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1 Introduction

Deep inelastic scattering off a nuclear target at high energies constitutes the best environ-
ment to probe the small x tail of the hadron wave function and to confirm experimentally
the existence of gluon saturation. There is a trivial reason why one is interested in the
smallest probe possible: to minimize the effect of final state interaction and make exper-
imental data interpretable from the perspective of the hadron wave function. At high
energy, the coherence length of the virtual photon is significantly larger than the proton
radius. Thus the larger the nuclear target the denser the gluon field which the projectiles
probes. While the Electron Ion Collider will be the best discovery machine for the satu-
ration physics, the ultra-peripheral collisions [1, 2] at RHIC and the LHC may also be a
very useful probe of the small x hadron wave function as a nearly real photon likely has



a smaller partonic content than the proton, and consequently the influence of final state
effects should be smaller as well.

In this paper we focus on correlations between produced particles in Ultraperipheral
Collisions (UPC). Traditionally, hydrodynamics has been successful in dealing with cor-
relations produced in heavy ion collisions. However, the discovery of such correlation in
small systems brought to the fore the question of their origin. Following the high multi-
plicity pp measurement by CMS [3], a set of measurements was done in the past decade,
specifically, p-Pb at LHC [4-6] and p-Au, d-Au, He-Au at RHIC [7-9], see more details
in review articles [10, 11]. In addition similar correlations have been recently observed in
UPC [12]. Similar measurement was also performed in e*e™ collision [13], and ep Deep-
inelastic-scattering [14], and no ridge correlation was found in this data.

Our focus in this paper is on the possibility that particle correlations originate from the
quantum correlation in the initial state hadronic wave function. From theoretical perspec-
tive, the wave-function of a nearly real photon is poorly understood due to uncontrollably
large non-perturbative effects. Thus theoretical results describing scattering and particle
production in UPC are unavoidably model dependent. In this paper, in order to at least
provide a sense of the systematic uncertainty, we consider two models for the photon wave
functions. The first one is based on a naive perturbative process of photon splitting into a
virtual quark-antiquark pair. The second assumes that the real photon can be represented
as, in general non-perturbative, hadronic state, e.g. p-meson [15]. A p-meson wave-function
evolved to asymptotically high energy/small x would be similar to the wave function of a
nucleus or a proton and thus can be approximated by the McLerran-Venugopalan (MV)
model. For the energies available at the LHC and especially at RHIC, this approximation
can be expected to be wanting. Nonetheless, two diametrically opposite approximations
may help to understand the influence and the importance of the associated systematics.

Within the Color Glass Condensate approach, the scattering and central rapidity par-
ticle production in photon-nucleus collisions pose yet another challenge (see ref. [16] for
hydrodynamic approach to UPC). At the moment, the two - particle production was only
studied in the forward, photon going direction [17], which is not appropriate to describe
the central rapidity production for two reasons. First, theoretically, forward production
is a significantly different process than the production at central rapidity and as such it
has qualitatively different systematics as a function of the control parameters. Second,
the experimental data shows extremely strong rapidity dependence, see ref. [12]. The lack
of boost-invariance [18-22] invalidates approximating of the mid-rapidity physics by the
physics of the forward region. In particular only a small fraction of particles is produced
in the forward region. Thus it is hard to imagine that particle correlations integrated over
a sizable rapidity interval can be reasonably described in terms of these hadrons alone as
in [17]. Thus addressing mid-rapidity production is absolutely crucial in order for the CGC
based theoretical analysis to be taken seriously.

Here we undertake such a calculation, albeit within the constraints mentioned above.
As in the rest of the CGC based calculations, we consider inclusive two-gluon production
from the projectile wave function in the eikonal approximation for the emission vertex.
This approximation is justified if the gluons have sufficiently different rapidities. On the



other hand when the rapidity difference becomes too large, ~ a% this approximation has to
be revised as one would be required to account for the evolution between the gluon emis-
sions [23]. However experimentally one is not dealing with such large rapidity differences,
and so our simple approximation should be adequate.

The calculation of particle production in the CGC framework necessitates averaging
of products of Wilson lines over the color field ensemble of the target. This in general is a
rather complex endeavor since to study correlations we are forced to go beyond the large
N, limit which then requires us to calculate correlators of a large number of Wilson lines.
In order to make the calculations tractable and not overly numerically demanding, in this
paper we use the so-called factorized dipole approximation (FDA) discussed in refs. [24, 25]
and successfully applied to study particle production and correlations in refs. [26-30]. This
approximation is well suited for a dense nuclear target in and close to saturation regime.
We will explain this in more detail in the following.

The paper is organized as follows. We start from summarizing the machinery used
to calculate particle production in dilute-dense scattering in section 2. In section 3, we
calculate a general expression for double gluon production cross section. In section 4 and
section 5, we discuss projectile ensemble average for the dipole and MV models respectively.
Section 6 lays out the details of our numerical procedure. We conclude with the discussion
of our results in section 7.

2 Particle production in dilute-dense scattering

In this section we outline the most important ingredients of the formalism and define the
observables. The formalism of our choice is the wave function approach of refs. [31, 32].
Alternatively one can use diagrammatic methods of ref. [33]. While the final expressions
are the same, the representation we use is convenient for organizing calculations.

Consider a projectile at high energy before a collision with a hadronic/nuclear target.
The projectile’s wave function can be written in the general form

Win) = > {z k" a}) [ |2 ki) (2.1)

{m)k+ 7a} i

where x; is the i-th parton’s transverse position, k::r longitudinal momentum and oy
the color index. Subject to the physical process, the latter can belong to either
(anti)fundamental or adjoint representation describing a (anti)quark or a gluon in the
incoming wave function. At high energy, the separation of relevant timescales allows for
significant simplifications of the analysis of the scattering process. The propagation time
through the target in high energy collisions can be arbitrary small compared to effective
inter-parton interaction time. One thus can neglect the interactions between the partons
and approximate the scattering process by independent propagation of partons. For a sim-
ilar reason, at high energy the partons do not change their transverse positions during the
scattering process. The high energy scattering in QCD is non-trivial due to the different
eikonal phases acquired by different components of the wave function. This difference in
phases is responsible for decoherence of the components of the wave function and leads to



particle production in the final state. The wave function of the outgoing projectile right
after scattering is

Wout) = S|¥im) = > »({x, kT, a}) HUaﬁ ()]s, k", Bi) (2.2)

{z,kt,a}

where U is the Wilson line defined in the representation of SU(N,) group appropriate to
the color charge of a given parton:

Uq; — PeifddfiTaA;(-'E,LI)i)‘ (23)

Here AT is the + component of the gauge field of the target.

To calculate the expectation value of a gluon observable in the final state, one has to
allow for the propagation of the projectile state (2.2) to asymptotic time ¢ — oo. This
evolution results in emission of additional gluons which dress the bare partons by their
WW fields as well as in recombination of some of the outgoing soft gluons into the WW
field of the outgoing fast partons. It is straightforward to account for the evolution after
scattering (or equivalently to change the basis from free to dressed partons) by introducing
the coherent operator

O — Peive [ PadcbiEa)[a] () tai ()] (2.4)

where the WW field operator is defined through the total charge density operator pg (€, y)
integrated from the rapidity of the projectile to &

g 2 (x )

ih(ex) = o [y Sy (25)

Here we have explicitly written out only the leading order in o expression. Higher order
corrections can be included, but we will not take them into account in our calculations.
The expectation value of a gluon observable O(a,aT) in the final state is then given by
<\I/out’C O(av aT) CT|\Ijout>'

For example the differential single inclusive gluon production is given by

dN
M = <\I’out’0a;b(yaQ)ai,b@;‘J) CT‘\Ijout> (2-6)
This is nothing but the high energy counterpart of the Faddeev-Kulish construction of
dressed states in theories with massless gauge bosons.
In this paper we will consider double gluon production, which is a straightforward

generalization of the previous equation

dN

m = (‘ljout|ca;r,b(77, Q1)ag,b(€7 Q2)az‘,b(77, Q1) ai,b(&a QQ) CT"I’out> (2-7)

To perform the actual calculations, we need of course a model for the wave function
of the projectile. In general, in the high energy CGC approach, this wave function has the
form of a wave function for valence charges dressed by the WW field, that is

[Win) = Clo), (2.8)



where C' is the coherent operator eq. (2.4) and |v) describes a state in the free Fock space
of a small number of valence (large rapidity) partons. As mentioned in the introduction,
we use two models for the valence wave function |v) - the dipole and MV model, which we
describe in detail below.

Finally, the target is treated as an ensemble of classical gluon field configurations which
have to be averaged over.

We now proceed with the detailed calculations within the framework just described.

2.1 Modelling the projectile and the target

As stated earlier, we explore two models for the wave function of a nearly on shell photon.

