x1 respectively
then, up to reordering the entries, α ∪ β = (α1, . . . , αk0 , β1, . . . , βk1) is the signed cycle type of

Fx. Thus, there can certainly be at most
∑k

c=0

(
k
c

)
= 2k terms in the above sum. Putting things

together we get the bound 22k−2 · k! in this case.
Type Cn. We have W (λ) = W 0

I0WI1 and Fa = W e
I0WI1 for some e ∈ {0, 1}. In this case, we

have an isomorphism

U ev,e
m ⊗C U od

n−m → Class(GF , λ, a).

The natural basis {JXK ⊗ JY K | JXK ∈ Sev,e
m and JY K ∈ Sod

n−m} maps onto the series E(GF , λ).

By [Lu, 4.23], this bijection may be chosen such that for any [X] ∈ S̃0
m and [Y ] ∈ S̃1

n−m, we have

Re(JXK)⊗R0(JY K) ↦→ RG
λ,a(Res

WI0
W e

I0
(ρ[X])⊠ ρ[Y ]).

As JXK ⊗ JY K = QeRe(JXK) ⊗ Q0R0(JY K) we see that if χ is the image of JXK ⊗ JY K then fχ =
ϕJXK ⊠ ϕJY K.

By (iii) of Lemma 4.3, we have CH(Fx) = CW (Fx) and |CH(Fx)|/|CW (λ)(Fx)| ⩽ |H/W (λ)| ⩽
2. Appealing to Theorem 4.7, when X is degenerate, we find, as above, that |fχ(Fx)| ⩽ 22k−1 · k!.
As we have |CW (Fw)\W/W (λ)| ⩽ 2|CW (Fw)\W/H|, there are at most 2k+1 terms in the above
sum. Putting things together gives the bound 23k+1 · k! in this case.

Type Dn. We have W (λ) = W 0
I0W

0
I1 . If π0 = (ē1,−ē1) and π1 = (ēm+1,−ēm+1) then the coset

Fa ⊆ H is either: W (λ), π0W (λ) = W 1
I0W

0
I1 , π1W (λ) = W 0

I0W
1
I1 , or π0π1W (λ). These cases are

similar to the above. We have CH(Fx) = CW (Fx) and |CH(Fx)|/|CW (λ)(Fx)| ⩽ |H/W (λ)| ⩽ 4.

Arguing similarly, we get that the above sum has at most 2k+2 terms, and |fχ(Fx)| ⩽ 22k · k!.
Putting things together gives the bound 23k+4 · k!.

We end with a comment about the final coset π0π1W (λ). In this case we have an isomorphism

U ev,1
m ⊗C U ev,1

n−m → Class(GF , λ, a). Lusztig’s Theorem in this case says that this isomorphism can

be chosen such that for any [X] ∈ S̃0
m and [Y ] ∈ S̃0

n−m we have

R1(JXK)⊗R1(JY K) ↦→ RG
λ,a(Res

WI0WI1
π1π2W (λ)(ρ[X] ⊠ ρ[Y ]));

see the discussion in [Lu, §4.21]. One readily checks that if χ is the image of JXK ⊗ JY K then

fχ = Res
WI0WI1
π1π2W (λ)(ϕJXK ⊠ ϕJY K). □

Corollary 8.2. Assume G is a symplectic or special orthogonal group and χ ∈ Irr(GF ) is a
quadratic unipotent character. Furthermore, let wF ∈ WF have cycle length k ⩾ 1 and pairwise
distinct cycles. Then |χ(g)| ⩽ 23k+4 · k! for any regular semisimple element g ∈ GF of type wF .

Proof. Recall that being quadratic unipotent means that χ lies in a series E(GF , λ, a) with 2λ ∈ X.
The statement is thus an immediate consequence of Theorem 8.1 and Lemmas 5.2 and 7.2. □

9. Character degrees

In this section, we prove the following theorem.

Theorem 9.1. There exists an absolute constant C > 0 such that for every finite quasisimple group
G of Lie type of rank r and every positive integer D, the number of irreducible characters of G of
degree ≤ D is at most DC/r.

Taking C large enough, we can ignore any finite number of quasisimple groups G, and thus we may
assume that G = GF for a simple, simply connected algebraic group G of rank r and a Frobenius
endomorphism F : G → G. The Landazuri-Seitz bound [?] implies that the minimal non-trivial
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character of G has degree at least |G|ϵ, where ϵ depends only on the rank of G. Therefore, we are
justified in assuming that r is as large as we wish, so, in particular, G is of classical type and F is
an endomorphism of Steinberg type.

Our proof closely follows the character degree estimates of Liebeck and Shalev [LiSh]. Liebeck
and Shalev prove a more precise result [LiSh, Theorem 1.1] than Theorem 9.1 when q is sufficiently
large in terms of r and a weaker result [LiSh, Theorem 1.2] for general q.

What is needed to obtain good bounds in high rank for small q is an estimate for the number of
unipotent characters of G and certain related groups of bounded degree. This follows in principle
from the degree formulas for unipotent characters of classical groups in [Lu]. We begin with these
computations.

Proposition 9.2. There exists an absolute constant C ′ such that for every finite quasisimple group
G of classical Lie type of rank r and every positive integer D, the number of unipotent characters
of G of degree ≤ D is at most DC′/r.

Proof. For every prime power q, we have by [LMT, Lemma 4.1(i), (iii)] that

(9.1)

∞∏
n=1

(1− q−1) >
1

4
≥ q−2

and

(9.2)

∞∏
n=1

(1 + q−1) < 2.4 < q2.

(i) If G is of type Ar or 2Ar, then the unipotent characters of G are indexed by sets A of positive
integers such that ρ(A) = r+1 in the notation of §2. Denoting the elements of A by λ1 < · · · < λm,
we have

r + 1 =
m∑
i=1

(λi + 1− i).

The terms µi := λi + 1− i in this sum give a partition of r + 1, so in particular, m ≤ r + 1.
Here, G = SLε

n(q) with n = r+1. The degree dA of the character with given set A is the absolute
value of

(9.3)

∏
1≤j<i≤m((εq)λi − (εq)λj )

∏r
i=1((εq)

i − 1)∏m
i=1

∏λi
j=1((εq)

j − 1)
∏m−1

k=2 q
(k2)

.

For any fixed j, we have from (9.1) that

m∏
i=j+1

|(εq)λi − (εq)λj | > q−2 · q
∑m

i=j+1 λi ,

so
m−1∏
j=1

m∏
i=j+1

|(εq)λi − (εq)λj | > q2−2m · q
∑

1≤j<i≤m λi .

Treating the other factors of (9.3) in the same way (and using (9.2) for the products in the denom-
inator), we obtain

dA > q−4m · q
∑

1≤j<i≤m λi+(r+1
2 )−

∑m
i=1 (

λi+1
2 )−

∑m−1
k=2 (k2).
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As is well-known (see e.g. the proof of [GLT1, Lemma 5.3], the exponent of the second factor on
the right-hand side is

1

2
(n2 −

m∑
i=1

µ2i ) ≥
1

2
(n2 − µm

m∑
i=1

µi) = n(n− µm)/2,

and so

dA ≥ qn(n−µm)/2−4m ≥ qn(n−µm)/2−4n

Therefore,

n− µm ≤
(
2
log dA
log qn

+ 8
)
.

