CHARACTER BOUNDS FOR REGULAR SEMISIMPLE ELEMENTS AND
ASYMPTOTIC RESULTS ON THOMPSON’S CONJECTURE

MICHAEL LARSEN, JAY TAYLOR, AND PHAM HUU TIEP

ABSTRACT. For every integer k there exists a bound B = B(k) such that if the characteristic
polynomial of g € SL,(q) is the product of < k pairwise distinct monic irreducible polynomials over
Fq, then every element x of SL,(q) of support at least B is the product of two conjugates of g. We
prove this and analogous results for the other classical groups over finite fields; in the orthogonal and

symplectic cases, the result is slightly weaker. With finitely many exceptions (p, ), in the special
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product of two conjugates of g. The proofs use the Frobenius formula together with upper bounds
for values of unipotent and quadratic unipotent characters in finite classical groups.

case that n = p is prime, if g has order , then every non-scalar element z € SLy(q) is the
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1. INTRODUCTION

A conjecture of Thompson states that each finite simple group G contains a conjugacy class C C G
such that C? = G. Inspired by this, we would like to study an asymptotic version of Thompson’s
conjecture when G is one of the finite classical groups SL;,(q), SUy(q), Sp2,(q), SO2,+1(q), and
SO;En(q), which are all closely related to simple groups. This asymptotic version treats target
elements of sufficiently large support. We prove that regular semisimple conjugacy classes C' = ¢©
satisfy our asymptotic version of Thompson’s conjecture whenever the characteristic polynomial of
g is close to being irreducible.

If G = CI(V) is a finite classical group, with natural module V' = Fy, we define the support
supp(z) of an element z € G to be the codimension of the largest eigenspace of x on V ®p, F,. The
following is one of our main results and generalizes [LT, Theorem 7.8].

Theorem 1.1. For all integers k € Zx1 there exists an explicit constant B = B(k) > 0 such
that for all n € Z>1 and all prime powers q the following statement holds. Suppose G is one of
SLn(q), SUn(q), Span(q), SO2,11(q), and SOZL (¢q), and g € G is a reqular semisimple element
whose characteristic polynomial on the natural module is a product of k pairwise distinct irreducible
polynomials, of pairwise distinct degrees if G is of type Sp or SO. Then g% - g© contains every
element x € [G, G| with supp(z) > B.

In fact, in the Sp and SO cases, we prove a slightly stronger result, see Theorem We also
note that the assumption z € [G, G| is superfluous in the SL, SU, and Sp cases (since G = [G, G| in
these cases, aside from known exceptions with n < 3), but necessary in the SO case (since in this
case [G,G] has index 2 in G and so ¢© - ¢ C [G,G)).

In a special family of particularly favorable cases, Theorem [10.7] shows that all non-central ele-
ments of G lie in C?.

If Irr(G) denotes the set of the complex irreducible characters of G, then the well-known formula
of Frobenius states that = € G is contained in ¢© - ¢¢ if and only if

" s Mo

x€lrr(G) X(l)

To show that this is the case we need sufficiently good upper bounds on |x(g)|. To get these we
realise our group as the fixed point subgroup G¥ of a Frobenius endomorphism F : G — G on a
connected reductive algebraic group G and use the Deligne—Lusztig theory [DL].

To illustrate our techniques suppose G = Sp,,,(¢) or SO2,,+1(q). To each element w of the Weyl
group W = 051 &, of G, Deligne and Lusztig have associated a virtual character R,, of G whose
irreducible constituents are called unipotent characters. The subspace Classg(Gf) C Class(GF)
of all C-valued class functions spanned by {R,, | w € W} is the space of uniform unipotent class
functions.

If x is a unipotent character then the (uniform) projection of x onto Classo(GF) is known to
have the form .

R = Y fx(w)Ry
weWw
for some class function f, € Class(W), which is not irreducible in general. If g € GF is semisimple
then its characteristic function is uniform, which means x(g) = Ry, (g) for all .

Our first step towards understanding Ry, (g) is to show that f, satisfies a version of the recursive
Murnaghan—Nakayama rule (or MN-rule), see Theorem 4.8, This is a consequence of a fundamental
combinatorial result of Asai [A1], [A2] that relates the classical MN-rule for the irreducible characters
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of W and Lusztig’s Fourier transform, whose proof we give in Section If g € GF is a regular
semisimple element such that Cg(g) is a torus of type w then [x(g)| = |Ry, (9)| = [f(w)| and we
recover the MN-rule of Liitbeck—Malle [LiiMa, Thm. 3.3].

By working with uniform projections we may apply these results to non-unipotent characters,
and we do so to obtain bounds on |x(g)| whenever x is a quadratic unipotent character and the cycle
type of g € G¥' is a product of k > 1 pairwise distinct cycles (see §8|for precise definitions). In fact,
following an argument of Larsen—Shalev [LaSh| we obtain a bound on |x(g)| that depends only on
k, see Corollary in the quadratic unipotent case. Bounds for arbitrary characters, involving k
and n, are given in Corollary and Corollary

Now treating all characters y in involves a reduction to Levi subgroups using Deligne—
Lusztig induction. The characters that contribute to the sum the most have a heavily restricted
form. Our character bounds allow us to obtain sufficiently good bounds on the sum. Aside from
these immediate applications, we believe our character bounds for regular semisimple elements will
be useful in other situations as well.

2. COMBINATORICS

For any set X we will denote by Pow(X) the set of all subsets of X of finite cardinality. This is
naturally an Fa-vector space under symmetric difference, which we denote by A6 B = (AU B) —
(AN B) for any A, B € Pow(X). Moreover, it is equipped with a nondegenerate symmetric bilinear
form (—, —) : Pow(X) x Pow(X) — Z/27Z given by (A, B) = |AN B| (mod 2). If e € Z then we let
Pow.(X) = {A € Pow(X) | |A| = e (mod 2)}.

We set X®) = X x 2/2Z. If X C Y then X® C Y®). Elements of X(? will be identified with
their representatives in X x {0,1}. We denote by § : X(2) — Z/27Z the projection onto the second
factor.

Set N ={1,2,3,...} and Nyo = NU {0}. If A € Pow(Np) then we define the rank of A to be
p(A) =D pcaa— (“3‘). For each k € Ny we define a map (—)7* : Pow(Ngy) — Pow(Np) by setting
A7F =10,...,k—1}U{a+k | a € A}. This gives an equivalence relation ~ by setting A ~ B if
A= B> or B= A" for some k € Ny.

We denote by [A] the equivalence class containing A and B = Pow(Np)/~ the set of all equivalence
classes. These are called B-sets. The rank p([A]) = p(A) of [A] € B is well defined. If n € Ny then
B, C B denotes all §-sets of rank n.

2.1. Arrays. The elements of POW(Z(2)) will be called arrays. They will be identified with their
images under the natural bijection Pow(Z(?) — Pow(Z) x Pow(Z) given by X — (X°, X'), where
Xi={r€Z| (x,i) € X}. We say X" is the top row of X and X! the bottom row of X.

Following Lusztig [Lu], and modifying the notation of [W], we consider elements of P = POW(N((]2)) C
Pow(Z?). Recall the rank of X € P is defined to be

2 2
(2.1) k(X)= Y 204 Y ot - {<|X|2—1> J = (X0 4 p(XY) + Kdegx> J

20e X0 rleXx!

where def(A) = | X°| — | X| is the defect of A.

For d € Z we let P* C P be the set of arrays of defect d. We set P°d = Liez P21 and
Py = ez P2 50 that P = P°d LI PV, For n € Ny we let P, C P be the set of arrays of rank n.
We then set 752 =P, NP 753‘1 =P, NP°4 and 75,2" =P, NP,
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Each X € P gives rise to the following subsets of No: XY := X°uU X!, X" = X%n X1,

X=X X' Welet Sim(X)={Y € P|YY=X"and Y" = X"} be the similarity class of X.
All elements of Sim(X) have the same rank but different defects.

2.2. Fourier transform. We associate to each X € P an associated special array

(2:2) Xop = {(,0), (1) |y € X} U{(2, [ X[+ (XT,{0,....2})) [z € X7},
Note that if Y € Sim(X) then Yz, = Xgp. Moreover, if z € X© then we have
(2.3) (Xop, {2}) = | X + (X, {0,...,2}).

The defect def(Xgp) € {0,1} of this array satisfies def(Xg,) = |X©| (mod 2). Thus we have an
integer
s(X) = o(IXC[—def(Xsp))/2 ¢ .

We have a map f : P — Pow(Np) given by Y! = Y' o Y.L C Y©. This restricts to a bijection
#: Sim(X) — Pow(X®) for any X € P. With this we define a C-linear map R : C[P] — C[P] by

setting
5 1 tyt
RO =5 ¥ D)
Y eSim(X)
Here C[P] denotes the free C-module with basis P and (—,—) is the symmetric Fy-bilinear form
defined above. Up to scaling this is the Fourier transform of the abelian group Pow(X®©).

Remark 2.1. We briefly make a few comments regarding the conventions and definitions in [Lul.
If M = X'NX® and My = X, N X® then we have X* = M © My, which is denoted by M?* in [Lu,
§4.5, §4.6]. We have another set M() = Xgp NX® = X% — M. If | X®| is even then My and M| are
distinguished by the condition that > . 2 <> ¢ Mg T

This definite choice of My over M|, using X, is used in [Lul §4.18]. Moreover, our definition
of Xy, agrees with the convention in [Lu2, 17.2], that the smallest entry of X© occurs in the lower
row of Xg,. This is different to the definition of a distinguished symbol given in |GeMal, 4.4.3].

2.3. Hooks. Each (d,i) € Z® determines an injective function Dy; : Z? — Z2) given by
Dgi((x,7)) = (x —d,i+j). This induces a map Dy ; : Pow(Z?) — Pow(Z(?) that is Fa-linear. For
any X, H € Pow(Z®) we define

X ~giH=X06HOoDy;(H) € Pow(Z?).
We write this as X \ H when (d, ) is clear from the context or by X ~\4z; A = X ~\ A when H = {\}

is a singleton. For brevity we write the map Dy simply as (—)°P.
If X € P then the elements of the set
H(X) = {\ € X | Dgs(A) e NP — X}

are called the (d,i)-hooks of X. Elsewhere in the literature (d,0)-hooks and (d,1)-hooks, with
d > 0, are called d-hooks and d-cohooks respectively. Following [W] we define the leg parity of
A= (z,j) € H#y;(X) to be

lai(N X)) = ({0,...,2}, X7) + ({0,...,2 — d}, (X ~ai A)'H).

If d > 0 and ¢ = 0 then this has the same parity as the usual notion of the leg length of a hook.
This is also easily seen to agree with the definitions in [GeMal, 4.4.10].



CHARACTER BOUNDS AND THOMPSON’S CONJECTURE 5

Remark 2.2. The similarity relation can be rephrased in terms of (0, 1)-hooks. Specifically, we have
bijections 5 1(X) — X© and 7% 1(X) — Sim(X) given by H — HY = H® and H — X ~o1 H
respectively. Moreover, if Y = X ~¢ 1 H then we have YJ = X7 © H® for any j € {0,1}.

Recall that 6 : X — 7.)27 is the second projection map. For a pair (d,1) € 72 with d # 0,
and j € {0,1} we define a C-linear map ﬁﬁ“ : C[P] — C[P] by setting

7:[5“()() — Z (—1)70NHa:(AX) x i A
ey i (X)

for any X € P. Note that if Y = X \q; A, with A\ € 7;(X), then def(Y) = def(X) — 2i(—1)’™
so def(Y) = def(X) = | X®| (mod 2).

2.4. Symbols. The map (—)7* : Pow(Ng) — Pow(Ny) defined above, for k € Ny, extends to map
P — P given by (A, B)7*F = (A7* B7k). As before this yields an equivalence relation on P. We
denote by [X] the equivalence class containing X € P and S the set of equivalence classes. The
equivalence class [X] is called an (ordered) symbol.
Given A = (z,j) € Z® and k € Zlet \+ k= (z+k,j). If X € P and k € Ny then it is readily

checked that:

o Hai(X7F) = {A+k|Ne A (X)),

o )(_ﬂ€ Nd,i ()\ + k) = (X Nd,i )\)_>k

o LA+ k, X7F) =14,(), X).
Thus the maps R and 7:[21 preserve the kernel of the natural quotient map C[P] — C[S] and so

factor through endomorphisms of C[S] which we denote in the same way.
Recall that X € P is degenerate if X° = X'. We let

S={[X]| X ePand X" # X'} U{[X]+| X € P and X° = X1}

where [X] = {[X],[X°P]}. We take the rank and defect of [X] € S to be rk([X]) = rk(X) and
def([X]) = |def(X)|. We can then partition S with respect to the rank and defect as in Section [2.1]

3. MORE COMBINATORICS

3.1. A combinatorial result of Asai. We will now prove the following fundamental combinatorial
observation of Asai that relates the maps R and 7:[&1 This was first stated by Asai in [AIl Lem. 2.8.3]
and [A2l Lem. 1.5.3] where it is left as a “direct calculation”. However, as pointed out by Liibeck—
Malle [LiMal, §3.4] a sign is missing in the statement in [A1].

Waldspurger also states a version of this result [W), §2], where it is left as “un calcul fastidieux mais
élémentaire”, but the conventions of [W] are different leading to a different statement. Specifically
the analogue of our map 7@, denoted by F in [W], is not the same, as can be seen by evaluating it
on the similarity class {(0, {1,2}), ({1}, {2}), ({2}, {1}), ({1, 2}, )}.

Aside from being an important ingredient in our work here, Asai’s combinatorics form a core
basis for the block theory of finite reductive groups and solutions of Lusztig’s conjecture on almost
characters for classical groups. In this second application the correctness of signs is crucial. In light
of the importance of Asai’s statements, we provide some details regarding the proof.

We note that some of the main ideas of the proof have recently appeared in [M| Prop. 6], where
a weaker statement, leading essentially to Theorem is proved. Unfortunately there are several
errors in the proofs of [M] that are corrected by our arguments here.

Theorem 3.1 (Asai). For any 0 # d € 7Z we have the following equalities of linear endomorphisms

of C[P]:
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(i) ﬁg,o oR=Ro 7'22,07
(ii) 7:[&70 oR=-00oRo 7:[271,
where © : C[P] — C[P] is the C-linear map defined by ©(X) = (—1)3fX) x .