2.2 Dilute dipole projectile

For a nearly on-shell photon, the longitudinal polarization is suppressed by a square of
the virtuality. Hence only the transverse polarization is of importance. The leading order
perturbative expression for the photon state is given by [34]

3) Ul (2, k bl o, (ki k1)dl ,, (k3 ,—k1)|0
0= 3 [ qmai= [ (Rt s, (T )l Rl

> dz 2, 12 T
-y er s [ Ead vl sl O 2)dl L, 0, 22)[0) (29)

z
51,52

where s; o are polarizations of quark and anti-quark, « is the color index in the fundamental
representation, A = %1 is the photon polarization, r = z; —29. The longitudinal momentum
of the (anti)quark is k" = zp™ (k5 = (1 — 2)p*). The above expression is written in the
reference frame where the photon has zero transverse momentum. The photon splitting
functions in the momentum and coordinate space are

kl-E)‘
ki + <3

2ee T-€
ULz, 7, 51,80) = —22—7:581,_52(22 —142Xs1)4/2(1 — z)T”\zstl(sfM), (2.11)

UL (2, k1,51, 50) = —2eef0s, —s,(22 — 1+ 2Xs1)4/2(1 — 2) (2.10)

In the perturbative photon wave function one has 5? = 2(1 — 2)Q? This z dependence
of ¢ is such that for z = 0 and z = 1 it vanishes, and therefore for these “alligned jet”
configurations the values of the dipole size r can grow arbitrarily large. For our goal, a
model of an almost real photon with transverse size determined by a nonperturbative soft
scale is required. To achieve this, we will modify the perturbative wave function in the
simplest possible way, i.e. will take ¢ = /2 independent of the value of z.

In numerical calculations we use a small but nonzero value of @@ ~ 200MeV, see
section 6 for details.

2.2.1 Correlators of the charge density

For the calculation we will need to know correlators of up to four color charge density oper-
ators. Here we calculate those in the dipole model of the photon. The charge density oper-



ator in terms of the quark and anti quark creation and annihilation operators is defined as
e @) = bl (@ @)t g (07, @) — iy (07, @)t dse (2 @) (212)
For the purpose of a CGC calculation we need the correlators of the integrated quantity

x) = /dx_ﬁ“(:v_,m) (2.13)

We now evaluate the correlators of p in a dipole state |q7) = b}, (21)d],,(22)|0), where we
have suppressed indices and arguments irrelevant for this computation.

Using

.14
[0, () (22000 (@ — 22) - o)l ()0 - )] )
and
(0]di(22)bi(21)7 ()
) ) (2.15)
= (0] [tf3ds(22)bi(21)82) (@ — 21) — tyda(z2)bi(21)0P (2 — 22)]
we obtain
(qqlp® (21)p" (w2)|qq) = H (6@ (@i — 21) — 0 (@; — 22)) . (2.16)

i=1,2

For higher correlators, to simplify expressions, we account explicitly for the symmetry of
the photon splitting function zy <+ 22 (and z +> 1 — 2)! to obtain

(qdlp” (1) " (2)P°(3) 4q)

= Yate (50 @y — 21) 462 (@3 — 29)) I (60 (@ — 1) = 6D (s — 22)) >17)
and
(4d]5" (@1)p" (@2)p* (ws)p* (wa)lga) = Tr(t*1'1°t") f[ (6 (@ —21) =3 (@i — 22)|
Jeaelate (500, —21) 62 ><w2_ZZ>} (62 (@5 — 21) +6®) (@5 — z2) (2.18)
< T [0 ~ 0@ (@~ z)]

i=1,4

where Tr (tatbtctd) — %Méabd(:d 4 % (dabe 4 Z'fabe) (dcde 4 ’idee).
In the following we will need a representation of this trace in terms its fully symmetric
and the remaining parts: Tr (t“tbtctd) =Tr (t“tbtctd> + Tr (t“tbtctd) with

sym ns

1

Tr (t“tbtctd)sym 3

1
l:N (5ab5cd_’_5ac5bd+6ad5b0) 5 (dabedcde+dacedbde+dadedbce):| (2.19)

!That is we consider |qg) = % [bfw(zl7 2)dl (22,1 — 2) + bl (22,1 — 2)d},, (21, z)] |0).



and
abycyd 1 1.
Tr<t ttt )ns = E(fadefbce - fabefcde) + gz(dabefcde + dcdefabe) . (2-20)

For N, = 3, one can use the following identity (the factor of two was missing in refs. [35];
the validity of our identity can be easily checked by summing with respect to a = b)

2
dabedcde + dacedbde + dadedbce = g((sabécd + (5ac(5bd + 5ad5bc) (2.21)
to obtain
N.=3 1
Tr(egbeee?) = (695t 4 ot 4 gedate). (2.22)
sym 18

We stress again that this expression is only true for N, = 3.

2.3 The MV model for the projectile

The other model we use to describe the photon wave function is the McLerran-Venugopalan
model. It posits that the averaging over the “classical” color charge density of the projectile
should be performed with Gaussian weight, so that all correlators are expressed in terms
of Wick contractions of the basic “propagator”

(pa(@)po(y))niv = 12 ()02 (& — y)dap (2.23)

Note that (2.23) goes beyond the conventional MV model in that it includes the dependence
of the color charge density on the impact parameter b = % In principle one can go even
further and account for the color neutrality by substituting a suitable function instead of
6@ (x — y), see e.g. ref. [36]. We will not do this in the current paper.

One has to be aware that the “classical” charge density in (2.23) is not identical to
the color charge density operator p. To calculate the correlator of color charge density
operators, one has to perform the operator symmetrization first, and use the MV for the
completely symmetric parts. This was shown in [37] and explained from the point of view
of quantum-classical correspondence in [38].

For bilinears, the symmetrization is straightforward:

A A A N

pol@)n() = 3 {al)s )} + 5 [Pul), pu(w)]
= pu(@)uly) — 562 (@ — ) Tpele) (2.24)

where we have replaced the fully symmetric combinations by the classical color density
{pa(x), Pp(y)} = pa(x)pp(y) and took into account that the commutator [pq(x), pp(y)] =
—%6(2)(33 —y)TS pe(x) as follows from the definition of p. We thus see that

(pa(@)pp(y) )iy = (pa(@) o))y = 12 (2)6P (@ — y)Jap - (2.25)

This procedure can be extended to any number of operators p.



For three operators we obtain:

Pa(x)pp(Y)pe(2) = pa()po(y)pe(2) (2.26)

- %(5(2) (y — 2)Tpa(@)pe(y) + 6@ (2 — 2)Tepp(y)pe(a) + 6 (x — y) T pe()pe(2))

with Ty, = —ifape. Here the terms linear in p were omitted as they do not contribute to
the expectation value over the color invariant ensemble.? Thus in the MV model:

PN A A 1 a
(Pa(@)Pr(W)Pe(2)y = —50P (x = )6P (y — 2)T5, 1 () (2:27)
Similarly for four operators, we obtain

(pa(@)6(y)Pel2)Palt) rv
— 12 (@) (2)576°6) (2 — y)5® (= — ) + p2 (@)1 ()55 (@ — 2)5) (y — u)
12 (@)122(2)5%576) (@ — w)6® (2 — y)

LK

Qél‘ 5(2)(213 — y)5(2) (:17 - 2)5(2) (.’IJ - u) (fadefbce - fabefcde) (228)

~—

The last term here is of lower order in ;2 and is thus subleading for a projectile with high
charge density. We do not neglect it here, but as will become clear later, it does play a
somewhat different role than the first two terms even for a dilute projectile.

2.4 Small x gluon component of the projectile wave function

At the leading order, the dressing of the color charge by gluons of rapidity 7 is given by
the coherent operator:

c, = exp{i\@/delA)é(w) {afj(n,w) + al (n, a:)}} (2.29)

where the creation/annihilation operators are introduced as the decomposition of the trans-
verse gluon field

. o dkt . I . .
7 + _ 7 + —ik~x it .+ ik~ x
Al (z7, x) —/0 (20 (aa(k ,x)e +all (kT x)e ) : (2.30)

2Note that this expression also reproduces the result of the previous section. Indeed, taking into account
the symmetry of the dipole wave function we need to account only for the term quadratic in p

(pa(@)po(y)) = ({pa(@), po(y)}) = %(5(3c —z1) —6(® - 22))(6(y — z1) — 0(y — 22)).

Therefore
(pa(@n(W)pe(2) = ~ 1T [ (y = 2)(6(z — 22) — 6w — 22))(6y — 21) — 6y — 22)
— 6 (@ — 2)(8(x — 21) — 6(x — 22))(3(y — 1) — 3y — 22))
+ 0P (@ — y)(0(m — 21) — 8(z — 22))(0(2 — 21) — 6(2 — zz))}

= 1T 0@ — 22) = 6@ — 22))(0(z — 21) — 6(z — 22)) (3(y — 1) + 3(y — 22)) .



