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We extend the results of A. Kovner, M. Li, and V. V. Skokov [Phys. Rev. Lett. 128, 182003 (2022)],
where we argued that in the controlled environment of the deep inelastic scattering experiments, Bose-
Einstein correlation between gluons in a hadronic wave function can be accessed through the production of
the diffractive dijet plus a third jet. In this observable, Bose-Einstein correlation causes the enhancement of
the production cross sections at the zero relative angle between the transverse momentum imbalance of the
photon-going dijet and the transverse momentum of the gluon jet, when the magnitude of the momentum
imbalance is about the same as the magnitude of the produced gluon. In the present paper, we account for
multiple scattering and nonlinear effect in the target wave function. Although our equations can be applied
to any high-energy DIS kinematics, to make them tractable numerically, we consider the high-momentum
limit (momentum larger than Q) for the total momentum of the dijet, momentum imbalance, and the
momentum of the produced gluon. By performing explicit numerical calculations, we confirm that the

signal is present after accounting for multiple scattering.
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I. INTRODUCTION

In the recent Letter [1] we proposed an observable that
directly probes Bose-Einstein correlations between gluons
in the nucleus [2—4] and is also sensitive to gluon
saturation. Study of correlations is of course a very exciting
subject [5-9] that goes significantly beyond the single
particle distributions traditionally probed in DIS experi-
ments [10—13]. Sensitivity to gluon saturation [14—-16] is a
most welcome feature as well, as probing gluon saturation
is one of the declared aims of the Electron-Ion Collider
(EIC) experiments [17,18]. The observable in question is
the correlation between momentum of a gluon jet p; and
the momentum imbalance of a diffractive quark antiquark

dijet system A =P, + p,. In [1] we have studied the
signatures of the Bose correlations and have found that they
lead to potentially observable enhancement of the jet-dijet
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cross section at zero angle between p; and A in some
kinematical regions accessible at EIC.

An intuitive understanding of this enhancement is
easiest in the frame where the virtual photon fluctuates
into quark-antiquark pair (dipole) which scatters on the
gluon field of the fast-moving hadron target. The quark
and the antiquark are progenitors of the two jets with the
transverse momenta p, and p, produced in the final

state. The transverse momentum imbalance A = j, + p,
arises due to transverse momentum transferred to the dijet
from the hadron.

Consider now a final state which, in addition to the ¢g
dijet, contains a gluon jet with transverse momentum ps
that originates from the hadron. This jet would naturally
have rapidity very different from that of the other two
jets. Prior to scattering, this gluon in the hadron wave
function is Bose correlated with an identical gluon (the

two have momenta El ~ I%). It is kinematically possible
that the momentum imbalance of the produced dijet

arises mainly due to the exchange of the gluon 1?1

between the hadron and the dijet, |A| = |k,|. In this
situation, the momentum of the produced gluon jet does
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not change significantly in the scattering (ps zlzz) and
the primordial Bose-Einstein correlations should lead to
the increase in the cross section of the trijet production,

when p; ~ A. A possible peak at p; ~ A would thus be a
clear signature of the gluon Bose enhancement. The
question is, of course, whether the kinematic region in
question is large enough so that this enhancement leads
to an observable signal. In [I] we have studied this
question numerically in the dilute approximation treating
the target hadron as a dilute object with gluon distribu-
tion given by the McLerran-Venugopalan (MV) model
[19,20]. We have indeed observed a sizable enhancement
at like transverse momenta. Interestingly this enhance-
ment became more pronounced once we had introduced a
saturation momentum in the target in order to suppress
contributions of low transverse momentum gluons. The
introduction of the saturation momentum in the frame-
work of dilute approximation is rather ad hoc, but is
nevertheless quite illuminating.

The purpose of the present paper is to analyze the same
process beyond the dilute approximation. We use a some-
what different representation, in which the gluon jet is
emitted from the dipole and subsequently scatters off the
nucleus. If the transverse momentum of the emitted gluon is
small, then most of the final gluon momentum will
originate from the interaction with the nucleus probing
Bose correlations in this way. We stress that the two views
of the process are mathematically equivalent which we
explicitly show here.

As in [1] we consider here a trijet configuration where
the ¢gg dijet is in the color singlet state (as opposed to
Refs. [21,22] where the rapidity gap is between proton and
the trijet) in order to minimize the effects due to Sudakov
radiation [23,24]. Sudakov radiation from the gluon p5 still
has to be accounted for; however, if the transverse
momentum is not too large we do not expect this to
qualitatively change the picture.

The paper is structured as follows. In Sec. II we derive
the analytic formulas for the trijet cross-section production
on a dense target in terms of the lightlike Wilson line
operators. At this point our formulas are derived for an
arbitrary kinematics of the three jets and in principle can be
studied numerically. However the full numerical calcula-
tion would be very complicated. In Sec. III we therefore
consider specifically the kinematical region where the
transverse momenta of all jets are much larger than the
saturation momentum of the target. We stress that this limit
does not simply reduce to the dilute approximation of [1] as
the presence of the saturation momentum affects the range
of the integration over intermediate momenta, and this is
important for determining the magnitude of the effect we
are after. We find indeed, that consistently with [1] the
correlated signal is sizable even in this high momentum
limit. We conclude with a discussion in Sec. IV.

I1. DIFFRACTIVE TRIJET PRODUCTION
IN DENSE TARGET REGIME

We consider trijet production in high energy deep
inelastic scatterings. The formalism of our choice is the
wave function approach of Refs. [25,26] (see also Ref. [27]
where the same approach was applied to two gluon
production). In the rest frame of the nucleus, the virtual
photon fluctuates into a pair of quark antiquark, which
subsequently radiate one additional gluon before the
system of three particles scatters off the nuclear target.
We consider the electron/virtual photon moving along
positive-z direction while the proton/nucleus along neg-
ative-z direction.

