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Abstract. The paper is devoted to the study, characterizations, and applications of variational
convexity of functions, the property that has been recently introduced by Rockafellar together with
its strong counterpart. First we show that these variational properties of an extended-real-valued
function are equivalent to, respectively, the conventional (local) convexity and strong convexity of its
Moreau envelope. Then we derive new characterizations of both variational convexity and variational
strong convexity of general functions via their second-order subdifferentials (generalized Hessians),
which are coderivatives of subgradient mappings. We also study relationships of these notions with
local minimizers and tilt-stable local minimizers. The obtained results are used for characteriz-
ing related notions of variational and strong variational sufficiency in composite optimization with
applications to nonlinear programming.
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1. Introduction. The properties of variational convexity and variational strong
converity of extended-real-valued lower semicontinuous (l.s.c.) functions ¢: R™ —
R := (—o0, 0] have been recently introduced by Rockafellar [49]. Tt has been well
recognized and utilized in convex and variational analysis that the subgradient map-
ping Jp associated with an L.s.c. function ¢ is maximal monotone if and only if the
function is convex on the entire space. This result is fundamental in convex analysis
and its numerous applications, particularly those to optimization-related problems;
see, e.g., the books [1, 31, 33, 48, 52] for more details and the references therein.
Loosely speaking, variational convexity corresponds to the graphical localization of
the maximal monotonicity property in terms of the limiting subdifferential around
the point in question. Variational strong convexity can be defined in this scheme with
replacing monotonicity of the subgradient mapping by strong monotonicity (with some
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modulus). The latter property is closely related to the notion of tilt stability of local
minimizers introduced earlier in Poliquin and Rockafellar [46].

Both variational convexity and variational strong convexity properties of a func-
tion are more subtle than the conventional notions of local convezity and strong lo-
cal convexity of the function relative to some neighborhood of the reference point.
It is easy to illustrate by simple one-dimensional examples that the corresponding
variational properties are satisfied without any local convexity. The importance of
variational convexity and its strong counterpart for the study of nonconvex optimiza-
tion problems has been demonstrated in the recent papers by Rockafellar [49, 50,
51], where the reader can find, in particular, applications to the proximal point and
augmented Lagrangian methods in rather general frameworks.

Our first principal result in this paper reveals that the variational convexity of an
l.s.c. prox-bounded function is equivalent to the usual local convexity of the Moreau
envelope together with the proz-regularity of the function in question. We prove in this
way that minimizing a nonsmooth variationally convez function can be reduced to the
minimization of its smooth and conver Moreau envelope. A parallel characterization
is established for variational strong convezity of extended-real-valued functions.

Since both Moreau envelope and prox-regularity notions are well understood and
employed in variational analysis and optimization, the obtained characterizations open
the door for further developments and applications. Note that the reduction of mini-
mizing prox-regular functions to the minimization of their smooth Moreau envelopes
has been recently exploited in [22, 23, 21, 44] for the design and justification of gener-
alized Newton-type algorithms in nonsmooth optimization. The additional convexity
of Moreau envelopes in the case of variationally convex cost functions creates new
numerical perspectives for this approach by applying powerful theoretical and algo-
rithmic tools of convex analysis and optimization.

The aforementioned principal results and machinery of second-order variational
analysis allow us to derive coderivative-based second-order characterizations of vari-
ational convexity and variational strong convexity with prescribed moduli for general
classes of l.s.c. functions. These characterizations are obtained in both neighbor-
hood and point-based forms via the second-order subdifferentials introduced by Mor-
dukhovich [30], which have been broadly developed in variational theory and applica-
tions, including more recent ones to numerical algorithms of nonsmooth optimization;
see below. In this way, we also shed new light on the study of tilt-stable minimizers.

Related topics addressed in this paper concern problems of composite optimization
written in the form

(1.1) minimize ¢(z) + ¢ (g(x)), z€R™,

where p: R — R and g: R® — R™ are C?-smooth, while ¢: R™ — R is merely
l.s.c. Since the function ¢ is generally extended-real-valued, format (1.1) includes
problems of constrained optimization with the domain constraints g(z) € dom. Our
major attention here is paid to Rockafellar’s recent notions of variational and strong
variational sufficiency for local optimality in (1.1) that are proved to be important for
developing both theoretical and computational aspects of optimization. Based on the
second-order subdifferential characterizations of variational convexity and its strong
counterpart, we derive complete characterizations of variational and strong variational
sufficiency for large classes of composite optimization problems. The obtained results
are specified for problems of nonlinear programming, where they are expressed entirely
via the program data due to the explicit computations of second-order subdifferentials.

The rest of the paper is organized as follows. Section 2 overviews those notions
of variational analysis and generalized differentiation, which are broadly used in the
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formulations and proofs of the main results obtained below. In sections 3 and 4, we
recall and discuss the notions of variational convexity and strong variational convexity,
respectively, and establish the equivalence between these properties of the function in
question and local convexity/strong local convexity of its Moreau envelope. Section 5
is devoted to deriving neighborhood and point-based characterizations of variational
convexity and variational strong convexity of extended-real-valued functions in terms
of coderivative-based second-order subdifferentials. Section 6 addresses second-order
subdifferential characterization of variational and strong variational sufficiency for
local optimality in problems of composite optimization (1.1). Applications of these
results to nonlinear programs are given in section 7. The concluding section (section
8) summarizes the main results of the paper and discusses some important topics of
our future research.

2. Preliminaries and discussions. In this section, we recall and discuss some
basic notions and facts from variational analysis that are largely in what follows; see
[31, 32, 52] for more details. Let F be a set-valued mapping (multifunction) between
Euclidean spaces R™ and R™. As usual, the effective domain and the graph of F are
given, respectively, by

domF:={z€R"|F(z)#0} and gphF={(z,y)€R" xR™|yec F(z)}.
The (Painlevé-Kuratowski) outer limit of F' as x — T is defined as
(21) Limsup F(z):={y €R" | 3a), > &, yp —y with y, € F(ay), k=1,2,...}.
T—T
Considering an extended-real-valued function ¢: R™ — R, we always assume that ¢ is
proper, i.e., domy :={x € R" | p(z) < oo} # (). The (Fréchet) regular subdifferential

of p at T € domy is

~

(2.2) dp(z)={ver"

i 20 = €@~ (07 3) 1

The (Mordukhovich) limiting/basic/general subdifferential and singular/horizon sub-
differential of ¢ at T are defined, respectively, via the outer limit (2.1) by

(2.3) 0¢(Z) := Limsup 5(,0(3:) and 8™ (z) := Limsup Ay (z),
PRt lf’f

where 5 Z means that z — Z with p(z) — ¢(Z). In the case where 5(,0(5:) =
0p(Z), the function ¢ is called lower regular at Z; see [31]. This agrees with the
subdifferential (or Clarke) regularity of ¢ at Z in the sense of [52] provided that ¢ is
locally Lipschitzian around Z. Observe that both regular and limiting subdifferentials
reduce to the classical gradient V(Z) for continuously differentiable functions, while
the singular subdifferential of an l.s.c. function reduces to {0} if and only if ¢ is
locally Lipschitzian around Zz.

Given a set Q C R™ with its indicator function dq(z) equal to 0 for x € Q and
to oo otherwise, the reqular and limiting normal cones to Q at T € Q) are defined,
respectively, via the subdifferentials (2.2) and (2.3) by

(2.4) No(z) := 960 (z) and Ng(z) := 86(Z).

The coderivative constructions for F': R® = R™ at (z,y) € gph F' are defined via the
normal cones (2.4) to the graph of F at this point. They are the regular coderivative
and the limiting coderivative of F at (Z,§) given by
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(2.5) D*F(z,5)(v) :== {u € R" | (u,—v) € Ngpn p(z,9)}, vER™,
(2.6) D*F(z,§)(v) :=={u €R" | (u,—v) € Ngpu p(Z, )}, vER™,

respectively. In the case where F(Z) is the singleton {7}, we omit g in the notation
of (2.5) and (2.6). Note that if F': R® — R™ is Cl-smooth around Z, then

D*F(z)(u) = D"F(#)(u) = {VF(z)"u}, ucR",

where VF(Z)* is the adjoint/transpose matrix of the Jacobian VF(Z).

DEFINITION 2.1 (second-order subdifferentials). Let ¢ :R™ — R and Z € dom .
(i) For any j € Op(Z), the mapping 0*p(z,7) : R* = R™ with the values

(2.7) 9%p(z,7)(u) = (D*99)(2,7)(u), ueR",

is said to be the basic/limiting second-order subdifferential of ¢ at T relative to y.
(ii) For any y € 0p(), the mapping 0%¢(Z,y) : R® = R™ with the values

(2.8) P (#,9)(u) = (D*09)(7,9)(v), ueR",

is said to be the combined second-order subdifferential of ¢ at T relative to .

Clearly, we have the following inclusion:
(2.9) I*p(z,y)(w) C O*p(z,y)(w) for all (z,y) € gphdyp, w € R™.

We omit §j = V(Z) in the above second-order subdifferential notation if ¢ is C!-
smooth around Z. If ¢ is C2-smooth around Z, then we get, via the symmetric Hessian
matrix, that

%0(z)(u) = 9%p(z)(u) = {V?o(z)u} for all ueR",

This justifies the names of generalized Hessians for the second-order constructions
from Definition 2.1.

It has been recognized in variational analysis and applications to optimization and
related topics that the basic second-order subdifferential (2.7) enjoys well-developed
calculus rules in both finite and infinite dimensions [31, 32, 39, 38, 42, 43] and admits
efficient computations for major classes of extended real-valued functions encountered
in variational analysis, optimization, machine learning, statistics, stochastic systems,
optimal control, etc., as, e.g., in [9, 10, 12, 17, 18, 19, 22, 23, 42, 43, 45, 53]. In-
volving these calculuses and computations, the second-order construction (2.7) has
been instrumental, among other applications, in providing complete characterizations
of the fundamental notions of tilt and full stability in optimization, optimal control,
and variational systems, such as, e.g., in [13, 14, 15, 26, 29, 35, 37, 34, 36, 40, 42,
43, 46, 47], in characterizing global and local monotonicity properties of subgradient
mappings [7, 37], and in characterizing convezity and generalized convezity properties
of various classes of extended-real-valued functions; see [4, 6, 7, 24, 25].

Although calculus rules available for the combined second-order subdifferential
(2.8) are less impressive in comparison with those for (2.7), the second-order con-
struction (2.8) is proved to be useful, especially in infinite dimensions, to establish
neighborhood characterizations of tilt and full stability properties of variational sys-
tems, monotonicity properties of multifunctions, and (generalized) convexity prop-
erties of extended-real-valued functions; see, e.g., [4, 6, 7, 35, 37, 34, 43] and the
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references therein. Note that it is often easier to compute (2.8) than (2.7) and then to
employ the computation of (2.8) for the subsequent computation of the more robust
construction (2.7).

We need to recall yet another notion of generalized second-order derivatives in-
cluding second subderivatives [52] and quadratic bundles [50]. Given ¢: R™ — R with
T € dom, define the second subderivative of ¢ at T for v € R™ and w € R™ by the
lower limit of the second-order quotients

d*¢(Z,v)(w) := lim inf pl@ + u) _1(’0?) —r{v,u)
10 1.

u—w 2

Then ¢ is said to be twice epi-differentiable at T for v if for every w € R™ and every
choice of 73, | 0 there exists a sequence w® — w such that

o(& + Tpw"®) — (&) — 71 (v, W)
1,2
2Tk

— d*p(z,v)(w) as k — occ.

Twice epi-differentiability has been recognized as an important concept of second-
order variational analysis with numerous applications to optimization; see the afore-
mentioned monograph by Rockafellar and Wets and the recent papers [27, 28]. A
function ¢ : R — R is called a generalized quadratic form if ¢(0) = 0 and the map-
ping J¢ is generalized linear, i.e., gphdy is a subspace of R” x R™. The function
o is called generalized twice differentiable at T for a subgradient v € 9p(Z) if it is
twice epi-differentiable at z for ¥ with the second-order subderivative d?¢(Z,v) being
a generalized quadratic form. This allows us to define the quadratic bundle of ¢ at
for v by

(2.10)

the collection of generalized quadratic forms ¢ for which

I (zg,v) — (Z,0) with ¢ generalized twice differentiable

at zy, for vy and such that the generalized quadratic

forms ¢ = %d%p (zk,vi) converge epigraphically to g.

quad o(Z,0) :=

Next we recall some classes of extended-real-valued functions ¢: R™ — R broadly
used in the paper. As usual, ¢ is conver on a convex set 2 C R™ if

e((1=Nz+Ay) < (1= Ng(z) + Ap(y) for all z,y€Q, A€ 0,1].

