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We extend the results of A. Kovner, M. Li, and V. V. Skokov [Phys. Rev. Lett. 128, 182003 (2022)],

where we argued that in the controlled environment of the deep inelastic scattering experiments, Bose-

Einstein correlation between gluons in a hadronic wave function can be accessed through the production of

the diffractive dijet plus a third jet. In this observable, Bose-Einstein correlation causes the enhancement of

the production cross sections at the zero relative angle between the transverse momentum imbalance of the

photon-going dijet and the transverse momentum of the gluon jet, when the magnitude of the momentum

imbalance is about the same as the magnitude of the produced gluon. In the present paper, we account for

multiple scattering and nonlinear effect in the target wave function. Although our equations can be applied

to any high-energy DIS kinematics, to make them tractable numerically, we consider the high-momentum

limit (momentum larger than Qs) for the total momentum of the dijet, momentum imbalance, and the

momentum of the produced gluon. By performing explicit numerical calculations, we confirm that the

signal is present after accounting for multiple scattering.

DOI: 10.1103/PhysRevD.107.114032

I. INTRODUCTION

In the recent Letter [1] we proposed an observable that

directly probes Bose-Einstein correlations between gluons

in the nucleus [2–4] and is also sensitive to gluon

saturation. Study of correlations is of course a very exciting

subject [5–9] that goes significantly beyond the single

particle distributions traditionally probed in DIS experi-

ments [10–13]. Sensitivity to gluon saturation [14–16] is a

most welcome feature as well, as probing gluon saturation

is one of the declared aims of the Electron-Ion Collider

(EIC) experiments [17,18]. The observable in question is

the correlation between momentum of a gluon jet p⃗3 and

the momentum imbalance of a diffractive quark antiquark

dijet system Δ⃗ ¼ p⃗1 þ p⃗2. In [1] we have studied the

signatures of the Bose correlations and have found that they

lead to potentially observable enhancement of the jet-dijet

cross section at zero angle between p⃗3 and Δ⃗ in some

kinematical regions accessible at EIC.

An intuitive understanding of this enhancement is

easiest in the frame where the virtual photon fluctuates

into quark-antiquark pair (dipole) which scatters on the

gluon field of the fast-moving hadron target. The quark

and the antiquark are progenitors of the two jets with the

transverse momenta p⃗1 and p⃗2 produced in the final

state. The transverse momentum imbalance Δ⃗ ¼ p⃗1 þ p⃗2

arises due to transverse momentum transferred to the dijet

from the hadron.

Consider now a final state which, in addition to the qq̄

dijet, contains a gluon jet with transverse momentum p⃗3

that originates from the hadron. This jet would naturally

have rapidity very different from that of the other two

jets. Prior to scattering, this gluon in the hadron wave

function is Bose correlated with an identical gluon (the

two have momenta k⃗1 ≈ k⃗2). It is kinematically possible

that the momentum imbalance of the produced dijet

arises mainly due to the exchange of the gluon k⃗1

between the hadron and the dijet, jΔ⃗j ¼ jk⃗1j. In this

situation, the momentum of the produced gluon jet does
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not change significantly in the scattering (p⃗3 ≈ k⃗2) and

the primordial Bose-Einstein correlations should lead to

the increase in the cross section of the trijet production,

when p⃗3 ≈ Δ⃗. A possible peak at p⃗3 ≈ Δ⃗ would thus be a

clear signature of the gluon Bose enhancement. The

question is, of course, whether the kinematic region in

question is large enough so that this enhancement leads

to an observable signal. In [1] we have studied this

question numerically in the dilute approximation treating

the target hadron as a dilute object with gluon distribu-

tion given by the McLerran-Venugopalan (MV) model

[19,20]. We have indeed observed a sizable enhancement

at like transverse momenta. Interestingly this enhance-

ment became more pronounced once we had introduced a

saturation momentum in the target in order to suppress

contributions of low transverse momentum gluons. The

introduction of the saturation momentum in the frame-

work of dilute approximation is rather ad hoc, but is

nevertheless quite illuminating.

The purpose of the present paper is to analyze the same

process beyond the dilute approximation. We use a some-

what different representation, in which the gluon jet is

emitted from the dipole and subsequently scatters off the

nucleus. If the transverse momentum of the emitted gluon is

small, then most of the final gluon momentum will

originate from the interaction with the nucleus probing

Bose correlations in this way. We stress that the two views

of the process are mathematically equivalent which we

explicitly show here.

As in [1] we consider here a trijet configuration where

the qq̄ dijet is in the color singlet state (as opposed to

Refs. [21,22] where the rapidity gap is between proton and

the trijet) in order to minimize the effects due to Sudakov

radiation [23,24]. Sudakov radiation from the gluon p⃗3 still

has to be accounted for; however, if the transverse

momentum is not too large we do not expect this to

qualitatively change the picture.

The paper is structured as follows. In Sec. II we derive

the analytic formulas for the trijet cross-section production

on a dense target in terms of the lightlike Wilson line

operators. At this point our formulas are derived for an

arbitrary kinematics of the three jets and in principle can be

studied numerically. However the full numerical calcula-

tion would be very complicated. In Sec. III we therefore

consider specifically the kinematical region where the

transverse momenta of all jets are much larger than the

saturation momentum of the target. We stress that this limit

does not simply reduce to the dilute approximation of [1] as

the presence of the saturation momentum affects the range

of the integration over intermediate momenta, and this is

important for determining the magnitude of the effect we

are after. We find indeed, that consistently with [1] the

correlated signal is sizable even in this high momentum

limit. We conclude with a discussion in Sec. IV.

II. DIFFRACTIVE TRIJET PRODUCTION

IN DENSE TARGET REGIME

We consider trijet production in high energy deep

inelastic scatterings. The formalism of our choice is the

wave function approach of Refs. [25,26] (see also Ref. [27]

where the same approach was applied to two gluon

production). In the rest frame of the nucleus, the virtual

photon fluctuates into a pair of quark antiquark, which

subsequently radiate one additional gluon before the

system of three particles scatters off the nuclear target.

We consider the electron/virtual photon moving along

positive-z direction while the proton/nucleus along neg-

ative-z direction.

The corresponding production cross section is propor-

tional to

Oðpþ
1 ;p1;p

þ
2 ;p2;p

þ
3 ;p3Þ

¼
X

fcg;fσg
hψFjd̂†c1;σ1ðpþ

1 ;p1Þd̂c1;σ1ðpþ
1 ;p1Þb̂†c2;σ2ðpþ

2 ;p2Þ

× b̂c2;σ2ðpþ
2 ;p2Þâc3†i ðpþ

3 ;p3Þâc3i ðpþ
3 ;p3ÞjψFi: ð1Þ

Here b†, d†, and a† are quark, antiquark, and gluon creation
operators respectively (and similarly for annihilation oper-

ators). The final state wave function is computed by

jψFi ¼ Ĉ†
DŜĈDjγ�i ⊗ jNi ð2Þ

with the initial state wave function being the tensor product

of the virtual photon state and the nucleus state jγ�i ⊗ jNi.
As usual for high-energy scattering, the virtual photon state

jγ�i is approximated by a quark-antiquark pair. Here Ŝ is

the S-matrix operator.

In the eikonal approximation, the radiation of a gluon

from the quark-antiquark dipole is obtained by applying the

coherent state operator ĈD [28,29] on the quark-antiquark

state, with

ĈD ¼ exp

�

i

Z

d2xBa
i ðxÞ

Z

Λ
þ

Λ
þe−Δy

dkþ
ffiffiffiffiffiffi

2π
p

jkþj

×

�

âa†i ðkþ;xÞ þ âai ðkþ;xÞ
��

ð3Þ

where Ba
i ðxÞ is the Weiszacker-Williams (WW) field

generated by the dipole. The final state radiation off the

dipole after interacting with the nucleus is generated by the

action of Ĉ†
D in (2).

For the quark-antiquark dipole, the dilute approximation

is well justified; this allows us to simplify the WW field

operator and relate it to the color charge density of the

dipole by
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B̂
a
i ðxÞ ¼

∂i

∂
2
ĵaDðxÞ≡

Z

d2y∂iϕðx − yÞĵaDðyÞ: ð4Þ

Here ∂iϕðx − yÞ is the WW kernel and ∂
2ϕðxÞ ¼ δ2ðxÞ.