The corresponding production cross section is propor-
tional to

O(pf.pi:py.P2:P5.P3)

= Z <l//F|aI1,al(pT7p1)acl.o'1<p-1i_vp1)i;z2,az(p§_’p2)
{c}{o}

X 502,62([);? pZ)azuT(pgr’ p3)é\lzH (p;r’ p3)|WF> (1)

Here b, d', and a' are quark, antiquark, and gluon creation
operators respectively (and similarly for annihilation oper-
ators). The final state wave function is computed by

lwr) = C£§60|7*> ® |N) (2)

with the initial state wave function being the tensor product
of the virtual photon state and the nucleus state |y*) ® |N).
As usual for high-energy scattering, the virtual photon state
ly*) is approximated by a quark-antiquark pair. Here S is
the S-matrix operator.

In the eikonal approximation, the radiation of a gluon
from the quark-antiquark dipole is obtained by applying the
coherent state operator o) p [28,29] on the quark-antiquark
state, with

AT dk*
Ared /27| kT

x <a?"‘(k+, X) + ad(k*, x)> } (3)

Cp = exp{i/dleﬁf(x)

where BY(x) is the Weiszacker-Williams (WW) field
generated by the dipole. The final state radiation off the
dipole after interacting with the nucleus is generated by the
action of CIT) in (2).

For the quark-antiquark dipole, the dilute approximation
is well justified; this allows us to simplify the WW field
operator and relate it to the color charge density of the
dipole by
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Bix) = %70 = [ @yodx-vipy). @)

Here 0;¢(x —y) is the WW kernel and 0%¢(x) = 6*(x).
The color charge density operator of the dipole is

CEDALRE

+dy, (KT x)ie, df (kx) | (5)

l‘Z l;]zz,s(k+7 X)

We will use the shorthand notation [. = [® < in the

0 2z
paper. The action of j$(x) on a general quark-antiquark
state is given by

A'“( X)|da,da,)
T )y, 5, (k7 x1)bl, o, (k5 %2)[0)
5@ (x - XZ)QEZZI,SI (k7 Xl)bz sz(k; X)154,10)
=8P (x = x1)gts dy (ki x)bL, . (k3. %2)[0). (6)

Acting on a (non-normalized) color singlet dipole state
197) = >4 194qa)- one obtains

Fh0laa) = a5 (x = x0) =5 (x|
X tzzh] ‘Aizl,s, (kT’ X)I;:Lz,sz(k;’ X2)|O> (7)

In order to account for single-gluon radiation, we expand
the coherent operator C), to the first order in the WW field

AY dk™
Ate™dy \/E|k+|

X {&?T(kﬂx) + &?(k““,x)} (8)

Cp=1+ i/dsz?(x)

Acting on a quark-antiquark state, one obtains the quark-
antiquark and gluon Fock state, that is |¢gg)

A dkt
lggqg) =i / d*x —
e v/ 2m|k |

A+
=g d’x | 0;
Atedy \/27I|k+|/ [ il
- 0ip(x — Xl)tZ,hﬁazhz}

as (k+, x)d), (K}, xl)b};b

af* (k+, %) B (x)|q)

a
2)[h2a25h]a1

o (k3. %2)[0). (9)

Again for the color singlet dipole one gets

dk*
k<At V27| kT

X /dzx [aig{)(x —X,) — 0ip(x — x;)

x 1f,, 85" (k. x)dj o (k. x1)b), (K3 . %2)]0).
(10)

lqqg) = ig

The first term in (10) represents radiation of the gluon from
the quark while the second from the antiquark. The virtual
photon state at NLO in the strong coupling constant g is
then approximated by |r*) ~ |qg) + |9gg) [30].

In the eikonal approximation, the S-matrix operator is
given by

S =exp [i/dzx}“(x)a%(x)} (11)

Here the total color charge density j(x) is a sum of two
contributions: one from the quark-antiquark dipole and
the other from the emitted gluon j(x) = 7% (x) + j%(x)
where the latter can be expressed in terms of gluon
creation-annihilation operators as

A~ dk+ +1
a (x) = ATk, x)T2 ac(k+,x). (12
.]G(X) gl+<[\+ 2k+(2ﬂ') a; ( X) bcal( X) ( )

Finally, a7 (x) is the classical gluon field of the target which
has to be averaged over in the final result with the weight
determined by the target wave function.

Explicit calculations lead to the following transformation
identities,

S‘EZ;_S(H, x)ST = Szh,(x)glz,.s(kﬁ X),
Sb}, (k. x)8" = bj, (k*.x)Sy(x).
Sast (k. x)8" = b (x)al" (k. x), (13)

where, on the right-hand side, we have introduced the
Wilson line in the fundamental and the adjoint representa-
tion representations

Sij(x) = [6"9";(")’8} ,
ij

ab

L (x) = [e,-grea;(x>] . (14)

The scattering amplitude is obtained by applying (S — 1)
on the virtual photon state at NLO. A simple calculation
gives

114032-3



ALEX KOVNER, MING LI, and VLADIMIR V. SKOKOV PHYS. REV. D 107, 114032 (2023)

(8= D), (k7. x1)by, , (k. %,)[0) = [S(XZ)ST(XI) - 1] dj, 5, (k. x)b), , (k5.%,)[0) (15)

hyhy

and

= laas =ia | 2 [ ex[ann - -asx-x)]
x {U*“”(X)S(x»t“S*(xl) - t”} alt (kt,x)dl (kL x0)bE (k5 x,)]0). (16)

ee
Finally, one has to account for the final state radiation which is generated by the action of the operator C ;. Like in Eq. (8),
one needs to expand the soft gluon coherent operator C‘j) to the first order in the coupling constant. Since we are working to
linear order in g, when acting on (§ — 1)|¢gg) we can approximate C}, by the unit operator. The nontrivial contribution
comes from applying C}, on (S — 1)|¢g). Using Eq. (6), it is given by

29T (1 <)\ R¢ i ot + Lt +
- kT, x)BYH(x) | S(x,)ST (%) — 1 d o (k7,x1)b), . (ky,%,)[0
s [0 mmm a0 B[ SO0 1| L 0Bl 8 x2)0)