As µm = λm + 1 − m is the largest part of the partition of n associated to A, the number of
possibilities for A such that dA ≤ D is at most

⌊2 logD
log qn

+8⌋∑
i=1

p(i),

where p denotes the partition function. As p(i) is sub-exponential in i, when D ≥ qn/3 this number

is eO(logD/ log qn) = DO(1)/n, yielding a uniform upper bound of the form DC′/r for the number of
unipotent characters of degree ≤ D. However, by [LaSe], for D ≤ qn/3, there are no non-trivial
irreducible characters of degree ≤ D, and in particular no such unipotent characters.

(ii) The proof for the remaining classical groups follows the same pattern. Let [X] denote an
equivalence class of ordered symbols, and let X = (X0, X1) be the representative such that 0 ̸∈
X∩ = X0 ∩ X1. Let the elements of X0 and X1 respectively form the increasing sequences of
non-negative integers λ01 < · · · < λ0|X0| and λ

1
1 < · · · < λ1|X1|, so assuming X0 and X1 are both non-

empty, we have λ01 + λ11 > 0. We note that X0 and X1 determine (possibly improper) partitions

{λ0i +1− i}i and {λ1j +1− j}i of the ranks ρ(X0) and ρ(X1) respectively. More precisely, if λj1 > 0

then {λji +1−i}i is a partition of ρ(Xj), but if λj1 = 0 then {λji +1−i}i is a sequence of initial zeroes
concatenated with a partition of ρ(Xj). Let n := |X0| + |X1|, and let ν1 ≤ ν2 ≤ · · · ≤ νn be the
sequence obtained by first merging X0 and X1 and then sorting, without eliminating repetitions.
Thus

(9.4) ν1 < ν3 < ν5 < · · · ,
and

(9.5) 0 < ν2 < ν4 < · · · .
By (2.1), the rank r of the symbol X is given by

(9.6) r =
∑
i

λ0i +
∑
j

λ1j −
⌊(|X0|+ |X1| − 1)2

4

⌋
=

∑
k

νk −
⌊(n− 1)2

4

⌋
=

n∑
k=1

(νk − ⌊(k − 1)/2⌋).

We have νk ≥ ⌊(k − 1)/2⌋ for all k, with strict equality when k is even, so r ≥ ⌊n/2⌋. Thus,

(9.7)

r = ρ(X0) +

(
|X0|
2

)
+ ρ(X1) +

(
|X1|
2

)
−

⌊(|X0|+ |X1| − 1)2

4

⌋
= ρ(X0) + ρ(X1) +

{ (
def(X)2 − 1

)
/4, 2 ∤ n

def(X)2/4, 2|n
≥ ρ(X0) + ρ(X1).
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For every prime power q and every symbol X, there is at least one associated unipotent character
of at least one classical group G of rank r over the field Fq. If def(X) is odd, we obtain characters
of G = Sp2r(Fq) and of G = Spin2r+1(Fq) in this way. If it is divisible by 4, there is a character of

G = Spin+2r(Fq); otherwise, there is a character of G = Spin−2r(Fq). If X
0 = X1, then there are two

unipotent characters for Spin+2r(Fq) associated to X; otherwise, there is only one for each possible
G. Moreover, all unipotent characters for groups of type B, C, and D arise in this way for a unique
equivalence class of unordered symbols.

The degree dX of the unipotent character of G associated to the symbol X is (at least)

|G|p′
∏

1≤j<i≤n0(qλ
0
i − qλ

0
j )
∏

1≤j<i≤n1(qλ
1
i − qλ

1
j )
∏n0

i=1

∏n1

j=1(q
λ0
i + qλ

1
j )

2⌊n/2⌋
∏n0

i=1

∏λ0
i

j=1(q
2j − 1)

∏n1

i=1

∏λ1
j

j=1(q
2j − 1)

∏⌊(n0+n1−2)/2⌋
k=1 q(

n0+n1−2k
2 )

with nj := |Xj |. In terms of the sequence νi, this takes the form

dX ≥
|G|p′

∏
1≤j<i≤n(q

νi ± qνj )

2⌊n/2⌋
∏n

i=1

∏νi
j=1(q

2j − 1)
∏⌊(n−2)/2⌋

k=1 q(
n−2k

2 )
.

Note that

|G|p′ =

⎧⎪⎨⎪⎩
∏r

i=1(q
2i − 1) if def(X) ≡ 1 (mod 2),

(qr − 1)
∏r−1

i=1 (q
2i − 1) if def(X) ≡ 0 (mod 4),

(qr + 1)
∏r−1

i=1 (q
2i − 1) if def(X) ≡ 2 (mod 4),

so |G|p′ ≥ q−2 · qr2+r if n is odd and |G|p′ ≥ q−2qr
2
if n is even, again by (9.1).

Reasoning as in case A, for cases B and C (i.e., n = 2m + 1 is odd) and using the fact that
n ≤ 2r + 1, we have

dX ≥ q−2+2−2n−n/2 · qr
2+r+

∑
1≤j<i≤n νi−

∑n
i=1 νi(νi+1)−

∑n−1
2

k=1 (n−2k
2 )

≥ q−15r/2 · qr
2+r+

∑
1≤j<i≤n νi−

∑n
i=1 νi(νi+1)−

∑n−1
2

k=1 (n−2k
2 ).

We define

Y :=

n∑
i=1

(
(i− 1)− 2⌊ i− 1

2
⌋
)
νi = ν2 + ν4 + . . .+ ν2m ≥

m∑
i=1

i =
m(m+ 1)

2
,
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By (9.6), the exponent of the second term on the right-hand side is

r2 +
n∑

i=1

νi −m2 +
n∑

i=1

(i− 1)νi −
n∑

i=1

νi(νi + 1)−
m∑
k=1

(
n− 2k

2

)

= r2 −m2 +
n∑

i=1

(i− 1)νi −
n∑

i=1

ν2i −
m∑
k=1

(
n− 2k

2

)

= r2 −m2 + Y −
n∑

i=1

(
νi −

⌊ i− 1

2

⌋)2
+

n∑
i=1

(⌊ i− 1

2

⌋)2
−

m∑
k=1

(
n− 2k

2

)

≥ r2 −
n∑

i=1

(
νi −

⌊ i− 1

2

⌋)2
+m

≥ r2 −
n∑

i=1

(
νi −

⌊ i− 1

2

⌋)
·max

i

(
νi −

⌊ i− 1

2

⌋)
= r2 − r ·max

i

(
νi −

⌊ i− 1

2

⌋)
.

Here we have used the identity

2m+1∑
i=1

(⌊ i− 1

2

⌋)2
−

m∑
k=1

(
2m+ 1− 2k

2

)
= 2

m−1∑
i=1

i2 +m2 −
m−1∑
i=1

i(2i+ 1) =
m(m+ 1)

2
.

Thus,

(9.8) max
i

(
νi −

⌊ i− 1

2

⌋)
≥ r − log dX

log qr
− 7.5.

Since |Irr(G)| ≤ qC1r for some absolute constant C1 by [FG], by enlarging C ′ (which then covers
all small ranks), we may assume log dX/ log q

r ≤ r/2− 8.5, and so

(9.9) max
i

(
νi −

⌊ i− 1

2

⌋)
≥ r

2
+ 1.

By (9.4) and (9.5) and the integrality of the νi, we have

νi+2 −
⌊(i+ 2)− 1

2

⌋
≥ νi −

⌊ i− 1

2

⌋
,

and so

max
i

(
νi − ⌊ i− 1

2
⌋
)
= max

(
νn−1 − ⌊n− 2

2
⌋, νn − ⌊n− 1

2
⌋
)
.