The color charge density operator of the dipole is

ĵaDðxÞ ¼ g
X

s

Z

kþ

�

b̂†h1;sðk
þ;xÞtah1h2 b̂h2;sðk

þ;xÞ

þ d̂h1;sðkþ;xÞtah1h2 d̂
†

h2;s
ðkþ;xÞ

�

: ð5Þ

We will use the shorthand notation
R

kþ ¼
R

∞

0
dkþ

2π
in the

paper. The action of ĵaDðxÞ on a general quark-antiquark

state is given by

ĵaDðxÞjqa2 q̄a1i
¼ ĵaDðxÞd̂†a1;s1ðkþ1 ;x1Þb̂†a2;s2ðkþ2 ;x2Þj0i
¼ δð2Þðx − x2Þgd̂†a1;s1ðkþ1 ;x1Þb̂†h;s2ðk

þ
2 ;xÞtaha2 j0i

− δð2Þðx − x1Þgtaa1hd̂
†

h;s1
ðkþ1 ;xÞb̂†a2;s2ðkþ2 ;x2Þj0i: ð6Þ

Acting on a (non-normalized) color singlet dipole state

jqq̄i ¼ P

a jqaq̄ai, one obtains

ĵaDðxÞjqq̄i ¼ g

�

δð2Þðx − x2Þ − δð2Þðx − x1Þ
�

× tah2h1 d̂
†

h1;s1
ðkþ1 ;xÞb̂†h2;s2ðk

þ
2 ;x2Þj0i: ð7Þ

In order to account for single-gluon radiation, we expand

the coherent operator ĈD to the first order in the WW field

ĈD ≃ 1þ i

Z

d2xB̂a
i ðxÞ

Z

Λ
þ

Λ
þe−Δy

dkþ
ffiffiffiffiffiffi

2π
p

jkþj

×

�

âa†i ðkþ;xÞ þ âai ðkþ;xÞ
�

: ð8Þ

Acting on a quark-antiquark state, one obtains the quark-

antiquark and gluon Fock state, that is jqq̄gi

jqq̄gi ¼ i

Z

d2x

Z

Λ
þ

Λ
þe−Δy

dkþ
ffiffiffiffiffiffi

2π
p

jkþj
âa†i ðkþ;xÞB̂a

i ðxÞjqq̄i

¼ ig

Z

Λ
þ

Λ
þe−Δy

dkþ
ffiffiffiffiffiffi

2π
p

jkþj

Z

d2x

�

∂iϕðx − x2Þtah2a2δh1a1

− ∂iϕðx − x1Þtaa1h1δa2h2
�

× âa†i ðkþ;xÞd̂†h1;s1ðk
þ
1 ;x1Þb̂†h2;s2ðk

þ
2 ;x2Þj0i: ð9Þ

Again for the color singlet dipole one gets

jqq̄gi ¼ ig

Z

kþ<Λþ

dkþ
ffiffiffiffiffiffi

2π
p

jkþj

×

Z

d2x

�

∂iϕðx − x2Þ − ∂iϕðx − x1Þ
�

× tah2h1 â
a†
i ðkþ;xÞd̂†h1;s1ðk

þ
1 ;x1Þb̂†h2;s2ðk

þ
2 ;x2Þj0i:

ð10Þ

The first term in (10) represents radiation of the gluon from

the quark while the second from the antiquark. The virtual

photon state at NLO in the strong coupling constant g is

then approximated by jγ�i ∼ jqq̄i þ jqq̄gi [30].
In the eikonal approximation, the S-matrix operator is

given by

Ŝ ¼ exp

�

i

Z

d2xĵaðxÞαaTðxÞ
�

: ð11Þ

Here the total color charge density ĵaðxÞ is a sum of two

contributions: one from the quark-antiquark dipole and

the other from the emitted gluon ĵaðxÞ ¼ ĵaDðxÞ þ ĵaGðxÞ
where the latter can be expressed in terms of gluon

creation-annihilation operators as

ĵaGðxÞ ¼ g

Z

kþ<Λþ

dkþ

2kþð2πÞ â
†b
i ðkþ;xÞTa

bcâ
c
i ðkþ;xÞ: ð12Þ

Finally, αTðxÞ is the classical gluon field of the target which
has to be averaged over in the final result with the weight

determined by the target wave function.

Explicit calculations lead to the following transformation

identities,

Ŝd̂†h;sðkþ;xÞŜ† ¼ S
†

hh0ðxÞd̂
†

h0;sðkþ;xÞ;
Ŝb̂†h;sðkþ;xÞŜ† ¼ b̂†

h0;sðkþ;xÞSh0hðxÞ;
Ŝâa†i ðkþ;xÞŜ† ¼ U†abðxÞâb†i ðkþ;xÞ; ð13Þ

where, on the right-hand side, we have introduced the

Wilson line in the fundamental and the adjoint representa-

tion representations

SijðxÞ ¼
�

eigα
e
T
ðxÞte

�

ij

;

UabðxÞ ¼
�

eigT
eαe

T
ðxÞ
�

ab

: ð14Þ

The scattering amplitude is obtained by applying ðŜ − 1Þ
on the virtual photon state at NLO. A simple calculation

gives

PROBING GLUON BOSE CORRELATIONS IN NUCLEAR WAVE … PHYS. REV. D 107, 114032 (2023)

114032-3



ðŜ − 1Þd̂†h;s1ðk
þ
1 ;x1Þb̂†h;s2ðk

þ
2 ;x2Þj0i ¼

�

Sðx2ÞS†ðx1Þ − 1

�

h2h1

d̂†h1;s1ðk
þ
1 ;x1Þb̂†h2;s2ðk

þ
2 ;x2Þj0i ð15Þ

and

ðŜ − 1Þjqq̄gi ¼ ig

Z

kþ<Λþ

dkþ
ffiffiffiffiffiffi

2π
p

jkþj

Z

d2x

�

∂iϕðx − x2Þ − ∂iϕðx − x1Þ
�

×

�

U†abðxÞSðx2ÞtaS†ðx1Þ − tb
�

e2e1

âb†i ðkþ;xÞd̂†e1;s1ðkþ1 ;x1Þb̂†e2;s2ðkþ2 ;x2Þj0i: ð16Þ

Finally, one has to account for the final state radiation which is generated by the action of the operator Ĉ†
D. Like in Eq. (8),

one needs to expand the soft gluon coherent operator Ĉ†
D to the first order in the coupling constant. Since we are working to

linear order in g, when acting on ðŜ − 1Þjqq̄gi we can approximate Ĉ†
D by the unit operator. The nontrivial contribution

comes from applying Ĉ†
D on ðŜ − 1Þjqq̄i. Using Eq. (6), it is given by

− i

Z

d2x

Z

Λ
þ

Λ
þe−Δy

dkþ
ffiffiffiffiffiffi

2π
p

jkþj
âa†i ðkþ;xÞB̂a

i ðxÞ
�

Sðx2ÞS†ðx1Þ − 1

�

a2a1

d̂†a1;s1ðkþ1 ;x1Þb̂†a2;s2ðkþ2 ;x2Þj0i

¼ −ig

Z

Λ
þ

Λ
þe−Δy

dkþ
ffiffiffiffiffiffi

2π
p

jkþj

Z

d2x

�

∂iϕðx − x2Þðta½Sðx2ÞS†ðx1Þ − 1�Þh2h1

− ∂iϕðx − x1Þð½Sðx2ÞS†ðx1Þ − 1�taÞh2h1
�

âa†i ðkþ;xÞd̂†h1;s1ðk
þ
1 ;x1Þb̂†h2;s2ðk

þ
2 ;x2Þj0i: ð17Þ

Collecting all the pieces, one obtains the component of the final state wave function that contains quark, antiquark and a

gluon. With the leading order virtual photon state

jγ�i ≃
X

s1;s2

Z

kþ
1
;kþ

2

Z

d2x1d
2x2Ψ

γ�→qq̄
s1s2 ðkþ1 ;x1; k

þ
2 ;x2Þd̂†a;s1ðkþ1 ;x1Þb̂†a;s2ðkþ2 ;x2Þj0i; ð18Þ

we get the relevant component of the final state wave function,

jψFiqq̄g ¼
X

s1;s2

Z

kþ
1
;kþ

2

Z

kþ<Λþ

dkþ
ffiffiffiffiffiffi

2π
p

jkþj

Z

d2x1d
2x2Ψ

γ�→qq̄
s1s2 ðkþ1 ;x1; k

þ
2 ;x2Þ

× ig

Z

d2x

��

∂iϕðx − x2Þ − ∂iϕðx − x1Þ
�

½U†abðxÞSðx2ÞtaS†ðx1Þ�e2e1

−

�

∂iϕðx − x2Þ½tbSðx2ÞS†ðx1Þ� − ∂iϕðx − x1Þ½Sðx2ÞS†ðx1Þtb�
�

e2e1

�

× âb†i ðkþ;xÞd̂†e1;s1ðkþ1 ;x1Þb̂†e2;s2ðkþ2 ;x2Þj0i: ð19Þ

The observable Eq. (1) in the transverse coordinate space can be expressed as

Oðpþ
1 ; z1;p

þ
2 ; z2;p

þ
3 ; z3Þ ¼ hψFjd̂†c1;σ1ðpþ

1 ; z
0
1Þd̂c1;σ1ðpþ

1 ; z1Þb̂†c2;σ2ðpþ
2 ; z

0
2Þb̂c2;σ2ðpþ

2 ; z2Þâ
c3†
j ðpþ

3 ; z
0
3Þâ

c3
j ðpþ

3 ; z3ÞjψFi
¼ Mðz1; z2; z3ÞM�ðz01; z02; z03Þ: ð20Þ

Substituting Eq. (19) into Eq. (20), the trijet production amplitude in coordinate space is given by