From now on 0 # d € Z and i € {0,1} are fixed. Given z € N we denote by 2°(X,x) the
set of pairs (H,\) with H C J%1(X), and A € Jo(X ~ H) is such that A = (x,j) for some
j € {0,1}. Correspondingly we denote by # (X, z) the set of pairs (u, G) where G C % 1(X), and
p € Hyi(X N Q) satisfies p = (z, j) for some j € {0,1}.

Given X € P we then have

1 G5 () (X (X H)) g o (A X~ H)
(31) Hd() Z Z @(—1) d,0 X~ H~N A
zeN (HN\)eZ (X,z)
and
1 : 1 ;

2 _1 <(X\;L) 1(X\.U‘\G) >+ld,z(“7X)X .
(3 ) Hdz Z Z S(X\M)( ) \/J’\G

zeN (u,G)e? (Az)
Before proving (i) of Theorem [3.1f we start with a lemma.

Lemma 3.2. Assume i =0 and (H,\) € Z(X,z) and (u,G) € ¥ (X, x) are two terms satisfying
one of the following:
() (1, G°) = (\, H®) and ({2 — d}, HE) =0,
(i) (1, G2) = (A0, HO & [,z — d}) and ({z, — d}, H®) = ({z, s — d}, X°) = 1.
Then we have
(_1)<Xﬁ,(X\H)ﬁ>+ld70(>\,X\H) — (_1)((X\H)u:(X\#\G)u>+ld,o(#7X)‘

Proof. Let Y = X No1 H, U = X ~go p, and V =U ~o,1 G. We have
(XFYE) 4+ (UF, VE) = | X+ U+ | X |+ (UG |+ (XF H) + (UF, GF)
because VI = Uf© G and Y = X#© H®. The sum of the first four terms is 0 because | X!| = |U!],
as p is a (d,0)-hook, and a straightforward check shows that [UJ,| = |X|. We thus have
(XEYE) 4+ (UF,VF) = (U H® © GO) + (Ug,, HY © GO) + (X' 0 U, HP) + (X, © Uy, HO).
As U = X% o {z,2 — d} and YN = XN o HO | it is straightforward to see that
ld70()‘>Y)+ld70(,U’7X) = ({0,,1‘}@{0, x_d} X(S @Xé(u)@He>

We have to show the sum of these two expressions is 0.
For any z € U® N X© it follows from Eq. (2.3)) that

UL & X5 {2)) = (U° 8 XO{0,...2}) = ({0.....a} & {0,....o —d}. {=})
because U® © X© = {x —d,z} so | X®| = |[U®| (mod 2). Thus for any subset Z C U° N X we get
<U1 6*Xvslpv >: <{O,,x}@{0,,x—d},Z>

Note that X! & U! is either § or {z,2 — d} depending on whether 6(z) = 0 or 1. Hence
the statement clearly follows if (i) holds. So assume (i) holds. As H® C X© we must have
H®N{z,z —d} = X° N {x,z — d}. We will assume this is {z} as the case where it is {x — d} is
identical. This means z — d ¢ X" because z —d ¢ X"

Clearly x ¢ U and x —d € U® so

(UL HE © GO+ (X o U, H®) = (U {z —d}) + (X', {z}) = 0.
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Now (U, HO & GO) + (X}, & UL, {2}) = (UL, {w — d}) + (XL, {a}) is the same as
Hz,x —d},{0,...,2 —d}) +(X®,{0,...,2} ©{0,...,2 — d}),
and the first term is equivalent to ({z},{0,...,2} ©{0,...,2 — d}). Adding this to
(Xop © Ugp, HO & {a})
gives the statement because H® & {z} C U® N X°. O

Proof of Theorem [3.1)(i). We can assume x € X" since otherwise 2 (X, z) and % (X, z) are empty,
and there is nothing to show. Similarly, this is the case if z —d € X". The proof divides into several
cases distinguished by the distribution of x — d and x amongst the rows of X.

Case 1: x € X® and x — d € X". We have a bijection 2'(X,x) — # (X, ) given by
(\, H) if HO N {z,z—d} =1
()‘Op’ Ho {)‘Opa Dd,O()‘OP)}) if HS N {[L‘, T — d} = {IL’}
such that X N H~\ X = X~ u~\G. Now (X \p)® = (X®—{z})u{z—d}, so we have s(X\,u) = s(X).
Hence, by Lemma |3.2] E the coefficients of X N~ H N~ A and X \ g\ G in Egs. and ( are the
same.

Case 2: z € X" and x — d ¢ X". We have a fixed-point free involution ' : (A, z) — # (A, )
given by (u, G)' = (u°P,G"), where G’ is defined by

{1:Dao(p®P)} i GON{z,2—d} =0

{1, Dao(pP)} it GZN{x,z —d} = {z}

{1, Dao(1)} if G°N{z,x —d} = {zr - d}
{uP, Dao(p)} i GZN{z,x —d} = {z,x —d}.

(H,A) = (1, G) = {

Goed =

This bijection satisfies
X\pNG =X p?\G and {{z,r —d},G°) = ({z,v — d},G'®)
because G° 6 G'® = {z,z—d}. Given e € {0,1} we let Z¢(A, z) be the set of pairs {(u, G), (1, G)'}
with ({z,z — d}, G®) = €, where bar indicates reduction (mod 2).
We claim the coefficients of V.= X ~ p~ G and V' = X ~ p° ~ G’ in Eq. (3.2) differ by
(=1){ze=dhG%) 1f 7 = X \ pand U’ = X ~ p°P then as in Lemmawe get that
(U, VE) + (U, V") = (UF, G%) + (U, G"°).
As G® 6 G'® = {x,z — d}, this term can be written as
(U {z,z — d}) + (UL o 1T, —d}) + (Utou", G + <U1 US/II),G9>
=1+(U°{0,...,2} 0{0,...,2 —d}) + {x,z — d},G°) +0
=(X°{0,...,2}©{0,...,x —d}) + {z,x — d},G®).
Finally, as in Lemma
lao(p, X) +1ao(u?, X) = ({0,..., 2} ©{0,...,z — d}, X7).

Therefore, given a pair {(i, G), (u°?,G")} € #1(X, ), the corresponding terms X ~\ p \ G and
X N p? NG in Eq. cancel. We have a bijection 2 (X,z) — #°(A,x) given by (H,\) —
{(A\ H),(X\,H)'} such that X ~ H~ A =X~ A~ H. Now s(X \ ) = 2s(X) because (X \ \)® =
X©U{x,z—d}, but the coefficients of X \ A\ H and X \ A°P \_ H' combine to yield the coefficient
of X N\ H ~\ X\ by Lemma 3.2
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Case 3: * € X© and z — d € X©. Identically to Case 2 we have a fixed-point free involution
" 2 (X, x) » Z(X,x) denoted by (H,\) = (H',\°P). This bijection satisfies

XNH NP =X\ H~Xand ({z,7 —d},H®) = ({z,r — d}, H®).

One can check that when the terms exist, the coefficients of X ~ H~ X and X ~ H'~\ \°P in Eq.
differ by (—1){ze=db XY - Given e € {0,1} we let 27¢(X, z) be the set of pairs {(H, \), (H,\)'}
with ({z,z — d}, H®) = e.

If z—d and z occur in the same row of X then we must have 2°%(X,z) = {0} and Z (X, z) = {0}.
Moreover, each pair in 21 (X, x) gives rise to terms in Eq. that cancel. If x —d and z occur in
opposite rows of X then we must have 2°1(X, x) = {#}. Moreover, we have a bijection % (X, z) —
Z (A, z) given by (1, G) — {(G, ), (G, 1)’} such that X \ p NG = X NG~ p=X G~ u.
In this case (X ~ p)® = X© —{z,z —d} so 2s(X ~ p) = s(X) but X N~ H~ X and X \ H' ~ \°P
have the same coefficient in Eq. . Thus, the coefficients of X ~ u~ G = X ~ G \ i agree by
Lemma

Case 4: v € X" and 2 —d € X®. As in Case 1, we have a bijection 2°(X,z) — # (X, z) given
by

i © _ —
() o (1, G) i {()\;H) if Heﬂ{x,x d} :(Z)
(AP Ho{\Dyo(N)}) f HSN{z,x —d} = {z —d}

such that X N\ H~ A= X\ u~\ G. Clearly (X \ p)® = (X® —{z —d}) U{x} so s(X \ p) = s(X).
Again, by Lemma the coefficients of X ~ H ~ A and X \ u~\ G in Egs. (3.1)) and (3.2) are the
same. g

We now consider the proof of (ii) of Theorem |3.1f The argument is exactly the same as (i),
proceeding through the same cases. The bijection in Case (ii) is defined identically simply replacing
Dy with Dg1. Instead of providing a direct analogue of Lemma @ we instead check directly
in each case that the signs of the corresponding coeflicients agree. As an example, we treat the
analogue of Case 1, leaving the remaining cases to the reader.

Proof of Theorem [3.1)(ii). Assume z € X® and z —d ¢ X”. We have a bijection 2 (X,z) —
% (X, x) given by

A\ H S {Dga(N)}) if HON{z,x —d} =0
(AP H & {XP}) it HON{z,z—d} = {2}

such that X ~\ H ~ A= X ~ o\ G. As in the proof of (i) of Theorem we need only check that
the sign of the coefficient of Y ~\ A in Eq. and (—1)"+9¢f(V) times the sign of the coefficient of
V =U G in Eq. agree, where Y = X \ H and U = X ~ u. We check this directly.
As p is a (d, 1)-hook, we have |[U!| = |X!| £ 1, so arguing as in the proof of Lemma [3.2] we see
that 1+ def(V) + (XF, V) + (U, V¥) is
def(V) + (U', H® © G®) + (Ug,, H® © G°) + (X' o U', H®) + (X, © Ug,, H®).
Moreover, this time l40(A,Y) + lg1 (@, X) is

Ho,...,2yeH{0,...,x —d}, XN & X°W 5 HO) + ({0,...,x — d}, X° & {z}).

We consider the two cases of the bijection above separately.
Suppose first that H® N {z,r —d} = 0. Clearly (X! © U', H®) = 0, and as H® C U°, we have

<Uslp @Xslp,H9> =({{0,...,x —d}e{0,...,2},H®) as in Lemma 3.2, Now

(Ugy, HPOG®) = (U, {a—d}) = |U®|+(U°,{0,...,z—d}) = def(V)+(X“O{x,x—d},{0,...,a—d})

sp?

(H\) = (1,G) = {
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because x ¢ U”. Summing the above terms it suffices to show that
(_1)6()\) _ (_1)1+(U1,H96G9) _ (_1)1+(U1,{x—d}>’

and this is straightforward.
Finally we assume that H® N {z,z — d} = {x}. This time H® & {z} C X® NU® so

Uy © X HE o {a}) = ({0,...,2 —d} ©{0,...,2}, H® © {z}).

Moreover, (X}, © U, {z}) = (XL, {z}) = def(V) + (X©,{0,...,z}) and (U', H® © G°) =

(Uslp, H® o G9> = 0 because H® © G° = {z} and = ¢ UY. As before it suffices to show that

(_1)6()\) _ (_1)1+(X1@U1,H9) _ (_1)1+(X16U1,{x}>7
and again this is straightforward. O

3.2. More symbols. We have a linear map [—] : C[P] — C[S] defined such that if X € P is
nondegenerate then [X] € S and if X is degenerate then [X] = [X]+ + [X]-. This clearly
factors through a map C[S] — C[S]. The image of [—] has a natural complement in C[S], namely
([X]+ — [X]- | X € P is degenerate)c.

We wish to understand to what extent the endomorphisms R and 7—15 ; of C[S] factor through
[—]. As the term arises frequently we let 7

d(X) = (def(X) — def(Xsp))/2 € No

for any X € P. We then define a C-linear map ¢ : C[S] — C[S] by setting e([X]) = (—1)3) [X].
The following easy observations are stated in [W), §2].

Lemma 3.3. For any (d,i) € Z and j € {0,1} we have the following equalities of linear endo-
morphisms of C[S]:

(i) Ro(— )Op—eoR

(i) ()PoR =Roe,

(i) (=) o Hj, = (~1)7Hj, 0 (=)°P,

(v) <o ()P =00 ()P oc.
Proof. (). If X € P then Sim(X) = Sim(X°P) = Sim(X)°. As (X°?)f = X©© X!, we see that the
coefficient of Y € Sim(A) in R(X°P) is (—1)<X97Y‘i> = (—1)<Xe’yl>+<Xe Xsp) times the corresponding
coefficient in R(X). Now,

— (1X© 1 e e 1 e
2d(X) = (X7 =2y n X7)) = (|X7] = 21X, N X))

=2(]X, N X% - [Y'nX7|).
(ii). This is similar to (i) using that (X* Y* o (Y°P)f) = (X* X°©).
(iii). It is straightforward to check that for any X € P, we have J#;,;(X°P) = J¢;,;(X)°? and

lai(N, X) = 1g,(A°P, X°P), which gives the statement.
(iv). As def(X°P) = —def(X), we have d(X°P) = d(X) — def(X). O
We define for each integer e € Z the set
P=={X eP|dX)=e (mod?2)}.

This gives a partition P = P=01 75?1 and partitions 750‘3 = Ppod0 l_|~75°d’1 and PV = PO | pevil,
Note that (—)°P swaps P°%0 and P°! but stabilises P¢V'0 and P*"'!. Thus we get a partition
S = 8V0 118! where SV contains all [X]+ with X € PV'0 degenerate.
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If X € P then we let Sim.(X) = Sim(X) N P=. Under the map s :~75 — Pow(Np), we have
X € P=¢ if and only if | X*| = e (mod 2). Now we define R, : C[P] — C[P] by setting

Re(X) == > () y

so that R = 7@0 —|—7~€1.

Lemma 3.4. For any X € P and e € Z we have:
(1) Re(XP) = (—1)Re(X),
(i) Re(X)P = (=1 IR ger(x) (X)
In particular, for any X € P=" we have [R.(X)] = 0.

Proof. This follows by prOJectlng (i) and (ii) of Lemma3.3Jonto each summand of the decomposition
C[P] = C[P=°] @ C[P=!]. Here we use that Sim, (X)) = Sime { ger(x)(X), which follows from the
above remarks. For the final statement note that (ii) shows that if X € P=! then [R.(X)] =
—[Retactx)(X)] = —[Re(X)]. .

By (i) of Lemma [3.4] we have R factors through [—] to give an endomorphism of its image. We
extend this to an endomorphism of C[S] by letting it fix pointwise the complement defined above
(in other words, Ro([X]+) = [X]= for all degenerate X € P). We also denote this by Rg. We
consider the subspaces C[S°4] and C[S®] separately. First let .o7°! = % °4 = C[S°4].

