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Abstract. Metrology of electron wavepackets is often conducted with the technique of
photoelectron interferometry. However, the ultrashort light pulses employed in this method
place a limit on the energy resolution. Here, weadvance ultrafast photoelectron interferometry
access both high temporal and spectral resolution. The key to our approach lies in stimulating
Raman interferences with a probe pulse and while monitoring the modification of the
autoionizing electron yield in a separate delayed detection step. As a proof of the principle,
we demonstrated this technique to obtain the components of an autoionizing nf ′ wavepacket
between the spin-orbit split ionization thresholds in argon. We extracted the amplitudes
and phases from the interferogram and compared the experimental results with second-order
perturbation theory calculations. This high resolution probing and metrology of electron
dynamics opens the path for study of molecular wavepackets.

1. Introduction
In the fields of femtosecond and attosecond science[1, 2] photoelectron wavepacket interferometry
is a well established technique for wavepacket metrology[3, 4, 5]. A complete characterization
of an excited wave packet can be used to probe strong field effects [6, 7], autoionization
dynamics[8, 9, 10], and molecular processes[11]. In these pump-probe experiments, one first
prepares the excited state wavepacket using a broadband, femtosecond or attosecond pump pulse,
followed by a sufficiently broad band ionizing probe pulse. Due to interference between pathways
to the same final continuum state, quantum beats in the kinetic energy spectrum of ionized
electrons are seen. From this interference pattern, when sampled over many probe delays, one
can extract amplitude and phases of constituent wavepacket components using Fourier methods.
In order to probe temporal dynamics on increasingly short timescales, one needs increasingly
short laser pulses. However, this typically comes at a cost, for the increase in the time resolution
leads to a corresponding decrease in the energy resolution, as indicated by the well-known
uncertainty relation δt δE ≥ ℏ/2. When the wavepacket is a superposition of large set of
states, reconstucting the wavepacket from a complex spectrogram can be challenging, as muliple
states can beat with very similar frequencies. Increasing the range of scans to obtain higher
Fourier frequency resolution to distinguish nearby beats becomes prohibitive at some point.
We previously presented[12] a method which bypasses this limitation by using a probing pulse



Figure 1. Energy level diagram depicting the “pump” and “probe” steps of this femtosecond
spectroscopy method. The “probe” consists of a two-color excitation of autoionizing nf ′ states.
The “probe” step is a two photon coherent amplitude redistribution between nf ′ states. Only
one amplitude redistribution step is depicted for clarity, but this redistribution will in general
occur at every constituent of the wavepacket. In contrast to the direct photoionization, the
delayed detection of autoionization signal yield high energy resolution.

that stimulates Raman interferences between the constituent components of the wavepacket,
followed by a delayed detection through autoionization. Here, we extend our previous work by
conducting additional analysis, namely the extraction of experimental amplitudes and phases
of the quantum beat signals from the difference spectrogram, followed by comparison with the
theoretical calculations. We observe that the amplitudes agree between theory and experiment,
while the phases of quantum beats show a phase offset.

2. Method
The three color experiment begins with an approximately 2mJ, 40fs, 1KHz, linearly polarized,
780nm beam which is split on a 50/50 beamsplitter into two arms. One arm proceeds to an
optical parametric amplifier (OPA), tuned to produce a 1200nm linearly polarized pulse with
comparable pulse width, which henceforth is referred to as probe. The second arm that is focused
into Xe gas for HHG production of odd harmonics 9-19 of the fundamental 780nm (1.6eV) driving
pulse. A small amount of of the 780nm beam that drives the HHG process makes through the
Xe gas cell, and copropagates with the XUV attosecond pulse train, arriving coincidentally at
the target. This two-color beam, henceforth referred to as pump, is focused into an effusive
jet of argon gas in the Velocity Map Imaging (VMI) chamber via a grazing incidence toroidal
mirror. As depicted in the pump step of figure 1, the 9th harmonic (14.3eV) and coincident
fundamental (1.6eV) photons coherently excite an optically dark wavepacket composed of nf ′



(n ≥ 9) states which are situated in the continuum of [2P3/2] ion core but energetically bound to

the [2P1/2] core. Due to configuration interaction, these states relax via autoionization, releasing

the Rydberg electron to the continuum of the [2P3/2] ion core. Long lifetimes of the nf ′ series
produce sharp energetic peaks (∼ 10meV) compared to broad bandwidth (∼ 150 meV) of direct
photoelectrons ejected into the continuum.