Mðz1; z2; z3Þ ¼ 2
ffiffiffiffiffiffi

2π
p

igΨ
γ�→qq̄
σ1σ2 ðpþ

1 ; z1;p
þ
2 ; z2Þ

�

ð∂jϕðz3 − z2Þ − ∂jϕðz3 − z1ÞÞ½U†ac3ðz3ÞSðz2ÞtaS†ðz1Þ�c2c1

− ½∂jϕðz3 − z2Þtc3Sðz2ÞS†ðz1Þ − ∂jϕðz3 − z1ÞSðz2ÞS†ðz1Þtc3 �c2c1

�

: ð21Þ

These four terms correspond to the four diagrams in Fig. 1.
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To find thediffractivedijet production amplitudewe need to projectMðz1; z2; z3Þ onto a singlet quark-antiquarkdipole state.
This amounts to setting c1 ¼ c2 ¼ c, summing over the color index c and dividing by the normalization factor 1=

ffiffiffiffiffiffi

Nc

p
:

Mdiffðz1; z2; z3Þ ¼ 2
ffiffiffiffiffiffi

2π
p

i
g
ffiffiffiffiffiffi

Nc

p Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; z1;p
þ
2 ; z2Þð∂jϕðz3 − z2Þ − ∂jϕðz3 − z1ÞÞ

×

�

U†ac3ðz3ÞTr½Sðz2ÞtaS†ðz1Þ� − Tr½Sðz2ÞS†ðz1Þtc3 �
�

: ð22Þ

Note that this is the amplitude for the production of a

color singlet qq̄ dijet and an additional gluon jet, and not an

overall color singlet qq̄g three jet state. The choice of this

observable minimizes the effects of the Sudakov radiation

from the dijet, although as mentioned above it is still

susceptible to corrections due to the Sudakov radiation

from the gluon jet. In addition, it turns out that in this color

configuration, the back-to-back production of the dijet and

the jet is strongly suppressed relative to inclusive states,

which makes it a favorable candidate for observation of the

same side Bose correlation effect.

Taking the product of the amplitude Eq. (22) and its

complex conjugate, one obtains the final result for dif-

fractive dijet plus gluon jet production:

Odiffðpþ
1 ;p1;p

þ
2 ;p2;p

þ
3 ;p3Þ ¼

g2

Nc

X

σ1;σ2;j

Z

d2z1d
2z01e

ip1·ðz1−z01Þ
Z

d2z2d
2z02e

ip2·ðz2−z02Þ
Z

d2z3d
2z03e

ip3·ðz3−z03Þ

× ð8πÞΨγ�→qq̄
σ1σ2 ðpþ

1 ; z1;p
þ
2 ; z2Þ½Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; z
0
1;p

þ
2 ; z

0
2Þ��

�

∂jϕðz03 − z02Þ − ∂jϕðz03 − z01Þ
�

×

�

∂jϕðz3 − z2Þ − ∂jϕðz3 − z1Þ
��

½U†ðz3ÞUðz03Þ�aeTr½Sðz2ÞtaS†ðz1Þ�Tr½Sðz01ÞteS†ðz02Þ�

− Uc3eðz03ÞTr½Sðz2ÞS†ðz1Þtc3 �Tr½Sðz01ÞteS†ðz02Þ�
− U†ac3ðz3ÞTr½Sðz2ÞtaS†ðz1Þ�Tr½tc3Sðz01ÞS†ðz02Þ�

þ Tr½Sðz2ÞS†ðz1Þtc3 �Tr½tc3Sðz01ÞS†ðz02Þ�
�

: ð23Þ

A consistency check on this expression is that it

reproduces the dilute target limit considered in Ref. [1].

To establish this we perform the dilute target expansion in

Appendix A. This exercise has an additional aim to show

that the approach taken in Ref. [1] where the gluon jet was

interpreted as emerging directly from the target, and the

approach in the present paper where it is treated as

emerging from the perturbative splitting of a dipole, are

in fact equivalent and differ only in the choice of the

reference frame.

Returning to our final expression, (23) we observe that

averaging of this expression with respect to target configura-

tions poses a significant numerical challenge. A simplification

is achieved however if we consider a limit of high transverse

momenta. This approximation can be implemented analyti-

cally up to a point where numerical calculations become

feasible. This is what we do in the next section.

III. TRIJET PRODUCTION IN HIGH

MOMENTUM LIMIT

In order to make numerics viable, in this section we

consider the diffractive trijet production in a particular

kinematic region: the external momenta p1, p2, p3 are taken

to be large compared to the saturation scale of the nucleus,

Qs. For clarity, the coordinates and momenta of different

particles are depicted in Fig. 2.

FIG. 1. Schematic diagram illustrating the trijet production in

the electron-going direction. The gluon can be radiated either by

the quark or by the antiquark. The radiation can happen either

before or after scattering on the target.
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In the high momentum limit, the coordinates of each

particle in the amplitude and conjugate amplitude must be

close to each other. Additionally, for highQ2, the quark and

antiquark should be close to each other in the coordinate

space, as we consider the regime Q ≫ Qs. A typical

coordinate space configuration corresponding to the high

momentum limit is shown in fig. 3.

A. High momentum approximation

We start with the diffractive amplitude for the trijet

production (22) obtained in the previous section. Using the

identity SðzÞtaS†ðzÞ ¼ U†abðzÞtb, one can perform the

following rearrangement:

Tr½Sðz2ÞtaS†ðz1Þ� ¼ U†adðz2ÞTr½tdSðz2ÞS†ðz1Þ�
¼ U†adðz1ÞTr½Sðz2ÞS†ðz1Þtd�: ð24Þ

As a result, the factor involving Wilson lines can be

equivalently written as

U†acðz3ÞTr½Sðz2ÞtaS†ðz1Þ� − Tr½Sðz2ÞS†ðz1Þtc�

¼
�

1

2
½Uðz3ÞðU†ðz2Þ þU†ðz1ÞÞ�cd − δcd

�

× Tr½Sðz2ÞS†ðz1Þtd�: ð25Þ

For large momenta and large photon virtualityQ ≫ Qs, the

size of the dipole jz1 − z2j ∼ 1=Q ≪ 1=Qs. The gluon is

typically emitted at larger transverse distances. At the same

time, to be sensitive to the correlations in the target, the

three particles (quark, antiquark, and gluon) have to be

located within a transverse size determined by 1=Qs. Given

these considerations we can perform gradient expansion in

various correlators.

To preserve the symmetry between the quark and the

antiquark we find it convenient to introduce the center

of mass and the relative coordinates via R ¼ 1
2
ðz2 þ z1Þ,

r ¼ z2 − z1. Generically at large momenta jrj ≪ jRj, and
we can approximate

Tr½Sðz2ÞS†ðz1Þtd� ≈ Tr

�

ri

2
∂
iSðRÞS†ðRÞtd

�

− Tr

�

SðRÞ r
i

2
∂
iS†ðRÞtd

�

¼ 1

2
igriAi

dðRÞ; ð26Þ

where Ai
aðRÞ is the WW field of the target

Ai
aðRÞ ¼ 2

ig
Tr½ta∂iSðRÞS†ðRÞ�: ð27Þ

Additionally, one can approximate

1

2
½Uðz3ÞðU†ðz2Þ þU†ðz1ÞÞ�cd ¼ Uðz3ÞU†ðRÞ þOðr2Þ:

ð28Þ

With the above simplifications, the diffractive amplitude

becomes

Mdiffðz1; z2; z3Þ ¼ 2
ffiffiffiffiffiffi

2π
p

i
g
ffiffiffiffiffiffi

Nc

p Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; z1;p
þ
2 ; z2Þ

×

�

∂jϕðz3 − z2Þ − ∂jϕðz3 − z1Þ
�

×

�

Uðz3ÞU†ðRÞ − 1

�

cd 1

2
igriAi

dðRÞ:

ð29Þ

Performing Fourier transformations, the production

amplitude in momentum space can be written as

FIG. 2. Schematic diagram of trijet production in γ� þ p=A
scattering.