We say that ¢ is strongly conver on ) with modulus « > 0 if its quadratic shift
©— (k/2)|| - ||? is convex on €, i.e.,

(211) (1= N+ M) < (1= V@) + Xo(y) = SA0 =)~y

for any x,y € Q, A € [0,1]. It is easy to see that if ¢ is strongly convex on  with
modulus k > 0, then the function h defined by h(z) := p(azx + b) is strongly convex
on ) with modulus ka?, where a # 0 and b € R are taken from (2.11).

An Ls.c. function ¢ is proz-regular at T € dom for ¥ € Op(Z) if there exist € >0
and r > 0 such that

(212) p(@) 2 () + (v, —u) = Zlo — ul]

for all x € B.(Z) and (u,v) € gphdp N (B.(Z) x B.(7)) with ¢(u) < ¢(T) + &, where
B.(a) stands for the closed ball centered at a with radius e. If this holds for all
v € Op(T), then ¢ is said to be proz-regular at Z.
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We say that ¢ is subdifferentially continuous at T for v € Op(Z) if for any £ >0
there exists 0 > 0 such that |¢(x)—¢(Z)| < € whenever (z,v) € gph dpN(Bs(Z) xBs(0)).
When this holds for all v € 9p(Z), the function ¢ is said to be subdifferentially
continuous at T. It is easy to see that if ¢ is subdifferentially continuous at z for
0, then the inequality “p(z) < ¢(Z) + €” in the definition of prox-regularity can
be omitted. Functions that are both prox-regular and subdifferentially continuous
are called continuously proz-reqular. This is a major class of extended-real-valued
functions in second-order variational analysis, being a common roof for particular
collections of functions important for applications, such as, e.g., amenable functions,
etc.; see [52, Chapter 13].

The following two well-known constructions play a crucial role in this paper.
Given an Ls.c. function ¢ : R® — R and a parameter value A > 0, the Moreau envelope
exy and prozimal mapping Prox,, are defined by

M 1 n n
(2.13) explw) i=inf {(y) + 55 ly— | |y eR"}, aeR",
1
(2.14) Proxy, () := argmin {(p(y) + ﬁHy —z|? ‘ yE R”}, reR".

A function ¢ is said to be proz-bounded if there exists A > 0 such that exp(z) > —o0
for some x € R™.

We now present important properties of the Moreau envelope and the proximal
mapping that are taken from [52, Proposition 13.37]. Recall that the y-attentive e-
localization of the subgradient mapping d¢ around (Z,) is the set-valued mapping
T: R™ = R"™ defined by

(2.15) T(x) = {vedp()|llv-2|<e} if [= - Z|| <e and |p(z) — p(T)| <e,
0 otherwise.

If p is an Ls.c. function, a localization can be taken with just p(z) < ¢(Z)+e¢ in (2.15).

Recall also that a function ¢ is of class C1'1 (or C1**)) around Z if it is C'-smooth

and its gradient is Lipschitz continuous around this point.

PROPOSITION 2.2 (Moreau envelopes and proximal mappings for prox-regular
functions). Let ¢: R® — R be an ls.c. and proz-bounded function which is prox-
reqular at T for © € Op(T). Then there exists a p-attentive e-localization T of Op
such that for all sufficiently small numbers X\ > 0 there is a convex neighborhood Uy
of T+ Ao on which the following hold:

(i) The Moreau envelope exp from (2.13) is of class Ct' on the set U,.

(ii) The prozimal mapping Proxy, from (2.14) is single-valued, monotone, and
Lipschitz continuous on Uy satisfying the condition Prox,(Z + A7) =Z.

(iii) The gradient of exy is calculated by

(2.16) Verp(z) = %(m - Proxw(ac)) = (M + T_l)_l(x) for all z e U,.

If, in addition, ¢ is subdifferentially continuous at T for v, then T in (2.16) can be
replaced by 0.

Next we formulate the main properties of extended-real-valued functions studied
in this paper, which have been recently introduced and investigated by Rockafellar in
[49, 50, 51].
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DEFINITION 2.3 (variationally convex functions). An lLs.c. function p:R™ — R
is called variationally convex at T for © € d¢(Z) if for some convex neighborhood U xV
of (z,0) there exist an l.s.c. convex function 1) < ¢ on U and a number € > 0 such
that
(2.17)
(UsxV)Ngphdp = (U x V)Ngphdy and p(x) =1(z) at the common elements (z, v),

where Uz :={x €U | p(x) < p(T) +e}. We say that ¢ is variationally strongly convex
at T for v with modulus o >0 if (2.17) holds with v being strongly convex on U with
this modulus.

Let us illuminate some remarkable features of Rockafellar’s notions from Defini-
tion 2.3.

Remark 2.4 (discussion on variational and strong variational convexity). Observe
the following;:

(i) Tt is easy to see from Definition 2.3 that if V' =R™ in (2.17), then the variational
convexity (variational strong convexity) reduces to the local convexity (local strong
convexity) of ¢ around Z but not necessarily otherwise; cf. [49, Examples 6 and 7].

(ii) In Definition 2.3 of variational convexity, the function v is locally convez (i.e.,
convex on U). In fact, it is possible to equivalently replace there the local convexity
by the global one. Indeed, if there exists a locally convex function ¢ satisfying (2.17),
we can define the function 1 : R — R by

— ._{w(x) if zel,

%) otherwise.

It is clear that 1 is an l.s.c. convex function on R™ with 9+ (x) = 9y (z) for any = € U,
which implies that

(U. x V)Ngphdp = (U x V) Ngph 9 and () = 1(x) at the common elements (z,v).

Similarly, the local strong convexity of 1 can be replaced by the global one for varia-
tional strong convexity.

(iii) The proz-regularity of ¢ at T holds automatically if ¢ is variationally convex
for this pair (Z,7). Indeed, we have by the convexity of ¢ in Definition 2.3 that

(@) > P(u)+ (v,x —u) for all x,u € R™ v e dp(u).
Combining this with (2.17) and ¢ < ¢ on U yields
o(x) > p(u)+ (v,x —u) forall x €U, (u,v) €gphdp N (Us x V),
which tells us that ¢ is prox-regular at T for ©. When ¢ is subdifferentially continuous
at T for v, we can replace the set U. by the neighborhood U in Definition 2.3.
(iv) If ¢ is C'-smooth around Z, then the variational convexity (variational strong

convexity) of ¢ at T for © = Vi (Z) reduces to the local convexity (local strong con-
vexity) around Z. Indeed, the underlying condition (2.17) reads for smooth functions

© as
(UxV)NgphVe = (U xV)Ngphdy and p(x) =1 (z) at the common elements (z,v).

Due to the continuity of Vi around Z, we can find a neighborhoodNﬁ CUof z
such that Vp(U) C V, which implies that ¢(x) = ¢(x) for any € U. Therefore,
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© is convex (strongly convex) on (7, which means the local convexity (local strong
convex) of ¢ around Z. This remark tells us that the novelty of variational convexity
(variational strong convexity) vs. local convexity (local strong convexity) emerges
only in nonsmooth functions.

The following example presents a nonconvex variationally convex function, which
is called ° pseudo-norm and is commonly used in compressive sensing; see, e.g., [3,
11].

Example 2.5 (variational convexity of £° pseudo-norm). Let ¢ : R™ — R given by
() := ||x]|o, which is the £° norm of x, counting the number of nonzero elements of
z. In other words, we can represent ¢ as

n

(p(x) :ZI({L’Z) for all z = (xly--~7xn) eR”
i=1

by using the standard notation

I(t)::{l it t£0,

0 otherwise.

It is easy to calculate the subdifferential of ¢ by

Op(x) = {v = (v1,v2,...,0,) ER"

UZZOIf 3727&0,
v eRif ;=0 [~

Let us show that ¢ is variationally convex at Z =0 for any © € dp(Z). Indeed, take
€€(0,1) and denote

U:=intBs, (0) x --- x intBs_ (0) and V :=intB.(v1) X --- x int B, (0y, ),

where §; := (1 + |v;|)7! for @ = 1,...,n. Define further the l.s.c. convex function
¥ :R™ =R by

¥(z) = ||z|1 + (v,x) for all xeR".

It is clear that ¢ < ¢ on U and that U, = {0}. Moreover, the simple computation
tells us that

_ _ n | Vi= v; + Sgl’l(.I‘i) if Z; 7é 07
aw(m)_{”_(““'“’“")ER v €0+ -1, 1]if ;=0 [

which implies therefore the equalities
(U xV)Ngphdp = (U x V)Ngphdy = {0} x Vand (0) = ¢(0).

This justifies (2.17) and thus shows that ¢ is variationally convex at z for v.

Next we recall some notions of monotonicity of set-valued mappings and their
local counterparts. A multifunction 7' : R” = R" is monotone relative to a subset
W CR™ x R™ if

(218) <’U1 — V2,U1 — u2> >0 forall (ul,vl), (ug,vg) S gphTﬂW

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Condition (2.18) is referred to as global monotonicity when W =R" x R™. Similarly,
strong monotonicity with modulus o > 0 corresponds to replacing (vy —ve,u; —uz) >0
in (2.18) by (v1 — va,u1 — uz) > oljug — ual|?.

Monotonicity can also be defined locally around a given point. More specifically,
T: R™” =2 R" is locally monotone around (z,v) € gphT if there exists a neighborhood
W C R™ x R™ of (Z,7) such that T is monotone relative to this neighborhood. For
an Ls.c. function ¢ : R® — R, the subgradient mapping d¢ : R® = R" is said to
be ¢-locally monotone around (Z,?) € gphdy if there exists a convex neighborhood
U x V of (z,v) such that Oy is monotone relative to the set

(2.19) W= {(z,y) €U x V] p(z) <p(z) + ¢}

for some € > 0. The same pattern defines the notion of w-local strong monotonicity.

It is clear that if T := J¢ is locally monotone around (Z,%) € gphdy, then it is
also y-locally monotone around this point. The reverse implication is not correct.
Indeed, consider the nonsmooth l.s.c. function ¢ : R — R defined by ¢(z):=0if z <0
and (x):=11if £ > 0. It is easy to check that

{0} if z#0,

[0,00) otherwise.

dp(x) = dp(z) = {

We see that dp is not locally monotone around (Z,9) := (0,0), but it is p-locally
monotone around this point because dy is locally monotone relative to the set

W= {(2,y) € Be(2) x Bo(0) | () < (@) + ¢},

where € € (0,1). When ¢ is subdifferentially continuous at Z for @, there is no difference
between the local monotonicity and ¢-local monotonicity of T':= dy around (Z, 7).

Next we consider a continuous (i.e., certainly being subdifferentially continuous)
and variationally convex function on R, which is known as the log-sum penalty func-
tion. This function is commonly used to bridge the gap between the £y and ¢; norms
in compressive sensing [3] and as a nonconvex surrogate function of the matrix rank
function in the low-rank regularization [11].

Ezample 2.6 (log-sum penalty function). Let ¢ : R™ — R be given by

p(z)= Zlog(l + |z;]) for all = (z1,...,2,) ER".

i=1
We clearly have the subdifferential representation

dp(z) ={v=(v1,v2,...,0,) ER" |1 €G(x;), i=1,...,n},

where the multifunction G: R = R is defined by

1 .

1‘;—71 if t<0,
Gt)={[-1,1] if t=0,
1 .

— if t>0.
t+1

To show that ¢ is variationally convex at T := 0 for any ¥ € intdp(z) = (—1,1)",
observe that Oy is locally monotone around (Z,7). Then the claimed variational
convexity of ¢ follows from [49, Theorem 1].

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/06/23 to 141.217.242.94 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1130 P. D. KHANH, B. S. MORDUKHOVICH, AND V. T. PHAT

Finally in this section, we recall the fundamental notion of tilt stability of local
minimizers introduced by Poliquin and Rockafellar [46] and then comprehensively
investigated in many publications mentioned above (see also the references therein)
with numerous applications in variational analysis and optimization.

DEFINITION 2.7 (tilt-stable local minimizers). Given ¢: R™ — R, a point T €
domy is a tilt-stable local minimizer of ¢ if there exists a number v >0 such that the
mapping
(2.20) M, : v argmin{p(z) — (v,2) |z € B, ()}

1s single-valued and Lipschitz continuous on some neighborhood of 0 € R™ with
M, (0) = {z}.
We also consider in what follows a quantitative version of this notion that specifies
a modulus of tilt stability. Namely, Z is a tilt-stable minimizer of ¢ with modulus
& > 0 if the mapping M., is Lipschitz continuous with constant « in the framework of
Definition 2.7.