The rapidity variable is defined here as

dy=2" (2.31)

. ko
ai (n, ) = \/;aZ(k+,m). (2.32)

The commutation relations for the creation/annihilation operators are

and the corresponding

|abn @), al (0 y)| = 676°5%(n —/)3(w — ). (2.33)

The Weizsdcker-Williams field at the leading order is proportional to the color charge
density operator

(2
hhie) = £ [ Pue= ). (234)
The distribution (wave function) of p can be modelled by the previously discussed dipole
or MV models.

Our calculation requires the knowledge of the incoming wave function at the rapidities
of both observed gluons: n and £ < 7. As we alluded to in the introduction, we restrict our
calculation to the case when the difference between the rapidites of the observed gluons
n — £ is large enough to use the eikonal vertex, that is n — & > 1, but small enough to
neglect corrections due to evolution, that is n — £ < 1/as.

The gluon with rapidity n itself contributes to the source for emission of gluons at
lower rapidity. This can be accounted for by an appropriate redefinition of the Weizsécker-
Williams field at lower rapidity b7 (a) — bl (x) + 60, (). Thus at rapidity ¢ we have

Ce = exp{i\/§ / &’z (zsg(m) + 56@(:8)) [afj(g, ) + dt (€, m)]} (2.35)

where the extra contribution due to the presence of the gluon in the dipole wave function

is given by
7 g 7 2 (m _ y)l Al
dbg () = 27T/§ dC/d ympg(47y) (2.36)
where
(¢ ) = 0 (¢, @) Thae((, @) (2.37)

Thus to the required order, the valence state dressed by the gluon cloud is

W) = CeCyl0)]0) (2.38)



2.5 Scattering off the dense target

To describe a large nucleus, we use the classic field approximation for the gluon field of the
target. In the eikonal approximation we have,

Stai, (¢, )5 = U aly (¢, @) (2.39)
for gluon scattering, where U is the infinite Wilson line in the adjoint representation:
oo
Uy = Pexp{ig/ dztT*A; (z, ac)} . (2.40)
—00

Similarly for quark and antiquark

A

ST (®)S = Vap(@)bs(x)

N N t (2.41)
Stdo(x)S = V), (z)dg(x)
where the Wilson line in the fundamental representation is given by
V(x) = Pexp{ig/ dz Tt A, (a7, ar:)} . (2.42)

The consequence of these equations and the definition of the color charge density is that
STpa(@)S = U2 po (@) (2.43)

and similarly

$5a(¢, @) = aif (¢, @)ac(C, @) [ULT"Ua|, = U pur(C, @) (2.44)

A calculation of a physical observable requires averaging over the ensemble of target
fields which determines various correlators of the Wilson lines. For a large nucleus at small
x, the ensemble of the color fields of the target is frequently taken as an MV model with a
relatively large value of the saturation momentum. This procedure in practice works well
for calculation of a correlator of a small number of Wilson lines, but becomes increasingly
complicated and cumbersome for more complicated correlators.

As we will see, the observable we work with leads to the expectations values of four
Wilson lines in the adjoint representation. In the limit of large number of colors, this
can be reduced to a product of up to two dipoles and a quadrupole in the fundamental
representation in the coordinate space. In order to get particle production cross section, this
combination has to be Fourier-transformed with respect to four two-dimensional transverse
momenta. Although, there are analytical expressions for the dipole and quadrupole in
the McLerran-Venugopalan model, the Fourier transforms render the problem numerically
prohibitively complex, as fast Fourier transform is not feasible in this multidimensional
space while Monte-Carlo integration is extremely ineffective due to the presence of the
oscillatory phases.

The two particle correlations at large N, (in the classical approximation, see e.g.
ref. [39]) only arise at order 1/N?2 [40-42]. Partly this can be attributed to the nature

~10 -



of the correlations arising either from gluon HBT or gluon Bose-Einstein correlations [26].
Therefore the large N, limit does not capture the physics we want to study. Going be-
yond the large N, limit provides additional level of complication, as the cross section also
involves sixtupoles and octupoles for which explicit analytical expressions, if exist, are too
complex for a numerical simulation.

Instead we will use another approach applicable for a well evolved, near black disc,
target. The approximation in question is the so-called factorized dipole approrimation
(FDA) discussed in refs. [24, 25] and successfully applied to study particle production and
correlations in refs. [26-30].

The idea behind this approximation is extremely intuitive. Consider an arbitrary
combination of even number of Wilson lines (Uy, Uy, . .. Uy, ) which is multiplied by a non-
trivial function of coordinates and integrated with respect to all two-dimensional vectors
zi, © = 1,...,2n over some finite, but large compared to the inverse saturation scale of
the target squared, transverse area S;. If a single Wilson line were to have a nonzero
expectation value the largest contribution to the integral would be of order Si" arising
from the integration over the part of the phase space where the coordinates of all Wilson
lines are far away from each other. However for a dense target (Uy,) = 0, and so the largest
power of the transverse area possible is S, with corrections of order Sz_l. The leading
order contribution includes terms which contain smallest color singlets in the projectile
propagating through the target. On one hand, any non singlet state that in the transverse
plane separated by more than 1/Qs from other propagating partons must have a vanishing
S-matrix on the dense target due to color neutralization on the scale of 1/Qs, see e.g. [43—
46]. On the other hand, if the singlet state contains more than two partons, one looses a
power of the area when integrating over the coordinates of the partons. Thus the leading
contribution in the dense target regime is the one where only dipole contribution to the S-
matrix should be accounted for. For illustration lets consider a four Wilson line observable

4
[T i@ @) iU UaslUny Us)
=1

4
— [ @it o0 W) WU
i=1

+ (U U U U + (Ut U (U Uge) | + 0(S1)

where the function f is assumed to have support for all x within the area S| . The correlator
<U§bU§d> is non zero only for a color singlet state, in this case — the dipole:

abrrc 1
<UmbUyd> = méacébdD(‘m - y|) ) (245)

[

where D(r) = ﬁtr[Ui Up]. The quality of this approximation was explicitly checked for

a number of Wilson line combinations in ref. [29]. The key necessary (albeit not sufficient)
condition for its applicability is QzSme 1L > 1, where @y is the saturation momentum of
the nucleus and Sy, 1 is the effective transverse area of the projectile. For LHC energies

this condition is satisfied if we use the natural Sp.e1 = L where Q.q is the larger

eff
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between the QCD non-perturbative scale Aqcp and the virtuality of the photon. For
the nearly real photon we thus have Sp.o5 1 ~ AQ%D. One has to be aware that when
large momentum particle production is considered the effective area of the projectile might
be significantly smaller than AQCD Although this is a process-dependent statement, in
general it means that at large momenta k& > @Qg, the FDA is not uniformly applicable.
Nevertheless even for high momenta the approximation can be justified a posteriori for
many momentum configurations. In particular, using the MV model for near real photon,
we checked the quality of the FDA for contribution to double gluon production dominant
at large density, see eq. (5.4), and found excellent agreement. A somewhat different set
of Wilson line correlators were considered in ref. [29]. Most of the combinations show
excellent agreement. At the same time, ref. [29], also identified a few examples where
the FDA fails. These particular correlators do not appear in our expressions required to
compute azimuthal anisotropy.

For calculations in this paper we apply the FDA to evaluate the correlators of more
than two Wilson lines. As our calculations are mostly in momentum space, the basic
correlator used in the FDA is the Fourier transform of eq. (2.45):

Uy = ]ff_) o 6ucbad® (p + @) D(p) (2.46)
where D(p) is
D(p) = M<Tr(UgUp)>T. (2.47)

We will also assume spatial isotropy of the target field ensemble, so that D(p) = D(|p]).
We will use the MV model for the dipole. That is in the coordinate space, we have

D(r) = exp [i 2,2 ln( Azlﬂ)} (2.48)

with D(|p|) = [ d*re?P" D(r).

3 Double inclusive gluon production — general expressions

The differential cross section for double inclusive gluon production with rapidities and the
transverse momenta (7, q;) and (&, g2) is given by

dN
didg}dédg? — (2m)*
x (7" |CT§TCG1T,G(77» Ul)a;b(& u2)ai o (0, @)ajp (€, a2)CTSCly*)

The coherent operator C' is given by the product of C' = C¢C;, see section 2.4. For double-

/ d2U1d2’u,2d2’l_1,1d2ﬁ26_iq1(u1 _ﬁl)e_ti(UQ_EQ)
(3.1)

inclusive gluon production, it is sufficient to expand the coherent operator to the leading
order in the argument:

1+1\[/d2'ulbZ v1) { (n,vﬁ%—aé(n,vl)} ,

| | (3.2)
Ce = 1+iV2 [ dPoy (B(wn) + 58] (1, 02)) [af (€, v2) + af(€.w2)]
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Figure 1. An illustration of two types of contribution to the two gluon production amplitude.
Note that the number of actual diagrams is significantly larger, as the position of the shock wave
can vary. For example, in total, there are six diagrams for the topology of the left diagram.