Note that Ro([X]) is simply the Fourier transform on the abelian group Powo(X®©). As such R3
is the identity on C[S°4]. To have a compatible notation we consider Ry as a map % °% — &7°% and
denote by Qp : & od _, gyod jtg inverse.

Assume (d, i) € Z?) with d # 0. Tt follows from Lemma that the restriction of the map 7:1271.
to C[SOd] factors through a well-defined endomorphism of % °d and .7°? which we denote by H?i,i'

Similarly ’;‘:[él o ¢ factors through an endomorphism which we denote by 7—[61” The following is now
simply a consequence of Theorem

Proposition 3.5. For any (d,i) € 73, with d # 0, we have commutative diagrams

%od Qo %od %od Ro 'Q{od
| Mio M| |0
Mod %od %od dod
Qo Ro
If X € P has even defect then Simg(X) = Simg(X)°P. As remarked in the proof of Lemma
we have (YP)! = Y* o X© so (X¥, (YOp)ﬁ> (X! V") for any Y € Simg(X). Thus if X € P is
nondegenerate then

RolXD = 5 X (DO

Y €Simo (X)

where Sim.(X) = {{Y,Y°P} | Y € Sim.(X)}. This is the Fourier transform on the abelian group
WO(XG) = POWO(XG)/{Q, Xe}.

If e € 27 is an even integer then we let &/®V¢ = % ¢ = C[S®""] C C[S®"]. The map Ry restricts
to an involution on the subspace C[S®VY]. As above we consider R as a map &/¢¥¢ — % ¢ with
inverse Qg : V¢ — F°V°.
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Let Pevnd € Pevi0 be the subset of nondegenerate arrays. For any odd integer e € 2Z + 1 we let
W °V¢ = C[S*1] and define the quotient space
Ve — (C[ﬁev,nd]/qX] + [Xop] | X e ﬁev,nd)c‘
By Lemma the map R. factors through a map &°¢ — %°¢ which we denote by R.. We
define a right inverse Q. : % V¢ — &/°¥¢ of this map by setting

QD=5 L (DM = T ()OI

Y €Simo (X) Y eSimo(X)

where ((—)) : C[P*¥4] — o7®¥€ is the natural quotient map.

It follows easily from Lemma|3.3|that the endomorphism 7—[3,0 of C[P*V1d] factors through a well
defined map 7—[20 : V€ — o/t for each e € Z. Similarly we have 7—[2 ; factors through a map
%ev,e — %ev,e—i-’i. ’

Proposition 3.6. For any (d,i) € 7@ with d # 0, and any e € Z we have commutative diagrams

gy ev.e Qe of &Vse /v Re gy ev.e
(0w, | Mo Ha |,
q/ev,e—i—i MeV,e-i-i %ev,e—l—i q/ev,e—l—i
e+1 Re+i

4. HYPEROCTAHEDRAL GROUPS

Assume (Z, <) is a finite totally ordered set of cardinality |Z| = 2n. Denote by T : Z — T the
unique order reversing bijection on Z. We say a € T is positive or negative if a > al or a < af
respectively. This gives a decomposition Z = Z LIZ~ into subsets of cardinality n. If O C Z is a
subset then (O, <) is also a totally ordered set.

Example 4.1. We could take T = {-n < --- < —1 < 1 < --- < n} then for any a € T we have
al =—asoZt={1,...,n} and T~ ={-1,...,—n}.

If &7 is the symmetric group on Z then we define Wz = Cg_(0) to be the centraliser of the
involution o = [[,c7+ (a, a'). Let 67 : &7 — Z/27 be the unique non-trivial homomorphism. Given
e € {0,1} we let W& = {w € Wz | 67(w) = e} so that we have a decomposition Wz = W2L W1 into
the cosets of WIO <1 W7z. Note we have a semidirect product decomposition Wz = N7 x Hz where
Nz = {(a,a’) |a€ZI*) and Hr = {w € W7 | YIT =11} = &..

For any o-stable subset O C Z, equivalently © = O, we have a natural injective homomorphism
Wo — Wz whose image is the pointwise stabiliser of Z \. 0. We identify Wy with its image in W7z.

We say w € Wt is an Z-cycle if the subgroup (w, o) < Wz acts transitively on Z. Thus w = nh,
with n € Nz and h € Hz acting on Z* as cycle of length n. The following is an elementary
calculation.

Lemma 4.2. If w € Wz is an I-cycle then Cy,(w) = (w) if dz(w) = 1 and Cy,(w) = (w) x (o)
if 0z(w) = 0. In either case |Cy,(w)| = |Z| = 2n.

Now suppose w € Wz and Z/(w,0) = {O1,...,0}. Then we can write w = w;---wy as a
pairwise commuting product with w; € Wp, an O;-cycle. Such a decomposition, which we call a
cycle decomposition, is unique up to reordering. We call k > 1 the cycle length.

There is a unique ordering of the orbits such that (—1)%1(“D|OF| > ... > (=1)%0x (W) |0} |. With
this ordering we call ((—=1)%:1 1) |OF|,.. ., (—1)5Ok(w’<)|(’)m) the signed cycle type of the element.
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It determines the conjugacy class Cly, (w) uniquely. If these inequalities are all strict then we say
w has pairwise distinct cycles.

Lemma 4.3. Let w € Wz be as above and let T = Z1 U- - -UZ,, be a decomposition into o-stable sets
such that P = Wz, --- Wz, < Wz contains w. If w has pairwise distinct cycles then the following
hold:

(i) Cwy(w) = Cwy, (w1) -+ Cwp, (W),
(i) [Cy(w)] < 27 - nF,
(iii) Cp(w) = Cw(w)
Proof. Part (i) is given by the uniqueness of the cycle decomposition. Part (ii) follows from (i) and

Lemma Part (iii) follows from (i) because (w, o) stabilises each Z;, so they must be a union of
the O;. O

Recall from Section 2 that we have define the (-sets B,. After [GPl §6.4.1] we have a bijection
B,, — Irr(&7+) which we denote by [A] — X[4]- Under the natural isomorphism &7+ = Hz+ we get
a bijection B,, — Irr(H7).

If § € {0, 1} then this yields a bijection S,i — Irr(Wz), denoted by [X] = p[x1, defined as follows.
First note that for any [X] € S5 we have rk([X°]) + 1k([X']) = n by Eq. . Now choose a
o-stable partition Z = Ty U Z; such that |Z;| = 2 - rk(X7) with j € {0,1} (note these subsets may
be empty). We then have

PIx] = Indwiowzl (Xxo) X (62, Xx1))
where Y[y, is the inflation of x[x; € Irr(Hz;) under the map Wz, — Hz,. These characters satisfy
the following MN-rule (or Murnaghan—-Nakayama rule).

Proposition 4.4. Let O € Z/{w,Nz) be an orbit for some element w € Wr. Then we have a
unique decomposition w = wiwy = wewy with wy € Wo and wy € Wno. If (d,j) = (|OF],do(w1))
then for any [X] € 83, with § € {0,1}, we have
pix)(w) = Z (—1)j5(/\)+ld’°(/\’X)P[X\A] (wa),
AEHG0(X)

Proof. We refer the reader to [GP, Thm. 10.3.1]. For the correspondence between hooks of partitions
and hooks of S-sets see [O] §1.1]. O

In [LaSh, Theorem 7.2], a bound is given for the character values of the symmetric group at a
given element in terms of its cycle length. The argument in [LaSh] is a consequence of the MN-rule
together with analogues of the following easy observations.

Lemma 4.5. Let X € P be an array with an (e, j)-hook A\ € 7, j(X) for some (e, j) € N(()Q). Then
for any (d,i) € NéQ) we have

Hi(X) C Hai(X Nej A) U{N De—gitj (M)}
Proof. Let p € H3,(X) so Dgi(p) € NgZ). If o # X then p €Y := X \; A, and if 4 is not a
(d,i)-hook of Y then clearly Dy (1) € Y — X = {D,;(\)}. O
Lemma 4.6. If (n,i) € NéQ) then X € P, has at most one (n, i)-hook.

Proof. Suppose X € 7, ;(X) is such a hook. Then X ~,,; A is of rank 0 and so has no hooks. Hence,
by the previous lemma the only possible (n,i)-hooks are A\ and \°P. But it is easily seen that if A\°P
were a hook of X then it would also be one of X ~,,; A, which is impossible. O



CHARACTER BOUNDS AND THOMPSON’S CONJECTURE 13

Theorem 4.7. Fiz an integer 1 < k < n. Then for each element w € Wz of cycle length k and
each irreducible character x € Irr(Wz) we have

()] < 21 kL.
Moreover, if w € WY then for all x € Irr(W2) we have |x(w)| < (2F + 1) - 281 . kI < 2% . kI,

Proof. Let x = ppx) with [X] € 5’% We argue by induction on k. Suppose k = 1. If x(w) # 0
then by Proposition [X] has an (n, 0)-hook, but by Lemma [4.6] there is at most one such hook,
so [x(w)| < 1. So assume k > 1. We have Z/(w,o) = {O1,...,0} and we set d; = |O;| for any
1 <i< k. Wealso let w = wjwy with w; € Wp, and wy € Wz o,

Clearly we may assume that y(w) # 0. By Proposition and the induction hypothesis we see
that

@< S0 lopen(wa)] < [ o(X)] - 22 (k= 1!
AeHG, 0(X)

So it suffices to show that |77, o(X)| < 2k.

Repeatedly applying Proposition we see that there exist arrays X = Xg, X1,..., X, € P
such that for 1 < ¢ < k we have X; = X;_1 \g, 0 A; for some hook \; € 75, o(Xi—1). As

rk(Xi) = rk(Xg) — (d1 + -+ dz‘),

we have rk(Xy) = 0, so 73, o(Xy) = 0. By Lemma [4.5] we have |75, o(X;)| < [#5, 0(Xi1)| + 2,
which yields the desired bound.

Now assume y € Irr(W2). If x extends to Wz then we are done so assume this is not the case.

Then x = Resgé (px]) for some degenerate symbol [X] € SY and is the sum x4 + y_ of two distinct

irreducible characters. Clearly x+(w) = 1(x(w) + A(w)) where A = x4 — x— is the difference

character.

If A(w) = 0 then we are done, so we may assume that A(w) # 0. A result of Stembridge [S|
Theorem 7.5] shows that, in this case, |A(w)| = 2k|X[A] (w)| for some character x4 € Irr(&z+) and
some element = € &7+ which is a product of k disjoint cycles. Hence, by [LaShl, Theorem 7.2], we
have |A(w)| < 22%~1 . k!, which easily gives the bound. O

For an ordered symbol [X] € S, of rank n we define a corresponding class function

Sx) = s(i() Do () € Class(wy).
YeSim(X)
def(Y)=def (Ysp)
Note that {Y € Sim(X) | def(Y) = def(Ys,)} € Simg(X) so this is essentially the projection of
the Fourier transform Ro(X) onto the subspace Q[S?], where § = def(Xy,). Somewhat remarkably
these functions also satisfy a version of the MN-rule, which is the main point of Theorem [3.1

Theorem 4.8. Let O € Z/{w, N7) be an orbit for some element w € Wz. Then we have a unique
decomposition w = wiwy = wowy with w1 € Wo and wa € Wpo. If (d,j) = (|OF],d0(w1)) then
for any [X] € S, we have
Bix)(w) = (=1 )R (s X g (wo).
A, ;(X)
Proof. By Proposition [£.4 we have

1 .
Prx)(w) = s(X) Z Z (_1)j6(k)+<Xﬁ’YﬁHld’O()"X)P[Y\A] (w2).

YeSim(X) AeAo(Y)
def(Y)=def(Xsp)
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Let § = def(Xg,) € {0,1}. Under the isomorphism Q[Irr(Wz.0)] — Q[S?_,] defined above the
right hand side is identified with an expression in Q[S]. o
Under the decomposition Q[S] = @, Q[S] this is the projection of HQO(R([X])) onto the
subspace Q[S?]. If def(X) is odd then by Theorem 3.1 we have ﬁéo(ﬁ([X])) = ﬁ(ﬂgj([X])) and
projecting the right hand side of this onto Q[S?] gives us that
] (w) = Z s(Xl\)\) Z (_1)<(X\)\)’i7Y’j)+ld,j()\,X)p[Y] (ws)

Ay 5(X) YeSim(X\A)
def (Y)=def(Yp)

= > (=DM (wa).
AeHy,5(X)
If def(X) is even then the same holds. but we must multiply through by (—1). O

Theorem 4.9. Fiz an integer 1 < k < n. Then for each element w € Wz of cycle length k and
each symbol [X] € S,, of rank n, we have

[pry(w)] < 2671 - kL.
Proof. The proof is identical to that of Theorem O

We now associate functions to unordered symbols as follows. If [X] € S has odd defect then
we simply let ¢px] = ¢px) € Class(Wz). Now fix e € {0,1}. Then for any [X] € S5, we let

1
s(X)

_ 1% _ (XY W e
¢px) = Resy 2 (d1x)) = > (-1 Resy < (ppy)) € Class(Wz).

Y €Sim(X)
def(Y)=0
Note that ReSVVI‘% (ppyer]) = (—1)° Res%% (pry]) so these functions are nonzero.

Remark 4.10. With some additional justifications, the statement in Theorem may now equally
be seen to hold for the class functions ¢pxj. If [X] has odd defect then the same statement holds
verbatim.

Assume now in the statement of Theorem that 0(w) = e, so that w € W¢. Then it makes

sense to consider ¢pyp(w) for any [X] € S,"°. Clearly wy € Wet | and if A € #;(X) then

[X ~A] € 8“1 5o the term ¢[x-](w2) makes sense. Hence, restricting the symbols to Sev2e,
the statement in Theorem (4.8 continues to hold.

5. LUSZTIG SERIES

In the next few sections we consider a general connected reductive group G defined over F = F,
with Frobenius endomorphism F': G — G. We will follow the setup in [Lu], see also the exposition
in [GeMa, Chap. 2]. This setting, whilst a little less frequently used, is more convenient as we
wish to discuss character values of Deligne-Lusztig characters. In this section we just outline some
notation.

Let T < B < G be a fixed F-stable maximal torus and Borel subgroup of G. Let X = X(T) =
Hom(T, G,,), which we view as a Z-module. For any ¢ : T — T a morphism of algebraic groups
we denote by ¢* : X — X the map given by ¢*(x) = x o ¢ for all y € X.