The remark below discusses relationships between variational convexity and lo-
cal minimizers as well as between variational strong convexity and tilt-stable local
minimizers.

Remark 2.8 (variational convexity and local minimizers). Considering an
extended-real-valued Ls.c. function ¢ : R™ — R, observe the following:

(i) If ¢ : R™ — R is variationally convex at Z for 0 € dp(z), then Z is a local mini-
mizer of ¢. The reverse implication fails in general. Indeed, consider the continuous
function

i 141 || ! Uy 2 <| |<1
min — )|z - —x, = if —— <|2| <=
(2.21) o(x):= n nn+1)"n n+1="""n’
0 it =0

taken from [13, Example 3.4]. It is easy to check that this function is not prox-regular
at its local minimizer £ = 0 for ¥ = 0, and hence it is not variationally convex for
these points by Remark 2.4(iii).

(ii) It follows from [49, Theorem 2.3] that if ¢ : R® — R is variationally strongly
convex at Z for 0 € 9p(Z) with modulus o > 0, then Z is a tilt-stable local minimizer of
¢ with modulus 0 ~'. However, the reverse implication may fail in simple situations.
As shown in [13, Example 3.4], the point Z =0 is a tilt-stable local minimizer of ¢
from (2.21). However, by (i) this function is not even variationally convex at Z for
v=0.

Note that the failure of the reverse implication in Remark 2.8(ii) is impossible if
a function p: R® — R is continuously proz-reqular at z for 0. This is proved in the
next proposition.

PROPOSITION 2.9 (equivalent descriptions of variational strong convexity). Let
@ : R" — R be continuously proz-reqular at & € domep for 0 € d¢(Z). Then the
following assertions are equivalent:

(i) ¢ is variationally strongly convex at T for v =0 with modulus o > 0.

(ii) z is a tilt-stable local minimizer of ¢ with modulus o~ *.

(iii) Oy is locally strongly monotone around (z,0) with modulus o > 0.

Proof. Due to the continuous prox-regularity of ¢ at Z for 0 and [49, Lemma 4.1],
the variational strong convexity of ¢ at & for 0 with modulus ¢ > 0 is equivalent to
the existence of neighborhoods U of & and V of 0 such that
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o) > o(u) + {(v,x —u) + %Hx—u”z for all z €U, (u,v) € gphdp N (U x V).

The latter condition is equivalent to Z being a tilt-stable local minimizer of ¢ with
modulus o~ by [35, Theorem 3.2], which justifies therefore the equivalence between
(i) and (ii). The equivalence between the assertions (i) and (iii) follows from [49,
Theorem 2]. |

Remark 2.10 (on second-order characterizations of variational strong convexity).
It is known that the tilt stability of a continuously prox-regular function ¢ at  for 0
is equivalent to the positive-definiteness of the second-order subdifferential 9%y (z,0);
see [46]. Therefore, by the equivalent descriptions of the variational strong convex-
ity in Proposition 2.9, we can immediately obtain the second-order characterizations
for variational strong convexity at T for o = 0 in the case where ¢ is continuously
prox-regular. It is shown in section 5 that we can obtain the coderivative-based char-
acterizations of both variational convexity and variational strong convexity without
using the characterizations of tilt stability. This new approach is mainly based on the
usage of the “hidden convexity” of Moreau envelopes established in the next section.

3. Variational convexity via Moreau envelopes. As mentioned in section
2, a variationally convex function around a given point is not necessarily convex
around this point. In this section, we show that the variational convexity of an l.s.c.
function is equivalent to the local convexity of its Moreau envelope. This kind of
“hidden convexity” is not only significant for its own sake, but also plays a crucial
role in establishing the new characterizations of variational convexity via second-order
subdifferentials (2.7) and (2.8), which are provided in section 5.

To proceed, we begin with the following lemma taken from [49, Theorem 1], which
lists the characterizations of variationally convex functions via some properties of their
limiting subdifferentials (2.3).

LEMMA 3.1 (subgradient characterizations of variational convexity). Let ¢ :
R" — R be an Ls.c. function with T € domy and v € 0p(z). The following as-
sertions are equivalent:

(i) ¢ is variationally convex at T for v.

(ii) Oy is w-locally monotone around (T,).

(iii) There are neighborhoods U of T, V' of ¥, and a number € >0 such that

(3.1) o(z) > pu)+ (v,x —u) forall xeU, (u,v)€gphdpn (U: x V),
where Ug :={u e U | p(x) < p(T)+€}.

Here is the aforementioned interconnection of variational convexity of extended-
real-valued functions and local convexity of their Moreau envelopes.

THEOREM 3.2 (characterization of variational convexity via Moreau envelopes).
Let ¢ :R™ =R be an l.s.c. and proz-bounded function with & € domp and v € Op(Z).
The following assertions are equivalent:

(i) ¢ is variationally convexr at T for T.

(ii) ¢ is proz-regular at T for U, and the Moreau envelope exp is locally convex
around T 4+ Av for small A > 0.

Proof. By Remark 2.4(iii), the variational convexity of a function yields its prox-
regularity. Therefore, we only need to verify that assertion (i) is equivalent to the
fact that the Moreau envelope ey is locally convex around T 4+ Av for all A > 0 suffi-
ciently small, provided that ¢ is prox-regular at & for v. Observe first that it follows
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directly from definitions (2.12) of prox-regularity and (2.2) of regular subgradients
that © € Op(Z). Proposition 2.2 tells us that the assumed lower semicontinuity, prox-
boundedness, and prox-regularity properties of ¢ guarantee the existence of A\g > 0
and a -attentive y-localization 7' : R™ = R™ given by

{vedo(@)| -1l <7} i fz— 2| <y and o(e) <)+,
1) otherwise

(3.2) T(x):= {

such that for any A € (0,)) there is a neighborhood Uy of Z 4+ AU on which eyp
is of class C1', that the proximal mapping Prox,, is single-valued and Lipschitz
continuous on Uy with Prox,(Z 4+ A\v) =z, and that the gradient expression for the
Moreau envelope (2.16) holds with T" taken from (3.2).

To verify (i)=(ii), suppose that ¢ is variationally convex at z for v and deduce
from Lemma 3.1 that 9y is ¢-locally monotone around (Z,%). Then there exists € > 0
such that the subgradient mapping d¢p is monotone relative to the set W from (2.19).
Fixing any A € (0, \g), we get from (2.16) that
(3.3) (I = AVerp)(T+A0)=Z and Vexp(Z + \0)=1.

It follows from (3.3) and from the continuity of 1 := exp — 55 ||Proxx,(-) — +||* and
Vexp, I — AVeyp around T + Av that there exists a neighborhood U C Uy of T + A\v
such that

(3.4)

(I = AVexp)(z) x Verp(z)) € Bo(Z) x B () and ¥x () — A (Z+ A0) < e for allz € U.

Definitions (2.13), (2.14) and the above construction of ) ensure that ¥y(z) =
@(Proxy,(z)) for all z € U. Fixing now any z1,z9 € U and using (2.16) and (3.4), we
get for i =1,2 the relationships

Veap(z;) € T(gcl- — )\VeA(,o(an))7

@(m; — AVerp(xi)) = o((Proxag (i) = ta(x:)
<PA(T 4+ AD) + £ = o(Proxa, (T + A\0)) + e = ¢(Z) +&.

By (2.19), this justifies the inclusions (z; — AVeyp(x;), Veaxp(x;)) € W NgphT for
i=1,2. Combining the latter with the monotonicity of dp relative to W, we arrive at

(Veap(a1) = Veap(az), o1 — 2) 2 M|[Verp(z1) — Verp(z2)[|* 2 0,

which verifies the convexity of exp on U due to [20, Theorem 4.1.4], and therefore
(ii) holds.

To prove next the reverse implication (ii)=-(i), assume that the Moreau envelope
exp is locally convex around Z 4+ Av for A > 0 sufficiently small. Fixing A € (0, \o),
suppose without loss of generality that ey is convex on Uy. Utilizing the first-order
characterization of Cl-smooth convex functions in [20, Theorem 4.1.1] gives us

(3.5) exp(z) > exp(u) + (Veap(u),z —u) for all x,u e Uy.

Select neighborhoods U of z and V' of © such that U C intB,(z), V CintB,(7), and
(3.6) x4+ Mv e U, whenever €U and veV.

By Lemma 3.1, it suffices to verify that

(3.7) () > @(u) + (v,x —u) for all zeU, (u,v) €gphdp N (U, x V),

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/06/23 to 141.217.242.94 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

VARIATIONAL CONVEXITY AND VARIATIONAL SUFFICIENCY 1133

where U, is defined as in Lemma 3.1. Pick z € U, (u,v) € gphdp N (Uy x V) and
deduce from (3.2) that (u,v) € gph T, which yields u + v € (A +T~1)(v). It follows
from (2.16) and (3.6) that

Vere(u+ )= +T7H  u+ ) =0,
Proxy,(u+ Av) =u+ v — AVerp(u+ Iv) =,

which implies in turn the equalities

1
exp(u+ Av) = o(Proxy,(u+ Av)) + 5”“ + Av — Proxy, (u + Av)|?
_ 1 2 _ A2
= () gl Do = ulf? = () + 5 ol
By (3.5), we get the relationships

A 1
o) + S0P = (@) + 55 12+ 2o = 3]* 2 expla + Xo)

A
> exp(u+ ) + (Veap(u + M), 2 + € = (u+ W) = p(u) + S0 + (v, 2 — w).

Subtracting the term (\/2)||v||? from both sides of the above inequalities, we arrive
at the desired condition (3.7) and thus complete the proof of the theorem. |

Finally in this section, we discuss some applications of Theorem 3.2 to numerical
optimization.

Remark 3.3 (applications of variational convexity to generalized Newton meth-
ods). In the recent papers [22, 23, 21] and [44], several generalized Newton methods
of nonsmooth optimization have been designed and justified in the following pattern:
dealing first with problems of C!'! optimization and then propagating the algorithms
and the imposed assumptions to extended-real-valued proz-regular functions by using
their Moreau envelopes and proximal mappings. In this way, well-posedness and su-
perlinear local and global convergence of the proposed generalized Newton algorithms
have been established for problems of minimizing prox-regular functions, and hence
for problems of constrained optimization, in terms of their given data as well as of
solutions to subproblems in (2.13) and/or (2.14). Although constructive applications
of this procedure to solving some practical models, which appear in machine learning,
statistics, etc., are developed in the aforementioned papers, the implementation of
the designed algorithms for general classes of prox-regular functions is a challenging
issue. However, the wvariational convexity of the original cost function allows us to
reduce, by Theorem 3.2, the minimization subproblems in (2.13) and (2.14) to prob-
lems of convex optimization, which admit the much more elaborated machinery to be
constructively resolved. Detailed investigations in this direction will be conducted in
our future research.

4. Variational strong convexity via Moreau envelopes. The main goal
of this section is to establish characterizations of wariational strong convexity of
extended-real-valued functions via strong convexity of Moreau envelopes with precise
relationships between the corresponding moduli.

We begin with recalling subgradient characterizations of variational strong con-
vexity taken from [49, Theorem 2].

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/06/23 to 141.217.242.94 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1134 P. D. KHANH, B. S. MORDUKHOVICH, AND V. T. PHAT

LEMMA 4.1 (subgradient characterizations of variational strong convexity). Let
@ :R" = R be an Ls.c. function with T € domy and v € 0p(z). The following
assertions are equivalent:
(i) ¢ is variationally strongly convex at T for v with modulus o > 0.
(ii) Oy is p-locally strongly monotone around (Z,v) with modulus o > 0.
(iii) There exist neighborhoods U of T, V of v, and a number € >0 such that
)

(4.1) p(z) > (u)+(v,x—u>+§||x—u||2 for all x €U, (u,v) € gphOpN (U x V),

where Ug is defined in Lemma 3.1.

Given an ls.c. function ¢ : R” — R with Z € domy and o # 0, consider its
o-quadratic shift
(4.2) Wx) :=p(x) — %Hx—f\\z for all x € R™.

The next lemma presents relationships between variational strong convexity of a
function and variational convexity of its quadratic shift (4.2).

LEMMA 4.2 (variational strong convexity via quadratic shifts). Let ¢ : R® — R
be an Ls.c. function with Z € domy and v € 0p(Z), and let ¥ be defined in (4.2) with
some g >0. Then the following hold:

(i) D is p-locally strongly monotone around (Z,v) with modulus o if and only if
0 is ¥-locally monotone around the pair (Z,v).