FIG. 3. A typical coordinate space configuration corresponding

to high momentum limit. When jp1j; jp2j; jp3j ∼Q ≫ Qs, the

coordinates in the amplitude and complex conjugate amplitudes

are close within a domain of size 1=Q2. The gluon jet is typically

separated from the quark and antiquark jets although all of them

are expected to be located within the domain of size 1=Q2
s .
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Mdiffðp1;p2;p3Þ ¼
Z

d2z1d
2z2d

2z3e
ip1·z1eip2·z2eip3·z3Mdiffðz1; z2; z3Þ

¼
Z

d2l

ð2πÞ2 MdipoleðP⊥; lÞMnucleusðΔ;p3; lÞ: ð30Þ

Here Δ ¼ p1 þ p2 is the quark–anti-quark momentum imbalance and P⊥ ¼ 1
2
ðp2 − p1Þ is the total momentum of the pair.

The dipole matrix element is

MdipoleðP⊥; lÞ ¼ 2
ffiffiffiffiffiffi

2π
p

i
g
ffiffiffiffiffiffi

Nc

p
Z

d2reiP⊥·r

�

eil·r=2 − e−il·r=2
�

riΨγ�→qq̄ðpþ
1 ; p

þ
2 ; rÞ

ilj

l2

¼ 2
ffiffiffiffiffiffi

2π
p

i
g
ffiffiffiffiffiffi

Nc

p ð−i∂Pi
⊥
Þ
�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ þ l=2Þ − Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ − l=2Þ

�

ilj

l2
ð31Þ

and the nucleus matrix element is

MnucleusðΔ;p3; lÞ ¼
1

2
ig

Z

d2Rd2z3e
iðΔþlÞ·Reiðp3−lÞ·z3Ai

dðRÞ½Uðz3ÞU†ðRÞ − 1�cd: ð32Þ

From the explicit expressions in Eqs. (31) and (32) we obtain the simplified result for diffractive trijet production in the

high momentum limit

jMdiffðp1;p2;p3Þj2 ¼ ð2πÞ4 g2

Nc

Z

d2l

ð2πÞ2
d2l0

ð2πÞ2
l · l0

l2l02

× ∂Pi
⊥

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ þ l=2Þ −Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ − l=2Þ

�

× ∂
Pi0
⊥

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ þ l0=2Þ −Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ − l0=2Þ

��

×MnucleusðΔ;p3; lÞM�
nucleusðΔ;p3; l

0Þ ð33Þ

where

MnucleusðΔ;p3; lÞM�
nucleusðΔ;p3; l

0Þ ¼ 1

4
g2

Z

d2Rd2z3d
2R0d2z03e

iðΔþlÞ·Reiðp3−lÞ·z3e−iðΔþl0Þ·R0
e−iðp3−l

0Þ·z0
3

× Ai
aðRÞAi0

bðR0Þ½Uðz3ÞU†ðRÞ − 1�ca½Uðz03ÞU†ðR0Þ − 1�cb: ð34Þ

Equations (33) and (34) are the main results in the high momentum limit for diffractive trijet production on the nucleus

configuration-by-configuration basis. Averaging over the possible configuration of the nucleus fields requires finding the

expectation value of the above combination of the Wilson lines in the nuclear ensemble, that is

	

Ai
aðRÞAi0

bðR0Þ½Uðz3ÞU†ðRÞ − 1�ca½Uðz03ÞU†ðR0Þ − 1�cb



¼
	

Ai
aðRÞAi0

bðR0Þ½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



−

	

Ai
aðRÞAi0

bðR0Þ½Uðz03ÞU†ðR0Þ�ab



−

	

Ai
aðRÞAi0

bðR0Þ½Uðz3ÞU†ðRÞ�ba



þ
	

Ai
cðRÞAi0

c ðR0Þ



:

ð35Þ

The main goal of this study is the regime where the momentum imbalance Δ forms a very small angle with the momentum

of the gluon p3, since this is the kinematic region where we expect a significant contribution from gluon Bose enhancement.

In this regime some terms in Eq. (35) are negligible.
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Specifically the three last terms all are obtained from

the first term by putting z3 ¼ R or z03 ¼ R0 or both.

Physically setting z3 ¼ R means that the gluon and the

qq̄ dijet in the amplitude are in the same point in the

transverse space. This, in turn, means that the relative

momentum between the dijet and the gluon jet is very

large. The maximal relative momentum at fixed jp3j
and jΔj is achieved in the back-to-back configuration of

dijet relative to the gluon jet. This term therefore does

not contribute to the kinematical region of interest to

us. We verify this conclusion by scrutinizing the result

of the explicit calculation for the first term in Eq. (35)

which we perform below. Substituting z3 ¼ R or z03 ¼
R0 in this expression leads indeed to a vanishing

contribution.

In the following we therefore concentrate on calculating
the first term in Eq. (35).

B. Averaging over target

Our goal now is to perform the target averaging of this
term. The common practice in color glass condensate
calculations is to model the target distribution with the
McLerran-Venugopalan (MV)model [19,20]. However even
within theMVmodel, calculating a correlator like in Eq. (35)
is a very complicated endeavor that we are unable to
accomplish without an incommensurate effort. In order to
extract physical information from our formulas, and moti-
vated by the structure of a similar calculation in the dilute
case, we are thus led to consider the following factorized
approximation:

	

Ai
aðRÞAi0

bðR0Þ½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



≃

	

Ai
aðRÞAi0

bðR0Þ

	

½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



þ
	

Ai
aðRÞ½Uðz3ÞU†ðRÞ�ca


	

Ai0
bðR0Þ½Uðz03ÞU†ðR0Þ�cb




þ
	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb


	

Ai0
bðR0Þ½Uðz3ÞU†ðRÞ�ca




: ð36Þ

In the limit jR −R0j ∼ 1=p3 ≪ 1=Qs, the averages in (36) can be explicitly computed in the MVmodel. For the first term in

Eq. (36), one has

	

Ai
aðRÞAi0

bðR0Þ

	

½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



¼ Gii0
WWðR;R0Þ

	

Tr½Uðz3ÞU†ðRÞUðR0ÞU†ðz03Þ�



≃
1

N2
c − 1

Gii0
WWðR;R0Þ

	

Tr½Uðz3ÞU†ðz03Þ�

	

Tr½UðRÞU†ðR0Þ�



¼ ðN2
c − 1ÞGii0

WWðR;R0ÞDgðz3; z03ÞDgðR;R0Þ: ð37Þ

Here we used the factorized approximation for the average of the adjoint quadrupole. This is well justified in our kinematics,

since for typical configurations we have the hierarchy of distances jΔj ∼ jR −R0j ∼ jz3 − z03j ≪ jz3 −Rj ∼Qs.

Corrections to this factorization therefore should be of order Q2
s=Δ

2.

In Eq. (37), Gii0
WW is the WW gluon distribution, and Dg is the dipole gluon distribution defined as

Dgðx; yÞ ¼
1

N2
c − 1

hTr½U†ðxÞUðyÞ�i; Gii0
WWðx; yÞ ¼

1

N2
c − 1

hAa
i ðxÞAa

i0ðyÞi: ð38Þ

For both objects, there exist closed analytic expressions in the MV model. Those are given in Appendix B.

The more interesting term is the last term in Eq. (36). Within the MVmodel it is computed in Appendix B, see Eqs. (B20)

and (B24):

	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb




¼ Ta
cb

2πQ2
s

Ncg
2

�

e
2Q2

s Γ̂R0 ;z0
3

� ð−igÞ∂iR½ΓR;z0
3
− ΓR;R0 �

Q2
sðΓ̂R;R0 þ Γ̂R;z0

3
− Γ̂z0

3
;R0Þ

�

e
Q2

sðΓ̂R;R0þΓ̂R;z0
3

−Γ̂z0
3
;R0 Þ

− 1

�

≃ Ta
cb

4πQ2
s

Ncg
2
DgðR0; z03Þð−igÞ∂iR½LR;z0

3
− LR;R0 �: ð39Þ

The approximate equality holds in the high momentum regime where jR −R0j ∼ 1=p3 is small compared to 1=Qs. The

averaging was performed with the MVmodel, where the correlator of the plus component of the gauge potential is given by
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hAþaðx−;xÞAþbðy−; yÞi ¼ δabδðx− − y−Þg2μ2ðx−ÞLðx; yÞ ð40Þ

with Lx;y ≡ Lðx; yÞ ¼ 1

∇4 ðx; yÞ. The functions Γ and Γ̂ are defined as Γx;y ¼ πΓ̂x;y ¼ 2Lðx; yÞ − Lðx;xÞ − Lðy; yÞ and we
used the conventional definition of the saturation scale