Now, if maxi
(
νi −

⌊
i−1
2

⌋)
is attained at i = n− 1, then

νn−1 −
⌊n− 2

2

⌋
− 1 ≥ r/2 + 1

and

νn −
⌊n− 1

2

⌋
≥ νn−1 −

⌊n− 2

2

⌋
− 1 ≥ r/2

by (9.9), and this violates (9.6). Hence, νi − ⌊ i−1
2 ⌋ achieves its maximum at only i = n, and

νn > νn−1, again by (9.9); also,

r ≥ νn −
⌊n− 1

2

⌋
≥ r − log dX

log qr
− 7.5.
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Applying the Landazuri-Seitz bound as before, we may assume that dX ≥ qr. The rank r′ of the
symbol, obtained from X by deleting the largest single term νn, call it X

′, is bounded above by
log dX/ log q

r + 7.5, by (9.6) and (9.8). Applying (9.7) to X ′ = ((X ′)0, (X ′)1), we see that

(9.10) ρ((X ′)0) + ρ((X ′)1) ≤ log dX/ log q
r + 7.5 ≤ x+ 7.5

if dX ≤ qrx with x ≥ 0. In fact, we can show that such symbols X satisfy

(9.11) |X0|+ |X1| < 3x+ 22.5.

Indeed, without loss we may assume that µ1 ≥ 1, so the sequence {µj + 1− j} of |T ′| integers is a
proper partition of ρ((X ′)1), and so |(X ′)1| ≤ ρ((X ′)1) ≤ x + 7.5 by (9.10). Applying (9.7) to X ′

we have (|(X ′)0| − |(X ′)1|)2 ≤ 4r′ + 1, and so

|(X ′)0| − |(X ′)1| ≤
√
4r′ + 1 ≤

√
4(x+ 7.5) + 1 < x+ 6.5.

Hence |(X ′)0| < 2x+ 14, and |X0|+ |X1| = |(X ′)0|+ |(X ′)1|+ 1 < 3x+ 22.5, as stated.

By (9.11), even when λj1 = 0, the number of zero entries in the sequence {λji + 1− i} is at most

|(X ′)j | < 3x + 22.5. Now, counting the number of (possibly improper) partitions {λji + 1 − i} of
ρ((X ′)j) and using (9.10), we see that the number of possibilities for the symbol X with dX < qrx

is bounded above by

(3x+ 22.5)

⌊x+7.5⌋∑
i=1

p(i)2,

an exponential in x for x ≥ 1, proving the proposition for types Br and Cr.

(iii) For types Dr and 2Dr, that is, when n = 2m is even, we have n ≤ 2r, and

dX ≥ q−2+2−2n−n/2 · qr
2+

∑
1≤j<i≤n νi−

∑n
i=1 νi(νi+1)−

∑n−2
2

k=1 ((n−2k
2 )

≥ q−5r · qr
2+

∑
1≤j<i≤n νi−

∑n
i=1 νi(νi+1)−

∑n−2
2

k=1 (n−2k
2 ).

The exponent of the second term on the right hand side is therefore

r2 +
n∑

i=1

(i− 1)νi −
n∑

i=1

νi(νi + 1)−
m−1∑
k=1

(
n− 2k

2

)

= r2 +

n∑
i=1

(i− 2)νi −
n∑

i=1

ν2i −
m−1∑
k=1

(
n− 2k

2

)

= r2 − Y −
n∑

i=1

(
νi −

⌊ i− 1

2

⌋)2
+

n∑
i=1

(⌊ i− 1

2

⌋)2
−

m−1∑
k=1

(
n− 2k

2

)

≥ r2 −
n∑

i=1

(
νi −

⌊ i− 1

2

⌋)2
− r

≥ r2 −
n∑

i=1

(
νi −

⌊ i− 1

2

⌋)
·max

i

(
νi −

⌊ i− 1

2

⌋)
− r

= r2 − r ·max
i

(
νi −

⌊ i− 1

2

⌋)
− r.
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Here we have used the inequality

Y :=
∑n

i=1

(
2
⌊
i−1
2

⌋
− (i− 2)

)
νi = ν1 + ν3 + . . .+ ν2m−1

=
∑n

i=1, 2∤i

(
νi −

⌊
i−1
2

⌋)
+
(
m
2

)
≤ r +

(
m
2

)
and the identity

2m∑
i=1

(⌊ i− 1

2

⌋)2
−

m−1∑
k=1

(
2m− 2k

2

)
= 2

m−1∑
i=1

i2 −
m−1∑
i=1

i(2i− 1) =

(
m

2

)
.

The argument finishes as before. □

Proof of Theorem 9.1. Let G∗ = (G∗)F
∗
denote the dual group of G. We partition the irreducible

characters of G into rational Lusztig series E(s), indexed by conjugacy classes of semisimple conju-
gacy classes (s) of G∗. There is a bijection between the elements of E(s) and unipotent characters
of CG∗(s); this correspondence multiplies degrees by |G∗|p′/|CG∗(s)|p′ .

We restate [LiSh, Lemma 3.2] in a form more convenient for our purposes. Since the ratio n/r
between the dimension n of the natural module and the rank of G is bounded between 1 and 3,
and since the constants d and d′ in [LiSh] are absolute, if δ is greater than some absolute constant
δ0, then the number of semisimple conjugacy classes (s) with |G∗|p′/|CG∗(s)|p′ ≤ qδr is less than

qδA for some absolute constant A. Moreover, CG∗(s) contains a factor, the large factor, which is
classical of rank r′ ≥ r−Bδ for some absolute constant B, and this large factor is Ar′(q) or

2Ar′(q)
when G is of type A.

For D < qr/3, there is only one irreducible character, by [LaSe]. Hence we may assume D ≥
qr/3. Enlarging C if necessary, we may assume that D = qδr with δ ≥ max(δ0, 1/2). By [FG],
|Irr(G)| ≤ qC1r for some absolute constant C1, so the result follows if δC ≥ C1r. Again enlarging C
if necessary, we may assume without loss of generality that δ < r/2B.

If χ is an irreducible character of degree ≤ D, then it belongs to the Lusztig series E(s) for some
s with |G|p′/|CG∗(s)|p′ ≤ D. The number of such semisimple classes s is bounded above by qδA.
Following the proof of [LiSh, Lemma 3.4], note that for each s, CG∗(s) contains a subgroup CG∗(s)◦

which is the group of F ∗-fixed points of the connected reductive algebraic group CG∗(s)◦. If G
is of type B, C, or D, the quotient group CG∗(s)/CG∗(s)◦ has order ≤ 4. Suppose G is of type
A and CG∗(s)◦ is a proper subgroup of CG∗(s). Lifting s to an element ŝ of GLε

n(q), we see that
every eigenvalue of ŝ has multiplicity ≤ n/2, but this contradicts the existence of the large factor
of CG∗(s) which is of type Ar′(q) or

2Ar′(q) with r
′ > r/2. So we have CG∗(s) = CG∗(s)◦ for type

A. Thus, there are at most 4 unipotent characters of CG∗(s) of degree ≤ D for each unipotent
character of CG∗(s)◦ of degree ≤ D. Taking F ∗-fixed points of the derived group of CG∗(s)◦ we
obtain a subgroup whose unipotent characters correspond to those of CG∗(s), and this subgroup
is a product of classical groups whose ranks sum up to at most r and at least one of which, the
large factor, has rank r′ at least r − Bδ ≥ r/2. The total number of unipotent characters of the
product of all the factors other than the large factor can therefore be bounded above by qC1Bδ by
[FG]. The number of unipotent characters of the large factor of degree ≤ D = qδr is bounded

above by DC′/r′ ≤ q2δC
′
, by Proposition 9.2. Hence, the number of unipotent characters of degree

≤ D of CG∗(s)◦ is bounded by q(BC1+2C′)δ, and the number for CG∗(s) is likewise bounded by an
exponential in δ. Thus the number of characters of degree at most D is bounded by qC2δ for some
absolute constant C2, and the theorem follows by taking C ≥ C2. □

For later use, we prove the following related statement:
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Proposition 9.3. Let n ≥ 4 and j ≥ 1 be integers and let q be any prime power. Let G = GF be
one of the groups Sp2n(q), SO2n+1(q), or SOε

2n(q), and suppose that χ ∈ Irr(G) has degree

χ(1) ≤ min
(
qnj , q(n

2−n)/2−4
)
.