For each w € W := Ng(T)/T we fix an element n,, € Ng(T) such that w = n,T. Let
g+ G — G, with g € G, be the inner automorphism given by t4(z) = grg~!. Then Fw = Fu,,
and wF := ,, I are also Frobenius endomorphisms of G stabilising T. We write w* instead of
(tn,|T)* and for brevity we let “X\ = w*~1()) for all w € W and X € X.
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If Zy) is the localisation of Z at the prime ideal (p) C Z containing p then V = Z,) ®z X is a
free Z,)-module of finite rank. We will identify X with its image in V' under the canonical map
x +— 1 ® x and similarly any homomorphism v : X — X is identified with 1®~y:V — V.

The quotient V/X is a torsion Z-module. Given A € V and w € W we let A\, = F*A —"A € V.
For any z € W a straightforward calculation shows that

(5.1) Fﬁl(z))\w = (Z)\)Ffl(z)wz—l.
We consider the set Zy (M F) ={w e W | A\, € X} ={w e W | FFA ="\ € X}. This is either
empty or a coset wW (A) of the group W(A\) ={z e W | A—="\ € X}. If Z& C X is the submodule
generated by the roots then we define W°(\) to be the kernel of the homomorphism W(\) — X/Z®
given by w +— A — A 4+ Z®; see [DM), Lem. 11.2.1].

Denote by Cy (X, F) (resp. Dy (X, F)) the set of all pairs (A, w) (resp. (A, a)) with A € V and
w € Zyw (N, F) (resp. a =wW°(X) C Zw (A, F)). Here A denotes the image of X in V/X. By (5.1),
we have a natural action of W on Cy (X, F') via

z-(M\w) = (N F Y z)wz™)

and a similar action on Dy (X, F) as W(*A) = *W () for any z € W and A € V.
We now fix an injective homomorphism & : FX — C*. As T%F is a p/-group, we have a bijection
X(T*F) = Irr(T%F) given by x + ko x. Given a pair (\,w) € Cw (X, F) we set

Awr = K0 (Ap|pur) € Trr(TVF).
The following is straightforward; see [Lul, Lem. 6.2] and [GeMal Lem. 2.4.8].

Lemma 5.1. Fiz w € W and let V(w) = {\ € V | Ay € X}. Then the map V(w) — Irr(T®F)
defined by \ — Ay is a surjective Z-module homomorphism with kernel X C V(w).

Given w € W and 0 € Trr(T*F) we denote by RS (6) the virtual character of GF' defined in [DI],
Def. 1.9]. As usual we extend this by linearity to a map on all class functions. Moreover, for any
(A w) € Cw (X, F) we set RG(A) := RS (\,r). We then define for any pair (\,a) € Dy (X, F) the
set

E(GF N\ a) = {p e Iir(GF) | (RE(N), p) # 0 for some w € a}.
This is a rational Lusztig series of GI contained in the geometric series
E(GE N) = {p e rr(GF) | (RE(N), p) # 0 for some w € Zy (), F)}

indexed by A € V. We have (G, \,a) = £(GT, 1, b) if and only if (\,a) and (i, b) are in the same
W-orbit.

Suppose now that ¢ : G — G is a regular embedding. Then T = T-Z(G) is an F-stable maximal
torus of G and if we let X = X (’i‘) then we have a surjective Z-module homomorphism ¢* : X — X
given by ¢*(x) = x o ¢t. Note this maps the roots of G in X bijectively onto the roots of G in X.
Through ¢ we identify W with the Weyl group Né(’i‘) /T of G.

Lemma 5.2. For any () a) € Dy (X, F) we have W(X) = W°(X) = W°(\) and
E(GT N\ a) = {p e Irr(GF) | (p,Resgi(ﬁ» #£0 for some p € E(GF, X, a)}
where A = 1*(N).
Proof. By the above remark we have A — “\ € Z® if and only if A — ¥\ = /*(A — “\) € Z® which

shows that W°(A) = W°(A). From the proof of [DM| Lem. 11.2.1] we see that the image of the map

W(X) = X /Z® has p/-order but as Z(G) is connected the quotient X /Z® has trivial p’-torsion so

W(A) = W°(X). The second statement is [Bl, Prop. 11.7]. O
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6. A CHARACTER BOUND FROM THE MACKEY FORMULA

We denote by W:F the semidirect product of W with the group (F) < Aut(W) such that
FwF~! = F(w) for all w € W. The unique coset WF C W:F of W containing F is a W-set under
conjugation and for w € W we write Cy (wF’) for the stabiliser of wF under this action.

For each w € W we choose an element g, € G such that g, F(g,) = ny € Ng(T). As usual the
map wF — T, := 9T yields a bijection between the orbits of W acting on W F and the G-classes
of F-stable maximal tori. Note that ¢ ~ 9v¢ gives an isomorphism T%! — TE.

Remark 6.1. For § € Irr(TE) we have a Deligne-Lusztig character R%w (0) defined as in [DL, 1.20]
which satisfies R%w (0) = RG (9= 10). We will implicitly use this equality in what follows.

We have an action of Cy (wF) on Irr(T%F) by setting ?0 = @ o ¢, for any z € Cy (wF) and
6 € Irr(T*F). We denote by Cy(wF,0) < Cy (wF) the stabiliser of § € Irr(T*F). Now for any
(A, w) € Cw (X, F) and z € W it follows from (5.1)) that *(Ayr) = (F(2)*7!A),,ps—1. Therefore,
(6.1) F(Cw(wF, /\wF)) = CW()\) (Fw),

where the latter stabiliser is calculated with respect to the action of W(A) on FZy (A, F).

A regular semisimple element g € G is said to be of type wF € WF if Cglg) is G!-conjugate
to Ty. Of course, the type is only determined up to W-conjugacy. Moreover, an element g of type
wF is then Gf-conjugate to an element of the form 9+t with t € T®F.

As in [DM], if H is a finite group then we denote by 7l € Class(H) the function taking the
value |Cg(h)| on Clg(h) and the value 0 on H — Clg(h). For any f € Class(H) we then have
(f,mH)y = f(h). We also write [g, h] = g~ 'h~tgh for the commutator of g,h € H.

Theorem 6.2. Assume g € G is a regular semisimple element of type wF. Fiz a pair (\,a) €
Dw (X, F) and let

Xyp(\a) :={z e W ||z, Fwlw ta = W°(\)}.
If x € E(GF )\ a) and x € a then

1
Ix(9)] < > (ICw (Fw)|/|Cw ) (Fw)|2) < [W] - |Cw (Fw)
2€Cw (Fw)\ Xy (Na)/Cw (Fz,\)

Proof. Assumet € T*%F is such that 9t € Clgr(g). By [DL, Prop. 9.18], see also [DM, Prop. 10.3.6],

we have 7TgGF = RG(xI"") = Zeelrr(TwF)G(t_l)RS(G). For any § € Irr(T%F) we have by the

Mackey formula for tori, see [DL, Thm. 6.8] or [DM| Cor. 9.3.1], that
Y. (GREO)? = (R7(0),RE(9)) = |Cw (wF.0)].
xelrr(GF)
Applying this to (x, 7rgGF) we get
1
(6.2) X@I< > IGRGONI< > [Cw(wF0).
Oelrr(TwF) O€lrr(TwE)

Let V(w) be as in Lemmaso that V(w)/X = Irr(T*F). If p € V(w) is such that (x, RS (1)) #
0 then we must have (u, wW*®(u)) and (A, a) are in the same W-orbit by the disjointness of Lusztig
series. This happens if and only if there exists a z € W such that y —*X € X and

Fl(2)az™! = wW°(p) = wzW°(N\)zL.

This last condition is equivalent to z € Xy, (A, a).
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If 2z € Xy(\a) and v € Cy(Fx,\) then one checks easily that zv € X, (), a), and clearly
X = #X. Hence, the sum in can be taken over X, (X, a)/Cw(Fz,\) with 6 replaced by
(*A)wr- The group Cy (Fw) = F(Cw (wF)) acts on X, (A, a) by left multiplication, and the term
in the sum is constant on orbits. Hence, we can sum as in the statement once we multiply through

by the size of the orbit |Cy (Fw)/Cyy (=5 (Fw)|. We now cancel terms using (6.1)). O

Remark 6.3. The above follows the same argument as [GM, Thm. 5.4] where one finds the bound
|Cw (Fw)|. The above yields this bound when the sum contains only one term. However, this does
not hold in general so this should be corrected as above. In the extreme cases where W (\) = W or
We(A) = {1} then this does give the bound |Cyy (Fw)|.

7. FURTHER BOUNDS FROM DELIGNE-LUSZTIG CHARACTERS

The following result giving the value of a Deligne-Lusztig character at a regular semisimple
element is well known. We simply translate this into the setup we utilise herel see [Gel Prop. 4.5.8]
for an equivalent formulation.

Proposition 7.1. Assume g € GF' is a reqular semisimple element of type wF and let t € TF be
such that 9vt € Clgr(g). Then for any (x,\) € Cw (X, F) we have

RE(N)(9) = > ICw((Fw)lpwr (t) = |Cyy(Fa)] > CXNwp(t).
peV(w)/X 2€W/Cy(x) (F)
(p,@) EClyy (A,w) Fw=zFxz~!

In particular, we have |[RS(\)(g)| < |Cw (Fw)]|.

Proof. As noted in the proof of Theorem [6.2| we simply have to calculate (RS (\), RS (xF"")). The
statement now follows immediately from the inner product formula for Deligne-Lusztig characters
and the identification V (w)/X = Irr(TvF). O

To make invoking Lusztig’s classification results for the irreducible characters of G simpler it will
be beneficial to assume that Z(G) is connected. As usual we invoke a regular embedding to achieve
this. We note that for our purposes we do not need the significantly more difficult multiplicity
freeness results obtained by Lusztig.

Lemma 7.2. Assume G — G is a reqular embedding and let x € Irr(GF) be an irreducible

constituent of Resgi(f() for some X € Irr(GF). Then for any semisimple element g € GF we
have

x(9)] <IG"/GY|7Mx(9)] < [X(9)];
where G§ is the stabiliser of x in G
Proof. Let T < G be an F-stable maximal torus and 6 € Irr(TF). We then have T = T-Z(G) is an

F-stable maximal torus of G. Let 6 € Irr(T) be an irreducible character such that Res$§ (6) = 6.
By [B, Prop. 10.10] we have Resgi (Rg(é)) = RS (0). Therefore, by Frobenius reciprocity,

(x, R§(0)) = (ndSr (x), RS (9)).

This shows that for any ¢ € G¥ we have ¢y € Irr(GF) and x have the same uniform projection. As

7TgGF is a uniform function this means that x(g) = (x, F§F> = (°x, W§F> = “x(g). Now by Clifford’s

Theorem we have .
Reng(X) =e Z X
CEGF/G§
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for some integer e > 1. Hence x(g) = e[GF/Gflx(g) giving the bound. O

Fix a pair (A\,a) € Dy (X, F). For a class function f € Class(Fa) on the coset of W°(\) we
define a corresponding class function

(11) RN = i o/ FDREW).

rea

of G, Clearly this is contained in the subspace of all C-class functions Class(Gf', A\, a) spanned
by the Lusztig series £(G', \,a). In fact, Rga gives an isomorphism Class(Fa) — Classo(G', \, a)
onto the subspace spanned by {RS(\) | # € a}; see the arguments in [DM, §11.6].

Suppose we choose a representative a = wW°(\) of the coset. We may then form the semidirect
product W°(A): Fw by the group (Fw) < Aut(W°(\)) as above. The coset of W°(A) in W°(\): Fw
containing Fw can be identified, W°(\)-equivariantly, with the same coset in W: F'.

We denote by Irr(Fw.W*°(A)) the set of restrictions Res}/;vo(’\):Fw(é), where ¢ € Trr(W°(\): Fw)

a
restricts irreducibly to W°(\). These functions on the coset Fla depend on our choice of represen-
tative w, so we include a period to indicate this choice. There is, however, a natural choice w, € a

which is the element of minimal length (determined by our choice of Borel subgroup B).

Lemma 7.3. Assume g € G is a reqular semisimple element of type wF. For any irreducible
character ¢ € Irr(Fx.W°()N)), with x € a, we have

RS, (6)(9)] < |Cw (Fw)|
Proof. By Proposition [7.1] we have

1
RE(@)0)] < [Cw(Fu)l | a3 lo(Fa) |
(Wl o
yeW?e(A)
but by [I, Lem. 8.14(c)], the sum on the right hand side is equal to 1. O

Lemma 7.4. Assume g € G is a reqular semisimple element of type wF. Then for any class
function f € Class(Fa) we have

¢ [(Fa) - RS(A\)(g)
R)\,a(f) (g) - Z ’CWO o) (F[B)‘ :
z€Cw (Fw)\W/W°(X)
Fr=z"'FwzeFa

Proof. By Proposition we may restrict the sum over x € a, found in the definition of Rg\;a( )
to those elements satisfying Fz € Cly (Fw). Alternatively, via the bijection Cy (Fw)\W —
Clw (Fw), given by Cy (Fw)z + 2z~ Fwz, we can sum over all cosets Cy (Fw)z € Cy (Fw)\W
such that 2~! Fwz € Fa. Grouping together elements in the same W°(\)-orbit and bringing [W°(\)|
into the sum gives the statement. O

Observe that, if W°(\) = W and w € a then Rfa(f)(g) = f(Fw)\yr(t), see [LM, Prop. 3.3].
Together with Theorem [£.9] this implies

Corollary 7.5. Suppose G is a simple classical group. If g € G is a reqular semisimple element
of cycle length k and x € Irr(GF) is a unipotent character, then |x(g)| < 281 -kl

Now suppose [G, G] is quasisimple of type A,_;. In this case we have W is isomorphic to &,,
and F' induces an inner automorphism on W, which is either trivial or conjugation by the longest
element. Hence, the coset W F' can be identified with W so it makes sense to speak of the cycle
type of an element of W F'.
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Corollary 7.6. Assume all the quasi-simple components of G are of type A. If g € G is a reqular
semisimple element of type wF then

Ix(9)] < |Cw (Fw)|

for any x € Irr(GF). Moreover, suppose |G, G| is quasisimple of type A,_1 with n > 2. If wF has
cycle length k > 1 then |x(g)| < k!'-nF for any x € Trr(GF).