(x = %) (1[S(%2) ST (x1) = 1)),
—io [ S [ ot =) (1508 (30 = U

= 0ip(x = x1)([S(x2)S"(x1) = l]ta)h2h|:| ai' (k*.x)d;  (k{.x0)bj, ,, (k5. %2)|0). (17)

Collecting all the pieces, one obtains the component of the final state wave function that contains quark, antiquark and a
gluon. With the leading order virtual photon state

=y / ; [ X x5k 32, (6 x0)BL (3]0 (18)

$1,82

we get the relevant component of the final state wave function,

Ex, P, 7 (K x kL x
|Wquc1 Zw/k+k+l+<A+\/§7;|k+|/ T ok S (IS SHCES °Y

i [ ax{ (a(x = x0) = 9x = x) ) U 0S80 (1 e

- 00 = x5 050)S (x0)] = il = xSl )l |

x a7t (k. x)df, , (ki x1)bL, o, (k. %,)[0). (19)
The observable Eq. (1) in the transverse coordinate space can be expressed as

O(PT’ Zl;p;’ ZZ;P; z3) = <‘//F|ai,,al (PTv le)glcl,o'] (PYL’ Zl)I;LZ &) (Pz ) Zz)bcz ) (Pz . Zy)d C3T(P3 ,Z3) (P3 .Z3) W)
= M(z,,2,,23)M*(2}, 25, 23). (20)

Substituting Eq. (19) into Eq. (20), the trijet production amplitude in coordinate space is given by
M(z,,2y,2;) = 2V2 lglP0'10'2 (PT, ZI;P; Zz){(aj¢(z3 -17;) - 5j¢(13 - Zl))[umc3 (13)5(12)1‘15T(Zl)]czc1

—[0jp(23 — 2,)198(2,) S (21) — 9;p(23 — 21)S(2,)S" (2,)17], } (21)

These four terms correspond to the four diagrams in Fig. 1.
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To find the diffractive dijet production amplitude we need to project M (z,, z,, Z3) onto a singlet quark-antiquark dipole state.
This amounts to setting ¢; = ¢, = ¢, summing over the color index ¢ and dividing by the normalization factor 1//N:

/o 9
Miie (21, 25, 23) =2 27”\/1T o103

Voo (20 p3 2) (0, (25 — 22) = 9jb (23— 2,))

% {L{*“C3(z3)Tr[S(zz)t“S*(zl)] _ Tr[S(ZZ)ST(z])tCB]}. (22)

Note that this is the amplitude for the production of a
color singlet gg dijet and an additional gluon jet, and not an
overall color singlet ggg three jet state. The choice of this
observable minimizes the effects of the Sudakov radiation
from the dijet, although as mentioned above it is still
susceptible to corrections due to the Sudakov radiation
from the gluon jet. In addition, it turns out that in this color
|

2
g i (7, —
Odiff(PﬁPl;P;,Pz;P;,m) =N E /d211d2z/1€’p‘ (212

€ 61,02,]

I
configuration, the back-to-back production of the dijet and
the jet is strongly suppressed relative to inclusive states,
which makes it a favorable candidate for observation of the
same side Bose correlation effect.

Taking the product of the amplitude Eq. (22) and its
complex conjugate, one obtains the final result for dif-
fractive dijet plus gluon jet production:

g / &2, d*zye =) / P2y d 2y )

X (87)¥5,or" (P 213 p3 . 2) [¥er ot (P 243 pF . 25)) [0,-45(1’3 — 7)) = 0;¢(z; — 7))

X [0j¢(13 — 1) — 0;p(z3 — Zl):| {[UT(Za)U(ZS)]“eTr[S(Zz)f“ST(Zl)}Tf[S(Z’l)IQST(ZE)]

= U (25) Tr[S(2,) ST (2))19] Tr[S(2)) 1S (2))]
= UM (23) Tr[S(2) 1S ()| Te[tS (1) S (2))]

+ Tr[S(2,)ST (2,1 Tr[1S(Z} ) ST (2})] } (23)

A consistency check on this expression is that it
reproduces the dilute target limit considered in Ref. [1].
To establish this we perform the dilute target expansion in
Appendix A. This exercise has an additional aim to show

FIG. 1. Schematic diagram illustrating the trijet production in
the electron-going direction. The gluon can be radiated either by
the quark or by the antiquark. The radiation can happen either
before or after scattering on the target.

|
that the approach taken in Ref. [1] where the gluon jet was
interpreted as emerging directly from the target, and the
approach in the present paper where it is treated as
emerging from the perturbative splitting of a dipole, are
in fact equivalent and differ only in the choice of the
reference frame.

Returning to our final expression, (23) we observe that
averaging of this expression with respect to target configura-
tions poses a significant numerical challenge. A simplification
is achieved however if we consider a limit of high transverse
momenta. This approximation can be implemented analyti-
cally up to a point where numerical calculations become
feasible. This is what we do in the next section.

III. TRIJET PRODUCTION IN HIGH
MOMENTUM LIMIT

In order to make numerics viable, in this section we
consider the diffractive trijet production in a particular
kinematic region: the external momenta p;, p,, p3 are taken
to be large compared to the saturation scale of the nucleus,
Q,. For clarity, the coordinates and momenta of different
particles are depicted in Fig. 2.
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P1, 21

P2, 73

P3, 23

FIG. 2. Schematic diagram of trijet production in y* + p/A
scattering.

In the high momentum limit, the coordinates of each
particle in the amplitude and conjugate amplitude must be
close to each other. Additionally, for high Q2, the quark and
antiquark should be close to each other in the coordinate
space, as we consider the regime Q> Q,. A typical
coordinate space configuration corresponding to the high
momentum limit is shown in fig. 3.