The probe arm navigates a time delayed path and is focused with a 50cm lens (∼ 1 TW/cm2 at
target) before recombining with pump beam line on a mirror with a hole. Both pump and probe
are linearly polarized in the plane perpendicular to VMI spectrometer axis. As depicted in the
probe step of figure 1, the time delayed ∼ 60fs probe pulse (1 eV) stimulates Raman transitions
between the constituents of the wavepacket, thus redistributing the wavepacket amplitudes.

We obtain the photoelectron and autoionizing electron spectra for a range of probe delays
in steps of 2 fs. At each time delay, we plot the a differential yield signal by subtracting pump
+ probe spectra from pump alone spectra, as seen in figure 2 spectrogram. The beats in the
signal result from the interference in the autoionization channel, due to the redistribution of the
amplitudes between the nf ′ states by the Raman probe. The high energy resolution along the
y-axis is obtained due to the long autoionization timescales in our detection step.

Figure 2. Differential electron spectrograms corresponding to the autoionizing nf ′ wavepacket.
Panels a and c on the left show difference spectrogram (pump+probe - pump) as a function of
time delay of probe pulse. Green indicates depletion of electron yield at that energy due to probe
pulse, whereas red indicates enhancement. Panels b and d on the right show the amplitude of
the Fourier transform of the signal. Panels a and b are theoretical calculation while c and d are
experimental signals.

3. Analysis
Tools from multichannel quantum defect theory (MQDT) and second order time-dependent
perturbation theory are used to model the light-matter interaction. Following the two color



pump the states that are excited are autoionizing states with even symmetry and total angular
momentum equal to 0 or 2. This restricts to states with an outer electron with orbital angular
momentum l = 1 or l = 3. Using the MQDT parameters from Pellarin et al [13] we determined
the width and position of autoionizing resonances with total J = 2 for both p′ and f ′ states
[14, 15] and found the excitation to f ′ states dominated by ∼2 orders of magnitude. Thus,
neglecting the p′ states is a good approximation.

Given that the f ′ states have a very small quantum defect and are very narrow, through their
interactions with the light pulse their wave function can be approximated by the bound part
only, with a hydrogenic radial wave function.

The initial wave packet is then given by

|Ψo⟩ = A
∑
n
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∑
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un,3(r)

r
ΦJ=2
1/2 , (1)

where ΦJ=2
jc

= χjc |{[(ℓc, sc)jc, s]Jcs, ℓ}J,M⟩ is the Jcs coupled angular momentum atomic
state[16], with an ionic core of angular momentum jc, ionic wave function χjc , and total angular
momentum J . the operator A is the antisymmetrization operator that is trivially realized since
the electrons are in different regions of space. The state |ψn⟩ is the bound part of the autoionizing
f ′ state with principal quantum number n.

The corresponding probability amplitude for each nf ′ state after interaction with SWIR pulse
is based on the perturbative expansion of the transition operator as in Chapter 2 of [17] using
a time-dependent peturbation of the form
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where Eo is SWIR field strength, central frequency ω, polarization ϵ̂, time delay to and temporal
intensity FWHM of γ
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removing the effects of the pump is equivalent to subtracting the initial amplitude |Af |2 from
this probability, therefore the theoretical estimate for the effects of the probe is:
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The matrix elements of the second order transition operator, T (2), is a sum over all the
autoionizing states of the form:〈

ψf

∣∣∣T (2)
∣∣∣ψo

〉
= −

∑
n

AnE2
o exp

{
−γ2

(Ef − En)
2

8
+ i (Ef − En) to

}
Znf , (5)

where the term Znf involves an integral-sum over the the dipole matrix elements between the
autoionizing states and the continuum of intermediate states weighted by a coefficient related
to the spectral profile of the probe pulse.