(ii) ¢ is variationally strongly convex at T for v with modulus o if and only if the
quadratically shifted function ¥ is variationally convex at T for v.

Proof. The elementary sum rule for limiting subdifferentials from [32, Proposition
1.30] gives us
09(x) =0p(x) —o(x —T) whenever x € dom .

Therefore, we have © € 99(Z) if and only if o € 9p(Z). Since (ii) follows directly from
(i) by using the equivalences in Lemmas 3.1 and 4.1, it suffices to verify (i). To furnish
this, fix € > 0 and denote U := int]B%\/E/—J(:E). Define

U¢:={zeU|p(x)<p@) +e},
U£/2 = {er‘ﬂ(w)<ﬂ(i)+6/2}, and UY := {zeU|d(z)<V(z)+c}.

Given a convex neighborhood V of o, both sets V + o(U —Z) and V — o(U — Z) are
also convex neighborhoods of ¥ with the fulfillment of implications

(4.3)
(z,v) € gphd¥ N (U? oo X V)= (z,v+0o(x—z)) €gphdpn (Uf x [V +0o(U — 2)]),
(4.4)

(z,v) € gphdp N (U? x V) = (z,v—o(x —)) € gphdI N (U x [V —o(U — 7))).

Furthermore, we have the following equivalences:

(4.5)
v — U2, T — 22) > 0= ([vy +o(x1 — )] — [2 + o(x2 — Z)], 21 — T2) > o||lz1 — 22|,

{
(4.6)
{

V] — V2, X1 — Ta) > 0|l — x2|| — ([v1 —o(x1 — Z)] — [v2 — o(z2 — T)],x1 — x2) > 0.
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Combining (4.3) and (4.5) gives us the implication
@-locally strong monotonicity of dp around (z,7) = ¥-local monotonicity of 9
around (Z, ).
Finally, combining (4.4) and (4.6) tells us that
¥-local monotonicity of ¢ around (Z,v) = p-locally strong monotonicity of d¢
around (Z, ),
which therefore completes the proof of the lemma. ]

The next lemma calculated the Moreau envelope of the quadratically shifted func-
tion (4.2).

LEMMA 4.3 (Moreau envelope of quadratic shifts). Let ¢ : R™ — R be an Ls.c.
and proz-bounded function, and let T € dom . Given o # 0, consider the quadratic
shift (4.2). Then for each v € (0,|o|™1) we have

T — oyT

g = n
4D et ey (22 ) - g male -l weRn

Consequently, the following holds for any X € (0,]o|~1):

g

=112 n
—z||%, eR".
1 A)Hx xH T

T+ oA\T
(4.8)  exp(r) =ex/a+on? ( 140X ) Ty

Proof. Pick any v € (0, |o0|~1), and get by definition (2.13) of the Moreau envelope
that

. Lo el T — 212 + iy — 2l
ety = int {00 + 5yl } = ing {iots) = Sl = alP + 5212}

o 1 1 1
=inf {o(y) — =lly—z|*+ —lly—z|*+ ~(y — 2,2 — = +x—x2}
{ot = G2+ -2l + 2 )+ -l —al

yeR™ 2

. 1—o0y 2, 1 - 1 —112
= inf + - zZ|"+ -y —r,r—x)+ ———|lr—<

Jnf {@(y) % ly — 2| 5 (y ) 1 —07) | [

(5w

1 T — 0YT||2 o
— inf H . H T e—z|
ylean{so(y)+2 i e PRl

1—0ovy
Tr—o0YT o _2 n
= _ — — R
67/(1 U’Y)<p< 1_0_,}/ ) 2(1_07)”1' 1‘” ’ TE )
which verifies (4.7). The second representation (4.8) follows from (4.7) since ¢
can be seen as the shifted function of ¢ with modulus —o, ie., ¢(x) = ¥ (z)—
(—o/2)|lx - z]*. 0

Now we are ready to derive the main result of this section that establishes the
equivalence between the variational strong convexity of an extended-real-valued func-
tion and the local strong convexity of its Moreau envelope with a precise relationship
between the corresponding moduli.
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THEOREM 4.4 (quantitative characterization of variational strong convexity via
Moreau envelopes). Let ¢ : R" — R be Ls.c. and proz-bounded with T € dom¢ and
v € 0p(Z). Then the following are equivalent:

(i) ¢ is variationally strongly convex at T for v with modulus o > 0.

(ii) ¢ is proz-regular at T for v and exp is locally strongly convex around T + \v
with modulus 2 for all numbers A >0 sufficiently small.

Proof. We start with verifying implication (i)==(ii). Note that the claimed prox-
regularity of ¢ under (i) is checked in Remark 2.4(iii). Considering the shifted function
9 from (4.2), we get by Lemma 4.2 that ¥ is variationally convex at z for v. Utilizing
Theorem 3.2 tells us that ey is locally convex around Z + Av for all small A > 0. Fix
such a number A, and define v:= A/(1+0\). Since v < A, we find 5 > 0 ensuring that
e, is convex on B, (Z + ). Letting € := (14 oA)n >0 gives us the implication

T+ AoZ
1+0oA
Define further the function 6 :B.(z 4+ Av) — B, (Z 4+ ~y0) by

x€B(T+ \v) = €B,(Z+ 7).

T+ Ao

and deduce from (4.8) the following representation of the Moreau envelope:

o
exp=(e,) o+ m” ||

Since (e41) 0 6 is a composition of a convex function and an affine one, it is convex

on B.(Z + Av). This tells us that eyy is strongly convex on B.(Z + Av) with modulus

/(14 o)), which justifies the claimed implication.

Next we verify implication (ii)==(i). Suppose that the Moreau envelope ey¢
is locally strongly convex around Z + A% with modulus p(\) := o/(1 + o) for all
A € (0,071) sufficiently small. Fixing such a number A, for each v € (0,\/(1+ o))
we have 0 < /(1 — o) < A. This allows us to choose 7 > 0 so that e, /1_q4)¢ is

0l
1—ovy

strongly convex on B,, ( Z + T)) with modulus p(y/(1—07v)) =0(1 —07). Letting

e:=(1—o0v)n >0 yields the implication

T —oYT
erBE(a?+76):>77€IB%n Y
1—o0vy 1—ovy

Symmetrically to (4.9), define the function 6 : B.(Z + ) — B, (55 + 1% 17) by

~ Tr—YyoZT
0(x) = ——
(@)=~ =
and then deduce from (4.7) the representation
~ o

ey = (€ /(1)) 0 0 — m” -—z|)?,

where ¥ is taken from (4.2). As follows from the discussion after the definition of

strong convexity in (2.11), the composite function (e./(1—s)¢) 00 is strongly convex
on B.(Z + ) with modulus

1 2 o
1-— = .
ott=o7) (107) l1—oy
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This tells us that e, is convex on B.(Z + ), which implies by Theorem 3.2 that ¢
is variationally convex at Z for v. Utilizing finally Lemma 4.2, we verify (i) and thus
complete the proof. 0

When the modulus of variational strong convexity is not involved, we have yet
another equivalence.

THEOREM 4.5 (equivalence between variational strong convexity and local strong
convexity of Moreau envelopes). Let ¢ : R™ — R be an l.s.c. and proz-bounded function
with T € dom, and let 0 € dp(T). Then the following assertions are equivalent:

(i) ¢ is variationally strongly convex at T for v.

(ii) ¢ is proz-reqular at T for v and exp is locally strongly convex around T + \v
for all small X > 0.

Proof. Implication (i)==-(ii) is an immediate consequence of Theorem 4.4. Sup-
pose that (ii) holds, and find Ao > 0 such that ey is locally strongly convex around
T 4+ Ao with some modulus o) > 0 for any A € (0,)g). It follows from Proposition
2.2 that there exists a @-attentive y-localization T of ¢ given by (3.2) such that for
all A > 0 sufficiently small there is a convex neighborhood Uy of Z 4+ A on which
exp is Cb! on Uy satisfying Prox,,(Z + A0) = Z with (2.16). Fix A € (0,¢), and
suppose without loss of generality that ey is strongly convex on Uy with modulus
ox. Utilizing the first-order description of C!'-smooth strongly convex functions from
[20, Theorem 4.1.1] gives us

(4.10) exp(x) > exp(u) + (Vexp(u),r — u) + %Hx —ul? for all z,ucUy.

Let U and V be neighborhoods of Z and o, respectively, such that U C intB,(z),
V CintB,(7), and

(4.11) x+ A e Uy whenever zeU,veV.
By Lemma 4.1, it is sufficient to prove that
(4.12) p(z) > <p(u)+<v7m—u>+%\\x—u||2 for all z €U, (u,v) € gphdpN (U, xV),

where U, is defined in Lemma 4.1. Picking z € U and (u,v) € gphdp N (U, x V), we
get by (3.2) that (u,v) € gph T, which yields u + v € (A + T~ 1)(v). It follows from
(2.16) and (4.11) that

Verxe(u+ )= +T7H 7 u+ ) =0,
Proxy,(u+ Av) =u+ v — AVerp(u+ Av) =,

leading us to the envelope representation
exp(u+ Av) = o(Proxy, (u + Av)) + %Hu + Av — Prox,(u + )\U)H2
= () + g+ 2o — il = () + 5 ol
Apply further the estimate in (4.10) to get the relationships
o(@) + 2 loll* = p(a) + g lla + Do — 2> > expla + Mv)
>exp(u+ ) + (Vexp(u + Av),z + v — (u+ Av)) + %Hx — ul?

A O\
= o) + SV + (v, 0 = w) + Bl — uf®.
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Subtracting the term 3 |[v[|> from both sides above, we arrive at (4.12) and thus
complete the proof. O

Note that the characterization of variational convexity and variational strong con-
vexity for extended-real-valued functions, which are obtained in sections 3 and 4 via
Moreau envelopes, significantly employ the proz-reqularity of the function in ques-
tion while not its continuous prox-regularity; i.e., the subdifferential continuity of the
function is not assumed. In contrast, the latter property is essential for establishing
coderivative characterizations of both variational convexity properties that are given
in the next section.

5. Coderivative-based characterizations of variational convexity. This
section is devoted to deriving complete characterizations of both variational convexity
and variational strong convexity properties of continuously proz-regular functions via
their combined and limiting second-order subdifferentials taken from Definition 2.1.

We begin with the lemma, which provides a second-order sufficient condition for
convexity of smooth functions.

LEMMA 5.1 (second-order condition for convexity of C'-smooth functions). Let
©: Q=R be a Cl-smooth function, where ) #Q CR™ is an open convex set. Then ¢
18 convex on § if we have

(z,w) >0 for all z€ (D*V)(z)(w), z€Q, weR™.

Proof. 1t follows from the proof of [6, Theorem 3.1]. O

Now we are ready to obtain the main coderivative-based second-order character-
izations of variational convexity.

THEOREM 5.2 (second-order subdifferential characterizations of variational con-
vexity). Let ¢ : R" — R be subdifferentially continuous at T € domp for v € dp(T).
Then the following assertions are equivalent:

(i) ¢ is variationally convex at T for v.

(ii) ¢ is proz-regular at T for © and there exist neighborhoods U of & and V' of ©
such that

(5.1)  (z,w) >0 wheneverz € Ip(z,y)(w), (z,y) € gphdpN (U x V), w e R".

(iii) ¢ is proz-regular at T for v and there exist neighborhoods U of T and V of v
such that

(5.2)  {(z,w) >0 whenever z € d*p(x,y)(w), (x,y) € gphdeN (U x V), we R™.

Proof. We start with verifying implication (i)=(iii). As mentioned, variational
convexity in (i) yields the prox-regularity of ¢ at Z for ©. Due to the imposed subdif-
ferential continuity of ¢, this ensures the existence of neighborhoods U of  and V of
v as well as of an l.s.c. convex function v such that ¥ < on U and
(5.3)

(UxV)Ngphdp = (U x V) Ngphdy and p(x) =1 (x) at the common elements (z,v).

Picking any (z,y) € gphdp N (U x V), w € R™, and z € 9?p(x,y)(w) implies by (5.3)
that

P o(z,y)(w) = 0*p(z,y)(w),
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which tells us in turn that 2z € 9%y (z,y)(w). Applying now to ¢ the second-order
necessary condition for convexity of l.s.c. functions from [4, Theorem 3.2], we get
(z,w) > 0 and this justifies assertion (iii). Implication (iii)==-(ii) follows from the
inclusion in (2.9), valid for all (z,y) € gphd¢ and w € R™, which thus verifies (5.1).