Hence to the required order, the coherent operator can be approximated by Ceg
Cot = 1 +iV/2 / d*vibl(v1) |aif (1, v1) + @i (n, 01)
+ i\/i/d%g (Bi(vg) + 63Z(n, vg)) [a{j(é, v2) + aZ({, ’UQ)]
— 2/d2v1d2v2 (Ei(vz) + 53Z(n,v2)) [agT(g,vg) + ai({,vg)}
x bi,(v1) [CLZT(??,Ul) + a’fz(nvvl)] :
The matrix element in eq. (3.1), can be decomposed into three different contributions

classified by the number of gluons emitted directly from the photon state M = Yo+33+34,
or equivalently, the powers of color charge density, schematically,

b2 (b + 0b)* = b* 4 2b%6b + b2(6b)*. (3.3)

Here every factor of b corresponds to a gluon emitted directly from the photon, while a
factor of db corresponds to a gluon emitted from another gluon with larger rapidity. We
will denote the corresponding contribution to the matrix element by 3.,,, where n is the
number of gluons emitted directly from the projectile. To elaborate on this: s contributes
to the probability of the process where a gluon with rapidity n is emitted from the photon,
and subsequently this gluon splits into a pair of gluons which are then observed in the final
state. The splitting can occur either before of after the scattering on the target field. 4
contributes to the probability of the process where both gluons are emitted directly from
the photon state. Finally X5 represents the interference of the previous two contributions.
We now turn to evaluating the production amplitude.

3.1 Production amplitude

Our goal is to evaluate the production amplitude in the coordinate space defined by
Ay, ti2) = STa; o(n, 81)a;, (€, 12) CTSCIY*) . (3.4)

We have introduced the factor ST for convenience, although it cancels in the calculation in
the matrix element M = AfA. Using eq. (2.39), we arrive at

A, a2) = USY U a; (0, @1)a;5(€, a2)STCTSOly) = Ay + As. (3.5)

2
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The operator STCTSC has terms proportional to b and to b, and these terms have been
separated in the previous equation into the two amplitudes A; and As. These amplitudes
are directly related to the aforementioned %,, ¥y = A1 A7, X3 = A1 A5 + Aj Ay and
Yy = AxAj.

3.1.1 Amplitude A;

Expanding the coherent operators and collecting the terms of first order in b, we obtain
the production amplitude for two gluons with colors a, b, polarizations i, j at positions w4
and ug:

Ai(ur,u2)

AN

:2/d2v1d202U§f/U32’,a2, (n,ﬁl)ag, (&, u2) [S’Tél;’(f(n,vg)algT(é,vg)Sbé(vl)ag(n,vl) (3.6)

ALA

! 2 &_ 56 2 ! *
— 818l (v1)agf (n,01)508 (n,v2)ak" (€,02) S — 36 (1, 02)akt (&, 02) Bl (v1)alf (m, 01) | 1)
The second term in this expression gives zero when the operator 53§(n,v2) acts on the

gluon vacuum at rapidity n (we always assume that £ < 7).

We thus have two non-trivial terms which can be readily evaluated. The first one gives

USf/Ugl;//d2vld202aif(77,ﬁl)a§/(€7ﬂz)gmglﬁ(n,Uz)aléT(&1’2)3%(01)ag(77,01)|7*>

. . (3.7)
= [ e — wn) i - @) [T pr(@)”)
where
ifg) = L2

fiw)= L% (3.8)

The last term in eq. (3.6) simplifies into

vas' U, [ o (1,80, (€ 800, v2)al € v2)bhw0)all (0, 00) )

(3.9)

= [ U U T (@ — @) £ (@ - @)pale)).
Combining these two contributions we complete A
A (w1, 6) =2 / da I (@ — ) f' (1 — ) (Ug, — Ua,)" (UL, T*Ugyyapa(®)  (3.10)
where to obtain the final expression we used the identity

Use iy = (UL, T*UaiJay - (3.11)
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3.1.2 Amplitude A,
Following similar calculations, we obtain:
As(uy, ug)
=2 [ Padyf(u — @) (w — y) (V2 UL (@)0ely) + Uy U ()pe @)
—USUY pe(@)pely) — Uge Uk pe(w)pe(@)|  (3.12)
=2 [ Padyf(w - @) (@ - y)
x [Uge (Uks = U pel@)pely) + U (Upe = UL ) pelw)pe(@)] -

If we were to forget about the quantum nature of the color charge density operators (neglect
their commutation relations) the later expression would be identical to the frequently used
expression for two gluon production in the dilute-dense limit, see e.g. appendix A of ref. [47].

3.2 Matrix elements X

We now compute the matrix elements. The matrix element proportional to the second
power of the projectile charge density is:

Yo(ur, u, w1, u2) = Ay (w1, u2) A (a1, u2)
= 4/d2w/d2:17:fi(ﬁ1 — ) f (w1 — &) f (ug — 1) 7 (w2 — wr) {par (Z)pa(x)) p

< (U3, T°U v [UY, - UL, ey — Ua, UL, TV, ) (3.13)

— 4 [ @ [ dafia - o)f (- @)@ - w)f (s - u) (o @)pale)
x (Tr (U, T[U], = U}, |[Ua, — Uﬁl]T6U£1)>T
The interference terms involving the cubic power of the projectile charge density:
Y3(ug,ug,ur,u2) = Ay (ug,uz) A (ur, u2) + Al (ug,uz) Az (ur, us)
_4 / LGz f (s — 1) f (w1 — ) f (w1 — B) f (us — §)
% ((pe (9o (@) pa(@)) p

><< Ute's( ){ UT U, — Uﬁl][UngaU’_“”c’d>T
+ (Per () e (Y) Pa()) p
X <UJre “(uy) [[Ug —U{, U, —Us, ] [UziuTan“]] c’d>T> (3.14)

+4/d2fid2yd2wfj(1t2—u1)fi(’u1—f)fi(ﬁl—w)fj(ﬁz—y)
X ((Par (%) pe( ) (y)>p

x <[ i, U Ul ][U@_Uyﬂd'cUae(m)>T
+{pa@)p <> (sc>>p
{00 0, =L =], ), )
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Finally the term with the highest power of the projectile density is

Ya(ur, ug, w1, uz)

= Ay (u1, uz) Az (a1, u2)
4 [ @adty [ Fadysia - o) @ - y)f - 2)f (- )
< (40 @ @p.@)ew)p (UL [(UL, - UV~ 0], ), (3.15)
+ (per (@)pe () (@)peW)) p (UL, Uelere |[Uf = UL)Uay = Ty, )
+ {pe (@)pe (@)Pey)pe(@)) p ([UF, Vs Jere [Uf = ULITy = Uai)] , )

ﬂm@@@mwm@mQ@m&JMJWM%—%RJJ

4 Inclusive two gluon production: the dipole model

The two particle inclusive cross section in terms of the matrix element ¥ = Yo + X3 + X4
computed previously, reads

dN 1 1 dz
dndq2dédqs 4 51%2:,/\/0 27z(1 — 2)
1
* @i

/ U™ (2,21 — 22, 51) 0L (2,21 — 29, 51)
Z1,%22 (4 1)

/ e_“h (ul_u1)6_1q2(u2_u2)2(’u,1, Uuo, ’111, ﬁQ) .
ul,UL,U2,U2

Summing over the quark and (transverse) photon polarizations we obtain

2.2
o7 _ o _B2e%€¢ 5 2 2 192
Yo Uz 21— 228 = o)’ (27 + 2%)zze3 K (gglr]) (4.2)

317527)‘

where we introduced z = 1 — z to simplify notation.
We now integrate over z explicitly:

1 2
/ dz (2 +32) ==, (4.3)
0 3
Hence the cross section reads

dN 16626% )
dndqidédqs  3(27)3 /zl,sz 1(eflz1 — 2z2|)
1

X W

(4.4)
/ e—i(h (U1_ﬁ1)6_iq2(U2_ﬁ2)E(u1) UQ, ﬁla ﬁ2)
u1,U1,U2,U2

where as discussed earlier we set €5 = Q/2.

Numerical calculations are easier performed in momentum space, therefore in the fol-
lowing we present all expressions in terms of momentum integrals.

It is convenient to split the production cross section into three terms corresponding to
Y9, X3 and 4. Using the correlators of the color charge density in the dipole, calculated
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in section 2, we obtain for the contribution of Xs:

AN ®) 16e2e> I(es, P -
A 4fa§/ L) pg, kR
dndqidédqs 37 pkk P (4.5)
x Tr (UQ1+k—PT6U;<r:—q2 UE—Q2T6U¢I1+I_€7P) )

In eq. (4.5) we introduced

L, (|1P]) = /OOO drre K7 (es|r|)(1 = Jo(Ir||P]))

P 2
(P2 + 2e§)1n<' + 1+ f?>

2ef
=——+ , (4.6)
2 2
|P[\/P? + 4}
. @ k') (qy K
gk k)= ([ _Z ) (2 _Z%) 47
wrh=(2-5) (5 5) 0

Note that the ratio Z(e s, P)/P? as a function of P? approaches a finite constant in the
IR(P/ey — 0).