A. High momentum approximation

We start with the diffractive amplitude for the trijet
production (22) obtained in the previous section. Using the
identity S(z)t°S™(z) = U™ (z)t*, one can perform the
following rearrangement:

Tr[S(2,)1°S"(21)] = U™ (2,) Tr[19S(2,) S ()]
= U™ (2,)Tr[S(2,)S"(21)19].  (24)

FIG. 3. A typical coordinate space configuration corresponding
to high momentum limit. When |p|, |p2], [p3] ~ Q > Q,, the
coordinates in the amplitude and complex conjugate amplitudes
are close within a domain of size 1/Q?. The gluon jet is typically
separated from the quark and antiquark jets although all of them
are expected to be located within the domain of size 1/Q?2.

)

As a result, the factor involving Wilson lines can be
equivalently written as

U™ (23) Tr[S(2,)1°ST(2,)] — Tr[S(2,) S (z))1]

1

- (3w @) + v - 5)

x Tr[S(2,) ST (z)14). (25)

For large momenta and large photon virtuality Q > Q,, the
size of the dipole |z, — z,| ~1/Q <« 1/Q,. The gluon is
typically emitted at larger transverse distances. At the same
time, to be sensitive to the correlations in the target, the
three particles (quark, antiquark, and gluon) have to be
located within a transverse size determined by 1/Q,. Given
these considerations we can perform gradient expansion in
various correlators.

To preserve the symmetry between the quark and the
antiquark we find it convenient to introduce the center
of mass and the relative coordinates via R = %(ZQ +2zy),
r = z, — z;. Generically at large momenta |r| < |R|, and
we can approximate

Tr[S(z,)S"(z,)t?] ~ Tr [I; diS(R)ST(R)td]
_Tr {sm) gais*(R)td]
_ %igriAil(R), (26)

where A} (R) is the WW field of the target
. 2 .
AL(R) = =Tr[t*0'S(R)ST(R)]. (27)
g

Additionally, one can approximate

[U(23)(U' (22) + U™(21))]* = U(z3)U"(R) + O(r?).

M| —

(28)

With the above simplifications, the diffractive amplitude
becomes

Mdiff(zlszb 13) = 2\/2_”1'\/%‘1’?1;;@

. (a,¢<z3 )~ (s - m)
cdl o

X [U(z3)UT(R) - 1] 5igl~’A§,(R).

(29)

(P1+7 Zl;P? z;)

Performing Fourier transformations, the production
amplitude in momentum space can be written as

114032-6



PROBING GLUON BOSE CORRELATIONS IN NUCLEAR WAVE ... PHYS. REV. D 107, 114032 (2023)

_ 2 2 2 iP1'Z| ,IPrZy HIP3Z
Mt (P1. P2, P3) = /d 2,d*2,d” 23" P20 P37 M i (2,1, 25, 23)

a1
= / WMdipole(Pl, I)Mnucleus (A, Ps, l) (30)

Here A = p; + p, is the quark—anti-quark momentum imbalance and P, = % (p, — p1) is the total momentum of the pair.
The dipole matrix element is

Mipore(P L. 1) = N2z \/?V_C/ LrePiT |:eil-r/2 _ e—il~r/2:| FPr =i (pt pi r)lllzj
~ 2ari— e i) (WL o3 P 12) — W i R YD) D)
and the nucleus matrix element is
Mt (8.93.1) = 59 [ PRase SR 0740 (R) U2 U (R) = 1] (32

From the explicit expressions in Eqs. (31) and (32) we obtain the simplified result for diffractive trijet production in the
high momentum limit

2 2 ! /
g A1 AU 1-1
|Mdiff(P1,P2vP3)|2 = (2”)4N_C (2”)2 (2ﬂ)2 22

X Op [‘1’3522‘”—’(19?, P PL+1/2) =W T (p L p; P~ 1/ 2)}
X Opr [‘P«fl?fq (V. p3 PL+1/2) =W 0% (pf, pf P =1/ 2)}
X Mnucleus (A! P3, l)M;ucleus(A7 P3, l/) (33)
where
1 . . . ’ ! . ! !
Mnucleus(A’ ps. I)M:ucleus (A, ps. l/) _ Z92 / dZRdZZ3d2R/d2z/3€z(A+l)~Ret(p3—l)»z3 e—z(A+l )R e—z(p3—l )z}
x AL (R)A}(R)[U(23)UT(R) = 1]°[U(25) UT(R') = 1]¢*. (34)

Equations (33) and (34) are the main results in the high momentum limit for diffractive trijet production on the nucleus
configuration-by-configuration basis. Averaging over the possible configuration of the nucleus fields requires finding the
expectation value of the above combination of the Wilson lines in the nuclear ensemble, that is

<AZ(R)AZ(R’)[U(Z3)UT(R) U () U (R 1]0"> _ <A2<R>A;‘;(R/)[U<z3>U*<R>1w[U(zg>U*<R/>rb>
_ <A;<R>A5,’<R'>[U<zg)U+<R'>1ab>

- (ARAR) U R ) + (ARIALR))
(35)
The main goal of this study is the regime where the momentum imbalance A forms a very small angle with the momentum

of the gluon ps, since this is the kinematic region where we expect a significant contribution from gluon Bose enhancement.
In this regime some terms in Eq. (35) are negligible.
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Specifically the three last terms all are obtained from
the first term by putting z; = R or zj = R’ or both.
Physically setting z; = R means that the gluon and the
qq dijet in the amplitude are in the same point in the
transverse space. This, in turn, means that the relative
momentum between the dijet and the gluon jet is very
large. The maximal relative momentum at fixed |ps|
and |A| is achieved in the back-to-back configuration of
dijet relative to the gluon jet. This term therefore does
not contribute to the kinematical region of interest to
us. We verify this conclusion by scrutinizing the result
of the explicit calculation for the first term in Eq. (35)
which we perform below. Substituting z; = R or z} =
R’ in this expression leads indeed to a vanishing
contribution.
|

In the following we therefore concentrate on calculating
the first term in Eq. (35).