It remains to verify the reverse implication (ii)==-(i). To furnish this, observe first
that the imposed prox-regularity in (ii) allows us to suppose without loss of generality
that ¢ is prox-bounded. Indeed, we can always get this property by adding to ¢ the
indicator function of some compact set containing a neighborhood of . Therefore,
the properties of Moreau envelopes from Proposition 2.2 give us Ag > 0 such that for
any A € (0, \g) there exists a convex neighborhood Uy of Z + Av on which

(5.4) the Moreau envelope exp is CH' on Uy and Veyp(z) = (M + (3@)71)71(@

for all z € Uy. Since (ii) holds, there are neighborhoods U of Z and V' of © where (5.1)
is satisfied. Fixing any A € (0, \g), it follows from the continuity of the mappings Ve,
and I —AVeyp around 740 and from Veyp(Z+A0) =0 with (I -AVexp)(Z+A0) =7
that there exists a convex neighborhood U C Uy of £ + Av on which

(5.5) (I = A\Vexp)(z) x Vexp(z) eU xV, zel.

By using Lemma 5.1, let us now show that ey is convex on U. Indeed, take
r €U, ueR" and z € (D*Vexp)(z)(u). It is easy to check that —u €
D*(Vexp) H(Veap(z),2)(—2). Furthermore, it follows from (5.4) and the coderiva-
tive sum rule in [31, Theorem 1.62] that
D*(Vexp) ™ (Verp(a), x) (=2) = D" (A + (99) ") (Verp(x), z) (—2)
=Xz + D*(dp)7? (Vexp(z),z — AVerp(x))(—2),

which implies that Az —u € D*(9¢) L (Verp(x), 2 — AVerp(x))(—z). In other words,
z € (D*0yp) (z = AVerp(z), Verp(z)) (u — Xz).

Using (5.1) and (5.5), we obtain the inequality (z,u — Az) > 0, and so (z,u) > 0.
Therefore,

(z,u) >0 for all z€ (ﬁ*Ve,\go)(x)(u), wueR", zel.

By Lemma 5.1, the function ey is convex on U. Finally, we apply Theorem 3.2 on
the characterization of variational convexity via Moreau envelopes, which verifies (i)
and thus completes the proof of the theorem. 0

As a consequence of Theorem 5.2, we arrive at the new second-order sufficient
conditions for minimizing extended-real-valued continuously prox-regular functions.

COROLLARY 5.3 (second-order sufficient optimality conditions for continuously
prox-regular functions). Let ¢ :R™ — R be continuously proz-reqular at & € dom ¢ for
0€ 9p(z). Then T is a local minimizer of ¢ if either one of the following conditions
1s satisfied:

(i) There exist neighborhoods U of & and V' of the origin in R™ such that

(z,w) > 0 whenever z € I*p(z,y)(w), (z,y) € gphdpN (U x V), w € R".
(ii) There are neighborhoods U of T and V' of the origin in R™ such that

(z,w) > 0 whenever z € 8*p(x,y)(w), (x,y) € gphdp N (U x V), w € R".
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Proof. Tt follows immediately from Theorem 5.2 and Remark 2.8(i). a0

The next theorem provides second-order subdifferential characterizations of vari-
ational strong convexity with a prescribed modulus for extended-real-valued continu-
ously prox-regular functions.

THEOREM 5.4 (second-order characterizations of variational strong convexity).
Let o :R" — R be subdifferentially continuous at € dom for v € dp(z). Then the
following assertions are equivalent:

(i) ¢ is variationally strongly convex at T for v with modulus o > 0.

(i) @ is proz-regular at T for v and there exist neighborhoods U of T and V' of ©
such that

(5.6) (z,w)>ollw||® whenever z € dp(x,y)(w), (z,y) € gphdp N (U x V), w € R™.

(iii) ¢ is proz-regular at T for v and there are neighborhoods U of T and V of v
such that

(5.7) {z,w) > o|jw||® whenever z € 8*p(x,y)(w), (z,y) € gphdp N (U x V), w € R™.

Proof. First we justify implication (i)==-(iii). Since the prox-regularity is auto-
matic under (i), we proceed with verifying (5.7). It follows from Lemma 4.2 that the
o-quadratic shift 0 := ¢ — || - —z||? is variationally convex at Z for v. Applying to 9
the second-order characterization of variational convexity from Theorem 5.2(iii), we
find neighborhoods U of Z and V' of © such that

(58)  (z,w)>0 whenever z € 8*9(z,y)(w), (z,y) € gphdIN (U x V), w e R".
The elementary sum rule for limiting subgradients from [32, Proposition 1.30] yields
(5.9) 0Y(z) = dp(x) —o(x — ) for any x € dom .

Defining the affine transformation L : R” xR™ — R" xR" by L(z,y) := (z,y—oc(x—T))
for all (z,y) € R" xR", we find neighborhoods U of Z and V' of © such that L(U x V) C
U x V, which implies that

(5.10) (2,y) €U x V= (z,y —o(z—2)) €U X V.

To verify now (5.7), pick any (z,y) € gphdp N (U x V) and deduce from (5.9) and
(5.10) that

(5.11) (z,y —o(z — %)) €gphdI N (U x V).
Fix w € R" and z € 9?p(x,y)(w) = (D*0¢)(x,y)(w). It follows from the limiting
coderivative sum rule in [31, Theorem 1.62(ii)] that we have

(D*0) () (w) = D*09 (2, — o — ) (w) + 0w,

which tells us that z — ow € (D*99)(x,y — o(x — 7)) (w) = 8*I(z,y — o(z — 7)) (w).
Combining the latter inclusion with (5.8) and (5.11), we arrive at (z — cw,w) > 0,
ie., at (z,w) > o|wl|? which gives us (5.7) and thus verifies the claimed implication
(i) = (iii). The one in (iii)==(ii) follows from the inclusion in (2.9).

To complete the proof of the theorem, it remains to justify implication (ii)=(i).
Suppose that ¢ is prox-regular at T for v, and then find neighborhoods U of Z and
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V of v such that (5.6) is satisfied. Our immediate goal is to check that the function
¥:=¢@—%||-—z||* is variationally convex at z for v. To furnish this, consider another
affine transformation Ly(x,y) := (z,y + o(x — 7)) on R™ x R™ for which there are
neighborhoods U of  and V of ¥ with L1 (U x V) C U x V. It follows from (5.9) that

(5.12) (z,y) € gphdIN (U x V) = (z,y+o(z—2)) €gphdpn (U x V).

Take (2,y) € gphdIN(Ux V), w € R™, and z € (ﬁ*@ﬁ)(m,y)(w). By using the regular
coderivative sum rule from [31, Theorem 1.62(i)], we get

(13*319)(3:, y)(w) = ﬁ*&p(a:, y+o(x— f)) (w) — ow,

which ensures that z + ow € (D*¢)(z,y + o(z — Z))(w). It follows from (5.6) and
(5.12) that (2 +ow,w) > o|jw|?, i.e., (z,w) > 0. Applying the second-order subdiffer-
ential characterization of variational convexity from Theorem 5.2(ii) tells us that ¥ is
variationally convex at T for . To deduce from here the strong variational convexity
of ¢ at = for v, we just employ Lemma 4.2 and therefore complete the proof of the
theorem. |

Note that the obtained characterizations of variational convexity and variational
strong convexity expressed in terms of the limiting second-order subdifferential (2.7)
are more preferable in comparison with their counterparts given via the combined
second-order subdifferential (2.8). This is due the robustness and well-developed
calculus rules for the former construction that is not the case for the latter one.
Nevertheless, the characterizations derived in Theorems 5.2 and 5.4 even in terms of
(2.7) involve neighborhoods of the reference point. It is definitely desired to establish
point-based characterizations of these properties expressed via (2.7) just at the point
in question.

We now obtain such a point-based characterization for the variational strong
convexity property of continuously prox-regular functions. Establishing results of this
type for (nonstrong) variational convexity is an open question.

To proceed, recall the following lemma taken from [8, Proposition 4.6].

LEMMA 5.5 (point-based second-order sufficient condition for local strong con-
vexity of functions from class C*1). Let ¢ : R™ — R be a function of class C*' around
Z € R™. Then  is locally strongly convex around T if we have the positive-definiteness
condition

(z,w) >0 for all z€ (D*Ve)(Z)(w), weR™\ {0}.

Here is a point-based characterization of variational strong convexity for subdif-
ferentially continuous functions.

THEOREM 5.6 (point-based second-order subdifferential characterization of vari-
ational strong convexity). Let ¢ : R™ — R be a subdifferentially continuous function
at T € domy for v € Op(x). Then the following assertions are equivalent:

(i) ¢ is variationally strongly convex at T for v.

(ii) ¢ is proz-regular at T for v and the second-order subdifferential (2.7) is
positive-definite in the sense that

(5.13) (z,w) >0 whenever z € 0%p(z,v)(w), w # 0.

Proof. Implication (i)==(ii) follows from Theorem 5.4. To verify the converse
implication (ii)==(i), observe as above that the prox-regularity of ¢ imposed in (ii)
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ensures without loss of generality that ¢ is prox-bounded. By the properties of Moreau
envelopes listed in Proposition 2.2, we find Ay > 0 such that for any A € (0, \g) there
exists a convex neighborhood U) of Z + Av on which

the Moreau envelope exp is C1'' on Uy and Vexp(z) = (M + (&p)_l)il

(x)

for all x € Uy. Fix any A € (0,\g), and show that eye is locally strongly convex
around T+ A\0. Indeed, take z € (D*Vexp)(Z+ A0)(u) with u#0. It follows from [22,
Lemma 6.4] that z € 0%¢(Z,9)(u — \z). If u — Az # 0, then we get from (5.13) that
(z,u—Az) >0, ie., (z,u) > A||z]|> > 0. Otherwise, this tells us that u= Az, and thus

1 1.
zZ,u) = —(u,u) = —||ul|” > 0.
() = 5 (0 = <l
Therefore, we always have the coderivative positive-definiteness for the C1'! Moreau
envelope:

(z,uy >0 for all z€ (D*Vexp)(Z+ A\v)(u), u#0.

This ensures by Lemma 5.5 that ey is locally strongly convex around z 4+ Av. Em-
ploying the characterization of Theorem 4.5 concludes that ¢ is variationally strongly
convex at T for v, and thus we complete the proof. 0

As a consequence of the obtained results, we arrive at the following second-order
subdifferential characterizations of tilt-stable minimizers, with a given modulus, for
extended-real-valued continuously prox-regular functions.

COROLLARY 5.7 (second-order characterizations of tilt stability for continuously
prox-regular functions). Let ¢ :R™ — R be continuously proz-reqular at & € dom ¢ for
0 € 0p(Z). Then we have the following equivalences:

(i) Z s a tilt-stable local minimizer with modulus k> 0.

(ii) There exist neighborhoods U of T and V' of the origin in R™ such that

1 o
(z,w) > EHwH2 whenever z € 0*p(z,y)(w), (z,y) €gphdp N (U x V), w € R™.
(iii) There exist neighborhoods U of T and V' of the origin in R™ such that
1
(z,w) > ;Hw”2 whenever z € 9*p(x,y)(w), (z,y) € gphdp N (U x V), w € R™.

Furthermore, the fulfillment of (i) with some modulus is equivalent to the point-based
positive-definiteness condition

(5.14) (z,w) >0 whenever z € d*p(Z,0)(w), w # 0.

Proof. The given characterizations follow directly from Theorems 5.4, 5.6 and
Proposition 2.9. O

Remark 5.8 (discussions on characterizing tilt-stability via second-order subdif-
ferentials). The first characterization of tilt-stable minimizers of continuously prox-
regular functions on R™ was obtained in the pointwise second-order subdifferential
form (5.14) by Poliquin and Rockafellar [46, Theorem 1.3] without involving moduli.
The quantitative neighborhood characterization of tilt stability in (ii) via the com-
bined second-order subdifferential was established by Mordukhovich and Nghia in
[29, Theorem 4.3] in Hilbert spaces. Here we recover the known results, including the
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equivalence between (i) and (ii) and the point-based characterization of tilt stability
by using the obtained new characterizations of variational convexity. To the best of
our knowledge, the quantitative characterizations in (iii) via the limiting second-order
subdifferential have not been observed earlier in the literature. Note that our proof of
the second-order subdifferential characterizations of tilt-stable minimizers in Corollary
5.7 via variational convexity is significantly different from those previously used.