Then there is an F -stable Levi subgroup L = L1 × L2 of G, possibly equal to G, such that the
following statements hold:

(i) L1 is F -stable, of the same type as G, and of rank n−m ≥ n− 2j.
(ii) L2 is F -stable, of type GLm with m ≤ 2j.
(iii) χ = ±RG

L (φ1 ⊠ φ2), where φ1 ∈ Irr(LF
1 ) is a unipotent or quadratic unipotent character,

and φ2 ∈ Irr(LF
2 ). Moreover, if j ≤ n/2, then φ1(1) ≤ q(n−m)j.

Proof. View G = Sp(V ) or SO(V ), where V = F2n
q , F2n+1

q , or F2n
q . Then we can identify the dual

group G∗ = (G∗)F
∗
with SO(V ∗) ∼= SO2n+1(q), Sp(V

∗) ∼= Sp2n(q), or SO(V ∗) ∼= SO(V ) ∼= SO2n(q),
respectively. Let E(G, (s)) be the rational Lusztig series that contains χ, where s ∈ G∗ is semisimple.
If s2 = idV ∗ , then we are done by choosing L = G. Otherwise we can decompose V ∗ = V ∗

1 ⊕ V ∗
2 ,

where s2 − idV ∗ is zero on V ∗
1 , and invertible on its orthogonal complement V ∗

2 ̸= 0. Since s is
semisimple, we see that CG∗(s) is contained in a proper F ∗-stable Levi subgroup L∗ = L∗

1 × L∗
2 of

G∗, where L∗
2
∼= GLm, with m := dim(V ∗

2 )/2 ≤ n, and L∗
1, of the same type as of G∗, are both

F ∗-stable. Let L = L1 × L2 denote the Levi subgroup of G dual to L∗, where L1 is F -stable and
of the same type as of G, and L2

∼= GLm. By [DM, Theorem 11.4.3], εGεLR
G
L yields a bijection

between E(LF , (s)) and E(G, (s)), which implies (iii); in particular,

(9.12) χ(1) =
|G|p′
|LF |p′

φ1(1)φ2(1),

if p denotes the unique prime divisor of q.
Using (9.1) and (9.2), one readily checks that

|G|p′
|LF |p′

>

{
q(4nm−3m2−m−8)/2, G = SO2n,

q(4nm−3m2+m−8)/2, G = Sp2n, SO2n+1.

In particular, if m = n then χ(1) > q(n
2−n)/2−4 by (9.12), a contradiction. Assume now that

m ≤ n− 1, but m ≥ 2j + 1. Then 4n− 3m− 1 ≥ n+ 2, whence

4nm−3m2−m−8 = m(4n−3m−1)−8 ≥ (2j+1)(n+2)−8 = 2nj+n+2(2j+1)−8 ≥ 2nj+1,

and so χ(1) > qnj , again a contradiction. Thus m ≤ 2j.

To show φ1(1) ≤ q(n−m)j , it suffices by (9.12) to check that |G|p′/|LF |p′ ≥ qmj . This is obvious
if m = 0. If 1 ≤ m ≤ 3, then j ≤ n/2 ≤ 2n− 6 implies that 4nm− 3m2 −m− 8 ≤ 2mj. If m ≥ 4,
then

4nm− 3m2 −m− 8 = m(4n− 3m− 1)− 8 ≥ m(n+ 2)− 8 ≥ mn ≥ 2mj,

and so we are done. □

10. Applications to asymptotic variants of Thompson’s conjecture

10.1. Type A. Recall SLε
n(q) denotes SLn(q) when ε = +, and SUn(Fq2) when ε = −, and similarly

for GLε
n(q).

Theorem 10.1. For all k ∈ Z≥1, there exists an explicit constant B = B(k) > 0 such that the
following statement holds for all n ∈ Z≥1 and all prime powers q. Suppose G = SLε

n(q) for some
ε = ± and g ∈ G is a regular semisimple element whose characteristic polynomial on the natural
module of G is a product of k pairwise distinct irreducible polynomials. Then gG · gG contains every
element x ∈ G of support ≥ B.
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Proof. (a) Embed G in G̃ := GLε
n(q). Since the support of an element of G̃ is at most n, by enlarging

B, we are free to make n ≥ k as large as we wish.
Note that the element g is regular semisimple, and T := CG̃(g) is a maximal torus, so of order

at most (q + 1)n. Moreover, the image of T under the determinant map is the same as that of

G̃. Hence the conjugacy class of g in G is the same as its class in G̃. Let x ∈ G. To show that
x ∈ gG · gG, it suffices to prove that ∑

χ∈Irr(G̃)

χ(g)2χ̄(x)

χ(1)
̸= 0.

As det(g) = det(x) = 1, for every character χ of degree 1 we have χ(g) = χ(g)2χ̄(x) = 1. Therefore,
it suffices to prove that

(10.1)
∑

{χ∈Irr(G̃)|χ(1)>1}

|χ(g)|2|χ(x)|
χ(1)

< q − ε.

(b) For any fixed ϵ > 0, choosing B sufficiently large, the contribution of characters χ ∈ Irr(G̃)

satisfying χ(1) ≥ qϵn
2
to (10.1) is o(1). Indeed, consider any such character χ and any irreducible

constituent ψ of χ|G. Since G̃/G ∼= Cq−ε, by Clifford’s theorem we have χ|G = ψ1 + . . .+ψt, where

ψ1 = ψ, . . . , ψt are distinct G̃-conjugates of ψ, and t|(q − ε). By [LT, Theorem 5.5],

|ψi(x)| ≤ ψi(1)
1−σB/n = (χ(1)/t)1−σB/n

for some absolute constant σ > 0, and so |χ(x)| ≤ t(χ(1)/t)1−σB/n. As χ(1) ≥ (q + 1)2 ≥ t2, we
obtain

|χ(x)/χ(1)| ≤ χ(1)−σB/2n ≤ q−εσBn/2.

Since |T | ≤ (q + 1)n < q2n, it follows that the contribution of all these characters to (10.1) is at
most

q−εσBn/2
∑
χ

|χ(g)|2 ≤ q−εσBn/2|T | < q2n(1−εσB/4)

which is o(1) when B is large enough.