After the pulse is over, it is assumed that the totality of the amplitude in the bound state will
have decayed to the detector and will be observed across the predicted width of the resonance.
Figure 2 is obtained by extending the expression in equation 4 with a lorentzian over the width
of the resonance and then convolving over the resolution of the experimental apparatus. As
previously noted, the color indicates either a positive (red) or negative (green) change in electron
yield at the relevant electron energy due to probe interaction.



Figure 3. Amplitude of the quantum beats selected from FFT, in both experiment and theory.
The colormap is logarithmic and each square has a label with the value, with N assigned to the
beat values that are below the noise level. Experimental FFT by selecting only the values in
the 70th percentile. Beat amplitudes are concentrated around the diagonal and diffuse as the
separation in principal quantum number grows. Both experiment and theory show agreement.

Each nf ′ autoionization signal, of which n=9-13 are clearly resolved, exhibit oscillation
frequencies corresponding to pairs of autoionizing states. Within the bandwidth of the interfering
laser pulse, any given state can pair-up with any other state, leading to a very large number of
beat frequencies even when considering relatively few participating states. This point makes it
possible to propose a method to extract a the relative amplitude of the states in the wave packet
and have a more quantative comparison between experiment and theory.

To see this, let us take the fourier transform of the correction in equation 4
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The coefficients that accompany the delta functions have specific symmetric properties with
respect to the combination of different principal quantum numbers. Choose α > β such that
the terms that correspond to the positive frequency ω = Eα − Eβ are
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since the dipole matrix is hermitian the Z∗
αβ = Zβα , the theory predicts that the phase and

amplitude of crossed terms have the same phase and amplitude. And further on normalizing
all the coefficients so the zero frequency coefficient goes to unity gives a measure of the relative
amplitudes between states.

This analysis also applies to continuous signal since the convolution over energy is linear on
a Fourier transformation over time delay. Therefore we can compare directly with experiment



Figure 4. Phase of the quantum beats selected from FFT, in both experiment and theory. A
cyclic colormap is used and the values of the phases are in units of pi. Each box has its value
in a label. In this case there is a strong difference between theory and experiment. The main
difference is the observed symmetry across the diagonal. In the theory plots the phases are the
same across the diagonal, whereas in the experiment there is a considerable difference like in the
9-10 and 10-9 beat where the difference is almost π/2.

by extracting line outs from the experimental signal. This is achieved by integrating over the
beating signal, but it is only reliable only for states that are separated enough to be distinguished
in the spectrogram. In this case it was possible to distinguish states from n = 9 to 13.

Figure 3 shows the raw amplitudes obtained from the experimental and theoretical
spectrograms. Notice that in both experiment and theory the amplitude of the coefficients is
symmetric around the diagonal and the dependence on the energy separation between resonances
follows a similar Gaussian structure as the theory predicts.

The phases obtained from the analysis are shown in figure 4. Here we observe that unlike the
theory, the experiment does not appear to be symmetric accross the diagonal. They agree on the
diagonal terms being negative, but the off diagonal terms are not symmetric having difference
in some cases, like the pair 9 − 10, of around π/2. The reason for this is not clear yet, but a
more detailed treatment of the way these states decay into the continuum and how the phase of
the electron is modified depending on the channel it decays into may solve this.

In conclusion, we obtained an electron interferogram of a wavepacket with both high temporal
and spectral resolution. The essence of our metrology technique lies in the separation of temporal
probing and delayed detection steps. In the case of nf ′ states the long autoionization lifetimes
yield the required high energy resolution and while the femtosecond Raman probe pulse provides
the temporal resolution. The Fourier analysis of these spectrally and temporally resolved signals
enable us to determine the composition of wavepackets in terms of its constituent states. Our
experimental results agree well with the second-order perturbation theory calculations. For
naturally decaying states, the relaxation time determines energy resolution. However one can
extend this method to bound states by employing an additional quasi-CW probe for ionization.
This method will be useful for metrology of wave packets composed of a large number of densely
packed states, as in the case of molecular wave packets.
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