B. Averaging over target

Our goal now is to perform the target averaging of this
term. The common practice in color glass condensate
calculations is to model the target distribution with the
McLerran-Venugopalan (MV) model [19,20]. However even
within the MV model, calculating a correlator like in Eq. (35)
is a very complicated endeavor that we are unable to
accomplish without an incommensurate effort. In order to
extract physical information from our formulas, and moti-
vated by the structure of a similar calculation in the dilute
case, we are thus led to consider the following factorized
approximation:

<Az<R>Az(R’)[U(z3>U*<R>]w[U(zg>U*<R/>JC”> - <A;<R>A5,’<R'>><[U<z3>U*(R)J“[U(zg>U*<R'>JC">

. <A;<R>[U<z3>u-f<k>ra><A;‘;<R'>[U<zg>U"'<R'>F”>

+<AL<R>[U<zg>U*<R’>]C”><Ai<R’>[U(z3>U*<R>}w>. (36)

In the limit |[R — R’| ~ 1/ p3 < 1/Qy, the averages in (36) can be explicitly computed in the MV model. For the first term in

Eq. (36), one has

<A3<R>A2<R/>><[U(z3>U*(R)}M[U(zg>U*<R’>r"> — Gl (R. R/)<Trw<z3>U*(R)U(R’)U*(zg>1>

~ ﬁcl;’v’w(k, R’)<Tr[U(z3)U*(zg)}> <Tr[U(R)U*(R’)]>

— (V2 = 1)Gljyy (R, R")D, (23, 2,)D,(R. R'). (37)

Here we used the factorized approximation for the average of the adjoint quadrupole. This is well justified in our kinematics,
since for typical configurations we have the hierarchy of distances |A|~|R —R'|~|z; —Z}| < |z3 - R| ~ Q..
Corrections to this factorization therefore should be of order Q2/A.

In Eq. (37), Giiy, is the WW gluon distribution, and D, is the dipole gluon distribution defined as

Dy(x.y) = (Tr[UF(x)U(y)]);

N2 -1

Glf(x.¥) = 17— ()AL, (38)

For both objects, there exist closed analytic expressions in the MV model. Those are given in Appendix B.

The more interesting term is the last term in Eq. (36). Within the MV model it is computed in Appendix B, see Egs. (B20)
and (B24):

(—ig)0g TRz, — TrR]

e R R eQ?(fR,R'+fR.zg _fzg.R/)
Oi(Trr +Try — Ty r)

-1

2 .
<A2(R)[U(zg)UT<R/)}cb> — 719, ?\735 {ezgsrw.zg}

. 4703
= ch N lgz

Dg(Rl’ Z/S)(_ig)ai( {LR,zg - LR,R’]' (39)

The approximate equality holds in the high momentum regime where |R — R’| ~ 1/ p5 is small compared to 1/Q;. The
averaging was performed with the MV model, where the correlator of the plus component of the gauge potential is given by
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(AT(x™. x)ATP (y7.y)) = 68(x™ = y7)g?u? (x7)L(x.y) (40)

with L, , = L(x.y) = & (x,y). The functions I" and I" are defined as 'y y = #T'y ; = 2L(x,y) — L(x,x) — L(y. y) and we
used the conventional definition of the saturation scale

N
0 =gt [ i) (@)

With these expressions we see that the second term in Eq. (36) vanishes due to 7%, = 0:

(AR UG R = (4] R V)R ) =0 (@)
We are now ready to compute Eq. (34)
1 . . . ! ! : U !
<Mnucleus(A7 s, l)M;ucleus(A’ s, l/)> ~ 192 / dszzz3d2R/dZZ/3ez(A+l)-Rez(P3—l)-z3 e i(A+1)-R ,—i(ps—1)-Z

(AR ) 06200 (R a3 0" (RO
(MR UG R ) (A ROE)U R ) ). @)
We consider the two terms separately. The first term can be readily written
392 / dZRd2z3d2R/d2Z/3€i(A+l)vRei(p3—l)-z3e—i(A+l’)~R’e—i(p3—l’)~zg
(AR RY Y W)U R )" (R )
1 2 N I’k
=19 (2m)*o(1=1)| (N2-1) WGWW(_A —1-K)D,(k)D,(1-p;). (44)
For the second term, carrying out the Fourier transformations, one arrives at

4_1‘92 / dZRdzz3d2R/d2Z/3€i(A+l)-Rei(p3—l)-z3e—i(A+l’)~R’e—i(p3—l’)‘zg

< MRV R ) (AR UG R )

N . . . ’ ’ : .ol
— (477-'Q%)2 493 (_l-g)Z/dZRd2z3d2R/d2z/3ez(A+l)-Rez(p3—l)~z3e—l(A+l)-R e—l(pg—l)z3

x Dy(R" = 2,)D,(R — 25)3 [L(R,7,) — L(R, R")|ok [L(R. z3) — L(R', R)]

N, . —qi(-A-p;+q))"
= (4”Q%)2@(_19)2SL/(1 q‘l‘l((—A—p:—F qll)z Dg(A +l_q1) _Dg(l_pS)

x [Dg(m —1—q;) = Dy(ps - l’)] : (45)

where the factor of area appears as the limit of the momentum space delta function S, = (27)25*(p = 0). The poles at
q; =0 and q; = A + p; originate from the Fourier transforms of the relevant factors

d*q;
(2m)?

KILR2) - LRR)| = [ 4 e [ - } i (46)

q,
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d2q2
(27)?

These poles have to be regularized at a nonperutrbative scale. In the MV model conventionally this scale is chosen to be
Aqcp- The singularity of the MV model correlator is due to an assumption that the color charges in the transverse plane are
uncorrelated. Imposing the condition of color neutrality configuration by configuration on the charge density distribution
regulates the pole on the spatial scale on which the color neutralization occurs [31], which is naturally taken as Agcp. We
will follow this practice in this paper, but will comment on the issue more in Sec. IV.