(c) Now let j denote the level of χ ∈ Irr(G̃), as defined in [GLT1]. Assuming χ(1) > 1, we

have j > 0. If j ≥ n/2, then χ(1) ≥ qn
2/4−2 by [GLT1, Theorem 1.2(ii)], and, as shown in (b),

the contribution of all such characters to the left hand side of (10.1) is o(1). Hence it remains to
consider the characters χ with

j < n/2;

any such character is irreducible over G, see [GLT1, Corollary 8.6]. Up to a linear factor, we may
assume that χ has true level j. By [GLT1, Theorem 3.9], any such character χ is of the form

χ = ±RG̃
L (φ⊠ ψ),

where L = GLε
n−m(q) × GLε

m(q) is a (possibly non-proper) Levi subgroup of G̃ with 0 ≤ m < n,

φ = φλ is the unipotent character of GLε
n−m(q) labeled by a partition λ ⊢ (n−m) with largest part

λ1 = n− j, so, in particular,

(10.2) m ≤ j,

and ψ ∈ Irr(GLε
m(q)) when m > 0. Moreover, the total number of characters of G̃ of true level j is

|Irr(GLε
j(q))|, which is shown in [FG, Propositions 3.5, 3.9] to be at most 9qj .
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Since χ has level j, χ(1) ≥ qj(n−j)−1 > qnj/3 by [GLT1, Theorem 1.2(i)]. For these characters χ,
supp(x) ≥ B implies by [LT, Theorem 5.5] that

(10.3) |χ(x)|/χ(1) < q−σBj/3.

As g is regular semisimple, the Steinberg character StG of G takes value ±1 at x. Applying [DM,
Proposition 7.4.7] we have

(10.4) χ(g) = ±(StG · χ)(g) = ±IndGL (StL · φ)(g).

Note that if V = Fn
q denotes the natural module of G̃ (endowed with a Hermitian form when ε = −),

then the L-module V is a direct (orthogonal when ε = −) sum of two non-isomorphic irreducible
modules V1 := Fn−m

q and V2 := Fm
q , with m ≤ j < n/2, see (10.2). In particular, if y ∈ NG(L),

then y preserves each of V1 and V2, and thus NG(L) = L.
Now we count the number N of elements y ∈ G such that y−1gy ∈ L, i.e. g ∈ yLy−1. Then g acts

on each of the subspaces yV1 and yV2. On the other hand, the decomposition pV (g) =
∏k

i=1 fi(X)

leads to a decomposition V = ⊕k
i=1Ui, where pUi(g) = fi(X), and each Ui is a minimal ⟨g⟩-invariant,

non-degenerate if ε = −, subspace. Moreover, the ⟨g⟩-modules Ui are pairwise non-isomorphic.
Hence (yV1, yV2) is uniquely determined by choosing a subset of {U1, . . . , Uk} (so that yV1 is the sum
over this subset and yV2 is the sum over the complement). Thus the total number of possibilities
for yLy−1 = NG(yV1, yV2) is at most 2k. On the other hand, yLy−1 = y′Ly′−1 if and only if
y−1y′ ∈ NG(L) = L. Hence

(10.5) N ≤ 2k|L|.

Suppose y−1gy = diag(g1, g2) ∈ L, with g1 ∈ L1 := GLε
n−m(q) and g2 ∈ L2 := GLε

m(q). Let
ki denote the number of irreducible factors of the characteristic polynomial of gi on the natural
module for Li. Then k1 + k2 ≤ k. Since φ is unipotent and g1 is regular semisimple, we have

|φ(g1)| ≤ 2k1−1 · k1!

by Corollary 7.5. On the other hand, when m > 0, (10.2) and Corollary 7.6 show that

|ψ(g2)| ≤ k2! · jk2 .

As y−1gy is regular semisimple in L, |StL(y−1gy)| = 1. Hence⏐⏐(StL · (φ⊠ ψ)
)
(y−1gy)

⏐⏐ ≤ 2k−1 · k! · jk−1.

It now follows from (10.4) and (10.5) that

|χ(g)| =
⏐⏐⏐⏐ 1

|L|
∑

y∈G:y−1gy∈L

±(StL · φ)(y−1gy)

⏐⏐⏐⏐ ≤ 22k−1 · k! · jk−1.

With (10.3), this shows that the total contribution of characters of a fixed true level 1 ≤ j < n/2
to (10.1) is at most

9qj · q−σBj/3 · (22k−1 · k! · jk−1)2 < A(k)/qj1,

where A(k) = 9 · (22k−1 · k!)2 and q1 := qσB/3−k (here we use the estimate qj ≥ 2j ≥ j2). Note that

(10.6)

∞∑
j=1

1/qj1 = 1/(q1 − 1)

is o(1) when B is large enough. Hence, the total contribution of characters χ, of level at least 1 and
less than n/2, to (10.1), is less than (q − ε)A(k)/(q1 − 1) = o(q − ε), and the theorem follows. □
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10.2. Types BCD. Recall the involution f ↦→ f✓ on the set F∗
q of monic irreducible polynomial

f ∈ Fq[t] with f(0) ̸= 0: if deg(f) = m then f✓(t) = tmf(1/t)/f(0) (equivalently, λ ∈ Fq is a root

of f✓ if and only if 1/λ is a root of f). In the following theorem, the condition that the regular
semisimple element g ∈ G has pairwise distinct cycles implies that the characteristic polynomial of
g on the natural FqG-module is of the form

(t− 1)a(t+ 1)b
c∏

i=1

fif
✓
i

d∏
j=1

hj ,

where a, b, c, d ≥ 0, a, b ≤ 2, f✓i ̸= fi ∈ F∗
q , hj = h✓j ∈ F∗

q , deg(fi) = mi, deg(hj) = nj ,

m1 > . . . > mc, and n1 > . . . > nd (and c + d ≤ k ≤ c + d + 2 for the cycle length k). Note that
if the irreducible factors of the characteristic polynomial of g have pairwise distinct degrees, then g
has pairwise distinct cycles.

Theorem 10.2. For all k ∈ Z≥1, there exists B > 0 such that the following statement holds for all
n ∈ Z≥1 and all prime powers q. If G = Sp2n(q), SO2n+1(q), or SO±

2n(q), and g ∈ G is a regular
semisimple element with cycle length k and pairwise distinct cycles, then gG · gG contains every
element x ∈ [G,G] of support ≥ B.

Proof. (a) Enlarging B, we are free to make n ≥ max(k, 5) as large as we wish. Write G = GF

for a corresponding simple algebraic group of type Sp or SO. Then CG(g) is a maximal torus, so,
using the well-known structure of centralizers of semisimple elements in the finite group G, we see
that T := CG(g) has order at most 2(q + 1)n.

Let x ∈ [G,G]. Since the linear characters of G take value 1 at x, to show that x ∈ gG · gG, it
suffices to prove that

(10.7)
∑

{χ∈Irr(G)|χ(1)>1}

|χ(g)|2|χ(x)|
χ(1)

< 1 ≤ |G/[G,G]|.

(b) For any fixed ϵ > 0, choosing B sufficiently large, the contribution of characters χ ∈ Irr(G)

satisfying χ(1) ≥ qϵn
2
to (10.7) is o(1). Indeed, for any such character χ, by [LT, Theorem 5.5] we

have
|χ(x)/χ(1)| ≤ χ(1)−σB/n ≤ q−εσBn

for some absolute constant σ > 0. Since |T | ≤ 2(q + 1)n < q2n, it follows that the contribution of
all these characters to (10.7) is at most

q−εσBn
∑
χ

|χ(g)|2 ≤ q−εσBn|T | < q2n(1−εσB/2)

which is o(1) when B is large enough.