Proof. By Lemma we can assume that Z(G) is connected. In that case every irreducible
character is, up to sign, of the form R (¢) with ¢ € Irr(Fw.W(\)) so this is just Lemma

For the final statement we need only show that |Cg, (w)| < k!-n*. If all cycles have the same
length, say m > 1, then Cg, (w) = Cyp, 1 &}, 50 |Cg,, (w)| = k! - mF. Now an arbitrary w may be
written as a pairwise commuting product w = wy - - - w, such that for each 1 < 7 < r we have w; is a
product of k; > 1 disjoint cycles of length m; > 1 and the lengths my, ..., m, are pairwise distinct.

We then have
CGn (w) = Cleml (wl) X X CGkrmT (wr)’
and by the previous calculation

ICe, (w)| = (k! - mi) - (k- mbr) <Rkt the — gropk, O

For the next statement we wish to define an integer (W, F') > 0 as follows. Let S C W be the
set of Coxeter generators determined by our choice of Borel B. Write W = Wy --- W, as a direct
product of its irreducible components, all of which are assumed to be of type A through D. We
then have a corresponding decomposition S = S; LI --- U S,,. The Frobenius F' permutes the W;.
Suppose first that it does so transitively. Then we define

T(W,F>—{

Here we consider the trivial group as being of type Ag.

Now grouping together the W; we can write W = WO ... W) where each W is an F-stable
subgroup such that F' permutes transitively its irreducible components. Hence, we are in the
previous situation and we define (W, F) = r(WO, F) 4 ... + 7(W™ F),

0 if W7 is of type A, with n > 0,
IS1| otherwise.

Theorem 7.7. Assume g € G is a reqular semisimple element of type wF and every quasisimple
component of G is of classical type A to D. If F is a Frobenius endomorphism then for any irreducible
character x € (G, \,a) we have

X(9)] < 2" - |Cw (Fu)]

where wq € a 1s the unique element of minimal length and r = r(W°(X), Fw,) is defined as above.

Proof. Again, by Lemma we can assume Z(G) is connected. By Lemma this implies that
W(A) = W°(A) and a = Zyw (), F) so E(GF,\,a) = E(GF, \). Recall that in [Lu, Chp. 4] Lusztig
has defined a partition of Irr(W()\)) into families.

Denote by w, € a = Zw(\ F) the unique element of minimal length. The automorphism
v := Fw, of W(\) permutes the families. Suppose F C Irr(IW (X)) is a v-stable family. For each
~-fixed character ¢ € F7 we fix an extension ¢ € Irr(W(A):7) that is realisable over Q.

Suppose F C Irr(W (X)) is y-stable and let

E(GE N F) ={x eir(GF) | (X,R)C\"'a(gz;» # 0 for some ¢ € F7}.

These sets partition £(G!", \); see [Lul, Thm. 6.17]. Associated to F we have a corresponding finite
group Gr.
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As all factors are of classical type, we have Gr is a (possibly trivial) elementary abelian 2-group.
We also have two sets M(Gr,~) and M(Gr,v) and a pairing

{—, =} : M(Gr,7) x M(GF,v) — C.

From the formula for this pairing, we see that
{z, 2} = |G

for any 7 € M(Gr,v) and z € M(Gr,7) o
By [Lul Thm. 4.23], we have a bijection S(GF, A, F) = M(Gr,v), which we denote by x — xy,
and an injection F¥ — M(Gr,~), denoted by ¢ — x pe This latter map depends on our choice of

extension. Now, by [La1, 4.26.1], if x € £(GF, \, F) then
x(g9) ==+ Z {‘T:X?x(Z)}RAG,a((Z))(g)

PEFT

The group of roots of unity acts on M(G,~), and the number of orbits is the same as |M(Gr,v)| =
Gr|. It follows from [Lul 4.21.6] that |F7| < |Gz|?. We now use Lemma [7.3] O

We assume F' is a Frobenius endomorphism. If [G,G] is quasisimple of type B,, or C, then
W = W7z is a hyperoctahedral group, and F' induces the identity on W. If [G, G] is quasisimple of
type D, then W = Wg and either F, F2, or F induces the identity on . When F? induces the
identity on W, we have an embedding W: F — Wz. Thus, it makes sense to speak of the cycles of
an element of the coset WE'. The following is now just a simple application of Lemma [£.3]

Corollary 7.8. Assume |G, G| is quasisimple of type B,, (n >2), C,, (n>2), or D,, (n >4), and
F is a Frobenius endomorphism with F? inducing the identity on W. If wF € WF has cycle length
k > 1 and pairwise distinct cycles, then for any reqular semisimple element g € GF' of type wF we
have

x(g)] < 2"F -t

for all x € Trr(GF).

8. QUADRATIC UNIPOTENT CHARACTERS

Recall that a bound for the values of unipotent characters at regular semisimple elements was
obtained in Corollary In this section, we establish a bound for the more general class of
quadratic unipotent characters. Consider a connected reductive group G whose center Z(QG) is
connected, of dimension 1, and whose derived subgroup Gge; = [G, G] < G is a symplectic or special
orthogonal group. We specify G by its root datum (X, ®, X, EI/J) Firstly we have X = @', Ze;
and X = @}, Zé; with perfect pairing (—, —) : X x X — Z given by (e;, €j) = d;j (the Kronecker
delta). We assume n > 2.

A set of simple roots ag,...,a, and corresponding coroots &1, ..., &, are as follows. We have
(a1, &1) is one of the pairs (—eq, —2¢7), (eg—2e1, —€1), or (eg—e1 —eg, —€1 —€3). Then for 2 <i < n
we let a; = ¢;_1 — ¢; and &; = &;_1 — &;. The choices correspond to whether G is of type B,, C,,
or D,, respectively.

One easily calculates that ({a;, &;)) is a Cartan matrix and X/Z® = 7Z is generated by ey + Z®.
Let Xger = X/(Zep) and )v(der =@, &. Denote by ~ : X — Xge, the natural quotient map. We
then have (Xger, @, )V(der, 5)) is the root datum of Gge,.

Fix a prime power ¢ = p®. We describe F' by defining F'* as an endomorphism of X. For any
0 < i < n with ¢ # 1 we have F*e; = qe;. We then have F*e; is either ge; or g(eg — e1) with this
latter case occurring only when G is of type 2D, (q).
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If Vier = Zp) ®z Xqer then we have Vier = @) Z,)& and V = @Y Z,e;. The natural
quotient map X — Xger extends to a surjective Z,)-module homomorphism "1V = Vier. Given
A €V we have W(A) = W°()\) = W°()) and if x € £(GF, )\, a) then all irreducible constituents of
X are contained in £ (Gder,x, a), see Lemma

Consider the totally ordered set Z = {—¢,, < -+ < —¢; < €] < --- < €,}. Letting F' act on X
via ¢ ' F* we get an action of W:F on Xg. that gives an injective homomorphism W:F — &r.
We implicitly identify W:F, hence also W, with its image which is contained in W7z. Via this
identification we can speak of the signed cycle type of any element of W: F.

Theorem 8.1. Let (\,a) € Dw(X,F) be such that 2\ € Xger and let g € G be a regular
semisimple element of type wF. If wE has cycle length k > 1 and pairwise distinct cycles then

x(9)] < 2%+ k!
for any irreducible character x € E(GF |\, a).

Proof. Recall that we have an isomorphism Rga : Class(Fa) — Classo(G', \,a). Thus, if pr :
Class(GF) — Class(GT) is the projection onto the subspace of uniform functions then there exists
a unique class function f, € Class(Fa) such that Rf\}a( fx) = pr(x)-

Now pr(x) and x have the same value at g, so it suffices to bound the value of Rfa(fx) at g. By
Proposition [7.I] and Lemma [7.4] we have

RGOl Y Ly )
2€Cw (Fw)\W/W()) |Cw o (F2))]
Fz=2"'Fwz€Fa
We can assume Rga(fx)(g) # 0 and hence assume that Fz = z ! Fwz € Fa is a conjugate of Fw.

We now bound: |Cw (Fx)|/|Cy () (F)|, the number of terms in the sum, and finally |f, (Fz)|.
Let us note that the number of terms in the sum is precisely the number of W (A)-orbits on Fa that
meet the centraliser Cyy (Fw).

We will take this case by case. First let us note that as wF' has pairwise distinct cycles, so does
its conjugate Fo = 2F(wF)F~'271. Now, by replacing A with an element in the same W,-orbit,
we can assume that \ = %(El + -+ &) for some 0 < m < n where A = 0 when m = 0.

We set 7; = {te; | 1 <i<m} and Zp = Z \7; and let H = W, Wz, < Wz. For convenience,
we let m; = (€;, —¢;) € W for any 1 < i < n.

Type B,,. We have W () = Fa = H. Lusztig has shown that there is an isomorphism

%2 @c LY, — Class(GF, A, a)

such that the natural basis {[X]@[Y] | [X] € 8¢ and [Y] € S9¢,,,} maps onto the series (G, \).
The images of the Fourier transforms Ro([X]) ® Ro([Y]) are Lusztig’s almost characters. By
[Lal, 4.23], this bijection may be chosen such that if [X] € S}, and [Y] € S}_,, have defect 1 then

Ro([X]) ® Ro([Y]) = RS, (p1x) B ppy)-

As [X] @ [Y] = RoQo([X]) ® RoQo([Y]), we see that if x is the image of [X] ® [Y] then
fx = opx1 B oy

By (iii) of Lemma we have Cy (Fz) = Cy(Fx). Write Fx = zozy with o, € Wz, If k; > 1
is the cycle length of x; then k = kg + k1. Using Theorem we thus get the following bound on
the character value

[ (Fa)| = |pxy(@o)] - [opyy ()] < (2771 kol) - (2M 71 kg l) <2572 kL.
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If o« = (a1,...,ax,) and 8 = (B1,..., Bk, ) are the signed cycle types of xp and z; respectively

then, up to reordering the entries, o« U f = (au,...,Qy, 51,---, 0%k ) is the signed cycle type of
k

C) = 2F terms in the above sum. Putting things

Fx. Thus, there can certainly be at most ZIZ:O (
together we get the bound 2272 . k! in this case.
Type Cn. We have W(X) = W2 Wz, and Fa = Wg Wr, for some e € {0,1}. In this case, we
have an isomorphism
UL @c U4, — Class(GF, )\, a).
The natural basis {[X] @ [Y] | [X] € Sm¢ and [Y] € S2¢,,} maps onto the series £(GT, \).
By [La1, 4.23], this bijection may be chosen such that for any [X] € 8, and [Y] € S}

Re([X]) © Ro([Y]) = RS (Resyy 2 (p1x)) B pyy).

As [X] @ [Y] = QeRe([X]) ® QoRo([Y]) we see that if x is the image of [X] @ [Y] then f, =
o1x1 X opvy-

By (iii) of Lemma we have Cpy(Fr) = Cw(Fx) and |[Cy(Fx)|/|Cy ) (Fx)| < [H/W(A)| <
2. Appealing to Theorem when X is degenerate, we find, as above, that |f, (Fr)| < 2261 . k.
As we have |Cyy (Fw)\W/W()\)| < 2|Cw(Fw)\W/H|, there are at most 2! terms in the above
sum. Putting things together gives the bound 23**1. k! in this case.

Type D,,. We have W (\) = WIOOW%. If 7y = (€1, —€1) and m1 = (€41, —€m+1) then the coset
Fa C H is either: W(\), moW(A) = WIlOW%, mW(A) = W%)Wle, or momi W (A). These cases are
similar to the above. We have Cy(Fr) = Cw (F'z) and |Cy(Fx)|/[Cyw o\ (Fx)| < [H/W(N)| < 4.
Arguing similarly, we get that the above sum has at most 252 terms, and |f, (Fz)| < 2% - kL
Putting things together gives the bound 23%+4 . k!,

We end with a comment about the final coset mom W (A). In this case we have an isomorphism
U ®¢ ?/;erl — Class(GF', )\, a). Lusztig’s Theorem in this case says that this isomorphism can
be chosen such that for any [X] € 89, and [Y] € SY_,,, we have

W, W-
Ri([X]) ® Ra([Y]) = REa(Res 2y (prx) B ppyy));

see the discussion in [Lul §4.21]. One readily checks that if y is the image of [X] ® [Y] then

W, W-
f =Res_ 70 ) (91x7 B Spyp)- O

Corollary 8.2. Assume G is a symplectic or special orthogonal group and x € Irr(GF) is a
quadratic unipotent character. Furthermore, let wF € WF have cycle length k > 1 and pairwise
distinct cycles. Then |x(g)| < 23¥4 - k! for any regular semisimple element g € G of type wF.

we have

Proof. Recall that being quadratic unipotent means that y lies in a series £ (GF A, a) with 2X € X.
The statement is thus an immediate consequence of Theorem and Lemmas and O

9. CHARACTER DEGREES
In this section, we prove the following theorem.

Theorem 9.1. There exists an absolute constant C > 0 such that for every finite quasisimple group
G of Lie type of rank r and every positive integer D, the number of irreducible characters of G of
degree < D is at most DC/".

Taking C' large enough, we can ignore any finite number of quasisimple groups GG, and thus we may
assume that G = G! for a simple, simply connected algebraic group G of rank r and a Frobenius
endomorphism F' : G — G. The Landazuri-Seitz bound [?] implies that the minimal non-trivial
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character of G has degree at least |G|, where € depends only on the rank of G. Therefore, we are
justified in assuming that r is as large as we wish, so, in particular, G is of classical type and F' is
an endomorphism of Steinberg type.

Our proof closely follows the character degree estimates of Liebeck and Shalev [LiSh]. Liebeck
and Shalev prove a more precise result [LiSh, Theorem 1.1] than Theorem when q is sufficiently
large in terms of r and a weaker result [LiSh, Theorem 1.2] for general g.

What is needed to obtain good bounds in high rank for small ¢ is an estimate for the number of
unipotent characters of G and certain related groups of bounded degree. This follows in principle
from the degree formulas for unipotent characters of classical groups in [Lu]. We begin with these
computations.

Proposition 9.2. There exists an absolute constant C' such that for every finite quasisimple group
G of classical Lie type of rank r and every positive integer D, the number of unipotent characters
of G of degree < D is at most DC'/".