Putting everything together, the event-averaged diffractive trijet production in the high momentum limit is

0 [L(R',z;) = L(R',R)] = / e~ R’ [6“‘12'13 —~ e+iqz~R] % (47)

Q)

42 [ 1 PV 1-Y . .
Yoo (p1 Py PLH1/2) =55 (pl . py . PL—1/2)

<|Mdiff(p1vp2vp3)|2> = (2”)N—C ‘(2ﬂ)2 (2”)2W0P1

X Opr [‘Pﬁ?ﬂq(ﬂ, P3P+ 1/2) =L (pf ps Py —1/2)

(N2-1)¢g* [ d°k
4 / (27)

X (Sl(Zﬂ)zé(l -1) 5 Gl (—A =1-K)D,(k)D,(1 - p3)

N, d*q; —qi(-A —p; +q;)"
— (4nQ?)?==8 / L D,(A+1-q;)-D,(1-
( 10 ) 4 1 (271_)2 qzlt(_A_p3+q1)4 [ g( ql) g( pS)]

< [D,(ps 1 = q1) = Dy (ps - 1’)1). (48)

Note that both terms are of the same order in g> as Gy has an explicit factor of 1/¢? in its definition, see Appendix B.

C. Summary of analytics

Now we summarize our analytic results in the high momentum limit. The diffractive trijet production can be written in the
factorized form

dN / 7 2d U723 R -
~ " (P, LI)G" (A, ps, L) (49)
J2P1d2P2d2P3 (2”)2 (2”)2 - ’
with
oy 94 l- l/ v —qq v —=qq
o' (PL, 1, l/) = (271') N—Wapl [Tglazqq(pfs P;, PL + 1/2) - ‘Palazqq(p;ra P;, PL - l/2>:|

X Ope {%‘,z‘f"’m, P3P 1/2) =¥ (pl . p) P~ 1//2)} (50)

and

p (N2-1)@ [ &k,
G (A’ p37 l’ l/) = SL(2”)25(1 - l’) 4 (271_)2 GVVVV(_A - l - k)Dg<k>Dg(l - p3)

N, d’q; —qi(-A-p; +q,)"
_(477Q%)2TSL/<27[>12 q‘l‘l(—A—p;—i-qll)“ Dy(A+1-q;) - D,(1-p;3)

< D=1 = @) = D, -1)| 51)
The analytic expressions for the WW and dipole correlators in coordinate space are given in Appendix B, see eqs. (B13)
and (B9).

This has to be complemented by the explicit expression for the photon splitting function. For the transversely polarized
virtual photon, we have [32]
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\PVT*,;?;?(PT,PBP; -pi) = _eef5r6,—o‘22\/Z1Z2(Zl — 25+ 240,)(27)5(1 — 2, — Zz>€f17:i(l’1) (52)

where —e is the electric charge of the electron and e represents the quark electric charge of flavor “f”, and we introduced a
shorthand notation

: Pi
Fi(p1) = (53)
€ +pi
and €7 = 0%z,2,. The longitudinal momentum ratios are given by z;, = py,/q".
For the longitudinally polarized virtual photon, the wave function is
‘Pf;l?ff(p?,pl;piﬂ —p1) = —e€f5al,—uz4(Z1Z2)(2”)5(1 - 71— 22)H(p1) (54)
with
€
HP) = 5 (55)

€ +pi’

Squaring Eq. (52) and summing over the spins and polarizations, we can factor out the transverse momentum
independent factor

kr(21,22) = (eer)*H2122)2((21 = 22)* +1][(27)5(1 = 21 — 22) ). (56)
A similar factor for longitudinally polarized photon is
kL (21, 22) = 2(ees)?16(2122)*[(27)8(1 — 21 — ). (57)

Focusing on the transverse momentum-dependent factors of the dipole wave function, we have for the transverse
amplitude
n

Mimn (1) = (;_2 Op, F" (P + 1/2)> - ;—2 {&'mﬁ(m +1/2)/e; —2F (P, +1/2)F"(P, + 1/2)] (58)

and for the longitudinal one

n

in(1) = (-n op H(P, + 1/2)) - ;—2 [—2ff(P F1/2)H(P + 1/2)} . (59)

L

Then Eq. (50) can be written as

4
o (PL11) = 21 ka1 22) | M) = e ()| [ oo ) - w1 (60)
for the transverse polarization, and
4
of (P 1) =20 %k 21, 22) | ME() = ME(-D | |20 = (1) (61)

for the longitudinal polarization. dN — dN )
Eqgs. (49), (51), (60) and (61) are the basis for the d*P d*Ad’p;  d’p,d°p,d°p;
numerical analysis we present in the next subsection.

(62)

Since we are interested in the angular correlations between
p; and A, we integrate over the orientation of the
momentum P, . We keep the magnitude of P fixed during

For the external momenta p;, p,, s, the trijet production this integration. In addition, we also integrate over the
cross section can be expressed in terms of P, A, ps, direction of p; (denoted by f; below)

D. Numerical results
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® »,/Q=7 A/Q, =10
@® »,/Q, =8
1.300 F X py/Q,=9
* p,/Q =10
§ 1.275
O
1.250
=
&
L 4
: : o8
1.225 ) ) ) ) )
0.0 0.2 0.4 0.6 0.8
¢

FIG. 4. The angular correlation function for different values of ps, and P, /Q,

(63)

c( A)—lfz”dﬂ /d¢ dN
Ps: N 0 ’ PLdzPldzpdeP_%.

For given |ps| and |A|, we plot C(ps,A) as a function
of the azimuthal angle ¢. The normalization factor
1/N representing the normalization over all the angles
between [—x/4, /4].

In the numerical computation, strictly speaking one
needs to regularize the 1//? in Eq. (58), for which purpose
we use

1 1
i n A%)CD . (64)
The factor 1" /1> comes from the WW field representing the
gluon radiation from the quark and the antiquark. It turns
out that the pole itself contributes only in the terms that do
not contain same side correlations, and even in these terms
at high momenta the residue of the pole is exponentially
small. Thus our results to a very good approximation do not
depend on the exact value of the regulator.

We expect that the configuration with small 1 (momen-
tum of the emitted gluon) to be most sensitive to Bose
enhancement and to be a dominant contributor to the

1.300 r

1.275 1

C(9)

1.250 1

1.225

0.8

15, A/Q;

the transverse polarization of the virtual photon. The IR scale is chosen to give Aqgcp/Q, = 0.2.