(c) Now we consider any χ ∈ Irr(G) with 1 < χ(1) < q(n
2−4n)/4. By the Landazuri-Seitz bounds

[LaSe], we have χ(1) > qn/2. Let j ∈ Z≥1 be the unique integer such that qn(j−1) ≤ χ(1) < qnj , and
note that

qnj/2 ≤ χ(1) < min
(
qnj , q(n

2−n)/2−4
)
, j < n/4.

By Proposition 9.3, there is an F -stable Levi subgroup L = L1×L2 of G, possibly equal to G, such
that the following statements hold:

(α) L1 is F -stable, of the same type as of G, and of rank n−m ≥ n− 2j.
(β) L2 is F -stable, of type GLm with m ≤ 2j.
(γ) χ = ±RG

L (φ1 ⊠ φ2), where φ1 ∈ Irr(LF
1 ) is a unipotent or quadratic unipotent character,

and φ2 ∈ Irr(LF
2 ).
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Moreover, by Theorem 9.1, there is an absolute constant C such that the total number Nj of
characters of G of degree ≤ qnj is at most

(10.8) Nj ≤ qCj .

Since χ(1) ≥ qnj/2, supp(x) ≥ B implies by [LT, Theorem 5.5] that

(10.9) |χ(x)|/χ(1) < q−σBj/2.

Next we bound |χ(g)|, again using (10.4). Let V = Fd
q denote the natural module of G endowed

with a symplectic or quadratic form, d = 2n or 2n+ 1, and let L := LF . Then the L-module V is
an orthogonal sum of two non-degenerate L-invariant subspaces V1 := Fd−2m

q and V2 := F2m
q , with

2m ≤ 4j < n ≤ d− 2m.

Furthermore, V1 is the natural, irreducible module of dimension d − 2m for L1 := LF
1 , with L1 of

the same type as of G, and L1 acts trivially on V2. Next, L2 := LF
2

∼= GLm(q) or GUm(q), with
V1 a minimal L2-invariant non-degenerate subspace, and L2 acts trivially on V1. In particular, if
y ∈ NG(L), then y preserves each of V1 and V2, and thus NG(L) = L.

Now we count the number N of elements y ∈ G such that y−1gy ∈ L, i.e. g ∈ yLy−1. Then
g acts on each of the subspaces yV1 and yV2. On the other hand, since g has cycle length k with
pairwise distinct cycles, V admits an orthogonal decomposition V = ⊕k

i=1Ui, where each Ui is a
minimal ⟨g⟩-invariant non-degenerate subspace. Moreover, the ⟨g⟩-modules Ui are pairwise non-
isomorphic. Hence (yV1, yV2) is uniquely determined by choosing a subset of {U1, . . . , Uk} (so that
yV1 is the sum over this subset and yV2 is the sum over the complement). Thus the total number of
possibilities for yLy−1 = NG(yV1, yV2) is at most 2k. On the other hand, yLy−1 = y′Ly′−1 if and
only if y−1y′ ∈ NG(L) = L. Hence

(10.10) N ≤ 2k|L|.

Suppose y−1gy = diag(g1, g2) ∈ L, with g1 ∈ L1 and g2 ∈ L2 = GL±
m(q). Let ki denote the cycle

length of gi. Then k1 + k2 ≤ k. Since φ1 is quadratic unipotent and g1 is regular semisimple, we
have

|φ1(g1)| ≤ 23k1+4 · k1!
by Corollary 8.2. On the other hand, when m > 0, the statement (β) and Corollary 7.6 show that

|φ2(g2)| ≤ k2! · (2j)k2 .

As y−1gy is regular semisimple in L, |StL(y−1gy)| = 1. Hence⏐⏐(StL · (φ1 ⊠ φ2)
)
(y−1gy)

⏐⏐ ≤ 23k+4 · k! · jk−1.

It now follows from (10.4) and (10.10) that

|χ(g)| =
⏐⏐⏐⏐ 1

|L|
∑

y∈G:y−1gy∈L

±(StL · φ)(y−1gy)

⏐⏐⏐⏐ ≤ 24k+4 · k! · jk−1.

With (10.9), this shows that the total contribution of characters of degree satisfying qn(j−1) ≤
χ(1) < qnj to (10.7) is at most

qCj · q−σBj/2 · (24k+4 · k! · jk−1)2 < A(k)/qj1,

where A(k) = (24k+4 · k!)2 and q1 := qσB/2−C−k+1 (here we again use qj ≥ j2). Recalling (10.6),
we conclude that the total contribution to (10.7) of characters χ, of degree at least 2 and less than

q(n
2−4n)/4, is less than A(k)/(q1 − 1) = o(1), and hence the theorem follows. □
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10.3. Another result for SL. For any positive interger k, let a denote a fixed increasing sequence
a1 < · · · < ak of positive integers. By an a-flag in an Fq-vector space V , we mean a flag

V1 ⊂ · · · ⊂ Vk ⊂ V

of Fq-subspaces such that dimVi = ai for 1 ≤ i ≤ k. The number of a-flags is

Fa(dimV ) :=

∏ak+1

j=1 (qj − 1)∏k
i=0

∏ai+1−ai
j=1 (qj − 1)

,

where we define a0 := 0 and ak+1 := dimV . As
∞∏
j=1

(1− q−j) >
1

4

by [LMT, Lemma 4.1], we have

(10.11)
qda(N)

4
< Fa(N) < 4kqda(N),

where

da(N) :=
∑

0≤i<j≤k

(ai+1 − ai)(aj+1 − aj) = ak(N − ak) +
∑

0≤i<j≤k−1

(ai+1 − ai)(aj+1 − aj).

In particular, as N goes to infinity,

(10.12) da = akN +O(1),

where the implicit constant depends on a. Moreover,

(10.13)
Fa(N + 1)

Fa(N)
=

qN+1 − 1

qN+1−ak − 1
= qak + q−N+O(1),

so

(10.14) lim
N→∞

Fa(N + 1)

Fa(N)
= qak .

Lemma 10.3. Let k and m be positive integers, and let a be an increasing sequence of k positive
integers. If N is sufficiently large in terms of m and a, then for all g ∈ GLN (q) with supp(g) = m,
the number of g-stable a-flags in FN

q can be written

q−akm(1 + ϵ)Fa(N),

with |ϵ| < q−N/2.

Proof. We may assume N > 3m, so the eigenvalue λ of multiplicity N −m is unique and therefore
lies in Fq. Let Wλ ⊂ FN

q denote the generalized λ-eigenspace of g and W λ the direct sum of the

generalized eigenspaces of g for all eigenvalues other than λ. Thus dimW λ < N/3.
If V1 ⊂ · · · ⊂ Vk is a g-stable a-flag, Vk is determined by the decomposition

Vk = (Vk ∩Wλ)⊕ (Vk ∩W λ).

If dimVk ∩Wλ < ak, then by applying (10.11) to sequences of length 1, we see that the number of
possibilities for Vk is less than

ak−1∑
i=0

Fi(dimWλ)Fak−i(dimW λ) < 42
ak−1∑
i=0

qi(dimWλ−i)q(ak−i)(dimWλ−ak+i) = q(ak−1)N−O(1),

so the total number of possibilities for the whole flag is less than q(ak−1)N−O(1).
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If dimVk ∩ Wλ = ak, then Vk ⊂ Wλ. Let Iλ and Kλ denote the image of λ − g on Wλ and
the kernel of λ − g respectively. Because Vk is g-stable, either Vk ⊂ Kλ or Vk ∩ Iλ ̸= {0}. In the
latter case, Vk is spanned by a non-zero vector in Iλ and a subspace of Wλ of dimension ak − 1. As
dim Iλ ≤ k < N/3, the number of possibilities for the whole flag is less than q(ak−1)N−O(1).