We conclude this section with the following remark on the novel SCD approach
to tilt stability and related issues developed of Gfrerer and Outrata in their recent
paper [16].

Remark 5.9 (strong variational convexity and tilt stability via SCD mappings).
n [16], Gfrerer and Outrata introduced new generalized derivatives for set-valued
mappings called SCD mappings (subspace containing derivative mappings). They
derived for such mappings some calculus rules and revealed a number of interesting
connections in variational analysis. SCD mappings particularly contain subdifferen-
tials of prox-regular and subdifferentially continuous functions ([16, Proposition 3.26].
In particular, the SCD connection to Rockafellar’s quadratic bundles (2.10) was es-
tablished and a comparison with the second-order subdifferentials was provided in [16,
Example 3.29]. Characterizations of tilt stability and strong metric regularity were
also derived in section 7 of [16]. The equivalent descriptions of variational strong con-
vexity given in Proposition 2.9 allow us to obtain the corresponding characterizations
of variational strong convexity via SCD mappings.

6. Variational sufficiency in composite optimization. As discussed in Re-
mark 2.8, variational convexity and variational strong convexity of an l.s.c. function
¢: R™ — R imply the local optimality and tilt-stability of a local minimizer, respec-
tively. However, the reverse implications fail. The properties of variational convexity
and variational strong convexity of minimizing cost functions at stationary points
were labeled by Rockafellar [49] as variational sufficiency and strong variational suf-
ficiency, where the motivations came from applications to proximal point algorithms.
Further applications of these notions and ideas to extended augmented Lagrangian
methods in rather general frameworks of optimization were given in the most recent
papers [50, 51].

The main goal of this section is to investigate and characterize both of these
properties in structured frameworks of composite constrained optimization by using
the generalized differential characterizations of variational convexity and variational
strong convexity established in sections 3 and 4 being married to second-order calculus
rules developed for the basic second-order subdifferential (2.7).

We start with the definitions of variational sufficiency and strong variational suf-
ficiency in the general unconstrained format of minimizing extended-real-valued func-
tions.

DEFINITION 6.1 (variational sufficiency and strong variational sufficiency for lo-
cal optimality). Given an extended-real-valued function ¢ : R™ — R, consider the
following unconstrained optimization problem:

(6.1) minimize (z) subject to x € R™.

It is said that the variational sufficient condition for local optimality in (6.1) holds at T
if @ is variationally convex at T for 0 € dp(Z). If ¢ is variationally strongly convez at
Z for 0 with modulus o > 0, then we say that the strong variational sufficient condition
for local optimality at T holds with modulus o.
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Here we consider the class of composite optimization problems given by
(6.2) minimize p(z) := @o(z) + ¥(g(z)) subject to =€ R™,

where 9 : R™ — R is an extended-real-valued l.s.c. function, ¢g : R® — R is a C2-
smooth function, and g is a C?-smooth mapping from R™ to R™. These are our
standing assumptions in this section unless otherwise stated. As mentioned, the
composite format (6.2) implicitly incorporates the constraint g(z) € dom. In what
follows, we aim at deriving second-order characterizations of variational sufficiency
and strong variational sufficiency for local optimality in (6.2) expressed in terms of
the given data of this problem.
To proceed, for each (z,v) € R"™ x R™ define the set of multipliers

(6.3) Az,v):={y eR™ |v=Vo(x)+ Vg(z)*y, y € 0 (g(x)) }.

The first theorem imposes the full rank assumption on the Jacobian matrix Vg(Zz)
at the point in question.

THEOREM 6.2 (variational and strong variational sufficiency for composite prob-
lems with full ranks of Jacobians). Let T € R™ be a stationary point of the composite
optimization problem (6.2) at which rank Vg(Z) =m and hence there exists a unique
vector y € R™ with

(6.4) Veo(z) + Vg(z)'g=0 and y€dy(g(z)).

Suppose in addition that v is subdifferentially continuous at g(Z) for y. Then we have
the following assertions:

(i) The variational sufficient condition for local optimality in (6.2) holds at T if
and only if ¥ is prox-reqular at g(Z) for § and there exist neighborhoods U of T and
V' of 0 such that

(6.5) (V2o (2)w, w) + (V{y, g)(2)w,w) + (u, Vg(z)w) > 0

forallzeU,veV, yeAx,v), uecd?*P(g(x),y)(Vg(z)w), weR™, where A(z,v) is
a singleton in this case.
(ii) The strong variational sufficient condition for local optimality in (6.2) holds

at T with modulus o >0 if and only if 1 is proz-regular at g(Z) for § and there exist
neighborhoods U of T and V' of 0 such that

(6.6) (V2o (2)w, w) +(V(y, g)(z)w,w) + (u, Vg(z)w) > o|lw]*
forallzeU,veV, ye Az,v), ue d*P(g(z),y)(Vg(x)w), weR"™, where A(z,v) is
a singleton in this case.

Furthermore, the strong variational sufficiency in (i) with some modulus o >0 is
equivalent to the proz-reqularity of 1 at g(z) for § together with the fulfillment of the
point-based condition

(6.7) (V20 (2)w, w) + (V*(5, 9)(@)w, w) + (u, Vg(z)w) >0

whenever u € 0%Y(g(z),9)(Vg(Z)w) and w # 0.
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Proof. Note that the full rank assumption rank Vg(Z) = m implies that there
exists € > 0 such that rank Vg(x) = m for all z € B.(Z). Thus it follows from the
first-order subdifferential sum and chain rules in [32, Proposition 1.10 and Exercise
1.72] that we have the equivalences

(6.8)  wvedp(x) < veVpy(x)+ Vg(x) 0y (9(x)) < A(z,v) is a singleton

for all x € B.(Z), which verifies the existence of a unique g € R™ satisfying (6.4).

Next we observe that it follows from (6.8) and the definitions of prox-regularity
and subdifferential continuity in section 2 that the prox-regularity and subdifferen-
tial continuity properties of the function ¢ an (6.2) at  for 0 are equivalent to the
corresponding properties of ¥ at g(z) for §. Furthermore, Remark 2.4(iii) tells us
that the variational convexity of a function yields its prox-regularity at the reference
point. Therefore, we only need to verify that the variational convexity as well as the
variational strong convexity of ¢ at & for 0 with and without modulus o > 0 hold if
and only if the corresponding conditions (6.5), (6.6), and (6.7) are satisfied.

To prove all of this, we employ the second-order subdifferential sum rule from [31,
Proposition 1.121] and the second-order subdifferential chain rule from [31, Theorem
1.127] to the function ¢ in (6.2), which tell us that

oz, v)(w) = Vo (x)w+ 0*(1h o g) (x,v — Vio(z)) (w)
=V2po(x)w+ V?(y, 9)(z)w + Vg(x)*8*¢(g(x),y) (Vg(x)w)

for each = € B.(Z), v € 9p(x), w € R™, and the unique vector y from A(z,v). By the
obtained representation of 9%p(z,v), it follows that the conditions in (6.5) and (6.6)
are equivalent to the existence of neighborhoods U of  and V of 0 such that we have
the estimates

(6.9) (z,w) >0 for all z € d?p(z,v)(w), (x,v) € gphdpN (U x V), weR™,
(6.10) {(z,w) >a|jw|?® for all z€ d*p(z,v)(w), (z,v) € gphdp N (U x V), w € R,

respectively. In the same way, (6.7) reduces to the positive-definiteness condition
(6.11) (z,w) >0 for all z€ d*p(Z,0)(w), w#0.

Finally, we deduce from the second-order subdifferential characterization in Theorems
5.2, 5.4, and 5.6 that the conditions in (6.9), (6.10), and (6.11) are equivalent to the
variational convexity of ¢ and the variational strong convexity of ¢ at & for 0 with
and without modulus o, respectively. This completes the proof of the theorem. 0

Our further goals are deriving effective conditions ensuring the fulfillment of vari-
ational sufficiency and strong variational sufficiency for local optimality in the com-
posite model (6.2) and also characterizing these properties without imposing the full
rank assumption on the Jacobian Vg(z). To proceed in this direction requires deal-
ing with particular classes of compositions in (6.2), which cover a large territory in
variational analysis and optimization.

Following [52], recall that an l.s.c. function #:R"™ — R is strongly amenable at T
if there exists neighborhood U of  on which € can be represented in the composition
form 6 = 1) o g with a C2-smooth mapping g: U — R™ and a proper ls.c. convex
function v : R™ — R such that the following first-order qualification condition holds:

(6.12) 0™Y(2) Nker Vg(z)* = {0} with z:=g(Z).
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If, in addition, v is piecewise linear-quadratic as in [52], then 6 is called fully amenable
at T. Note that (6.12) is automatically satisfied if either v is locally Lipschitzian
around z, or Vg(&) is of full rank, while neither of these conditions is required for the
fulfillment of (6.12).

We are also going to use the second-order qualification condition (SOQC) from
[42] for problem (6.2) at Z, which is formulated as follows:

(6.13) 9%1(2,9)(0) Nker Vg(z)* = {0} with y€0vy(2) and z:=g(z).

If ¥ is convez, then the following easy relationship between the qualification
conditions (6.12) and (6.13) holds.

PROPOSITION 6.3 (relatignships between the first- and second-order qualification
conditions). Let ¥: R™ — R be a conver function. Then for each z € R™ and
g € 0U(Z) we have the following inclusions:

(6.14) 9°(z) C 0%Y(2,7)(0) C 9*¥(Z,7)(0).

Consequently, the second-order qualification condition (6.13) yields the first-order
qualification condition (6.12).

Proof. Pick v € 9°°9(z), and deduce from the convexity of ¢ and [52, Proposition
8.12] that

(v,2z—2) <0 for all z€dom1p,

which immediately implies that

<(U70)7 (Zay) — (2, 37» <

lim sup — S U,
Iz = 2] + lly — 7l

hoy, _ _
(29)*"=""(2.9)

and thus (v,0) € ]\Afgphad, (z,79),1e,v € 521/1(2, 7)(0). This justifies the first inclusion in
(6.14). The second inclusion therein is obvious, and so (6.14) is verified. Implication
(6.13)=(6.12) clearly follows from (6.14). O

Next we verify the important robustness property of SOQC for strongly amenable
compositions.

LEMMA 6.4 (robustness of the second-order qualification condition). Let Z € R™
be a stationary point of the composite optimization problem (6.2) under the standing
assumption on pg,¥, and g. Suppose in addition that ¢ and g are mappings from the
composite representation of a strongly amenable function at T and that the second-
order qualification condition (6.13) is satisfied at . Then there are neighborhoods X
of T and O of 0 with

(6.15) 321/1(g(x), y)(0) Nker Vg(z)* = {0}
whenever x € X, y € 0Y(g(x)) and Vyo(z) + Vg(x)*y € O.

Proof. Suppose that (6.15) fails, and then find sequences z — Z, yr € O (g(x))
with

(6.16) Jim [Veo(zr) + Vg(zr) ye] =0,
(6.17) 0# 21, € 0% (g(z"),y") (0) Nker Vg(z*)* for all ke N.
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If {yr} bounded, suppose without loss of generality that y, — ¥ as k — oo. Put
Z =z /|| 2k || for all k € N. Then ||Z;]| =1, and we get without loss of generality that
Zr — Z as k — oo with ||Z]] = 1. It follows from (6.17) that

~ Zk

k= Izl € 52¢(9($k)»yk)(0) Nker Vg(z*)* for all ke N,
k

and hence z € 0*¢(g(),7)(0) Nker Vg(z)*. This yields zZ =0 due to (6.13), a contra-
diction.

If {yr} is not bounded, we suppose without loss of generality that ||yx| — co as
k — oo and define g, := yi/||yx|| for all kK € N. Then ||lgi|| =1, and thus we get again
without loss of generality that g, — ¥ as k — oo with ||y|| = 1. It follows from (6.16)
that Vg(Z)*y = 0. To show next that y € 9 (g(Z)), we recall that yi € 09 (g(xy))
and deduce from the convexity of v together with [52, Proposition 8.12] that

¥(2) > ¥(9(xk)) + (Y, 2 — g(xx)) for all z€R™ and k€N,
which implies in turn the estimate

U(2) =9 (g(zn))

Yk, 2z — g(z)) < as zeR™, keN.