10,z =1/2, Q/Q, = 8. We consider

zero-angle peak. When 1 — 0, the momenta of the gluons
inside the nuclear wave function probed in this process
are p3 and A, respectively. If the signal is due to Bose
enhancement, we expect it to be maximal at p; ~ A.

Numerically, the calculation is rather complicated as it
requires the computation of a six-dimensional integral
(integrals with respect to 1, I, and q;). We performed
the integration using Vegas algorithm [33]. The results are
presented in Figs. 4 and 5.

For very large momenta (Fig. 4) we observe a clear
peak in the correlation function at zero angle. The peak is
indeed maximal at p; = A, although it persists in the range
.8 < p3/A < 1.2. The angular width of the maximum is
about A¢ ~ .1, which is consistent with the expectation
that “primordial” sharp Bose correlations are somewhat
smeared in the scattering by the presence of nonvanishing
saturation momentum Q, leading to a maximum of width
A¢ ~ Qs/A.

With decreasing momentum, as shown in Fig. 5, the peak
becomes less pronounced, and at A/Q, ~5 it is barely
discernible. At this point we cannot tell whether this
weakening of the signal is the genuine physical effect, or
is due to the fact that we are approaching the applicability
limit of the high momentum approximation.

1.32 1.32
e P,/Q, =3
X p‘ng‘:g
130f X me 1.30
5 128) 5 128}
) )
1.26 1.26
12Uy gse®® " 1.24 posemom = X
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
) )
FIG. 5. The same as Fig. 4, but for P, /Q, =10, A/Q, =5, z=1/2, Q/Q, = 8.
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IV. CONCLUSIONS

In this paper we have studied the diffractive quark-
antiquark dijet plus gluon jet production in DIS on a dense
target with the aim to see whether this observable is sensitive
to Bose correlations of gluons in the hadronic wave function.
This is a continuation of our previous work [ 1] where we have
studied the same observable in the dilute limit.

We have derived the expression for this observable in
terms of the averages of products of Wilson lines. Eq. (23)
is the general expression that is valid in any kinematic
regime. Averaging this expression over the target is a very
complicated matter and we have not followed this route.
Instead we considered the high momentum limit where all
momenta are larger than the saturation scale. In this limit
we were able to simplify our expression analytically to the
point where numerical calculations became feasible. The
results of the numerics are shown in Figs. 4 and 5.

Our results confirm the conclusions of [1] albeit in a
different kinematical regime. We find a noticeable peak at
the correlation function at a small angle between A and p3
at large transverse momenta. The peak is most pronounced
for |A| = |p3| which is consistent with it originating from
Bose correlations. The angular width of the peak is of order
A¢ ~ Q,/A which also points to Bose correlations partly
smeared by an additional momentum transfer of around Q,
from the target.

One apparent difference with [1] is the dependence on the
saturation momentum. While in [1] we found that the signal
grows with increasing saturation momentum, our present
results, Figs. 4 and 5 suggest the opposite trend. The origin of
this discrepancy is easily understandable. In [1] we have
regulated the infrared pole in the gluon field correlator
Eq. (40) by the saturation momentum (,. The physical
motivation is that in a saturated state, 1/ Q, provides the scale
of color neutralization and thus has to be the relevant cutoff
[34,35]. This strong suppression of soft gluons lead to a
strong suppression of a back-to-back peak in the trijet
production, but did not affect much the same side region
in the analysis of [1]. Due to this suppression of the back-to-
back background, the peak at zero angle became more
pronounced. In the current work on the other hand we
regulate the same pole with Agcp, as is customarily done in
the MV model. This does not suppress the back-to-back peak
and thus does not do any favors with the same side signal.

Physically of course one does expect that the color
neutralization scale is related to Q,, although this physical

|

effect is outside the realm of the MV model. The strong
suppression of the gluon distribution below Q; is observed
for example in the solution of IMWLK equation [10]. Thus
we expect that this particular effect is taken into accountin [1]
in a more realistic manner than in the present work.
Nevertheless, it is interesting to see that even without this
suppression, our results show a nice signal at zero angle.

To summarize, the results of the present paper in
conjunction with those of [1] give a strong indication that
the effects of gluon Bose enhancement may be observable
in DIS on nuclei.

The feasibility of the experiment measurement at the
Electron-lon Collider requires a detailed study of the
background and the application of the jet reconstruction
algorithm similar to the analysis performed for the dijet in
Ref. [12]. Extrapolating this study to the trijet observable
implies that thanks to the high luminosity of the Electron-
Ion Collider, the proposed measurements of gluon Bose
enhancement are experimentally feasible, but more studies
are required for a qualitative assessment.
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APPENDIX A: DILUTE TARGET LIMIT

In the limit of the dilute target, the diffractive dijet plus
gluon jet production should be expanded to the first non-
trivial order in powers of target color charge density (or target
color field). This involves an expansion of the Wilson lines.

Consider the diffractive production amplitude Eq. (22).
First note that both the quark and the antiquark Wilson lines
have to be expanded at least to order-g, otherwise, the trace
over fundamental Wilson vanishes,

U 0 TS0 01 = TS (22)S" (0)0°] 2 = 37Tt 2 02) = a )t o) = o)tk 2)] + O)

1

o

x ot (k)ab (k).