Finally, we consider the number of possibilities when Vk ⊂ Kλ. As g acts on Kλ as scalar
multiplication, all a-flags with Vk ⊂ Kλ are g-stable. The total number is

Fa(dimKλ) = Fa(N −m) = qakm(1− q−N+O(1))Fa(N),

by (10.13). The lemma follows. □

The unipotent characters of GLN (q) are indexed by partitions λ ⊢ N , and we say χ = χλ has
level N −λ1, where the parts of λ are arranged from largest to smallest, see [GLT1, §3]. Also recall
that, for λ, µ ⊢ N , the Kostka number Kλµ is the number of semistandard Young tableaux of shape
λ and weight µ.

Lemma 10.4. Assuming µ1 ≥ N/2, Kλµ depends only the partitions (λ2, λ3, . . .) and (µ2, µ3, . . .),
obtained by removing the largest parts λ1 and µ1 from λ and µ, and not on the value of N .

Proof. In any semistandard Young tableaux of shape λ and weight µ, the first µ1 entries of the first
row must have filled with value 1, and the remaining boxes in the first row are all to the right of
every box in the remaining rows. Therefore, such a tableau is determined by choosing from the
µ2 values 2, the µ3 values 3, and so on, an arbitrary weakly increasing sequence for the λ1 − µ1
remaining boxes in the first row, and from the values that remain, a semistandard Young tableau
of shape (λ2, λ3, . . .). The number of such choices depends only on (λ2, λ3, . . .) and (µ2, µ3, . . .), but
not on N . □

Proposition 10.5. Let m and n be fixed positive integers. If N is a positive integer sufficiently
large in terms of m and n, χ is a unipotent character of GLN (q) of level n, and g ∈ GLN (q) has
support m, then

(10.15)
⏐⏐⏐ qmnχ(g)

χ(1)
− 1

⏐⏐⏐< q−N/3.

Proof. As Kλµ is the number of semistandard Young tableaux of shape λ and weight µ, we have
Kλλ = 1, and if Kλµ ̸= 0, then λ dominates µ: λ ⪰ µ. In particular, this implies that µ1 ≤ λ1.

For each µ ⊢ N , we define the increasing sequence aµ of positive integers such that the sequence
a1 = a1 − a0, . . . , ak+1 − ak = N − ak gives the parts of µ in increasing order.

Let ϕµ denote the permutation character of GLN (q) acting on the set of aµ-flags in FN
q . Then by

[AT, Lemma 2.4],

ϕµ =
∑
λ⪰µ

Kλµχλ.

If N ≥ 2n and µ1 ≥ N −n, then by Lemma 10.4, Kλµ depends only on (λ2, λ3, . . .) and (µ2, µ3, . . .).
As every Kostka matrix K (for partitions of N) is unitriangular, we can invert and write χ = χλ

as a linear combination of permutation characters associated to ϕµ, where µ ⪰ λ. We can therefore
express each unipotent character of level n, including χλ, as a linear combination of permutation
characters χb,N associated to flags b with maximal dimension ≤ n, with coefficients which are entries

in the inverse Kostka matrix K−1.
Note that, for any fixed n, the set of partitions λ ⊢ N with λ1 ≥ N − n depends only on n, but

not on N , m, or q. The unitriangularity of K implies that the submatrix of K−1, truncated to only
partitions of N with the first part ≥ N − n, is the inverse of the submatrix of K, truncated to the
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same set of partitions. Applying Lemma 10.4, we see that all entries of this truncated submatrix of
K−1 are bounded by some constant O(1) that depends only on n:

(10.16) |(K−1)λµ| ≤ O(1)

whenever λ, µ ≥ N − n. Moreover,

(10.17)
∑
µ⪰λ

(K−1)λµϕµ(1) = χλ(1).

Define ϵµ so that

(10.18) ϕµ(g) = q(µ1−N)m(1 + ϵµ)ϕµ(1).

By Lemma 10.3, for fixed m and µ, |ϵµ| < q−N/2 if N is sufficiently large and g is of support m.

When µ1 = λ1, we have q
(µ1−N)m = q−mn. On the other hand, if µ1 > λ1, then by [GLT1, Theorem

1.2(i)] we have

ϕµ(1) ≤ q(n−1)N .

Now, by (10.16), (10.17), and (10.18),

χλ(g) =
∑
µ⪰λ

(K−1)λµϕµ(g)

=
∑
µ⪰λ

(K−1)λµ(1 + ϵµ)q
−mnϕµ(1) +

∑
µ⪰λ

µ1>λ1

(K−1)λµ(1 + ϵµ)(q
−m(N−µ1) − q−mn)ϕµ(1)

= q−mn
∑
µ⪰λ

(K−1)λµ(1 + ϵµ)ϕµ(1) + q(n−1)N+O(1)

= q−mn
∑
µ⪰λ

(K−1)λµϕµ(1) + q−mn
∑
µ⪰λ

ϵµ|(K−1)λµ|ϕµ(1) + q(n−1)N+O(1),

= (1 + ϵ)q−mnχλ(1) + q(n−1)N+O(1),

(10.19)

where |ϵ| ≤ maxµ |ϵµ| < q−N/2. On the other hand, χλ(1) > qnN−O(1) by [GLT1, Theorem 1.2(i)].
So for N sufficiently large, (10.19) implies (10.15). □

Proposition 10.6. Let p ≥ 3 be a prime, and let X denote the set of cuspidal characters of GLp(q),

i.e. characters of the form Ikp [1] in the notation of [Gr]. Let T < GLp(q) denote the centralizer of

a semisimple element with characteristic polynomial irreducible over Fq and T 1 := T ∩ SLp(q). Let
z be a central element of SLp(q). If t is a generator of T 1, then∑

χ∈X
χ(t)2χ(z) = p(1− q)χ(1).

Proof. First we claim that for all non-negative integers a, b, c, if

c ≡ qa + qb (mod |T 1|)
then

(10.20) gcd
(
c(q − 1), |T |

)
= q − 1.

It is clear that q − 1 divides both factors. If a prime ℓ divides

gcd(c(q − 1), |T |) = gcd((qa + qb)(q − 1), qp − 1),

then it divides |T |, so it cannot divide q. It must also divide either qa + qb or q − 1 or both. If it
divides q− 1 but not qa+ qb, then the highest power of ℓ dividing (qa+ qb)(q− 1) is the same as the



CHARACTER BOUNDS AND THOMPSON’S CONJECTURE 37

highest power dividing q−1 and therefore the same as the highest power dividing gcd(c(q−1), |T |).
If it divides both, then 0 ≡ qa+ qb ≡ 2 (mod ℓ), so ℓ = 2. However, |T 1| is odd (as p is odd), so the
highest power of 2 dividing |T | is the highest power dividing q−1 and therefore the highest dividing
gcd(c(q − 1), |T |). If ℓ divides only qa + qb, then we may replace a and b by their remainders under
division by p (since ℓ|(qp− 1)), and assume ℓ divides qa+ qb for 0 ≤ a ≤ b < p and therefore divides
1 + qb−a with 0 ≤ b− a < p. We have already seen that the highest power of 2 dividing q− 1 is the
same as the highest power dividing gcd(c(q− 1), |T |), so we may assume b− a > 0. Thus, the order
of q (mod ℓ) divides 2(b− a) as well as p, so q ≡ 1 (mod ℓ), contrary to assumption.