The contributions involving 3 cannot be simplified into one homogeneous expression.
Instead we have

AN® AN AN AN dN

— + + + 4.8
dndgidédg;  dndqidédg;  dndqidédqs — dndqidédqs  dndqididgs “8)
We list all four terms separately.
dn{? Be’e} drrt drrt
=— Tr |TU, U, TU,., U, _
dndgldédgs — 3 %/kl,m,k3< [ U UL Ut ),
. ko—k
& (@1 +g2+ks 3)I‘(q27q2—|—k1,Q2+k2) (4.9)

ai(q1+qa+ko—k3)?
x| Ze (1@ + a2+ ko —ks)) + ., (|gs + et |) — Tz, (| @1 — R + Koo — Kea )
Note that this expression does not have poles at g + k =0 and q1 + g2 + ko — k3 =0 as

the combination of Z functions vanishes at these points.
Similarly for the remaining three contributions we have

dny” 8e’e} drrt drrt
= — Tr |TU, Ug, TU, U, _
dﬁdQ%dﬁdqg 3m4 s /k1,k2,k3 < ' { k2 ks k1 k2+k3}>
(@1 — k1 + ko —k3) - (q1 + g2 + ko — k3)
(q1 — k1 + ko — k3)%(q1 + q2 + ko — k3)?

x |2, (lar =k + ko — ks|) + Lo (@1 + @0 + ko — ks|) — T (|go + Ka)|,

T

I'(q2,q2 + k1,q2 + k2) (4.10)

AN 8e2e? s o
= - Tr |T°U,, U, TU,, U, — )
dndq%dqu% 3ré s /kl,kg,k3 < r { kY k2 ks Ykl kz—&-kd} >T

» q1-(q1 +q2 — ka2 + k3)
a3 (q1 +q2 — ko + k3)?

X [Isf(|(I2 + k1 — ko +k3|) + Z:,(lq1 + g2 — k2 + k3|) — L, (|1 — kl‘)} ;

I'(g2, g2 + k3, g2 + k1 — ko + k3) (4.11)
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and, finally,

(3) 2,2
= Tr |T°U,, U, TU,, U, — ,
dndq dé.dq2 37T4 as kl:kj27k3< r|: k1 ko ks k1 k2+k3] >T

(g1 — k1) - (q1 + q2 — ko + k3)
T(qo, qo + k3, g2 + k1 — ko + k3) (4.12
(g1 — k1)*(q1 + q2 — ko + k3)? (@292 + ks, g2 + k1 — ks + kg) (412)

< [Ze (lan = a) + 2, (1 + g2 — ko + k) — T, (g + ey — o + )|

Switching to the contribution from ¥4 involving four p(x) correlators, we again obtain
four terms that cannot be obviously combined:

AN® AN ANV ANy dNV
+ + - 5 (4.13)
dndqidédqy — dndqidédql ' dndqidédgy ' dndgldédel ' dndqidéda
The explicit expressions are:
(4)
N.
dil (4.14)
dndg; dfd%
326 ef 9

1
=3 0‘/ —1'(q2,q2+ k3, q2+ k1 — ko +k3)
md k1,k2,k3 Q1

X [Ulj:l Ukz]e'e [ng, Uk1+k3—k2} e
o [ Te(#61°4°) (22, (g2 + kal) 22, (s +Ba) + 22, (12 4K — ko ks )

+Ze (la1 +ko|) = Ze, (|k1 — k2|) = Ze, (g1 — g2 + ko — ks|) — I, (|1 + g2+ Ka +k3\))

TeCTce
+—3 (af(!‘J2+k33\)—Ief(’ql+k1\)+fef(!¢h+k1—k2+k3!)

~ L (a1 + ko) = I, ([l = kol) + T2, (|1 — @2+ ko — ko) +- I (|1 + g2 + k1 + s )) |

One in principle can substitute an explicit expression for the trace of four Gell-Mann
matrices, in practice however, this does not help to simplify the expression.

LM) -
32¢%e2 ] k)
= f 2/ qi-(qi+k
o ¢ el (@2 @tk etk tks—k
3t kiko ks G5 (q1 +Fk1)? (2,92 +k3,q2 + k1 + k3 —k2)

< U, Uk lere |UL,Unsiks—a |,
x| (et ) (2, (lgo + k) + 2, (lqa + For|) + e, (g2 + ot — Ko+ s

+Ze,(|qu +ka|) =L, (k1 — kal) = Ze (g1 — q2 + k2 — ks3|) = Zc . (| +q2+k1+k3|))

TeTS
+ e686C ( er(lg2+ks) +Ze; (lqu +Fa|) +Zc, (lg2 + Ry — k2 + K3))

~ T, (g1 +kol) + Ze, (Jkr — s |) — ., (g1 — @o + oo — ks|) — T (|1 + @2 + K+ Ks]) )|
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an{?

dndgtdedg} 4.16
dndqidédqs ( )
32¢e2e2 ( k) - k
= f 2/ q1+k2) (q1+k1)
N ) I'(q2,q2+ks,qo+k1+ks—k
3 k1 ko ks (@1 +k2)%(q1+k1)? (g2,q2+ks3,q2+ k1 + k3 — ko)

X [Ulll Ukz]e’e |:U,13 Uk1+k3*k2} e
x [ e (110 ) (T (lgo + k) + e, (lqn + For ) + e, (|2 + ot — Ko+ s

+Ze; (g + ka2|) = e, (|k1 — k2|) = Z:; (g1 — g2 + k2 — ks|) — Ze (| +qz+k1+k3!)>
TeeToe
+T(—Igf(\q2+k:3l) +Ze,(lqr + k1l) +Ze, (g2 + k1 — ko + k3|

+ ey (a1 + ko) = T ([ Ry — ool )~ Lo, (11 — o+ ko — Ks) + T, (g1 + go + Kot + ks ) |

aN{Y
417
dndgidédgs (4.17)
32¢2e2 ( ko)
_ f 2/ q1+k2) q
—_ o M) A o+ ks, go+ Ky + ks — K
3mt Ky ko ks (q1+K2)2q3 (@2 @2 ths, o s s — k)

% [U}, Uk Jere | U, Uk1+k3—k2L,C
x| e (41t ) (o (lgo + k) + 2, (g + For |) + e, (g2 + ot — Ko+ )

+Ze,(lqu +ka|) — L, (k1 — kal) = Ze (|1 — q2 + k2 — k3|) — ¢, (|1 +Q2+k1+k3!))
TgeTge’
+ T(Iéf(|q2+k3’) —Z.,(lgq1 +k1]) = I, (|g2 + k1 — ka2 + k3))

+ I, (|qu + kal) +Ze, (k1 — ka|) = I, (|1 — q2 + k2 — k3|) + I, (|1 +Q2+k‘1+k3!))}

Note that the combinations of the functions Z multiplying the trace of the four Gell-Mann

matrices are identical, while those multiplying the product of two adjoint matrices are

different in different terms due to distinct patterns of signs.

It is interesting to separate out the contribution which is analogous to calculations

performed in the “classical” MV model. As we have discussed above, it corresponds to

keeping only those terms in ¥4 which are completely symmetric in the color charge density

operators. Here this corresponds to symmetrizing the four generators in the trace with

respect to the color indices. For this symmetric part of the trace, see eq. (2.22), and
N, = 3 we obtain

st(;,lr)n B 16626} 9

_ a T(q, q1 + k1, @1 + k)T (o, @ + ks, go + k1 — ko +
dndgdédq? 97 s/khk%ks (q1,q1 +k1,q1 + k2)I'(q2, g2 + k3,92 + k1 — k2 + k3)

< [(T(la2 + k) + T, (Jan + k) + T (g2 + k1 — Ko+ ksl)  (4.18)
+ I, (lqn + ka2|) — Ze, (|k1 — k2f)
— I, (@1 — @2 + k2 — kal) = Z., (las + g2 + K1 + ka]) )|
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X (Tr {U,Il Ukz] Tr [U,];SUkl—i-k;;—kz}
+ Tr {U,Il Uk2U£3Uk1+k3—k2}

+ Tr [Ulir:lUlQ Uik1+k2*k3 U_kg’} ) '

This expression has a few physically transparent properties. First, it vanishes if any
of the four interactions with the target is set to zero, Uy — 6®)(k), due to I'(q, k,q) =
I'(q,q,k) = 0. Second, the color neutrality of the dipole suggests that a zero momentum
gluon will not be able to resolve the dipole and thus lead to a trivial contribution. Gluons
originating from the dipole have the momenta q1+ k1, g1 + ko, ga+ ks, and g2+ k1 — ko + k3
(this can be read off the arguments of I' functions). Setting any of this to zero leads to
vanishing contribution in the integral due to the combination of Z functions. Finally, one
can trivially show that the cross section is symmetric under go — —gs.