Q2
s ¼

Nc

4π
g4

Z

dx−μ2ðx−Þ: ð41Þ

With these expressions we see that the second term in Eq. (36) vanishes due to Tb
aa ¼ 0:

	

Ai
aðRÞ½Uðz3ÞU†ðRÞ�ca




¼
	

Ai0
bðR0Þ½Uðz03ÞU†ðR0Þ�cb




¼ 0: ð42Þ

We are now ready to compute Eq. (34)

	

MnucleusðΔ;p3; lÞM�
nucleusðΔ;p3; l

0Þ



≃
1

4
g2

Z

d2Rd2z3d
2R0d2z03e

iðΔþlÞ·Reiðp3−lÞ·z3e−iðΔþl0Þ·R0
e−iðp3−l

0Þ·z0
3

×

�	

Ai
aðRÞAi0

bðR0Þ

	

½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



þ
	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb


	

Ai0
bðR0Þ½Uðz3ÞU†ðRÞ�ca


�

: ð43Þ

We consider the two terms separately. The first term can be readily written

1

4
g2

Z

d2Rd2z3d
2R0d2z03e

iðΔþlÞ·Reiðp3−lÞ·z3e−iðΔþl0Þ·R0
e−iðp3−l

0Þ·z0
3

×

	

Ai
aðRÞAi0

bðR0Þ

	

½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



¼ 1

4
g2
�

ð2πÞ2δðl − l0Þ
�

2

ðN2
c − 1Þ

Z

d2k

ð2πÞ2G
ii0
WWð−Δ − l − kÞDgðkÞDgðl − p3Þ: ð44Þ

For the second term, carrying out the Fourier transformations, one arrives at

1

4
g2

Z

d2Rd2z3d
2R0d2z03e

iðΔþlÞ·Reiðp3−lÞ·z3e−iðΔþl0Þ·R0
e−iðp3−l

0Þ·z0
3

×

	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb


	

Ai0
bðR0Þ½Uðz3ÞU†ðRÞ�ca




¼ ð4πQ2
sÞ2

Nc

4g2
ð−igÞ2

Z

d2Rd2z3d
2R0d2z03e

iðΔþlÞ·Reiðp3−lÞ·z3e−iðΔþl0Þ·R0
e−iðp3−l

0Þ·z0
3

×DgðR0 − z03ÞDgðR − z3Þ∂iR½LðR; z03Þ − LðR;R0Þ�∂i0
R0 ½LðR0; z3Þ − LðR0;RÞ�

¼ ð4πQ2
sÞ2

Nc

4g2
ð−igÞ2S⊥

Z

q1

−qi
1ð−Δ − p3 þ q1Þi

0

q4
1ð−Δ − p3 þ q1Þ4

�

DgðΔþ l − q1Þ −Dgðl − p3Þ
�

×

�

Dgðp3 − l0 − q1Þ −Dgðp3 − l0Þ
�

; ð45Þ

where the factor of area appears as the limit of the momentum space delta function S⊥ ¼ ð2πÞ2δ2ðp ¼ 0Þ. The poles at

q1 ¼ 0 and q1 ¼ Δþ p3 originate from the Fourier transforms of the relevant factors

∂
i
R½LðR; z03Þ − LðR;R0Þ� ¼

Z

d2q1

ð2πÞ2 e
−iq1·R

�

eþiq1·z
0
3 − eþiq1·R

0
�

−iqi
1

q4
1

; ð46Þ
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∂
i0
R0 ½LðR0; z3Þ − LðR0;RÞ� ¼

Z

d2q2

ð2πÞ2 e
−iq2·R

0
�

eþiq2·z3 − eþiq2·R

�

−iqi0
2

q4
2

: ð47Þ

These poles have to be regularized at a nonperutrbative scale. In the MV model conventionally this scale is chosen to be

ΛQCD. The singularity of the MV model correlator is due to an assumption that the color charges in the transverse plane are

uncorrelated. Imposing the condition of color neutrality configuration by configuration on the charge density distribution

regulates the pole on the spatial scale on which the color neutralization occurs [31], which is naturally taken as ΛQCD. We

will follow this practice in this paper, but will comment on the issue more in Sec. IV.

Putting everything together, the event-averaged diffractive trijet production in the high momentum limit is

hjMdiffðp1;p2;p3Þj2i ¼ ð2πÞ 4g
2

Nc

Z

d2l

ð2πÞ2
d2l0

ð2πÞ2
l · l0

l2l02
∂Pi

⊥

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ þ l=2Þ −Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ − l=2Þ

�

× ∂
Pi0
⊥

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ þ l0=2Þ − Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ − l0=2Þ

��

×

�

S⊥ð2πÞ2δðl − l0Þ ðN
2
c − 1Þg2
4

Z

d2k

ð2πÞ2G
ii0
WWð−Δ − l − kÞDgðkÞDgðl − p3Þ

− ð4πQ2
sÞ2

Nc

4
S⊥

Z

d2q1

ð2πÞ2
−qi

1ð−Δ − p3 þ q1Þi
0

q4
1ð−Δ − p3 þ q1Þ4

½DgðΔþ l − q1Þ −Dgðl − p3Þ�

× ½Dgðp3 − l0 − q1Þ −Dgðp3 − l0Þ�
�

: ð48Þ

Note that both terms are of the same order in g2 as GWW has an explicit factor of 1=g2 in its definition, see Appendix B.

C. Summary of analytics

Nowwe summarize our analytic results in the high momentum limit. The diffractive trijet production can be written in the

factorized form

dN

d2p1d
2p2d

2p3

≃

Z

d2l

ð2πÞ2
d2l0

ð2πÞ2 σ
ii0ðP⊥; l; l

0ÞGii0ðΔ;p3; l; l
0Þ ð49Þ

with

σii
0ðP⊥; l; l

0Þ ¼ ð2πÞ g
4

Nc

l · l0

l2l02
∂Pi

⊥

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ þ l=2Þ −Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ − l=2Þ

�

× ∂
Pi0
⊥

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ þ l0=2Þ −Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ; p
þ
2 ;P⊥ − l0=2Þ

��
ð50Þ

and

Gii0ðΔ;p3; l; l
0Þ ¼ S⊥ð2πÞ2δðl − l0Þ ðN

2
c − 1Þg2
4

Z

d2k

ð2πÞ2G
ii0
WWð−Δ − l − kÞDgðkÞDgðl − p3Þ

− ð4πQ2
sÞ2

Nc

4
S⊥

Z

d2q1

ð2πÞ2
−qi

1ð−Δ − p3 þ q1Þi
0

q4
1ð−Δ − p3 þ q1Þ4

�

DgðΔþ l − q1Þ −Dgðl − p3Þ
�

×

�

Dgðp3 − l0 − q1Þ −Dgðp3 − l0Þ
�

: ð51Þ

The analytic expressions for the WW and dipole correlators in coordinate space are given in Appendix B, see eqs. (B13)

and (B9).

This has to be complemented by the explicit expression for the photon splitting function. For the transversely polarized

virtual photon, we have [32]
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Ψ
γ�→qq̄
T;σ1σ2

ðpþ
1 ;p1;p

þ
2 ;−p1Þ ¼ −eefδrσ ;−σ22

ffiffiffiffiffiffiffiffiffi

z1z2
p ðz1 − z2 þ 2λσ1Þð2πÞδð1 − z1 − z2ÞϵiλF iðp1Þ ð52Þ

where −e is the electric charge of the electron and ef represents the quark electric charge of flavor “f”, and we introduced a

shorthand notation

F iðp1Þ ¼
pi
1

ϵ2f þ p2
1

ð53Þ

and ϵ2f ¼ Q2z1z2. The longitudinal momentum ratios are given by z1;2 ¼ pþ
1;2=q

þ.
For the longitudinally polarized virtual photon, the wave function is

Ψ
γ�→qq̄
L;σ1σ2

ðpþ
1 ;p1;p

þ
2 ;−p1Þ ¼ −eefδσ1;−σ24ðz1z2Þð2πÞδð1 − z1 − z2ÞHðp1Þ ð54Þ

with

Hðp1Þ ¼
ϵf

ϵ2f þ p2
1

: ð55Þ

Squaring Eq. (52) and summing over the spins and polarizations, we can factor out the transverse momentum

independent factor

κTðz1; z2Þ ¼ ðeefÞ24ðz1z2Þ2½ðz1 − z2Þ2 þ 1�½ð2πÞδð1 − z1 − z2Þ�2: ð56Þ

A similar factor for longitudinally polarized photon is

κLðz1; z2Þ ¼ 2ðeefÞ216ðz1z2Þ2½ð2πÞδð1 − z1 − z2Þ�2: ð57Þ

Focusing on the transverse momentum-dependent factors of the dipole wave function, we have for the transverse

amplitude

Mimn
T ðlÞ≡

�

ln

l2
∂Pi

⊥
FmðP⊥ þ l=2Þ

�

¼ ln

l2

�

δimHðP⊥ þ l=2Þ=ϵf − 2F iðP⊥ þ l=2ÞFmðP⊥ þ l=2Þ
�

ð58Þ

and for the longitudinal one

Min
L ðlÞ≡

�

ln

l2
∂Pi

⊥
HðP⊥ þ l=2Þ

�

¼ ln

l2

�

−2F iðPþ l=2ÞHðPþ l=2Þ
�

: ð59Þ

Then Eq. (50) can be written as

σii
0

T ðP⊥; l; l
0Þ ¼ 2π

g4

Nc

κTðz1; z2Þ
�

Mimn
T ðlÞ −Mimn

T ð−lÞ
��

Mi0mn
T ðl0Þ −Mi0mn

T ð−l0Þ
�

ð60Þ

for the transverse polarization, and

σii
0

L ðP⊥; l; l
0Þ ¼ 2π

g4

Nc

κLðz1; z2Þ
�

Min
L ðlÞ −Min

L ð−lÞ
��

Mi0n
L ðl0Þ −Mi0n

L ð−l0Þ
�

ð61Þ

for the longitudinal polarization.