Let t0 be a generator of the cyclic group T with tq−1
0 = t, and let c be as above. If ϕ is a character

of T and ϕ(t)c = 1, then (10.20) implies ϕq−1(t0) = 1 and so ϕq−1 = 1T . Therefore, if ϕq−1 ̸= 1T ,
we have

|T |−1∑
i=0

ϕ(tic) =

|T |−1∑
i=0

ϕ(t
ic(q−1)
0 ) =

|T |−1∑
i=0

(ϕ(tc))i = 0.

If I denotes the set of i ∈ {0, . . . , |T | − 1} such that i is not divisible by |T 1|, then

(10.21)
∑
i∈I

ϕi(tc) =
∑
i∈I

ϕ(tic) =

|T |−1∑
i=0

ϕ(tic)−
q−2∑
j=0

1 = 1− q.

Now consider the action of Z/pZ on the character group of T which is generated by the map
ψ ↦→ ψq. All orbits are of length p except for the singletons {ψ} for which ψq−1 = 1T . By [Gr,
p. 431], the restriction of any character χ ∈ X to T is of the form

χ(t) = ϕ(t) + ϕ(tq) + · · ·+ ϕ(tq
p−1

)

for some length p orbit {ϕ, ϕq, . . . , ϕqp−1}, and moreover different χ ∈ X correspond to different
orbits of length p. If g = zu with u unipotent, then χ(g) = ϕ(z)χ(u). Note that this is well defined
because z ̸= 1 implies q ≡ 1 (mod p) and zp = 1, which implies

ϕq(z) = ϕ(zq−1)ϕ(z) = ϕ(z).

In particular, we have

χ(z) = ϕ(z)χ(1) = ϕ(tk0)χ(1),

where k is some integer divisible by |T 1|.
Therefore χ(t)2χ(z)/χ(1) is a sum of p2 terms of the form ϕ(tq

a+qb+k). Denoting by ϕ0 a generator
of the character group of T , we see that the set of ϕ ∈ Irr(T ) with ϕq−1 ̸= 1T is precisely {ϕi0 | i ∈ I}.
Now using (10.21) we have∑

χ∈X

χ(t)2χ(z)

χ(1)
=

1

p

∑
{ϕ|ϕq−1 ̸=1T }

p−1∑
a=0

p−1∑
b=0

ϕ(tq
a+qb+k)

=
1

p

p−1∑
a=0

p−1∑
b=0

∑
{ϕ|ϕq−1 ̸=1T }

ϕq
a+qb+k(t)

=
1

p

p−1∑
a=0

p−1∑
b=0

∑
i∈I

ϕi0(t
qa+qb+k)

=
1

p

p−1∑
a=0

p−1∑
b=0

(1− q) = p(1− q).
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□

Theorem 10.7. For all but finitely many ordered pairs (p, q) where p ≥ 3 is prime and q is a prime
power, the following statement holds. If t is a generator of the norm-1 subgroup T1 ∼= C(qp−1)/(q−1)

of F×
qp then every non-central element of SLp(q) is a product of two conjugates of t.

Proof. Fixing an Fq-basis of Fqp we can identity F×
qp with the centralizer T in G := GLp(q) of any

generator of Fqp . As p is prime, every non-central element of T generates Fqp as Fq-algebra, so no
such element is contained in a proper parabolic subgroup of G. Therefore, every Harish-Chandra
induced character of G vanishes on every element of T ∖ Z(G); in particular at our element t. By
[Gr, (12)], a primary (i.e. not Harish-Chandra induced) character of G can be non-zero at t if
and only if it is of the form Ik1 [p] or of the form Ikp [1]. In the first case, it belongs to the set X
of Proposition 10.6. In the second case, it is the product of a unipotent character and a linear
character. Since CG(t) = T , the conjugate classes of t in G and in SLp(q) are the same.

By Theorem 10.1, we may assume that our target element g has bounded support. By the
Frobenius formula, (q−1)−1 times the number of representations of g as a product of two conjugates
of t in G is

(q − 1)−1 |tG|2|gG|
|G|

∑
χ∈Irr(G)

χ(t)2χ̄(g)

χ(1)
.

We divide this sum into a sum over χ which are unipotent characters times linear characters and a
sum over χ ∈ X .

For the first, we note that t and g are both in SLp(Fq), and all linear characters of G are trivial
on this subgroup. So we can simply sum over unipotent characters and omit the factor (q − 1)−1.
The contribution of the trivial character to the sum∑

χ∈Irr(G)

χ(t)2χ̄(g)

χ(1)

is 1. For the other unipotent characters, by [Gr, Theorem 12], χλ(t) is given by the value at a
p-cycle of the character of the symmetric group Sp associated to the partition λ ⊢ p, and by the
Murnaghan-Nakayama rule, this value is ±1 if λ is of the form 1n(p− n)1 and 0 otherwise. By the
main theorem of [LT], since g /∈ Z(G), there exists an absolute constant ϵ > 0 such that

(10.22) |χ(g)| ≤ χ(1)1−ϵ/p

for all χ ∈ Irr(G). By the dimension formula for primary characters of G [Gr, Lemma 7.4],

χλ(1) ≥ qn(p−n/2−1/2) ≥ qnp/3.

Therefore,
|χ1n(p−n)1(g)|
χ1n(p−n)1(1)

≤ 2−nϵ/3.

Choosing A to be a sufficiently large absolute constant, we have
∑

n≥A 2−nϵ/3 < 1
3 , which guarantees⏐⏐⏐ ∑

χ=χ1n(p−n)1 , n≥A

χ(t)2χ̄(g)

χ(1)

⏐⏐⏐≤ 1

3
.

On the other hand, if p is large enough compared to A, then by Proposition 10.5, for 1 ≤ n < A we
have χ1n(p−n)1(g) > 0, and ∑

1≤n<A

χ1n(p−n)1(g)

χ1n(p−n)1(1)
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is the sum of a positive term γ and an error term less than 1/3 in absolute value. Recalling χ(t)2 = 1
on all these χ = χ1n(p−n)1 , it follows that the total contribution to the sum from nontrivial unipotent
characters is γ plus an error term less that 2/3 in absolute value. Hence the total contribution to
the sum from all unipotent characters is at least γ + 1/3. If p is bounded but q is large enough,
then by Gluck’s bound [Gl], there is some absolute constant C > 0 such that⏐⏐⏐ ∑

1≤n<A

χ1n(p−n)1(g)

χ1n(p−n)1(1)

⏐⏐⏐< CA
√
q
≤ 1

3
,

and this ensures that the total contribution to the sum from all unipotent characters is at least 1/3.
As p is prime, for χ ∈ X , χ(g) = 0 unless g = zu, where z is scalar and u is unipotent, or g is

conjugate to an element of T . In the former case, χ(g) = cu
χ(z)
χ(1) , where cu ∈ Z depends only on u

but not on the particular χ ∈ X . By Proposition 10.6,

1

q − 1

⏐⏐⏐ ∑
χ∈X

χ(t)2χ̄(g)

χ(1)

⏐⏐⏐= p|cu|
χ(1)

.

As g is not scalar, |cu| = |χ(g)| ≤ χ(1)1−ϵ/p by (10.22). Since χ(1) =
∏p

i=1(q
i − 1) > qp(p−1)/2/4,

we get a uniform bound |cu|/χ(1) ≤ q−βp for some β > 0. Thus, the contribution of the cuspidal
characters is less than 1/6 when either p or q is sufficiently large, implying the theorem. □
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