4.1 Averaging over the target in FDA

We now need to average over the target field ensemble using the FDA. We present here
the detailed computation only for the term Yo. We have

i T
<TI‘ (Ulh +k*PT6Uk—q2 Ul_c—tIQ TeUth —H_c—P) >T

B b fed a ot
- TbecTJ?Q<U‘(111+k*PUkC—Q2>T<UE—q2 U‘lfj":’_P»T (4 19)

b df fed 771
+ TbecT}ig <Ugl+k—PUE_q2 >T<Ukc—q2 qu]iE—P»T

b T fed  rrdf
+ TbecT]?g <Ug1+k—Pqu]j_E_p)>T<UkC—q2 UE_q2>T

The first term vanishes since Tj.dp. = 0. The second term

d d
Ty 5y Ugt o pUg. )T (UL, UM )
(2m)!

NZ -1
= —(27)2N.S. 6@ (q1 + k+k — P — q2)D(q2 — k)D(qa — k),

= Ty Ty, 52(0)0 (g1 +k+k— P —q)D(gs — k)D(g2 — k) (4.20)

where we took into account that in the momentum space §(2(0) = S, /(27)2. The third
term

e rme ab tga ted df
Tbchg<Uq1+k—PUqlg+E7P)>T<Uk—q2 U]_g,q2>T
= (2n)2 Tx(T°T°) S 6P (k — k)D(q1 + k — P)D(qz — k) (4.21)

= (21)2N,(N? = 1)S1 6@ (k — k)D(q1 + k — P)D(qs — k) .

Hence the cross section for the contribution involving s is

dN® :64e2e§N6a2 / I(s,\q1+q2+k_+éy)
dndgidédgs — 3m? ek (it @t k+k)? (4.22)
< ((N2=1)T(q2. g2+ k. g2+ k) (g2, g2+ k. g2+ k) ) D(R) D(k)..

—90 —



Similarly we obtain

AN®) 32626?
dndqgidédq; 32

+(IEf(\kJrqzl)—Isf(yl'c—ql\))L(qhql_,;)} (Iik: klz:_::qz) (4.23)

>
x (N2 =1)T(a2, g2 +k, @2+ k) ~T(a2,q2+k, a2 ) ) D (k) D(k)

Ncagsl/kl_c {Isf(kh+QQ+k—/:3|)L(q1,I;:—q1)

)

For the symmetric part of 34 at N. = 3 and using FDA, we obtain

st(;/lr)n 16€2€%SJ_ o

2 4.24

where W; are the following integrals (although our equations are valid for N, = 3 only, we
keep explicit variable N, in order to distinguish different contributions)

Wi = (N2 —1) r I(qi,q1 + k,q1 + k)[(g2,q2 + k, g2 + k) D(k)D(k)

x (22, (laz + K|) + 2Z., (|1 + k|)— (4.25)
—T(ep g —ar+k— k)~ T, (lqs + a2 + K+ E))

Wy = k,_cF((h,(h-i-k ,q1 — k)T(q2,92 — k,q2 + k) D(k)D(k)

% (Ze; (a2 — k) + 2., (lan + k) + ., (g2 + KI) + Z., (|la: — K]) (4.26)
~ T (a1 + qel) = T, (k + k) — T, (la2 — a1 + k — k),
/E (q1.q1 + k,q1 + k)T(g2, g2 + k,q2 + k) D(k) D (k)
x (L., (g2 + Fl) + Ze, (Jg1 + kI) + Ze, (|1 + k) + Z(e, @2 + | (4.27)

~Z,(la2 — @) ~ T, (k — k) = Z,(|q1 + a2 + k + Kl)) .
In these contributions one can identify the underlying physical origin:

o Uncorrelated production: the terms appearing in the second line of eq. (4.25) and
proportional to Z(ey,|q1 + k| and Z.,(|g2 + k) represent uncorrelated production.
This is manifested by factorization of the momenta g; and g2 as well as the integral
with respect to k and k.

o Bose Enhancement in the projectile: the last line of eq. (4.25) is due to Bose En-
hancement in the projectile wave function. The two gluons from the projectile scatter
on the target independently. This contribution is peaked at the momenta when the
emitted gluons from the projectile have either colinear or anti-colinear momenta,
that is when the arguments of the Z function vanish. There is also an N2-suppressed
corrections to this contribution in the last terms of eqgs. (4.26) and (4.27).
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« Hanbury Brown and Twiss effect: the terms Z(e¢,|q1 £ qo|) originate from the HBT
effect.

e Bose Enhancement in the target: gluons originating from the target and having
either colinear or anti-colinear momenta lead to the Bose Enhancement in target wave
function. This is the origin of the rest of terms in the above expression. This is obvious
for the contribution is proportional to Z. ,(|k & E|). The rest of the contributions are
also due to Bose enhancement of the target: they correspond to the situation where
the two gluons from the projectile scatter in the correlated manner from the target-by
exchanging either the same or opposite transverse momenta. The somewhat unusual
momentum combinations in factors of Z, like 7, (|k—q1]) express the fact that gluons
with momentum of order of inverse dipole size are emitted from the dipole in coherent
fashion.

Interestingly from eq. (4.25), one observes that Bose enhancement in the projectile is
parametrically of the same order in N, as the uncorrelated production. This is very
different compared to the MV model for the projectile, see eq. (5.10), where Bose
enhancement in the projectile is suppressed relative to the uncorrelated production
by the factor of (N2 —1)~1. This difference is due to the fact in the dipole model of the
quasi-real photon the ¢ pair is strongly correlated in color (¢q is always in the single
state). On the other hand in MV model the valence degrees of freedom are assumed
to be completely uncorrelated. This difference in the initial color structure leads to
different parametric dependence of the correlated production in the two models.

The remaining, non-symmetric part has kinematic factors that cannot be combined to
Lipatov vertices. We again write it as a sum of three contributions

dNr(é) _ 32626? 9

~ SIN AW, 4+ Wo + W 4.28
drigciqy ~ gt oSN (Wi + Wa+ W5) (4.28)

S

[P~ (@ k)~ (a1 +K)) +2

= T k k
12 (q1+k)2q%] (Q2,QQ+ 7q2+ )

le(Ng—l)/k (q1+k)-a
x D(k)D(K) (2L, (|az + k|) +2Z., (g1 + kI) ~ ., (g1 — g2 + k — k)

~Z.,(Jq1 + >+ k+ )

L (V2o
8 k

. I'(g2,q2+ k. q2+k)T(q1, —(q1 + k), —(q1 + k) D(k)D(k) (4.29)
x (2., (la2 + &

)=2L, (g1 + k) + L, (Jq1 — g2+ k— k) + ., (|1 + g2 + k+ k)

X ) _
WQZE/kEr(qg,qQ—k,QQ+k)F(QI7QI+k7QI_k)D(k)D<k>
< |(Ze) (@2 — k) +Ze, (g + kD) + 72, (a2 + F) + 22, (|1 — )

~T (| — g~k k)~ T, (jq1+ @) )| (4.30)
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(q1+k) (g1 —k)
(q1+k)%(q1 —k)?
X D(k)D(E)(Ief(\Q2 —k))+ T, (lqu + k) + ., (la2 + k) + I, (|]q1 — k)

~ T (k+ k) T, (Ja1 — @) — T, (|1 + @2 + K — K)))

1 — 1 _
W3=—12/]€7EF(QQ,Qz—k,QQ+k)<(I%+ +T(Q1,—Q1—k7—Q1+k))

1 L el —
_é/kEF(Q2,Q2—k,Q2+k)F(Q1,—(h—k,—q1+k)D(k)D(k)
X (Igf(|Q2—l::’)—Igf(\Q1 +k|)+I€f(‘Q2+k‘)—Zsf(!q1—E\)

7IEf(|k+I:;|)+IEf(|q1 *QQ|)+I€f(|ql +q2+k7]:;’)> . (4'31)

We will use this equations for the numerical evaluations.

5 Inclusive two gluon production: the MV model

In this section we compute two gluon production by approximating the wave function of
the (almost) real photon using the MV model. Note that although we use MV model, we
do not discard terms which are suppressed by powers of color charge density, and which
are customarily neglected in the CGC literature.

We start with Eg/lv, which is trivial to compute,

SV (ur, ug, @y, t2) = 4/d2$u2($)fi(ﬂ1 —x)f (ur — ) f (ag — w1) [ (ug — uq)

y <ﬂ [UulT“[UJLQ — Uf U, — Uﬁl]TaUglb (5.1)

T

This expression modulo the projectile wave function is very much the same as the one we
obtained in the previous section, see eq. (4.5).