Proof. For every prime power ¢, we have by [LMT), Lemma 4.1(i), (iii)] that

o0

1
1 l—¢g H>=>q¢2
(9.1) H( ¢ )> 24
and

(9.2) H1+q1 <24 < ¢

(i) If G is of type A, or 2A,., then the unipotent characters of G’ are indexed by sets A of positive
integers such that p(A) = r+ 1 in the notation of §2. Denoting the elements of A by A\ < -+ < A\,

we have
m

r+l=> (Ai+1-1i).
i=1
The terms p; := A; + 1 — ¢ in this sum give a partition of r» + 1, so in particular, m < r 4 1.
Here, G = SL;,(q) with n = r+1. The degree d4 of the character with given set A is the absolute
value of

[Ti<jcicm((e0)™ = (e9)¥) TTi1 ((e)" — n
7 T0 () = DTS o)
For any fixed j, we have from that

(9.3)

H (e0)™ = (cq)¥] > g2 gZmm ™,
i=j+1
SO
m—1 m
H H — (eq)] > g™ - gasi<ism A

Treating the other factors of in the same way (and using (9.2) for the products in the denom-
inator), we obtain

dA > q*4m . q21§j<i§m Ai"’(“z—l)_ 111 (Ai;l)_ ZZQI (S)
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As is well-known (see e.g. the proof of [GLT1, Lemma 5.3], the exponent of the second factor on
the right-hand side is

1 m
(n® - Zm > (0 = i Y ) =n(n — ) /2,
i=1
and so
da > qn(n—um)/2—4m > qn(n—um)/2—4n
Therefore,

n— m < <210gd,4 +8).
log q™

As pm = A+ 1 — m is the largest part of the partition of n associated to A, the number of
possibilities for A such that d4 < D is at most

lon
|22 ql?l +8]

> p(i),

=1

where p denotes the partition function. As p(7) is sub-exponential in i, when D > ¢"™/3 this number

is ¢OUogD/logq™) — DOM)/n vielding a uniform upper bound of the form DC/" for the number of
unipotent characters of degree < D. However, by [LaSe], for D < ¢"/3, there are no non-trivial
irreducible characters of degree < D, and in particular no such unipotent characters.

(ii) The proof for the remaining classical groups follows the same pattern. Let [X] denote an
equivalence class of ordered symbols, and let X = (X° X1!) be the representative such that 0 ¢
X" = XN X' Let the elements of X? and X! respectively form the increasing sequences of
non-negative integers \J < --- < A?XO‘ and A\l < - < )\‘1X1|, so assuming X and X' are both non-
empty, we have A} + Al > 0. We note that X° and X! determine (possibly improper) partitions
N +1 - i}; and {)\} +1—j}; of the ranks p(X?) and p(X1) 'respectively. More precisely, if ] >0
then {\] +1—i}; is a partition of p(X7), but if A] = 0 then {\] +1—1}; is a sequence of initial zeroes
concatenated with a partition of p(X7). Let n := | X% + |X!|, and let v; < vp < --- < 1, be the
sequence obtained by first merging X° and X! and then sorting, without eliminating repetitions.
Thus

(9.4) v <wv3 <y <
and
(9.5) O<wva<wvg<---.

By (2.1)), the rank r of the symbol X is given by

n

0 1 1)2 n — 2
0.6) 1= A+ o - [0 sy, D - 12,
i J k

We have v, > [(k —1)/2] for all k, with strict equality when k is even, so r > |n/2]. Thus,

p<X0>+< 0') (XD + (!X2'1|>_{<\*><'0|+|;1><11—1>2J

:p(X0)+p(X1)+{ (def(X)? —1)/4, 2¢n

(9.7)
def(X)?/4, 2ln

> p(X°) + p(X1).
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For every prime power ¢ and every symbol X, there is at least one associated unipotent character
of at least one classical group G of rank r over the field F,. If def(X) is odd, we obtain characters
of G = Spy,.(Fy) and of G = Spiny,.,(F,) in this way. If it is divisible by 4, there is a character of
G= Spin;r(IFq); otherwise, there is a character of G = Spiny, (F,). If X® = X1 then there are two
unipotent characters for Spin;(Fq) associated to X; otherwise, there is only one for each possible
G. Moreover, all unipotent characters for groups of type B, C, and D arise in this way for a unique
equivalence class of unordered symbols.

The degree dx of the unipotent character of G associated to the symbol X is (at least)

1

Gl Th<jcicar (@ = ) iz (0 = ) T T2 (6N +0)

no A9 ) nl Al . n0inl_ n04+nl—2k
2ln/2] [T Hj:l(q2j -DIL5 Hj]=1(q2j —-1) H;E(:1+ 272 q( 2 )

with n/ := | X7|. In terms of the sequence v;, this takes the form

Gly Ili<jcicnld” £4%)

dX Z . . n— n—2k\ *
220 TT7 T (0 — 1) [T 27 o)
Note that
[Timi(¢® - 1) if def(X) =1 (mod 2),
Gl =4 (¢" = DI[Z (g% = 1) ifdef(X) =0 (mod 4),
(@ + DI (% — 1) if def(X) =2 (mod 4),

so |Gly > q72- ¢"*" if n is odd and |Gy > q2¢"" if n is even, again by (9.1)).
Reasoning as in case A, for cases B and C (i.e., n = 2m + 1 is odd) and using the fact that
n < 2r + 1, we have

n—1
n 2 (n—2k
dyx > q—2+2—2”—n/2 . q7"2+7"+21§j<i§n vi—y i v ) =3, 2 ( Py )

n—1
5 n—2k
> q_15r/2 : qr2+r+21§j<i§n vi— i vt )=, 2 (n 22 )

We define
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By , the exponent of the second term on the right-hand side is

r+Zm m+2’4—1 Z”i(”i“)_i(n_?%)

=1 k=1

= m —i—Zz—l Zu i(";%)

k=1

Ly Z(”l @;1)2+§(z—1) é(n—Qk)
ZrQ—Zn:(Vz‘—[Z;J) tm

=1

23 ) mas(e - 15))

=1
1—1
=2 = max(vi - | . ).

Here we have used the identity

2m~+1 . m m—1 m—1
i—1\2 2m+1—2k 2 m(m+1)
§:Q2J>—ZX ) >:2ZJ+m S iai 1y = "D,
i=1 k=1 i=1 i=1
Thus,
1—1 log dX
(9.8) mfmx(ui - L?J) >r— ogq” 7.5.

Since |Trr(G)| < ¢©1" for some absolute constant C; by [FG], by enlarging C’ (which then covers
all small ranks), we may assume logdy/logq” < r/2 — 8.5, and so

1 —1
(9.9) m?X(Vi - L?D 3 + 1.
By (9.4) and (9.5 and the integrality of the v;, we have
(i+2)—1 i—1
P Lt}
and so - ) .
7— n— n—
i ( — 1= J):max(""*“L 7 bl J)'
Now, if max; (Vi — LTlJ) is attained at i = n — 1, then
n—2
Un—1— | 5 |—1>r/2+1
and ) 5
n —
U, L 5 J _yn_l—LTJ—1>r/2

by , and this violates . Hence, v; — L%j achieves its maximum at only ¢ = n, and
Vp > Vp—1, again by ; also,

log dx

log ¢"
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Applying the Landazuri-Seitz bound as before, we may assume that dx > ¢". The rank r’ of the
symbol, obtained from X by deleting the largest single term v, call it X’, is bounded above by

logdx /logq" + 7.5, by and (9.8). Applying to X' = ((X")?, (X)), we see that
(9.10) p((X")) + p((X")Y) <logdx/logq" +7.5<z+17.5

if dy < ¢" with z > 0. In fact, we can show that such symbols X satisfy

(9.11) |XO + X! < 32 +22.5.

Indeed, without loss we may assume that p; > 1, so the sequence {p; +1 — j} of |T”| integers is a

proper partition of p((X")!), and so [(X")}] < p((X")!) < 2+ 7.5 by (9.10). Applying (9.7) to X’
we have (|(X)°] — [(X")')2 < 47’ + 1, and so

(X0 = (XY < VA +1< Az +75)+ 1 <z +6.5.

Hence [(X')°] < 2z + 14, and |X°| + [X| = [(X")°] + [(X")'] + 1 < 3z 4 22.5, as stated.

ByA (9.11)), even when A = 0, the number of zero entries in the sequence {)\f +1- z} is at most
|(X")?| < 3z + 22.5. Now, counting the number of (possibly improper) partitions {\] + 1 — i} of
p((X")7) and using ([9.10]), we see that the number of possibilities for the symbol X with dx < ¢"®
is bounded above by

[z+7.5]

3z +225) > pli)?

i=1
an exponential in z for x > 1, proving the proposition for types B, and C,.
(iii) For types D, and 2D, that is, when n = 2m is even, we have n < 2r, and

n—2
2 n—2k
dX > q—2+2—2n—n/2 . qT2+ZISj<iSn Vi—> i Vi(V¢+1)—Zk:21 (( 5 )

n—2
2 —2k
> q_5r . qr2+zlgj<i§n V’i*Z?:l Vi(yi+1)72k:21 (n 22 )

The exponent of the second term on the right hand side is therefore

r +§;<z ~ v — gw(w +1) —: (n _2%)
:r2+i<z—2>vi —iivf —tll <n_22k)

R > CRILL) I 3! (1) ] L)
>r2_1§1(yi-v;%)2—r

Zrﬂ—;(w— ) s 157 ]) -
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Here we have used the inequality
Y = Z?:1<2L%J —(i—2))1/i =1 +13+...F Vo1
=Sy (- 15H) + (3) <r+(3)
and the identity

M) - () S-S (3)

i=1 k=1

The argument finishes as before. U

Proof of Theorem[9.1 Let G* = (G*)f" denote the dual group of G. We partition the irreducible
characters of G into rational Lusztig series £(s), indexed by conjugacy classes of semisimple conju-
gacy classes (s) of G*. There is a bijection between the elements of £(s) and unipotent characters
of Cg=(s); this correspondence multiplies degrees by |G* |, /|Cq= ()],

We restate |LiSh, Lemma 3.2 in a form more convenient for our purposes. Since the ratio n/r
between the dimension n of the natural module and the rank of GG is bounded between 1 and 3,
and since the constants d and d’ in [LiSh] are absolute, if § is greater than some absolute constant
80, then the number of semisimple conjugacy classes (s) with |G*|,//|Cg+(s)|, < ¢°" is less than
q** for some absolute constant A. Moreover, Cg+(s) contains a factor, the large factor, which is
classical of rank 7/ > r — Bd for some absolute constant B, and this large factor is A,/(q) or ?4,/(q)
when G is of type A.

For D < ¢'/3, there is only one irreducible character, by [LaSe]. Hence we may assume D >
¢"/®. Enlarging C if necessary, we may assume that D = ¢ with § > max(dy, 1/2). By [FQ],
Trr(G)| < ¢©1" for some absolute constant C1, so the result follows if 6C > Cyr. Again enlarging C
if necessary, we may assume without loss of generality that § < r/2B.

If x is an irreducible character of degree < D, then it belongs to the Lusztig series £(s) for some
s with |G|, /|Cg+(s)|; < D. The number of such semisimple classes s is bounded above by ¢°4.
Following the proof of [LiSh, Lemma 3.4], note that for each s, Cg+(s) contains a subgroup Cg+(s)°
which is the group of F*-fixed points of the connected reductive algebraic group Cg+(s)°. If G
is of type B, C, or D, the quotient group Cg+(s)/Cg=(s)° has order < 4. Suppose G is of type
A and Cg-(s)° is a proper subgroup of Cg+«(s). Lifting s to an element § of GL (q), we see that
every eigenvalue of § has multiplicity < n/2, but this contradicts the existence of the large factor
of Cg+(s) which is of type A,/(q) or 2A,(q) with ' > /2. So we have Cg=(s) = Cg+(s)° for type
A. Thus, there are at most 4 unipotent characters of Cg=(s) of degree < D for each unipotent
character of Cg+(s)° of degree < D. Taking F*-fixed points of the derived group of Cg+(s)® we
obtain a subgroup whose unipotent characters correspond to those of Cg+(s), and this subgroup
is a product of classical groups whose ranks sum up to at most r and at least one of which, the
large factor, has rank r’ at least » — B§ > r/2. The total number of unipotent characters of the
product of all the factors other than the large factor can therefore be bounded above by ¢©129 by
[FG]. The number of unipotent characters of the large factor of degree < D = ¢°" is bounded
above by D < q%Cl, by Proposition Hence, the number of unipotent characters of degree
< D of Cg-(s)° is bounded by ¢(B€1+2¢)9 "and the number for Cg«(s) is likewise bounded by an
exponential in 6. Thus the number of characters of degree at most D is bounded by ¢©2° for some
absolute constant Cs, and the theorem follows by taking C' > (. O

For later use, we prove the following related statement:



CHARACTER BOUNDS AND THOMPSON’S CONJECTURE 29

Proposition 9.3. Let n > 4 and j > 1 be integers and let q be any prime power. Let G = G be
one of the groups Sps,(q), SO2,+1(q), or SO5,,(q), and suppose that x € Irr(G) has degree

X(l) < min(qnj’q(nz_n)/2—4).

Then there is an F-stable Levi subgroup L = Li X Lo of G, possibly equal to G, such that the
following statements hold:
(i) Ly is F-stable, of the same type as G, and of rank n —m > n — 2j.
(ii) Lo is F-stable, of type GLy, with m < 2j.
(iii) x = £RE(p1 X o), where @1 € Irr(LL) is a unipotent or quadratic unipotent character,
and @o € Trr(LL). Moreover, if j < n/2, then p1(1) < ¢»=™)J.

Proof. View G = Sp(V') or SO(V), where V = Fg”, Fg”“, or IFZ". Then we can identify the dual
group G* = (G*)F" with SO(V*) 2 SO2,41(q), SP(V*) = Spa,(q), or SO(V*) = SO(V) 2= SO2,(q),
respectively. Let £(G, (s)) be the rational Lusztig series that contains y, where s € G* is semisimple.
If s2 = idy+, then we are done by choosing L = G. Otherwise we can decompose V* = Vi* @ V5,
where s — idy+ is zero on V{*, and invertible on its orthogonal complement V' # 0. Since s is
semisimple, we see that Cg+(s) is contained in a proper F*-stable Levi subgroup L* = L x L of
G*, where L} = GL,,, with m := dim(V5")/2 < n, and Lj, of the same type as of G*, are both
F*-stable. Let L = Ly x Ly denote the Levi subgroup of G dual to L*, where L; is F-stable and
of the same type as of G, and Ly = GLy,. By [DM|, Theorem 11.4.3], eger, RY yields a bijection
between £(LY, (s)) and £(G, (s)), which implies (iii); in particular,

(9.12) XD) = e (1),

if p denotes the unique prime divisor of q.