[l
Thus we have for each z € dom that
(6.18) G2 — g(x)) = lim (Gr, 2 — g(zx)) ghmsupw_
hreo ko0 [yl

Remembering that ¢ is l.s.c. leads us to the conditions

(6.19) limsup (—9(g(zx))) = ~lminfy(g(x)) <~ (g(z)).
Combining (6.18) and (6.19) with ¥ (z) < co and 1/||yx|| = 0 as k — oo, we conclude
that (g,z — g(Z)) < 0 for all z € dome. This tells us that § € 0¥ (g(Z)) and
hence g € 0°v¢(g(z)) Nker Vg(z)*. By the strong amenability of ¢ o g, the first-order
qualification condition (6.12) is satisfied, and thus y = 0. This is a contradiction,
which completes the proof of the lemma. 0

Now we are ready to obtain efficient conditions that ensure variational and strong
variational sufficiency for composite optimization problems (6.2) without the full rank
assumption. These conditions address the general class of strongly amenable compo-
sitions in (6.2).

THEOREM 6.5 (variational and strong variational sufficiency for local optimal-
ity with strongly amenable compositions). Let T € R™ be a stationary point of the
composite optimization problem (6.2) under the standing assumption on o,1, and g.
Suppose in addition that ¢ and g are mappings from the composite representation of
a strongly amenable function at T and that the second-order qualification condition
(6.13) is satisfied at T. Then we have the following assertions:

(i) The variational sufficiency for local optimality in (6.2) holds at T if there exist
neighborhoods U of T and V' of 0 such that (6.5) is satisfied for oll x € U, v € V,
y € A(z,v), ue d*Y(g(x),y)(Vg(z)w), and w € R™.

(ii) The strong variational sufficiency for local optimality in (6.2) holds at T with
modulus o > 0 if there exist neighborhoods U of T and V' of O such that the neighborhood
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condition (6.6) is satisfied for allz €U, v eV, y € A(z,v), u€ 8*Y(g(x),y)(Vg(z)w),
and w € R".

(iii) The strong variational sufficient condition for local optimality in (6.2) holds
at T if the point-based condition (6.7) is satisfied for any § € A(Z,0).

Proof. Note that the first-order qualification condition (6.12) is clearly robust
with respect of small perturbations of the reference point, which means that there
exists € > 0 such that

0%(g(x)) Nker Vg(z)* = {0} for allz € B.(Z).

Thus we can apply the aforementioned subdifferential sum rule and then the chain
rule from [32, Theorem 4.5] to the (lower regular) strongly amenable composition ¢og
and get for all x € B.(Z) and w € R™ the equivalences

v € dp(x) <= v e Vy(z)+ Vg(z) oY (g9(z)) < A(z,v) #0.

Using Lemma 6.4, we find neighborhoods X of Z and O of 0 such that (6.15) holds.
Since the strong amenability assumption on the composition ¥ og yields its continuous
prox-regularity at any point x near by [52, Proposition 13.32], this property also
holds for the cost function ¢ in (6.2). The second-order subdifferential chain rule for
strongly amenable functions taken from [31, Corollary 3.76] tells us that for each x
near Z, each v € dp(x) N O, and each w € R™ we have

0% (og) (w,0=Veo(2))(w) € |J [V, 9)@)w + Vg(x)*0*(g(x),y) (Vg(z)w)] .

yEA(z,v)

Combining this inclusion with the second-order subdifferential sum rule from [31,
Proposition 1.121] gives us

&z, v)(w) = V:po(x)w + 8*(¢ 0 g) (z,0 — Vipo () ) (w)
(6.20) c U [Veo@w+V(y,g)(@)w+ V() 0*¢(9(x),y) (Vg(z)w)]

yEA(z,v)

for all w € R™, x near &, and v € dp(x) N O. It follows from the upper estimates in
(6.20) that conditions (6.5) and (6.6) ensure the existence of neighborhoods U of
and V of 0 on which we have (6.9) and (6.10), respectively. Likewise, the point-based
condition (6.7) yields (6.11). Applying finally Theorems 5.2, 5.4, and 5.6 verifies,
respectively, the fulfillment of assertions (i), (ii), and (iii) of this theorem. 0

Note that the second-order conditions obtained in Theorem 6.5 imply the varia-
tional sufficiency and strong variational sufficiency for local optimality in (6.2) while
not characterizing them. The next theorem reveals additional assumptions on the
problem data that ensure complete characterizations of these properties in compos-
ite optimization. We are dealing below with two crucial subclasses of fully amenable
compositions 1) o g in (6.2). The first subclass is generated by extended-real-valued
piecewise linear functions v in the sense of [52, Definition 2.47]. The second subclass
is formed by the functions ¥: R™ — R defined as

(6.21) ve)i=sup{ (0.2) - 5(@uo)

veEP

where P C R™ is a nonempty polyhedral set and where @Q € R™*™ is a symmetric
positive-semidefinite matrix. Functions of this type appear in problems of ezrtended
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linear-quadratic programming; see [52]. To deal with class (6.21), recall that a map-
ping f: R™ — R™ is open around Z if for any neighborhood U of T there exists a
neighborhood V' of f(Z) such that V' C f(U). Here are the aforementioned character-
izations of variational and strong variational sufficiency for local optimality in (6.2),
which have the same form as in Theorem 6.2 (including the uniqueness of multipliers)
without imposing the full rank assumption.

THEOREM 6.6 (characterizations of variational and strong variational sufficiency
in composite fully amenable optimization). In addition to the assumptions of Theorem
6.5, suppose the following:

(a) either ¢ is piecewise linear,

(b) or 1 is of class (6.21), Q is positive-definite, and the inner mapping g is open
around T. Then all the three characterizations (1)—(iii) of Theorem 6.5 hold.

Proof. We proceed as in the proof of Theorem 6.5 by observing that the additional
assumptions imposed either in (a) or in (b) of this theorem ensure that the inclusion
in (6.20) holds as equality with A(x,w) being a singleton. This is due to the second-
order subdifferential chain rules of the equality type derived under (a) and (b) in [42,
Theorem 4.3] and [42, Theorem 4.5], respectively. d

We now compare our second-order subdifferential approach to variational and
strong variational sufficiency for local optimality in composite optimization (6.2) with
Rockafellar’s developments in the very recent paper [50] to characterize strong varia-
tional sufficiency in (6.2) via quadratic bundles defined in (2.10).

Remark 6.7 (strong variational sufficiency via augmented Lagrangians and qua-
dratic bundles). Rockafellar’s approach [50] to variational and strong variational
sufficiency for local optimality in (6.2) with the Ls.c. convex function ¢ is based on
exploring a certain “hidden convexity” (of a local convex-concave type) of the corre-
sponding augmented Lagrangian function. In this way, Rockafellar established a crite-
rion for strong variational sufficiency via Hessian bundles of augmented Lagrangians;
see [50, Theorem 3]. Moreover, using the other type of generalized second-order de-
rivatives called quadratic bundles, it is shown in [50, Theorem 5] that the condition

(6.22) q € quad ¥(g(z),y), w# 0= %(VizL(ff, ), w,w) +q(Vg(z)w) >0,

via the standard Lagrangian of (6.2), characterizes the strong variational sufficiency
for local optimality in (6.2). In the case where v is nonconvex, it is possible to derive
the characterization of strong variational sufficiency via the connection to SCD
mappings (cf. [16, Proposition 3.33]), which is also discussed in Remark 5.9. To the
best of our knowledge, the characterization of the merely variational sufficiency for
local optimality in (6.2) via quadratic bundles has not been done. Our second-order
subdifferential approach is independent of the aforementioned approach of Rockafel-
lar. Let us emphasize that our second-order subdifferential results in Theorems 6.2,
6.5, and 6.6 completely characterize both variational and strong variational sufficiency
in (6.2) with and without the convexity of the function 1 therein.

7. Applications to nonlinear programming. As an illustration of the gen-
eral results of section 6, we provide here their direct applications to characterizing
variational and strong variational sufficiency for local optimality in classical problems
on nonlinear programming with C?-smooth data. The characterizations obtained be-
low are expressed entirely in terms the problem data, meaning that the second-order
subdifferentials in the results of section 6 are explicitly calculated.
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The conventional model of nonlinear programming (NLP) is formulated as
follows:
wi(x) <0 for i=1,...,s,

7.1 minimize x) subject to
(7.1) #o(®) ) {goi(:c)—o for i=s+1,...,m,

where ¢;, i =0, ...,m, are C2-smooth functions around the reference points. Problem
(7.1) can be obviously written in the form of composite optimization (6.2) with
1 = dq, where € is given by

(7.2) Q:z{ueRm’uiSO for i=1,...,5 and u; =0 for i=s+1,...,m}

and where g(z) = (p1(2),...,om(x)). Define the Lagrangian function
L:R" xR™—R by
(7.3)

L(z,y) = o(®) + (,9(2)) = po(x) + y101(2) + -+ Ympm(2) for allz € R™, y € R™,
and for each (z,y) € R™ x R™ consider the subspace

(7.4) S(z,y) = {weR" | (Vpi(z),w) =0 for i€ (z,y)U{s+1,....,m}}
together with the index collections

(7.5) I (z,y):={icl(z)|y; >0} and I(z):={ic{l,...,s}|pi(z)=0}.

First-order and second-order subdifferential calculations for the indicator function
of set (7.2) can be deduced from various sources and represented in different forms.
Here we present a simple direct derivation and present the corresponding formulas in
the explicit and convenient way used in what follows.

LEMMA 7.1 (explicit subdifferential calculations for NLP). Let the set Q2 be taken
from (7.2). Then

(7.6) 06 (2) =0%0q(2) = Na(z) = F1(21) X - -+ X Fy(2) for all z € Q,
where each multifunction F;: R =R is given by

[0,00) if t=0,1<i<s,
0V if t<0,1<i<s,

R if t=0,s+1<i<m,
0 otherwise.

Furthermore, for every (z,y) € gph ddq we have
(7.7) 0*6a(z,y)(v) = {ueR™ | (ui, —vi) € Gi(zi,y:), i=1,...,m} for all veR™,
where the multifunctions Gi: RZ2=R?, i=1....,m, are given by

Ry xROU(Rx {0 U ({0} xR) if t=0,p=0,1<i<s,

R x {0} if t=0,p>0,1<i<s,

Gi(t,p):=¢ {0} xR if t<0,p=0,1<i<s,
R x {0} if t=0,s5+1<i<m,
0 otherwise.
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Proof. Recall first by [31, Proposition 1.79] that
09q(z) = 0%0q(z) = Nq(z) for all z€ .
It follows from Q =Q4 x --- x Q,,, with

—00,0] if i=1,...,s,
Q_._
o} if i=s+1,....,m

that we have the representation

0a(z) =0q,(z1) + - +dq,, (zm) forall z=(z1,...,2m) ER™.
This easily leads us to the subdifferential expression
(7.8) 0dq(z) = 0dq, (21) X --- X Ddq,, (#m) forall ze€Q.
Since §; is convex for any i € {1,...,m}, it is not difficult to check that
(7.9) 0dq,(t) = Nq,(t) = F;(t) whenever teR,i=1,...,m.

Combining (7.8) and (7.9) justifies the first-order formulas in (7.6).

To wverify finally the second-order subdifferential formula (7.7), observe
thatngha(;Qi =G; forall i =1,...,m. This allows us to deduce from [38, The-
orem 4.3] the representation

6269(25,3/)(0) = {U eR™ | (Ui,—'Ui) € nghazSQi (Ziayi)v 1= 17" . 7m}7

which therefore justifies the fulfillment of (7.7) and completes the proof of the
lemma. O

Thanks to Lemma 7.1, we have the following explicit formula for the set of mul-
tipliers (6.3) in problem (7.1):

(7.10) Alz,v)={y €R} x R"™* |v =V, L(z,y), (y,g(x)) =0}

with g = (¢1,-..,pm) and the Lagrangian function L defined in (7.3).

Next we recall the two well-known constraint qualification conditions in NLP.
Given a feasible solution Z to (7.1), it is said that the linear independent constraint
qualification (LICQ) holds at z of (7.1) if the vectors
(7.11)

Vi(Z) for i€ I(Z)and V;(Z) for i=s+1,...,m are linearly independent,
where I(Z) stands for the collection of active inequality constraint indices at Z taken

from (7.5). We say that the positive linear independence constraint qualification
(PLICQ) is satisfied at Z if

{ > o;Vi(2) =0, a; 20, 1 € I(Z)
(7.12) i€(@)U{s+1,...m}

= [0 =0 forall ieI(z)U{s+1,....,m}].
Note that both of these constraint qualifications are robust with respect to small
perturbations of z. In fact, (7.12) is a dual form of the Mangasarian—Fromovitz
constraint qualification (MFCQ) at Z.
By using Lemma 7.1, we show now that the first-order qualification condition
(6.12) and the second-order qualification condition (6.13) are equivalent to PLICQ
and LICQ at Z, respectively,
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LEMMA 7.2 (equivalent descriptions of first- and second-order qualification condi-
tions). Let T be a feasible solution for NLP (7.1) written in the framework of composite
optimization (6.2) with

(713) w:: 59 and g = (3017"'790771)3

where ) is taken from (7.2). Then the following assertions hold:
(i) We have the representation

8°°w(g(5:)) Nker Vg(z)*

(7.14) = {u eR™

> uiVepi(Z) =0, u; > 0Vi € I(z) and u; =0 Vi ¢ J} ,
i€

where J:=I1(Z)U{s+1,...,m}. Consequently, the first-order qualification condition
(6.12) at T is equivalent to the fulfillment of PLICQ (7.12) at this point.