Eqs. (49), (51), (60) and (61) are the basis for the

numerical analysis we present in the next subsection.

D. Numerical results

For the external momenta p1, p2, p3, the trijet production

cross section can be expressed in terms of P⊥;Δ;p3,

dN

d2P⊥d
2
Δd2p3

¼ dN

d2p1d
2p2d

2p3

: ð62Þ

Since we are interested in the angular correlations between

p3 and Δ, we integrate over the orientation of the

momentum P⊥. We keep the magnitude of P⊥ fixed during

this integration. In addition, we also integrate over the

direction of p3 (denoted by β3 below)
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Cðp3;ΔÞ ¼
1

N

Z

2π

0

dβ3

Z

dϕP⊥

dN

d2p1d
2p2d

2p3

: ð63Þ

For given jp3j and jΔj, we plot Cðp3;ΔÞ as a function

of the azimuthal angle ϕ. The normalization factor

1=N representing the normalization over all the angles

between ½−π=4; π=4�.
In the numerical computation, strictly speaking one

needs to regularize the 1=l2 in Eq. (58), for which purpose

we use

1

l2
→

1

l2 þ Λ
2
QCD

: ð64Þ

The factor ln=l2 comes from the WW field representing the

gluon radiation from the quark and the antiquark. It turns

out that the pole itself contributes only in the terms that do

not contain same side correlations, and even in these terms

at high momenta the residue of the pole is exponentially

small. Thus our results to a very good approximation do not

depend on the exact value of the regulator.

We expect that the configuration with small l (momen-

tum of the emitted gluon) to be most sensitive to Bose

enhancement and to be a dominant contributor to the

zero-angle peak. When l → 0, the momenta of the gluons
inside the nuclear wave function probed in this process
are p3 and Δ, respectively. If the signal is due to Bose
enhancement, we expect it to be maximal at p3 ≈ Δ.
Numerically, the calculation is rather complicated as it

requires the computation of a six-dimensional integral
(integrals with respect to l, l0, and q1). We performed
the integration using Vegas algorithm [33]. The results are
presented in Figs. 4 and 5.
For very large momenta (Fig. 4) we observe a clear

peak in the correlation function at zero angle. The peak is
indeed maximal at p3 ¼ Δ, although it persists in the range
:8≲ p3=Δ≲ 1.2. The angular width of the maximum is
about Δϕ ∼ :1, which is consistent with the expectation
that “primordial” sharp Bose correlations are somewhat
smeared in the scattering by the presence of nonvanishing
saturation momentum Qs leading to a maximum of width
Δϕ ∼Qs=Δ.
With decreasing momentum, as shown in Fig. 5, the peak

becomes less pronounced, and at Δ=Qs ∼ 5 it is barely
discernible. At this point we cannot tell whether this
weakening of the signal is the genuine physical effect, or
is due to the fact that we are approaching the applicability
limit of the high momentum approximation.

FIG. 5. The same as Fig. 4, but for P⊥=Qs ¼ 10, Δ=Qs ¼ 5, z ¼ 1=2, Q=Qs ¼ 8.

FIG. 4. The angular correlation function for different values of p3, and P⊥=Qs ¼ 15, Δ=Qs ¼ 10, z ¼ 1=2, Q=Qs ¼ 8. We consider

the transverse polarization of the virtual photon. The IR scale is chosen to give ΛQCD=Qs ¼ 0.2.
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IV. CONCLUSIONS

In this paper we have studied the diffractive quark-

antiquark dijet plus gluon jet production in DIS on a dense

target with the aim to see whether this observable is sensitive

to Bose correlations of gluons in the hadronic wave function.

This is a continuation of our previouswork [1]wherewehave

studied the same observable in the dilute limit.

We have derived the expression for this observable in

terms of the averages of products of Wilson lines. Eq. (23)

is the general expression that is valid in any kinematic

regime. Averaging this expression over the target is a very

complicated matter and we have not followed this route.

Instead we considered the high momentum limit where all

momenta are larger than the saturation scale. In this limit

we were able to simplify our expression analytically to the

point where numerical calculations became feasible. The

results of the numerics are shown in Figs. 4 and 5.

Our results confirm the conclusions of [1] albeit in a

different kinematical regime. We find a noticeable peak at

the correlation function at a small angle between Δ and p3

at large transverse momenta. The peak is most pronounced

for jΔj ¼ jp3j which is consistent with it originating from

Bose correlations. The angular width of the peak is of order

Δϕ ∼Qs=Δ which also points to Bose correlations partly

smeared by an additional momentum transfer of around Qs

from the target.

One apparent difference with [1] is the dependence on the

saturation momentum. While in [1] we found that the signal

grows with increasing saturation momentum, our present

results, Figs. 4 and 5 suggest the opposite trend. The origin of

this discrepancy is easily understandable. In [1] we have

regulated the infrared pole in the gluon field correlator

Eq. (40) by the saturation momentum Qs. The physical

motivation is that in a saturated state, 1=Qs provides the scale

of color neutralization and thus has to be the relevant cutoff

[34,35]. This strong suppression of soft gluons lead to a

strong suppression of a back-to-back peak in the trijet

production, but did not affect much the same side region

in the analysis of [1]. Due to this suppression of the back-to-

back background, the peak at zero angle became more

pronounced. In the current work on the other hand we

regulate the same pole with ΛQCD, as is customarily done in

theMVmodel. This does not suppress the back-to-back peak

and thus does not do any favors with the same side signal.

Physically of course one does expect that the color

neutralization scale is related to Qs, although this physical

effect is outside the realm of the MV model. The strong

suppression of the gluon distribution below Qs is observed

for example in the solution of JIMWLK equation [10]. Thus

weexpect that this particular effect is taken into account in [1]

in a more realistic manner than in the present work.

Nevertheless, it is interesting to see that even without this

suppression, our results show a nice signal at zero angle.
To summarize, the results of the present paper in

conjunction with those of [1] give a strong indication that
the effects of gluon Bose enhancement may be observable
in DIS on nuclei.
The feasibility of the experiment measurement at the

Electron-Ion Collider requires a detailed study of the
background and the application of the jet reconstruction
algorithm similar to the analysis performed for the dijet in
Ref. [12]. Extrapolating this study to the trijet observable
implies that thanks to the high luminosity of the Electron-
Ion Collider, the proposed measurements of gluon Bose
enhancement are experimentally feasible, but more studies
are required for a qualitative assessment.
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APPENDIX A: DILUTE TARGET LIMIT

In the limit of the dilute target, the diffractive dijet plus
gluon jet production should be expanded to the first non-
trivial order in powers of target color charge density (or target
color field). This involves an expansion of the Wilson lines.

Consider the diffractive production amplitude Eq. (22).