Using (9.1)) and (9.2)), one readily checks that
\G]p/ q(4nm—3m2—m—8)/2, G = SOy,
’LF‘p/ q(4nm—3m2+m—8)/27 G = szn, SOQn+1-
In particular, if m = n then x(1) > q(”Q_”)/ 2=4 by (9.12), a contradiction. Assume now that
m<n-—1,but m>2j+1. Then 4n — 3m — 1 > n + 2, whence
dnm—3m?> —m—8=m@An—3m—1)—8> (2j+1)(n+2)—8=2nj+n+2(2j+1)—8>2nj+1,
and so x(1) > ¢, again a contradiction. Thus m < 2j.
To show 1 (1) < ¢™~™)J it suffices by (9.12) to check that |G|, /|L¥ |,y > ¢™. This is obvious

ifm=0. Ifl§m§3,thenjSn/Q§2n—61mpliesthat4nm—3m2—m—8§2mj. If m > 4,
then

dnm —3m? —m — 8 =m(4n — 3m — 1) — 8 > m(n + 2) — 8 > mn > 2my,
and so we are done. g

10. APPLICATIONS TO ASYMPTOTIC VARIANTS OF TTHOMPSON’S CONJECTURE

10.1. Type A. Recall SL{,(¢) denotes SL;,(¢) when € = +, and SU,,(F,2) when ¢ = —, and similarly
for GL;,(q)-

Theorem 10.1. For all k € Z>1, there exists an explicit constant B = B(k) > 0 such that the
following statement holds for all n € Z>1 and all prime powers q. Suppose G = SL; (q) for some
e == and g € G is a reqular semisimple element whose characteristic polynomial on the natural
module of G is a product of k pairwise distinct irreducible polynomials. Then ¢& - g% contains every
element x € G of support > B.
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Proof. (a) Embed G in G := GL(¢). Since the support of an element of G is at most n, by enlarging
B, we are free to make n > k as large as we wish.

Note that the element g is regular semisimple, and T" := Cz(g) is a maximal torus, so of order
at most (¢ + 1)". Moreover, the image of 7" under the determinant map is the same as that of

G. Hence the conjugacy class of g in G is the same as its class in G. Let € G. To show that
T e gG -gG, it suffices to prove that

x(9)*x(x)
Xdzrr‘:é) x(1) #0.

As det(g) = det(z) = 1, for every character  of degree 1 we have x(g) = x(g)?>x(x) = 1. Therefore,
it suffices to prove that

2
(10.1) > W <q-—e
pem@ks1y

(b) For any fixed € > 0, choosing B sufficiently large, the contribution of characters y € Irr(G)
satisfying y(1) > ¢ to is o(1). Indeed, consider any such character x and any irreducible
constituent ¢ of x|¢. Since G/G = C,_., by Clifford’s theorem we have x|q = 1 + ...+ ¢, where
Y1 =1, ..., are distinct G-conjugates of 1, and t|(q — ¢). By [LT, Theorem 5.5],

[$i(@)] < ()72 = (x(1) /1) 7P
for some absolute constant o > 0, and so |x(z)| < t(x(1)/t)}=7B/". As x(1) > (g + 1)® > 2, we
obtain

(@) /x(1)] < x(1)77P2m < gm=o P,
Since |T| < (g + 1)® < ¢**, it follows that the contribution of all these characters to is at
most

qfso'Bn/2Z ’X(g)‘Q < qfso'Bn/2‘T| < q2n(1fso'B/4)
X

which is o(1) when B is large enough.

(c) Now let j denote the level of x € Irr(G), as defined in |[GLTI]. Assuming x(1) > 1, we
have j > 0. If j > n/2, then x(1) > ¢"*/4~2 by [GLTI, Theorem 1.2(ii)], and, as shown in (b),
the contribution of all such characters to the left hand side of is 0o(1). Hence it remains to
consider the characters y with

j<n/%
any such character is irreducible over G, see [GLT1), Corollary 8.6]. Up to a linear factor, we may
assume that x has true level j. By [GLT1 Theorem 3.9], any such character x is of the form

X = £R{(p K Y),
where L = GLE_, (q) x GLZ,(q) is a (possibly non-proper) Levi subgroup of G with 0 < m < n,
¢ = " is the unipotent character of GL:,_,,(q) labeled by a partition A - (n —m) with largest part
A1 =n — j, so, in particular,
(10.2) m < j,

and ¢ € Irr(GL7,(¢)) when m > 0. Moreover, the total number of characters of G of true level j is
[Trr(GL5(g))|, which is shown in [FGL Propositions 3.5, 3.9] to be at most 9¢.
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Since x has level j, x(1) > ¢7("=9)~1 > ¢7i/3 by [GLTT], Theorem 1.2(i)]. For these characters x,
supp(z) > B implies by |[LT, Theorem 5.5] that

(10.3) x(@)]/x(1) < g~ 7P,

As g is regular semisimple, the Steinberg character St of G takes value +1 at z. Applying [DM]|
Proposition 7.4.7] we have

(10.4) X(9) = £(Ste - x)(9) = £Ind{ (St - ¢)(9)-
Note that if V' = Fy denotes the natural module of G (endowed with a Hermitian form when ¢ = —),
then the L-module V is a direct (orthogonal when ¢ = —) sum of two non-isomorphic irreducible

modules V4 := Fy~™ and Va = F}", with m < j < n/2, see . In particular, if y € Ng(L),
then y preserves each of V; and Vs, and thus Ng(L) = L.

Now we count the number NN of elements y € G such that y~'gy € L, i.e. g € yLy~!. Then g acts
on each of the subspaces yV; and yV5. On the other hand, the decomposition py(g) = Hle fi(X)
leads to a decomposition V = @k_, U;, where py, (g) = fi(X), and each U; is a minimal (g)-invariant,
non-degenerate if ¢ = —, subspace. Moreover, the (g)-modules U; are pairwise non-isomorphic.
Hence (yV1,yVa) is uniquely determined by choosing a subset of {Uj, ..., Uy} (so that yV} is the sum
over this subset and yV5 is the sum over the complement). Thus the total number of possibilities
for yLy=' = Ng(yVi,yVa) is at most 2¥. On the other hand, yLy~! = ¢/Ly'~! if and only if
y~ly € Ng(L) = L. Hence

(10.5) N < 2F|L).

Suppose y gy = diag(g1,92) € L, with g1 € Ly := GL:_, (¢) and go € Ly := GL{ (q). Let
k; denote the number of irreducible factors of the characteristic polynomial of g; on the natural
module for L;. Then k; + ko < k. Since ¢ is unipotent and ¢; is regular semisimple, we have

lp(gr)] < 2M71 - ky!
by Corollary On the other hand, when m > 0, (10.2) and Corollary show that
[¥(g2)| < kol - 5™
As y~lgy is regular semisimple in L, |Stz(y'gy)| = 1. Hence
(St - (¢ BY)) (y gy)| < 287 k-5
It now follows from ((10.4]) and ([10.5)) that

1 - —_ .
] Y. Sty ey <2k
yeG:y—lgyel

With (10.3]), this shows that the total contribution of characters of a fixed true level 1 < j < n/2
to (10.1) is at most

Ix(9)| =

9qj . q—UBj/S . (22k—1 k! _jk—l)Q < A(k)/q{,
where A(k) =9-(2%%~1. k)2 and q; := ¢°B/3" (here we use the estimate ¢/ > 27 > j2). Note that

o0

(10.6) Y Ya =1/ (-1

j=1

is 0(1) when B is large enough. Hence, the total contribution of characters x, of level at least 1 and
less than n/2, to ((10.1)), is less than (¢ —e)A(k)/(q1 — 1) = o(q — €), and the theorem follows. [
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10.2. Types BCD. Recall the involution f — f¥ on the set JF4 of monic irreducible polynomial
f € F,[t] with £(0) # 0: if deg(f) = m then f¥(t) = t™f(1/t)/f(0) (equivalently, A € F, is a root
of f¥ if and only if 1/ is a root of f). In the following theorem, the condition that the regular
semisimple element g € G has pairwise distinct cycles implies that the characteristic polynomial of
g on the natural IF,G-module is of the form

c d
GRSV (ESV | B | T
i=1 j=1

where a,b,c,d > 0, a,b < 2, f # fi € Fgs hj = hj/ € Fy, deg(fi) = my, deg(h;) = ny,
my > ...>me and ng > ... >ng (and c+d < k < ¢+ d+ 2 for the cycle length k). Note that
if the irreducible factors of the characteristic polynomial of g have pairwise distinct degrees, then g
has pairwise distinct cycles.

Theorem 10.2. For all k € Z>1, there exists B > 0 such that the following statement holds for all
n € Z>1 and all prime powers q. If G = Spy,(q), SO2n+1(q), or SOfn(q), and g € G is a reqular
semisimple element with cycle length k and pairwise distinct cycles, then ¢@ - ¢& contains every
element z € [G,G] of support > B.

Proof. (a) Enlarging B, we are free to make n > max(k,5) as large as we wish. Write G = GI'
for a corresponding simple algebraic group of type Sp or SO. Then Cg(g) is a maximal torus, so,
using the well-known structure of centralizers of semisimple elements in the finite group G, we see
that T := Cg(g) has order at most 2(¢ + 1)".

Let 2 € [G,G]. Since the linear characters of G' take value 1 at z, to show that = € g% - ¢, it
suffices to prove that

x(9)*[x(2)]
(10.7) {Xem%xum} w0 <1<|G/[G, G

(b) For any fixed € > 0, choosing B sufficiently large, the contribution of characters y € Irr(G)
satisfying x(1) > ¢ to is o(1). Indeed, for any such character x, by [LT) Theorem 5.5] we
have

(@) /x ()] < x(1)77P/" < g=7P
for some absolute constant o > 0. Since |T] < 2(q + 1) < ¢?", it follows that the contribution of
all these characters to is at most

qfea'BnZ ’X(g)‘Q < qfsaBn|T’ < q2n(1750'B/2)
X

which is o(1) when B is large enough.

(¢) Now we consider any x € Irr(G) with 1 < x(1) < ¢ ~4"/4, By the Landazuri-Seitz bounds
[CaSe], we have x(1) > ¢™/2. Let j € Z>1 be the unique integer such that ¢"U~1) < x(1) < ¢/, and
note that

qnj/2 < X(l) < min(qnj’q(n2_n)/2—4)’ j< n/4‘
By Proposition there is an F-stable Levi subgroup L = Lj x Ls of G, possibly equal to G, such
that the following statements hold:
(o) Ly is F-stable, of the same type as of G, and of rank n —m > n — 2j.
(8) Lg is F-stable, of type GL,, with m < 2j.
(7) x = £RE(¢1 X 2), where ¢ € Irr(LY) is a unipotent or quadratic unipotent character,
and o € Irr(LY).
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Moreover, by Theorem there is an absolute constant C' such that the total number N; of
characters of G of degree < ¢™ is at most

(10.8) N; < ¢%.
Since x(1) > ¢™/2, supp(x) > B implies by [LT), Theorem 5.5 that
(10.9) x(@)]/x(1) < ¢~ 7P/2.

Next we bound |x(g)|, again using (10.4). Let V = Fg denote the natural module of G endowed
with a symplectic or quadratic form, d = 2n or 2n + 1, and let L := L¥. Then the L-module V is
an orthogonal sum of two non-degenerate L-invariant subspaces V; := Fg*Qm and Vo =T 3m, with

2m <45 <n <d-—2m.

Furthermore, Vi is the natural, irreducible module of dimension d — 2m for L := Lf , with Ly of
the same type as of G, and L acts trivially on Va. Next, Ly := LL = GL,,(q) or GU,,(q), with
V1 a minimal Lo-invariant non-degenerate subspace, and Ly acts trivially on Vj. In particular, if
y € Ng(L), then y preserves each of V; and Vs, and thus Ng(L) = L.

Now we count the number N of elements y € G such that y~'gy € L, i.e. g € yLy~'. Then
g acts on each of the subspaces yV; and yV5. On the other hand, since g has cycle length k with
pairwise distinct cycles, V' admits an orthogonal decomposition V' = @leUi, where each U; is a
minimal (g)-invariant non-degenerate subspace. Moreover, the (g)-modules U; are pairwise non-
isomorphic. Hence (yVi,yVa) is uniquely determined by choosing a subset of {Uy,..., Uy} (so that
yVj is the sum over this subset and yV5 is the sum over the complement). Thus the total number of
possibilities for yLy~! = Ng(yVi, yVs) is at most 2¥. On the other hand, yLy~! = 4/Ly'~! if and
only if y~1y' € Ng(L) = L. Hence
(10.10) N < 2%|L].

Suppose y~'gy = diag(g1, g2) € L, with g1 € L; and go € Ly = GLE (q). Let k; denote the cycle
length of g;. Then ki + k2 < k. Since ¢ is quadratic unipotent and g; is regular semisimple, we

have
p1(g1)] < 2°P1 0 kg

by Corollary On the other hand, when m > 0, the statement () and Corollary show that

l2(g2)| < kol - (2)".
As y~lgy is regular semisimple in L, |Stz(y'gy)| = 1. Hence

|(Str, - (91 X 2)) (v tgy)| < 2%F4 . k1. oL,
It now follows from ((10.4) and (|10.10) that

1 ) .
— Y E(Strp)(y tgy)| < 2% RGP

Ll =
yeG:y~lgyel

Ix(g9)l =

With (10.9)), this shows that the total contribution of characters of degree satisfying U <
x(1) < ¢™ to (10.7) is at most
qu . q—aBj/2 . (24k’+4 k! .jk—1)2 < A(/{:)/q{,
where A(k) = (2%+%. kN2 and ¢ := ¢°B/>~C—**1 (here we again use ¢/ > j2). Recalling (10.6),
we conclude that the total contribution to ((10.7) of characters x, of degree at least 2 and less than
g™ =4n)/4 s less than A(k)/(¢1 — 1) = o(1), and hence the theorem follows. O
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10.3. Another result for SL. For any positive interger k, let a denote a fixed increasing sequence
ap < --- < ay of positive integers. By an a-flag in an [F -vector space V', we mean a flag
ic--CcVpCV
of Fg-subspaces such that dim V; = a; for 1 <14 < k. The number of a-flags is
14 (@ — 1)
Hf:() H?:fiai(qj - 1)7

where we define ag := 0 and ag41 :=dim V. As

Fy(dim V) :=

o0

[T0-a7)>;

j=1
by [LMT) Lemma 4.1], we have

qta(N)
(10.11) 7 < FQ(N) < 4kng(N)7
where
da(N) = > (ais1 —a)(aj1 —a)) =ar(N —ap) + Y (a1 — ai)(aj — ay).
0<i<j<k 0<i<j<k—1

In particular, as N goes to infinity,

(10.12) de = apN + O(1),

where the implicit constant depends on a. Moreover,
Fy(N+1) ¢V -

1
10.13 = = % 4 g~ N+OD)
( ) FQ(N) qN+1fak -1 q q ’

SO

Fu(N +1)
10.14 lim —2 T gar
(10.14) Nose Fp(N) ¢

Lemma 10.3. Let k and m be positive integers, and let a be an increasing sequence of k positive
integers. If N is sufficiently large in terms of m and a, then for all g € GLy(q) with supp(g) = m,
the number of g-stable a-flags in Fév can be written

g " (1 + €)Fu(N),
with |e] < ¢~ N/2.