The contribution in 2}V involves two terms, both of which are of the same order in

color charge density as Y31V,

S5 (w1, ug, @y, Ug) = 2/d2mu2(m)fj(ﬁ2 — ) f'(u — o) f'(ur — ) 7 (ug — )
X T |[Uy + Uy, JT°[Uf = UL, |[Us, — Ua, JT°UL,]]
+2 / Py (@) f (s — wi) fi(wr — 2)fi (@ — @) f (as — @)

x Tr |:ljulT‘a[[];|;2 - UJUHUT’ - U’EQ]T&[UJ: + U11L1]:|

(5.2)

Finally, ¥}V has two contributions, which can be organized by the power of 2. We
refer to 2 contribution as quantum and p* as classical. We start with the former. Using
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eq. (2.28) we obtain
SYO (w1, ug, wr, a9) = /d%/ﬁ(w)fi(ﬂl —x) [ (ug—x) (w1 —x) 7 (ug — )
< (1[0, ~ UV, ~ Uo7 [0} - UL, (U2 - Ul T°)
L (U 4 U [Ua, + U7 Te (U — UL 1[U — Ua, ] T°
=3 Tr(h, + Ul +Ual ) T (U]~ UL [Us — U, | T°)
Lo (U3 UM, + U T[0T — UF \[U — U, T
— 5t (UL, + UV, + Ual T (U = UL )lUe — Us,JT° ) (5.3)
The classical part is dominant at large color charge density in the projectile and reads
SV (w, ug, g, ag) = 4/d2$d2y/d2id2ﬂfi(ﬂl —x) [ (g — y) f' (w1 — &) f (ug — 9)
< (|}, - viliva, - Ua]],_ |04, - UfliUs, = U] , )
x (89 6° 2 (@) p? (2)0@ (@ — )o@ (& - )
+ 696 p? () 2 ()8 (x — )0 (2 — y)
+ 8707y (@) ()0 ) (2 — 2)0@ (y - p)) (5.4)

T

Here the first term in the classification of ref. [41] corresponds to the “square” diagrams
involving the quadrupole, the second to “cross” diagrams. The last contribution represents
emission where the correlations can only originate from the correlations in the target; this
term also gives the leading contribution to the uncorrelated production.

5.1 Momentum space and FDA

As in the dipole model, we convert our expressions to momentum space and average over
target using FDA. We get
dNs 4¢*

_ 2 arrt ayrt
= ko +ky— k1 —k3) (Tr |Ug, TU,, U, TU. 5.5
dqidgidnds — (2m)* /Is:1,k2,k3,k4u (2 + ks =y 3)< [ fit Yk Uks k4}>T (5:5)

(@1 +q2+ ks — k) (q1 + q2 + k2 — k1)’
(g1 +q2 + ks — ka)%(q1 + g2 + k2 — k1)?

x L'(qa, q2 + k2)L7 (g2, g2 + k3)

Using FDA, this simplifies into

dNo 4N,.g* / o o
= d*xp®(x D(k1 +q1)D(—k2 + q2
dtﬁdquﬁdf (27r)4 ( ) k1,k2 ( ) ( )

2 (k2 — k1) - L(ga. k2) \?
* {(NC 2 < (k2 — k1)? ) (56)
(ko — k1) - L(qo, k2) (k2 — k1) - L(q2,q2 — k2 — kl)}
(k2 — k1)? (k2 — k1)?
Similarly for >3 contribution we obtain
ng 4g4
dqldg3dnds ~ (2m)

/ 12 (Ka + ko — k1 — k) T Uy, T°UL, Uy, T°UY, |
ok o | (5.7)
(ks — ks —q1 — q2)°

(ks — ks —q1 — q2)?

x T(q2, g2 + ko, q2 + k3) L' (q1, k1 — q1)
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where we assumed that p?(—k) = u?(k). The FDA leads to

dN3 4Ncg4/ 9 o /
= d xp”(x D(ki +q1)D(—k2 +
dqidgidnds — (2m)* w(x) ko o (k1 +q1)D(—k2 + q2)

{2 - L) G
— L' (qu, kl)mr(%, ko,q2 —q1 — kl)} :

I'(q2, k2, k2) (5.8)

Finally the ¥4 contribution is given by two terms proportional to p? and p*. Starting
with the former, in FDA we obtain

ANZ
dqidqsdnde

4
_ (92:)[2/kl_gD(—k)D(—l_c)/inwQ(@

1 _ _
X {(Nf -1) [T(qh‘h +k,q1+k)— gr(fha —q1—k,—q —k)]T(Q2,Q2+k,QQ+k) (5.9)

2 _ _
+ gT(Qh —q1—k,—q1 —k)I'(g2,92+k,q2+ k)

_ 1 _ _
+ [F(QLQI +k,q1+k)— gr(fh, —qi+k,—q _k)]F(QQ»QQ+kaQ2+k)}

The latter is given by

NG _ g (~k)D(E){T(qr. a1 + k.1 + k)T (g2, g2 — B gz — F)
dq%dq%d'l’]d& - (271')4 k,l:: q1,q1 ,q1 q2,q2 , q2

x [IB2(O)P(NZ = 12 + (N2 = D)|e*(q1 — @2 + k + E)?]

+ (N2 =D (@1 + @2+ k+ k) T(q,q1 + k,q1 + k)[(q2, G2 + k, g2 + k)
+T(q1,q1 + k,q1 + k)T(q2,q2 + &, g2 + l?:)(!uz(m + @+ k+Ek)?

+ (N2 = Dle*(qn — @) + 12 (k — F)?)

+D(q1,q1 + k,q1 + k) (q2,q2 — k, g2 — E)((NCQ — )| (q1 + q2)

F2(q — g2+ kAR W2k~ R)P) (5.10)

The physical origin of different terms can be easily identified:

o Uncorrelated production: the contribution proportional to (N2 —1)2|12(0)|? describes
uncorrelated two gluon production

« Bose Enhancement in the projectile: this term is proportional to (N2 — 1)|u?(q; &
g2 + k + k)|, Tt is suppressed by the factor of 1/N? compared to the uncorrelated
production as the initial gluons have to have the same color. As in the dipole case,
there is a correction to Bose Enhancement in the projectile which is suppressed by a
further factor of 1/N2. It is proportional to |%(qy &+ g2 + k + k)|2.
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+ Bose Enhancement in the target: the terms proportional to |u?(k — k)| represent
Bose Enhancement in the target; they are suppressed by 1/NZ in the dense regime.

« HBT: finally the terms (N2 — 1)|u?(q1 £ g2)|? represent HBT correlation. This term
is suppressed by 1/N, 62 relative to the uncorrelated production as the color of the final
state gluons should be the same.

6 Numerical results

In this section we evaluate numerically inclusive two gluon production in both models for
the projectile wave function.

We do not have ambitions to fit experimental data, and we therefore do not try to
optimize parameters of the model. Nevertheless we want to be able to have at least a
qualitative idea on the ballpark of the CGC predictions for relevant observables.

The first question we are faced with is that of subtraction of the background. In
experiment, low multiplicity events are used to subtract trivial contribution from high
multiplicity data, which is then analyzed in terms of flow harmonics. In our calculation
using the MV model for the projectile, this procedure naturally corresponds to subtracting
the 2 terms as they play a dominant role at low multiplicity and are negligible compared
to u? terms at high multiplicity. We thus take as our “signal” only the u* contribution,
which corresponds to the classical gluon production as defined in the previous section.
In the dipole model for the projectile wave function, the distinction between low and high
multiplicities is trickier to make since we do not have an explicit parameter p2. Nevertheless
motivated by the MV model, we will use the symmetric part of the matrix element 34 as
our high multiplicity “signal”. For N, = 3, as we demonstrated in section 4, it has a
compact form and is clearly not dominated by back-to-back production.

For numerical calculations we will use the following set of parameters: the saturation
momentum of the target is chosen as QJ; = 2 GeV, the infrared cut-off entering into the
Poisson equation of the MV model is set to be equal to A = 200MeV, additionally to
insure that the logarithm of the argument of the logarithm entering into the adjoint dipole
of eq. (2.45) does not change sign we use

D(r) = exp [—ngyz 1n<A217’2 + eﬂ : (6.1)

For the nearly real photon wave function, we use a small but non-zero value of () in order
to regularize large distance physics. In our calculations we fix ey = 100 MeV. This roughly
corresponds to ) ~ 200 MeV.

To ensure that the projectile photon has a finite size, in the projectile MV model we
introduce the projectile size R through the impact parameter dependent parameter u?(x):

22
12 (x) = Nexp{—RQ} . (6.2)

Since our signal is a homogeneous function of u?, the constant A" does not play any role
in the normalized quantities considered below and we do not need to specify it. Here we
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do not explore the dependence on the shape of the projectile as it has little effect on the
observable in this approach, except for unrealistically large ellipticities, see ref. [27].

The code is publicly available in ref. [48].

In order to compute the two particle v9 as a function of the transverse momentum, we
define the n-th Fourier mode of the particle production cross section V,,(p.)