First note that both the quark and the antiquarkWilson lines

have to be expanded at least to order-g, otherwise, the trace
over fundamental Wilson vanishes,

U†ac3ðz3ÞTr½Sðz2ÞtaS†ðz1Þ� − Tr½Sðz2ÞS†ðz1Þtc3 � ≈ −
1

2
g2T

c3
ab

�

αaTðz3ÞαbTðz2Þ − αaTðz3ÞαbTðz1Þ − αaTðz1ÞαbTðz2Þ
�

þOðg3Þ

¼ −
1

2
g2T

c3
ab

Z

d2k

ð2πÞ2
d2k0

ð2πÞ2
�

e−ik·z3−ik
0·z2 − e−ik·z3−ik

0·z1 − e−ik·z1−ik
0·z2

�

× αaTðkÞαbTðk0Þ: ðA1Þ
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Proceeding to the other factors in Eq. (22), we have

�

∂jϕðz3 − z2Þ − ∂jϕðz3 − z1Þ
�

¼
Z

d2l

ð2πÞ2
ilj

l2⊥

�

e−il·ðz3−z2Þ − e−il·ðz3−z1Þ
�

ðA2Þ

and

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ; z1;p
þ
2 ; z2Þ ¼

Z

d2k1

ð2πÞ2 e
−ik1·ðz1−z2ÞΨγ�→qq̄

σ1σ2 ðpþ
1 ;k1;p

þ
2 ;−k1Þ: ðA3Þ

Using these expressions, the trijet production amplitude in momentum space becomes

Mðp1;p2;p3Þ ¼
Z

d2z1d
2z2d

2z3e
ip1·z1eip2·z2eip3·z3Mðz1; z2; z3Þ

¼ i
g3
ffiffiffiffiffiffi

Nc

p
ffiffiffiffiffiffi

2π
p

T
c3
ab

Z

d2k0

ð2πÞ2 α
a
Tðp− k0ÞαbTðk0Þ

�

iðk0 −ΔÞj
jk0 −Δj2

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ;p1;p
þ
2 ;−p1Þ

−Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ;p1 − k0;pþ
2 ;−p1 þ k0Þ−Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ;−p2 þ k0;pþ
2 ;p2 − k0Þ þΨ

γ�→qq̄
σ1σ2 ðpþ

1 ;−p2;p
þ
2 ;p2Þ

�

þ ip3;j

p2
3

�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ;p1 − k0;pþ
2 ;−p1 þ k0Þ þΨ

γ�→qq̄
σ1σ2 ðpþ

1 ;−p2 þ k0;pþ
2 ;p2 − k0Þ

��

: ðA4Þ

Next, we introduce the Lipatov vertex for the single gluon production (note that p3 is the momentum of the produced gluon)

Ljð−ðp1 þ p2 þ kÞ;p3Þ ¼ −

�ðp1 þ p2 þ kÞj
jp1 þ p2 þ kj2 þ

p3;j

p2
3

�

¼
�

k0
j

jk0j2 −
p3;j

jp3j2
�

ðA5Þ

where k0 ≡ −ðp1 þ p2 þ kÞ.
It is convenient to introduce a shorthand notation

ψD
σ1σ2

ðp1;p2;kÞ ¼
�

Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ;p1;p
þ
2 ;−p1Þ −Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ;p1 þ k;pþ
2 ;−p1 − kÞ

−Ψ
γ�→qq̄
σ1σ2 ðpþ

1 ;−p2 − k;pþ
2 ;p2 þ kÞ þ Ψ

γ�→qq̄
σ1σ2 ðpþ

1 ;−p2;p
þ
2 ;p2Þ

�

: ðA6Þ

Then the amplitude in Eq. (A4) can be written as

Mðp1;p2;p3Þ ¼
g3
ffiffiffiffiffiffi

Nc

p
ffiffiffiffiffiffi

2π
p

T
c3
ab

Z

d2k

ð2πÞ2 α
a
Tðpþ kÞαbTð−kÞLjð−ðp1 þ p2 þ kÞ;p3ÞψD

σ1σ2
ðp1;p2;kÞ

¼ g3
ffiffiffiffiffiffi

2π
p

T
c3
ab

Z

d2k

ð2πÞ2 ρ
a
Tðpþ kÞρbTð−kÞ

Ljð−ðp1 þ p2 þ kÞ;p3Þ
k2⊥jpþ kj2 ψD

σ1σ2
ðp1;p2;kÞ ðA7Þ

This expression is easy to understand. There are four terms in Eq. (A6); thus (A7) can be illustrated by four diagrams, see

Fig. 6. Figure 7 shows the equivalent diagrams using the Lipatov vertex. It is important to note that transverse momentum

conservation imposes k0 ¼ −ðp1 þ p2 þ kÞ and there is only one independent momentum that is integrated over.

The trijet production amplitude squared in the dilute limit becomes

jMðp1;p2;p3Þj2 ¼ −ð2πÞ g
6

Nc

T
c3
abT

c3
cd

Z

d2k

ð2πÞ2
d2l

ð2πÞ2 ρ
a
Tðpþ kÞρbTð−kÞρcTð−p − lÞρdTðlÞ

1

k2⊥l
2
⊥

×
1

jpþ kj2jpþ lj2 Ljð−ðp1 þ p2 þ kÞ;p3ÞLjð−ðp1 þ p2 þ lÞ;p3ÞψD
σ1σ2

ðp1;p2;kÞψD�
σ1σ2

ðp1;p2; lÞ:

ðA8Þ
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This is the same as the result we obtained in Ref. [1] (apart

from the overall factor 1=Nc which was missed in [1]).

APPENDIX B: WILSON LINE CORRELATORS

IN THE MV MODEL

In this appendix, we will consider a few Wilson line

correlators required for our calculations. We will use

the MV model, which approximates the correlations of

the covariant gauge color charge densities by a Gaussian

distribution with

hρ̃aðx−;x⊥Þρ̃bðy−; y⊥Þi
¼ δabδðx− − y−Þδðx⊥ − y⊥Þg2μ2ðx−Þ: ðB1Þ

Here we will consider μ2ðx−Þ to be independent of the

transverse coordinates. An extension to an arbitrary trans-

verse coordinate dependent μ2ðx−;x⊥Þ is in principle

straightforward.

In the covariant gauge, the only nonvanishing compo-

nent of the gluon field is

Ãþ;aðx−;x⊥Þ ¼
Z

d2z⊥G0ðx⊥ − z⊥Þρ̃aðx−; z⊥Þ; ðB2Þ

where the Green’s function isG0ðx⊥ − z⊥Þ ¼ −1=∇2. As a

consequence, one obtains

hÃþ;aðx−;x⊥ÞÃþ;aðy−; y⊥Þi
¼ δabδðx− − y−Þg2μ2ðx−ÞLðx⊥; y⊥Þ ðB3Þ

FIG. 6. Schematic diagram illustrating the diffractive trijet production with the gluon jet in the electron-going direction. In the dilute

limit, two gluon exchanges is the lowest order.

(a) (b)

FIG. 7. Schematic diagram showing the trijet production in γ�N collisions. The black solid circle represents the effective Lipatov

vertex. There are two more similar diagrams related by switching the roles of quark and antiquark, k0 ¼ −ðp1 þ p2 þ kÞ
and p ¼ p1 þ p2 þ p3.
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Here

Lðx⊥; y⊥Þ ¼
Z

d2z⊥G0ðx⊥ − z⊥ÞG0ðy⊥ − z⊥Þ: ðB4Þ

In the light-cone gauge Aþ ¼ 0, it is the transverse

components of the vector potential that do not vanish,

Ai
aðx−;x⊥Þ ¼

Z

x−

−∞

dz−∂þAi
aðz−;x⊥Þ

¼
Z

x−

−∞

dz−Fþi
a ðz−;x⊥Þ; ðB5Þ

where the boundary condition Aiðx− ¼ −∞;x⊥Þ ¼ 0 is

consistent with fixing the residual gauge at minus infinity.

The light-cone gauge field strength tensor is related to the

covariant gauge field strength tensor (labeled by tilde)

through a gauge transformation

Fþi
a ðx−;x⊥Þ ¼ U†

acðx−;x⊥ÞF̃þi
c ðx−;x⊥Þ ðB6Þ

where the adjoint representation Wilson line is given by

Uacðx−;x⊥Þ ¼ P exp

�

−ig

Z

x−

−∞

dz−Ãþ;aðz−;x⊥ÞTa

�

:

ðB7Þ

1. The field correlator hAiAji
For reference, we reproduce the WW correlator hAiAji in

this section. Using Eqs. (B5) and (B6), the gauge field

correlator can be expressed in terms of quantities in the

covariant gauge (we follow Ref. [36])

	

Ai
aðx−;x⊥ÞAj

bðy−; y⊥Þ



¼
Z

x−

−∞

dz−
Z

y−

−∞

dw−

	

U†
acðz−;x⊥Þ∂iÃþ

c ðz−;x⊥ÞU†

bdðw−; y⊥Þ∂jÃþ
d ðw−; y⊥Þ




¼
Z

x−

−∞

dz−
Z

y−

−∞

dw−hUcaðz−;x⊥ÞUdbðw−; y⊥Þi∂ix∂jyhÃþ
c ðz−;x⊥ÞÃþ

d ðw−; y⊥Þi

¼ δab∂ix∂
j
yLðx⊥; y⊥Þ

1
2
Ncg

2
Γðx; yÞ

�

Dgðx − y;minfx−; y−gÞ − 1

�

: ðB8Þ

Here Γðx⊥; y⊥Þ ¼ 2Lðx⊥; y⊥Þ − Lðx⊥;x⊥Þ − Lðy⊥; y⊥Þ and D is the dipole correlator for adjoint representation