Proof. We may assume N > 3m, so the eigenvalue A of multiplicity N — m is unique and therefore
lies in F,. Let W) C Fév denote the generalized A-eigenspace of g and W* the direct sum of the

generalized eigenspaces of g for all eigenvalues other than A. Thus dim W* < N/3.
If Vi C--- C Vg is a g-stable a-flag, V} is determined by the decomposition
Vi = (Ve NWy) @ (Vi N W),

If dim Vi, N W) < ag, then by applying ([10.11]) to sequences of length 1, we see that the number of
possibilities for Vj, is less than

ap—1 ap—1
Z Fl(dlm W)\)Fak_,(dlm W}\) < 42 Z qi(dimkai)q(akfi)(dimW)‘fakJri) — q(akfl)NfO(l)j
=0 =0

so the total number of possibilities for the whole flag is less than (@ ~DN-0@1),
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If dimV, N Wy = ag, then Vi, C W). Let Iy and K, denote the image of A — g on W) and
the kernel of A\ — g respectively. Because Vj, is g-stable, either Vi, C K) or Vi NI\ # {0}. In the
latter case, V}, is spanned by a non-zero vector in I, and a subspace of W) of dimension a; — 1. As
dim I, < k < N/3, the number of possibilities for the whole flag is less than glax—HN-0(1)

Finally, we consider the number of possibilities when Vi, C K),. As g acts on K, as scalar

multiplication, all a-flags with V;, C K, are g-stable. The total number is
Fo(dim K\) = Fo(N —m) = ¢*"™(1 — CI?N+O(1))FQ(N)7
by (10.13]). The lemma follows. O

The unipotent characters of GLy(gq) are indexed by partitions A = N, and we say x = x» has
level N — A1, where the parts of \ are arranged from largest to smallest, see [GLT1] §3]. Also recall
that, for A, u = N, the Kostka number K, is the number of semistandard Young tableaux of shape
A and weight p.

Lemma 10.4. Assuming u1 > N/2, Ky, depends only the partitions (X2, A3, ...) and (u2, i3, .. .),
obtained by removing the largest parts A1 and py from A and w, and not on the value of N.

Proof. In any semistandard Young tableaux of shape A and weight u, the first uy entries of the first
row must have filled with value 1, and the remaining boxes in the first row are all to the right of
every box in the remaining rows. Therefore, such a tableau is determined by choosing from the
wo values 2, the us values 3, and so on, an arbitrary weakly increasing sequence for the A\; —
remaining boxes in the first row, and from the values that remain, a semistandard Young tableau
of shape (A2, As, ...). The number of such choices depends only on (A2, A3, ...) and (u2, ps, . ..), but
not on NNV. Il

Proposition 10.5. Let m and n be fized positive integers. If N is a positive integer sufficiently
large in terms of m and n, x is a unipotent character of GLy(q) of level n, and g € GLy(q) has
support m, then

q""x(9)
x(1)

Proof. As K, is the number of semistandard Young tableaux of shape A and weight u, we have
Ky =1, and if Ky, # 0, then A dominates p: A = p. In particular, this implies that pq < A;.

For each p = N, we define the increasing sequence g, of positive integers such that the sequence
ay =ap—ag,...,0x+1 — o = N — ay, gives the parts of p in increasing order.

Let ¢,, denote the permutation character of GLy(¢) acting on the set of a,-flags in Fév. Then by
[AT, Lemma 2.4],

~N/3.

(10.15) —1|<gq

S =D Knuxa-
A=p

If N > 2n and 1 > N —n, then by Lemma K, depends only on (A2, A3, ...) and (2, u3, .. .).

As every Kostka matrix K (for partitions of V) is unitriangular, we can invert and write xy = xx
as a linear combination of permutation characters associated to ¢, where = XA. We can therefore
express each unipotent character of level n, including x,, as a linear combination of permutation
characters x; v associated to flags b with maximal dimension < n, with coefficients which are entries
in the inverse Kostka matrix K.

Note that, for any fixed n, the set of partitions A - N with A\; > N — n depends only on n, but
not on N, m, or ¢. The unitriangularity of K implies that the submatrix of K !, truncated to only
partitions of N with the first part > N — n, is the inverse of the submatrix of K, truncated to the
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same set of partitions. Applying Lemma [10.4] we see that all entries of this truncated submatrix of
K~1 are bounded by some constant O(1) that depends only on n:

(10.16) (Kl < 0(1)

whenever A\, u > N —n. Moreover,

(10.17) Z(Kﬁl))\;ﬂﬁu(l) = X)\(l)‘
H=A

Define €, so that

(10.18) du(g) = ¢ 7M™ (1 + €) B (1).

By Lemma for fixed m and p, |e,| < ¢ N2 if N is sufficiently large and g is of support m.
When p11 = A1, we have ¢(#1=N)™ = ¢=™n On the other hand, if 411 > Ay, then by [GLT1), Theorem
1.2(i)] we have

¢u(1) < q(n_l)N'
Now, by (10.16), (T0.17), and (T0.18).
Xa(9) =D (K audulg)

H=A

= S 6 ™)+ S (K )1+ ) (N — g g, (1)
H=A H=A
H1>A1

10.19 - — _
Q0190 — g ST (1 + 0)u(1) + gDV 00
H=A
=g S (K (1) 4 4 S el (K 1) alu(1) + g DNHOM),
n=A H=A
_ (1 + e)qunx)\(l) + q(nfl)NJrO(l)?
where |¢| < max,, |e,| < ¢¥/2. On the other hand, y,(1) > ¢"V=°(W by [GLTT, Theorem 1.2(i)].
So for N sufficiently large, ((10.19]) implies ((10.15]). O

Proposition 10.6. Let p > 3 be a prime, and let X denote the set of cuspidal characters of GLy(q),
i.e. characters of the form IF[1] in the notation of [Gx]. Let T < GLy(q) denote the centralizer of
a semisimple element with characteristic polynomial irreducible over F, and T .=Tn SLy(q). Let
z be a central element of SLy(q). If t is a generator of T, then

D x()x(2) = p(1 = @)x (1),

XEX
Proof. First we claim that for all non-negative integers a, b, ¢, if

c=q"+4¢" (mod |T"|)
then
(10.20) ged(e(q —1),|T]) = ¢ — 1.
It is clear that ¢ — 1 divides both factors. If a prime ¢ divides
ged(e(g — 1), |T)) = ged((¢* + ¢") (g — 1), ¢" - 1),

then it divides |T'|, so it cannot divide ¢. It must also divide either ¢* + ¢® or ¢ — 1 or both. If it
divides ¢ — 1 but not ¢% + ¢°, then the highest power of ¢ dividing (¢® + ¢*)(¢ — 1) is the same as the
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highest power dividing g — 1 and therefore the same as the highest power dividing ged(c(q—1), |T).
If it divides both, then 0 = ¢® +¢® =2 (mod ), so £ = 2. However, |T"| is odd (as p is odd), so the
highest power of 2 dividing |T'| is the highest power dividing ¢ — 1 and therefore the highest dividing
ged(e(qg — 1), |T)). If £ divides only ¢® 4 ¢°, then we may replace a and b by their remainders under
division by p (since £|(¢? — 1)), and assume ¢ divides ¢* + ¢ for 0 < a < b < p and therefore divides
1+ ¢ with 0 < b—a < p. We have already seen that the highest power of 2 dividing ¢ — 1 is the
same as the highest power dividing ged(c(q — 1), |T]), so we may assume b — a > 0. Thus, the order
of ¢ (mod /) divides 2(b — a) as well as p, so ¢ =1 (mod /), contrary to assumption.

Let £y be a generator of the cyclic group 17" with tgfl =t, and let ¢ be as above. If ¢ is a character
of T and ¢(t)¢ = 1, then implies ¢?~!(tg) = 1 and so ¢9~! = 1p. Therefore, if p?=1 # 17,
we have

IT|-1 IT|-1 IT|-1
D o) = §j¢“q” > (@) =0.
=0 =0
If I denotes the set of i € {0,...,|T| — 1} such that i is not divisible by |T|, then
IT|-1 q—2
(10.21) i) =) g(t) = Z o) =) 1=1-gq.
icl icl =0

Now consider the action of Z/pZ on the character group of T which is generated by the map
¥+ 9. All orbits are of length p except for the singletons {1} for which ¢4~! = 17. By [G1]
p. 431], the restriction of any character y € X' to T is of the form

X(1) = () + o) + - + ot

for some length p orbit {¢, ¢7,.. .,¢qp71}, and moreover different x € X correspond to different
orbits of length p. If g = zu with u unipotent, then x(g) = ¢(z)x(u). Note that this is well defined
because z # 1 implies ¢ = 1 (mod p) and 2P = 1, which implies

9(2) = 6(2*71)d(2) = ¢(2).
In particular, we have

X(2) = ¢(2)x(1) = o(t5)x(1),
where k is some integer divisible by [T

Therefore x(t)2x(2)/x (1) is a sum of p? terms of the form ¢(t4° 2" +*) Denoting by ¢o a generator
of the character group of T, we see that the set of ¢ € Irr(T) with ¢9~1 # 17 is precisely {¢} | i € I}.

Now using we have
p—1p—1
ZX ):} Z Zz¢tq+q+k

XeX {¢\¢q 1417} a=0b=0

p 1p—1

S D D SERGAT
P a=01b=0 (o101}
p 1p-1

S DML
a 0b=0 el
1 P2 1p-1

fzzl—q p(1—q).

aObO
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g

Theorem 10.7. For all but finitely many ordered pairs (p,q) where p > 3 is prime and q is a prime
power, the following statement holds. Ift is a generator of the norm-1 subgroup Th = Cgr_1)/(q-1)

of IFqXp then every non-central element of SLy,(q) is a product of two conjugates of t.

Proof. Fixing an [F,-basis of Fy» we can identity F;p with the centralizer T' in G := GL(q) of any
generator of Fy». As p is prime, every non-central element of T' generates Fy» as F,-algebra, so no
such element is contained in a proper parabolic subgroup of G. Therefore, every Harish-Chandra
induced character of G vanishes on every element of 7'\ Z(G); in particular at our element ¢. By
[Grl, (12)], a primary (i.e. not Harish-Chandra induced) character of G can be non-zero at t if
and only if it is of the form If[p] or of the form I]’;[l]. In the first case, it belongs to the set X
of Proposition [10.6l In the second case, it is the product of a unipotent character and a linear
character. Since C(t) = T, the conjugate classes of ¢ in G and in SL,(g) are the same.

By Theorem [10.1] we may assume that our target element g has bounded support. By the
Frobenius formula, (¢—1)~! times the number of representations of g as a product of two conjugates
of tin G is

119719 xX()*x(9)
@0 e 2 T
x€lrr(G)
We divide this sum into a sum over x which are unipotent characters times linear characters and a
sum over x € X.

For the first, we note that ¢t and g are both in SL,(F,), and all linear characters of G are trivial
on this subgroup. So we can simply sum over unipotent characters and omit the factor (¢ — 1)~!.
The contribution of the trivial character to the sum

x(t)*x(g)
2 (1)

)

X
is 1. For the other unipotent characters, by [Gr, Theorem 12|, x,(¢) is given by the value at a
p-cycle of the character of the symmetric group S, associated to the partition A F p, and by the
Murnaghan-Nakayama rule, this value is &1 if A is of the form 1"(p — n)! and 0 otherwise. By the
main theorem of [LT], since g ¢ Z(G), there exists an absolute constant € > 0 such that

(10.22) x(9)] < x(1)'~7
for all x € Irr(G). By the dimension formula for primary characters of G [Gr, Lemma 7.4],

X)\(l) > qn(p—n/2—1/2) > qnp/?).

x€lrr(G)

Therefore,
|X1"(p7n)1 (g) |
X1n(p—n)l (1)
Choosing A to be a sufficiently large absolute constant, we have an A 9 ne/d < %, which guarantees

S 2—”6/3.

‘ Z x(H)*x(9) 1
1) -3
X:X1n(p_n)1an2A X(
On the other hand, if p is large enough compared to A, then by Proposition forl1 <n< A we
have xin(p—ny1(g) > 0, and
X1n(p—n)l (g)
1<n<A X17(p—n)l (1)
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is the sum of a positive term  and an error term less than 1/3 in absolute value. Recalling x(¢)? = 1
on all these x = X1n(p—n)1, it follows that the total contribution to the sum from nontrivial unipotent
characters is  plus an error term less that 2/3 in absolute value. Hence the total contribution to
the sum from all unipotent characters is at least v + 1/3. If p is bounded but ¢ is large enough,
then by Gluck’s bound [GI], there is some absolute constant C' > 0 such that

Vi<

and this ensures that the total contribution to the sum from all unipotent characters is at least 1/3.

As p is prime, for x € X, x(g9) = 0 unless g = zu, where z is scalar and u is unipotent, or g is
x(2)

conjugate to an element of 7. In the former case, x(g) = Cu’y (1) where ¢, € Z depends only on u

T X1 (p—n)1 (9) ‘ cA _1
1<n<A Xl"(p—n)l(l)

but not on the particular x € X. By Proposition [10.6
1 ‘ Z x(H)*x(g) ‘: pleul
¢-11= x(1) x(1)

As g is not scalar, |c,| = |x(g9)| < x(1)'=¢/? by ([[0-22). Since x(1) = [[L_,(¢" — 1) > ¢??P~D/2/4,
we get a uniform bound |c,|/x(1) < ¢ PP for some B > 0. Thus, the contribution of the cuspidal
characters is less than 1/6 when either p or ¢ is sufficiently large, implying the theorem. O
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