P dN
Vi = [ df d? inAl) ————
(q1) / 1/0 q2 exp(in )dqqugdndf

where Af = 65 — 60, is the angle between q; and qo. Additionally, the integrated Fourier

(6.3)

modes are defined according to

T P dN
v, = / P2 / gy exp(inAf)—~— 6.4
Then we have
) _ [Va(py)
v = 6.5
2 (pl) V()(Z?J_) ( )

for the second Fourier harmonic of the two particle correlation function.?
Experimental collaborations, in addition to véQ) (p1) also extract v whose definition is
based on the assumption of the factorization of the hydrodynamic flow. In hydrodynamics,
2)

a two-particle azimuthal harmonic vy is a product of single particle azimuthal anisotropies,
ve. This motivates considering the observable

Va(p)/Volpr)

UQ(pJ_) = \/W

Experimentally the two observables are quite close to each other [12]. In our calculations,

(6.6)

there is no reason at all to expect such hydrodynamics-like factorization. It is nevertheless
useful to consider v9 in order to get an idea of how much the two quantities differ from
each other in our framework.

We plot these two quantities in figures 2 and 3. To guide the eye we also added
experimental data to compare it to vo. Note that we did not plot the last experimental point
which is located at rather large negative values of v, see ATLAS [12]. The calculations

are done for two upper limits of the integration with respect to the transverse momentum
1

Py
the later choice is motivated by comparison with the study in ref. [17].

aX = 2 and 4 GeV. The former choice is the same as in the ATLAS measurements, while

7 Discussion: factorization and forward production

We now discuss our results. We stress again that our goal was not to fit the ATLAS data
as we do not believe that our calculational framework is constrained enough for such an

3To relate to notations of ref. [12], our (vS”(p1))? is the same as va2(pL = pa,ps) of ref. [12] with py
integrated over the specified momentum range.
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Figure 2. The second Fourier harmonic of the two particle correlation function, vf), see eq. (6.5),
as a function of the transverse momentum of the “trigger” gluon. The momentum of the “associated”

gluon is integrated from 0 to pT*.
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Figure 3. The elliptic flow vy extracted from two particle correlations function using the definition
motivated by factorization, vy, see eq. (6.6), as a function of the transverse momentum of the
“trigger” gluon. The momentum of the associated gluon is integrated from 0 to p'**. To guide the
eye we plotted ATLAS data from ref. [12].

endeavor. First, we do not include hadronization in our calculation, and that may have
a large effect on the correlated part of particle production. In addition the wave function
of the real photon has to be modelled in some way, and this modelling leaves a lot of
freedom. Instead we studied two ubiquitous models used in a variety of CGC calculations
to understand the qualitative features of the effect. Consequently we did not try to optimize
the parameters of the MV model and the dipole model of the photon when calculating vs.

Before we proceed, we want to put our study in the perspective by commenting on
the existing literature and comment on the comparison of our results to those of ref. [17].
Direct comparison between the two is hard, since the calculational frameworks are very
different, even though both calculations are based on the CGC approach. Our calculation
is appropriate at non forward rapidities where particle production is dominated by gluons,
whereas the authors of ref. [17] use the hybrid approach which restricts their calculation to
the photon going direction. One could attempt to take the model used in ref. [17] for valence
parton distribution in the photon and use it as yet another model for the photon. This
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is however not a well posed problem since no color correlations between valence partons
have been taken into account in ref. [17] due to collinear approximation invoked there,
while such color correlations are clearly important away from forward rapidity especially
at relatively low transverse momenta.

There is however one qualitative observation that we can make with confidence. The v9
is our calculation exhibits in all models the same qualitative trend: it rises at low transverse
momentum to a maximum at p; around 1 GeV, and drops thereafter, see figures 2 and 3.
This is also a clear trend in the experimental data. On the other hand vy calculated
in ref. [17] never reaches a maximum, but instead keeps growing at high momentum far
beyond the point where experimentally it is observed to fall. Qualitative this difference
in behavior is easy to understand. As we will explain below the origin of the turnover
in our calculation is the dominance of a very narrow gluon HBT peak. We stress that
the dominance of the HBT peak in correlations at mid rapidity is not an artifact of our
approximation. It was demonstrated both, within the FDA in ref. [26] and also using the
lattice simulations of the MV model without invoking FDA in ref. [27] .

In contrast to the above, in the calculation of forward production in ref. [17] the
gluon HBT effect is simply absent. This calculation treats forward moving partons as
distinguishable, and therefore does not account for quantum statistics effect, like Bose
enhancement and HBT. Instead the physical origin of the correlations in ref. [17] is the
so called color domain structure in the target [40]* The color domain effect is the more
efficient, the higher the transverse momentum of produced particles. High p| particles are
produced nearby in the coordinate space, and therefore are more probable to probe the
same domain in the target. Thus the approach of ref. [17] does not contain a mechanism
that could lead to decreasing vo at high momentum.®

Consider now our numerical results on figures 2 and 3. The first observation is that
both the MV model and the dipole model produce vy of the same order as the experimental
data. The shape of the momentum dependence in the two models is slightly different, with
MYV mode vg rather sharply peaked at low momentum.

One somewhat surprising feature of our results is that vy and 12;2) turn out to be not
very different. Naive expectation is that vo should drop very quickly once the momentum
of the trigger particle is outside the integration interval of the momentum of the associate.
The reasoning for this is that the two particle correlations in the CGC framework receive a
very large contribution from the gluon HBT effect. The HBT peak is very narrow, in fact
for a large projectile its width in momentum space is inversely proportional to the area.

“Note that although color domains are not introduced explicitly in ref. [17], they are an inherent feature
in the configuration by configuration realization of the MV model used in the calculations of ref. [17].

5The color domain structure in principle also contributes to correlations in our approach where it appears
in the guise of target BE correlations. However as explained above it is strongly suppressed relative to the
gluon HBT. For example in the MV model at large N. the target BE correlations are suppressed by 1 /Nf
relative to the leading correlated terms. Even if one such sub-leading contribution grows at high p, this
does not necessarily result in the growth of the total correlated signal, as there are other contributions of
the same order (e.g. sub-leading BE of the projectile corrections). Those are not necessarily positive and
may naturally temper this growth. In the kinematic region we consider here the gluon HBT effect is by far
the dominant one, and its behavior determines the overall behavior of the correlated signal.
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Figure 4. The elliptic flow v for three different kinematic ranges of the trigger particle. Here as
in the previous figure, Qs = 2 GeV. The size of the projectile is set by R = 1/GeV.
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Figure 5. The same as figure 4 but binned with the same bin size as the ATLAS analysis.

As a result for a large area projectile the correlation drops by several orders of magnitude

once the momentum of the trigger is outside of the momentum bin of the associate [26].

It is thus natural to expect Va/Vh > Va(pr)/Vo(pL) and therefore vy < v§2) (p1) when

max

pL > py
p1 > p1™, the difference is not that spectacular especially for the dipole model photon.

Instead we observe that although wve does indeed drop somewhat faster for

We believe this is due to the finite size of the projectile wave function, which leads to
widening of the HBT peak and tempers the drop in the HBT correlation.

With these considerations in mind we plot the dependence of vs on the choice of the
momentum bin of the associated particle. We choose the bins the same as in the ATLAS
data [12]. As mentioned above, the hydrodynamic-like universality/factorization would
suggest that this quantity does not depend on the bin size and location. Our results on
the other hand are not expected to display such independence. In figure 4 we plot vy as
a function of the momentum of the trigger particle for three different bin choices of the
associate. Indeed we observe a rather strong dependence on the bin choice consistent with
the discussion above. Namely, vs is large when the momentum of the trigger particle p |
is within the bin, and drops fairly quickly once p, is outside the bin. This behavior is
common for the MV model and the dipole model of the photon. At some values of p |
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the difference between the values of v is very large, with ratio between vs for different
bins reaching about 7 or 8 at the maximum. This seems to be in stark contradiction
with experimental data. However, one has to keep in mind that the experimental test of
universality /factorization in ref. [12] was not performed for a fixed momentum of a trigger
particle, rather p; was also binned. Following the same procedure we plot on figure 5
values of ve for four bins of p; chosen in the same way as in ref. [12]. Interestingly, the
binning has a very strong effect: since the curves in figure 4 are all bell shaped on the scale
comparable with the bin size, integrating over the p, bins leads to significant reduction of
differences in the values of vy. The ratio between the values of vy for different associate
bins is now at most 3 or 4 rather than 7 or 8. This is still significantly larger than for
the ATLAS data, where the maximal ratio is closer to 2, but the difference is now not
as drastic. Interestingly, the systematics of momentum dependence of our results is quite
similar to that in the data, with v9 initially rising, and subsequently falling with p,, and
vg for some of the bins crossing over in the vicinity of 1 GeV.

We stress again that our purpose in this exercise is not to force-fit the data. It is
quite clear that fiddling with the model parameters would allow us to get much closer to
experimental points, but it is unclear what it would teach us. Instead, our take home
message is twofold. First, we conclude unambiguously that a CGC calculation does not
yield results consistent with the hydrodynamic inspired universality of wve, although the
values of v we obtain are roughly of the same magnitude as the experimental ones. Second,
it seems to us that the test of the said universality conducted in ref. [12] is inconclusive.
The variation between the different bin values found in ref. [12] albeit broadly consistent
with universality, is also quite similar to our (not optimized) CGC results due to binning of
the momentum of the trigger particle. A more detailed study of this point seems desirable.
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