Dgðx − y; z−Þ ¼ exp

�

1

2
Ncg

4μ̄2ðz−ÞΓðx; yÞ
�

; ðB9Þ

with μ̄2ðz−Þ ¼
R

z−

−∞
dv−μ2ðv−Þ. For minfx−; y−g > 0, one obtains

hAi
aðx⊥ÞAj

bðy⊥Þi ¼ δabG
ij
WWðx⊥; y⊥Þ ¼ δab

∂
i
r∂

j
rLðrÞ

1
2
Ncg

2
ΓðrÞ

�

e
1
2
Ncg

4μ̄2ΓðrÞ − 1

�

ðB10Þ

with

∂
i
r∂

j
rLðrÞ ¼ −

Z

d2p

ð2πÞ2 e
−ip·r

pipj

p4
⊥

: ðB11Þ

Note that this expression requires regularization in the

infrared. Similarly,

ΓðrÞ ¼ 2LðrÞ − 2Lð0Þ ¼ 2

Z

d2p

ð2πÞ2 ½e
−ip·r − 1� 1

p4
⊥

≃ −
1

4π
r2 ln

�

1

ΛQCDr

�

: ðB12Þ

Here the IR scale ΛQCD enters by replacing the propagator

1=p2 with 1=ðp2 þ Λ
2
QCDÞ. For convenience, we also

define Γ̂ðrÞ ¼ πΓðrÞ.

For the purpose of the numerics, the momentum space

expression is required for the field correlator. To derive its

semianalytic form, we start with the coordinate space

expression

G
ij
WWðrÞ ¼

−∂ir∂
j
rΓðrÞ

Ncg
2
ΓðrÞ

�

e2Q
2
s Γ̂ðrÞ − 1

�

¼ −2

Ncg
2

1

ΓðrÞ

�

δij
d

dr2
ΓðrÞ þ 2rirj

�

d

dr2

�

2

ΓðrÞ
�

×

�

e2Q
2
s Γ̂ðrÞ − 1

�

: ðB13Þ

Here we used the conventional definition of the saturation

scale Q2
s ¼ 1

4π
Ncg

4μ̄2. Note that ΓðrÞ can be written as a

function of r2 and the derivatives are with respect to r2.
Details of the computation are given in Ref. [37].
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The trace part of the tensor G
ij
WW is given by

Gð1ÞðpÞ ¼ δij
Z

d2reip·rG
ij
WWðrÞ ¼

−8π

Ncg
2

Z

drrJ0ðprÞ
1

r2

�

e2Q
2
s Γ̂ðrÞ − 1

�

ðB14Þ

while the traceless part reads

hð1ÞðpÞ ¼ −

�

δij −
2pipj

p2

�
Z

d2reip·rG
ij
WWðrÞ

¼ 4

Ncg
2

Z

d2reip·rð1 − 2cos2θÞr2 1

ΓðrÞ

��

d

dr2

�

2

ΓðrÞ
��

e2Q
2
s Γ̂ðrÞ−

�

¼ 8π

Ncg
2

Z

drrJ2ðprÞr2
1

ΓðrÞ

��

d

dr2

�

2

ΓðrÞ
��

e2Q
2
s Γ̂ðrÞ − 1

�

≃
8π

Ncg
2

Z

drrJ2ðprÞ
1

−r2 ln 1

ðjΛQCDrÞ2

�

e2Q
2
s Γ̂ðrÞ − 1

�

: ðB15Þ

2. The hAiAjUUUUi correlator
As discussed in the text we approximate the correlator by the factorized expression

	

Ai
aðRÞAi0

bðR0Þ½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



≃

	

Ai
aðRÞAi0

bðR0Þ

	

½Uðz3ÞU†ðRÞ�ca½Uðz03ÞU†ðR0Þ�cb



þ
	

Ai
aðRÞ½Uðz3ÞU†ðRÞ�ca


	

Ai0
bðR0Þ½Uðz03ÞU†ðR0Þ�cb




þ
	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb


	

Ai0
bðR0Þ½Uðz3ÞU†ðRÞ�ca




: ðB16Þ

We focus on the last term and compute the following expectation value (we use the approach of Ref. [25])

	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb




¼ −

Z

∞

−∞

dx−
	

Uadðx−;RÞ∂iRÃþ
d ðx−;RÞUceðz03ÞUbeðR0Þ




¼ −

Z

∞

−∞

dx−
Z

∞

−∞

dz−
	

Uadðx−;RÞUcc0ð−∞; z−; z03ÞTm
c0e0U

e0eðz−;þ∞; z03ÞUbeðR0Þ



×

	

∂
i
RÃ

þ
d ðx−;RÞigÃþ

mðz−; z03Þ



þ ðc↔ b; z03 ↔ R0Þ: ðB17Þ

The correlator of two Wilson lines is proportional to the dipole in the adjoint representation

	

Ue0eðx−;þ∞; z03ÞUb0eðx−;þ∞;R0Þ



¼ δe
0b0Dgðx−;þ∞;R0; z03Þ: ðB18Þ

The correlator of three Wilson lines can be readily computed

	

Uadð−∞; x−;RÞUcc0ð−∞; x−; z03ÞUbb0ð−∞; x−;R0Þ



Td
c0b0

¼ Ta
cb exp

�

Nc

4
g4

Z

x−

−∞

dz−μ2ðz−ÞðΓðR;R0Þ þ ΓðR; z03Þ þ Γðz03;R0ÞÞ
�

: ðB19Þ
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Combining the ingredients, we obtained

	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb




¼ Ta
cb

�

e
1
2
Ncg

4μ̄2ΓðR0;z0
3
Þ
� ð−igÞ∂iR½LðR; z03Þ − LðR;R0Þ�
Nc

4
g2ðΓðR;R0Þ þ ΓðR; z03Þ − Γðz03;R0ÞÞ

×

�

e
Nc
4
g4μ̄2ðΓðR;R0ÞþΓðR;z0

3
Þ−Γðz0

3
;R0ÞÞ − 1

�

: ðB20Þ

Similarly, analysis also gives

	

Ai0
bðR0Þ½Uðz3ÞU†ðRÞ�ca




¼ Tb
ca

�

e
1
2
Ncg

4μ̄2ΓðR;z3Þ
� ð−igÞ∂i0

R0 ½LðR0; z3Þ − LðR0;RÞ�
Nc

4
g2ðΓðR0;RÞ þ ΓðR0; z3Þ − Γðz3;RÞÞ

×

�

e
Nc
4
g4μ̄2ðΓðR0;RÞþΓðR0;z3Þ−Γðz3;RÞÞ − 1

�

: ðB21Þ

As a consistency check on our expression, consider the limit R→ z3, when hAi0
bðR0Þ½Uðz3ÞU†ðRÞ�cai ¼

hAi0
bðR0ÞAj

eðz3ÞiTe
cað−igÞðR − z3Þj. Indeed this can be explicitly reproduced from our final expression (B20):

	

Ai0
bðR0Þ½Uðz3ÞU†ðRÞ�ca




¼ Tb
ca

ð−igÞðR − z3Þj∂i
0
R0 ½∂jz3LðR0; z3Þ�

Nc

2
g2ΓðR0; z3Þ

�

e
Nc
2
g4μ̄2ΓðR0;z3Þ − 1

�

¼ hAi0
bðR0ÞAj

eðz3ÞiTe
cað−igÞðR − z3Þj: ðB22Þ

In the limit jR −R0j≲ 1=p3 ≪ 1=Qs, Eqs. (B20) and (B24) can be further simplified by noting that the exponential

factor can be expanded due to the smallness of the expression in the second exponent, Q2
sðΓðR;R0Þ þ ΓðR; z03Þ−

Γðz03;R0ÞÞ ≪ 1. We keep only the first-nontrivial order to get

	

Ai
aðRÞ½Uðz03ÞU†ðR0Þ�cb




≈ Ta
cb

�

e2Q
2
s Γ̂ðR0;z0

3
Þ
�

ð−igÞ∂iR½LðR; z03Þ − LðR;R0Þ� 4πQ
2
s

Ncg
2

ðB23Þ

and

	

Ai0
bðR0Þ½Uðz3ÞU†ðRÞ�ca




≈ Tb
ca

�

e2Q
2
s Γ̂ðR;z3Þ

�

ð−igÞ∂i0
R0 ½LðR0; z3Þ − LðR0;RÞ� 4πQ

2
s

Ncg
2
: ðB24Þ
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