(ii) Whenever g € 0¢(g(Z)), we have the representation
(7.15)

32@[1(g(f), 7)(0) Nker Vg(z)" = {u eR™

Zungoi(a’c) =0,u; =0 forall i ¢ J}
ieJ

with J taken from (i). Consequently, the second-order qualification condition (6.13)
is equivalent to the fulfillment of LICQ (7.11) at this point.

Proof. To verify assertion (i), deduce from Lemma 7.1 that
(7.16)  uwed®Y(g(z)) <= u; >0 forall i€l(z) and u;=0 forall i¢.J.

Furthermore, it follows from the definitions that

m
(7.17) u€kerVy(z)" < Vg(z)"u=0 < Zuiv%(a’:) =0.
i=1
Combining (7.16) and (7.17) justifies (7.14), which yields the claimed equivalence
between (6.12) and (7.12).
To proceed with the verification of (ii), pick § € 0¢(g(Z)) and get from Lemma
7.1 that

u€e P (g(z),9)(0) < u; =0 forall i¢J.

Using this together with (7.17) gives us (7.15), which immediately implies the claimed
equivalence in (ii). o

Reformulating the NLP problem (7.1) in the form of composite optimization (6.2)
with ¢ and g taken from (7.13), observe that the stationary condition 0 € dp(Z) can
be equivalently written as the KKT system

(7.18) V.L(Z,5)=0 and (7,9(Z)) =0 for some y€R] x R™™*

provided that the first-order qualification condition (6.12), i.e., PLICQ in our case,
holds. Indeed, it follows from the subdifferential sum and chain rules taken from [31,
Proposition 1.107(ii) and Theorem 3.41(ii)], respectively, with the usage of Lemma
7.1 ensuring representation (7.10).

The next theorem establishes second-order characterizations of variational and
strong variational sufficiency for local optimality in NLP entirely in terms of the
given data of (7.1).
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THEOREM 7.3 (variational and strong variational sufficiency for local optimality
in NLP). Let T be a feasible solution to the NLP problem (7.1) satisfying the first-
order optimality condition (7.18) under the fulfillment of LICQ at Z, and let S(x,y)
be defined in (7.4). Then we have the following assertions:

(i) The variational sufficiency for local optimality in (7.1) holds at T if and only
if there exist neighborhoods U of , V' of 0 such that

(7.19) (V2 L(z,y)w,w) >0 whenever x €U, veEV, and w < S(x,y),

where y € R xR™™° is a unique solution to the system V,L(x,y) =v and (y,g(x)) =0
with g from (7.13).

(ii) The strong variational sufficiency for local optimality in (7.1) holds at T with
modulus o > 0 if and only if there exist neighborhoods U of T and V' of 0 such that

(7.20) (V2 L(z,y)w,w) > o|w|?> whenever x €U, veV, and we S(z,y)

with the unique vector y € RS x R™~° defined as in ().
(iii) The strong variational sufficiency for local optimality in (7.1) holds at T if
and only if

(7.21) (V2,L(Z,5)w,w) >0 whenever §€ A(Z,0) and we S(7,7)\ {0},

where § is a unique solution to the KKT system (7.18).

Proof. By Lemma 7.2(ii), the fulfillment of LICQ at Z is equivalent to the second-
order qualification condition (6.15), and thus (6.12) is satisfied by Proposition 6.3 with
¥ = dg. This also follows, in the NLP case, from the PLICQ description of (6.12)
in Lemma 7.2(i). As discussed above, condition (7.18) is equivalent to the stationary
0 € 9¢(Z) of T for v =g + dg 0 g with Q from (7.2) and g = (¢1,---,Pm)-

It is easy to see that the imposed LICQ corresponds to the full rank assumption
for g from Theorem 6.2, and thus we can apply the variational and strong variational
sufficiency characterizations of that theorem for the composite problem (6.2) to the
case of NLP (7.1). Note that the convex l.s.c. function 1 = g for Q from (7.2)
is automatically continuously prox-regular. Observe also that this function is even
piecewise linear, and thus we can equally apply Theorem 6.6(a) to the NLP setting
(7.1). It remains to express the general variational and strong variational sufficiency
characterization in composite optimization explicitly in terms of the NLP data.

To proceed, we employ Lemma 7.1, which tells us that the inclusion
u € 0%5q(g9(x),y)(Vg(z)w) for each u € R™, w € R", x € R"*, and y € dda(g(x))
amounts to saying that

u; =0 if ie{l,....,s}\I(2),
(7.22) (Vyi(z),w)=0 if i6{3+1,...7m}UI+(x,y),
(Vpi(z),w)>0,u; >0 if iel(z)\I+(z,y).
First we verify that the conditions in (7.19), (7.20), and (7.21) yield the variational
and strong variational sufficiency with and without modulus ¢ > 0 for local optimality
in (7.1), respectively. To this end, suppose that (7.19) holds and pick any x € U, v €

V, w € R", and u € 8*Y(g(x),y)(Vg(z)w) in the setting of (7.13) with the unique
solution y of the corresponding KKT system. We aim to show that

(7.23) (V0 (2)w, w) + (V*{y, g) (z)w, w) + (u, Vg(z)w) > 0.
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Indeed, it follows from (7.22) that
(7.24) ui(Vpi(x),w)y>0 forall i=1,...,m and we S(z,y),

and thus we deduce from (7.19) that (V2 L(x,y)w,w) > 0. Combining the latter
with (7.24) gives us (7.23), and therefore the claimed variational sufficiency for local
optimality in (7.1) holds by Theorem 6.5. Arguing similarly to the arguments above,
we verify that the strong variational sufficiency for local optimality in (7.1) with and
without modulus ¢ > 0 is also satisfied under the conditions in (7.20) and (7.21),
respectively.

Next we prove the converse, i.e., that the variational and strong variational suffi-
cient conditions with and without modulus ¢ > 0 for local optimality in (7.1) ensure
the fulfillment of the conditions in (7.19), (7.20), and (7.21), respectively. To proceed
with the case of variational sufficiency in (i), we get by this property for (7.1) at Z
that there exist neighborhoods U of T and V' of 0 such that (6.5) holds due to The-
orem 6.6(a). Taking any x € U, v € V, and w € S(x,y) with the unique solution y of
the corresponding KKT system, let us verify the fulfillment of (7.19). Indeed, choose
u € R™ such that u; =0 for any ¢ € {1,...,s} \ I+(z,y). It follows from (7.22) that
u € %Y (g(x),y)(Vg(x)w) for 1 and g in (7.13). Moreover, the choice of u implies that

(7.25) > ui (Vi (), w) = 0.
ie{l,....s\I1(z,y)
Since w € S(x,y), we readily get that
(7.26) Z ui (Vi (x), w) =0.
i€{s+1,....m}UI (x,y)

Combining (7.25) and (7.26) tells us that

m

(u, Vg(@)w) = Zui<vs0i(x)> w) =0.

i=1

Using the latter together with (6.5) leads us to
(VieL(@,y)w,w) = (Voo (z)w, w) + (V*{y, g) (z)w,w) > 0,

which justifies (7.19). The verifications for (ii) and (iii) are similar, and thus we are
done with the proof. O

As an illustration of the obtained characterizations of variational and strong vari-
ational sufficiency, we now recover some known optimality conditions for nonlinear
programs obtained before by using different approaches. In this way, we also establish
a new condition discussed in Remark 7.5(i) below.

COROLLARY 7.4 (second-order optimality conditions from variational sufficiency
in NLP). Let Z be a feasible solution to NLP (7.1) satisfying the stationary condition
(7.18) under the fulfillment of LICQ at . Then we have the following assertions:

(i) T is a local minimizer of (7.1) if there exist neighborhoods U of T and V of 0
such that

(7.27) (V2 L(z,y)w,w) >0 forall €U, veV, and we S(z,y),

where y € R x R™™* is as in (i) of Theorem 7.3.
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(ii) & is a tilt-stable local minimizer of (7.1) with modulus k > 0 if and only if
there exist neighborhoods U of & and V' of 0 such that

1
(7.28) (V2 L(z,y)w,w) > EHwH2 forall zeU,veV, and we S(x,y),

where y € R x R™™% is taken from (i).
(iii) Z is a tilt-stable local minimizer of (7.1) if and only if

(7.29) <ViwL(5v,g)w,w> >0 forall weS(z,7),

where § is a unique solution to the KKT system (7.18).

Proof. Theorem 7.3 tells us that condition (7.27) yields the variational sufficiency
for local optimality of Z in the composite problem (6.2) with ¢ and g taken from
(7.13). This means that ¢ in (6.2) is variationally convex at T for 0. As discussed in
Remark 2.8(i), Z is a local minimizer of ¢, which verifies assertion (i). Note that ¢
is continuously prox-regular on R™ due to [52, Exercise 10.26 and Proposition 13.32],
and thus Z is a tilt-stable local minimizer of (7.1) with modulus x> 0 if and only if ¢
is variationally convex at Z for 0 with modulus £~! due to Proposition 2.9. Therefore,
assertions (ii) and (iii) are implied immediately by Theorem 7.3. |

The following discussions shed some light on the obtained results and related
developments.

Remark 7.5 (discussions on optimality and tilt-stability conditions). (i) Observe
that (7.27) is a “nonstrict” neighborhood second-order sufficient condition for usual
(nonstrict) local minimizers that seems to be new. We derive it as a direct conse-
quence of the established characterization of variational sufficiency. Note that the
characterizations of the variational sufficiency achieved in section 6 and the explicit
computations of second-order subdifferentials mentioned in section 2 allow us to obtain
similar optimality conditions for much more general classes of composite optimization
problems.

(ii) A neighborhood characterization of tilt stability in (7.28) was first obtained
under LICQ in [29, Theorem 5.3] for NLP in Hilbert spaces by using another technique.
Then this characterization was further developed in [5, 15, 35] for NLP in finite
dimensions by using significantly less restrictive constraint qualifications.

(iii) The point-based characterization (7.29) of tilt-stable minimizers for finite-
dimensional nonlinear programs under LICQ was first derived in [42, Theorem 5.2].
Advanced point-based conditions for tilt stability in NLP without imposing LICQ
were developed in [5, 15] in explicit forms different from (7.29).

(iv) Explicit neighborhood and point-based characterizations of tilt stability were
established not only for polyhedral problems of composite optimization (as NLP and
the like) but also for nonpolyhedral optimization problems of conic programming in-
cluding second-order cone programs and semidefinite ones; see [2, 36, 40, 41] and the
references therein. These results are instrumental for our understanding of strong
variational sufficiency in constrained optimization, while the study of merely varia-
tional sufficiency is a major open question.

8. Conclusions and future research. This paper contributes to the study and
applications of the powerful Rockafellar’s notions of variational convexity of extended-
real-valued functions and variational sufficiency for local optimality as well as of their
strong counterparts. The main novelty of our results is in equivalent reductions of
these notions to the conventional local convexity and strong local convexity of Moreau
envelopes with their subsequent characterizations via second-order subdifferentials
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of variational analysis. The obtained characterizations allow us to efficiently study
variational and strong variational sufficiency in problems of composite optimization
with further applications to nonlinear programming.

Some topics of our future research have been already mentioned in the text.
They include, in particular, numerical methods that benefit from the local convex-
ity /local strong convexity of Moreau envelopes of variationally convex/ variationally
strongly convex functions (see Remark 3.3), explicit characterizations of variational
sufficiency vs. strong variational sufficiency of polyhedral and nonpolyhedral opti-
mization problems (see Remark 7.5), etc. In the other lines of our future research, we
plan to establish graphical derivative characterizations of variational convexity and
strong variational convexity for extended-real-valued functions with deriving the cor-
responding characterizations of variational and strong variational sufficiency in prob-
lems of composite optimization with subsequent applications to particular classes of
constrained optimization problems.
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