27€3

2 21!
/ d’k d’k |:e—ik-z3—ik’-z2 _ e—ik-z3—ik’-z] _ e—ik-zl—ik’-12:|

(22 (21)?
(A1)
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Proceeding to the other factors in Eq. (22), we have

i .
aj¢(z3 - 12) — aj¢<z3 — Zl):| = (zﬂ-)Zﬁ [e—ll-(lz—ZZ) — o—ilM(z-2) (AZ)
and
r'oaqq o + + d2k1 —iky (2, —2) @ 299 ( ,+ +
le’lffz (pl ’2121’2»12) = (271_)26 s ZLPf’l”z (pl 7k1;p2’_k1)' (A3)

Using these expressions, the trijet production amplitude in momentum space becomes

M(p1,P2.P3) = /d2Z1d212JZZ3€iP“Z‘eipz‘zzeipyh/\/l(zl,12,23)
’ d’k’
. g c a
=Y 2T, W“T(p - k/)al%(k'){

=W (pl e = Kipy =Py K =W (Pl P+ Ky 0o — K) W (P P2y p2)

i(k'—A); e
|k/ — A|2j [lp{flﬂzqq(pT7P1§P2+, —P1)

ip3,' *—>qq *5aqq
+— {‘Pﬁlaf”(pf,pl -k';py.—p1 +K)+ ¥ (pf . —pr + K p3 . pr — k’)] } (A4)
3

Next, we introduce the Lipatov vertex for the single gluon production (note that p; is the momentum of the produced gluon)

(p1+p2+Kk);, ps; K:  ps;
Li(~(py +p +k>,p>=—(—’+—” =\ E "t (AS)
SRR ’ I+, + k[P P2 K[ [psf

where k' = —(p; + p, + k).
It is convenient to introduce a shorthand notation

w2, (p1.p2.K) = [‘Pfr?;;qq(pi PPy —p1) = ¥r(pf.pi + ki ps,—p) — k)

+

— W A (pf —py — Ky + K) W (pf . —pai pF L Po) |- (A6)

0102 (p

Then the amplitude in Eq. (A4) can be written as

3 2
g C d’k
M(py.p2.p3) = _\/]T V2T, / (2”)2 ag(p + k)“?(_k)Lj(_(Pl +Pp2+ k),P3)WaDlaz (P1.p2- k)

Cc

Li(—=(p;+p2+k).p3)
J D Pk A7
ki|p+k|2 ll/(T]O'z(pl Pz ) ( )

[ &k
= 93\/2_HTaZ/WP%(p + k)ph (k)

This expression is easy to understand. There are four terms in Eq. (A6); thus (A7) can be illustrated by four diagrams, see
Fig. 6. Figure 7 shows the equivalent diagrams using the Lipatov vertex. It is important to note that transverse momentum
conservation imposes k' = —(p; + p, + k) and there is only one independent momentum that is integrated over.

The trijet production amplitude squared in the dilute limit becomes

M(pyopr. o) = —2m) L7, / K+ K)ph(=K)ps (=p — D (1)
N, (27)* (27) kily

1

(- K).ps)L(— D), p3)wl .. (pr. P KWWP: (Pr.po. ).
X|p+k|2|p+l|2 (=P + P2 +K).p3)L;(—=(p1 + P2 +1).p3)wl o, (P1. P2, K)w D%, (P11, P2. 1)

(A8)
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p1

g,

D0O000Q0ANOQN

FIG. 6. Schematic diagram illustrating the diffractive trijet production with the gluon jet in the electron-going direction. In the dilute

limit, two gluon exchanges is the lowest order.

FIG. 7.

o

100 Q

(b)

Schematic diagram showing the trijet production in y*N collisions. The black solid circle represents the effective Lipatov

vertex. There are two more similar diagrams related by switching the roles of quark and antiquark, k' = —(p; + p, + k)

and p =p; +p; + Pps.

This is the same as the result we obtained in Ref. [1] (apart
from the overall factor 1/N, which was missed in [1]).

APPENDIX B: WILSON LINE CORRELATORS
IN THE MV MODEL

In this appendix, we will consider a few Wilson line
correlators required for our calculations. We will use
the MV model, which approximates the correlations of
the covariant gauge color charge densities by a Gaussian
distribution with

(P (x x )PP (v, y L))

= 86(x" = y7)8(xL =y )@ #(x7).  (B1)

Here we will consider y*(x~) to be independent of the
transverse coordinates. An extension to an arbitrary trans-
verse coordinate dependent p*(x~,x) is in principle
straightforward.

In the covariant gauge, the only nonvanishing compo-
nent of the gluon field is

ATe(xm,x ) = /JZZJ_GO(XJ_ -z )p(x7,2y), (B2)

where the Green’s functionis Gy(x, —z,) = —1/V?. Asa
consequence, one obtains

(AT x  JAT(y7,y 1))

= 85(x™ — y7) U (x")L(x . y,) (B3)
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Here

L(x.,y,)= /dzZJ_GO<XJ_ -2,)Gy(y, —2z,). (B4)

In the light-cone gauge A" =0, it is the transverse
components of the vector potential that do not vanish,

. X_ .
ALrmx,) = / dz-* AL (2, x,)

X~ .
- [Larriex. )
—00
where the boundary condition A’(x™ = —c0,x,) =0 is
consistent with fixing the residual gauge at minus infinity.
The light-cone gauge field strength tensor is related to the
|

covariant gauge field strength tensor (labeled by tilde)
through a gauge transformation

Uic(x‘,xL)Fii(x‘,xL)

where the adjoint representation Wilson line is given by

Fif(x™.xy) = (B6)

Uy (x7,x,) = Pexp {—ig /x_ dz=At(z, XJ_)T“}.
(B7)

1. The field correlator (A;A;)

For reference, we reproduce the WW correlator (A;A;) in
this section. Using Eqgs. (B5) and (B6), the gauge field
correlator can be expressed in terms of quantities in the
covariant gauge (we follow Ref. [36])

. . X~ v s~ s~
<A;<x-,xL>A;,<y-,yl>> [ [ dw—<Uzc<z-,xgafAt(z-,xL>Uzd<w-,yl>afA;<w-,yL>>

— /_x dz~ /_y dw™(Uea(z7, X 1)U gp (W™, ¥1)) 0504 (AL (27, x A (W™, y1))

_ 3POL(x1.y))
3NgT(x.y)

Here I'(x .y, ) = 2L(x,,y,) — L(x.,X,)

with #%(z7) = [*_ dv~p?*(v™). For min{x~,y~} > 0, one obtains

[Dg(x —y,min{x",y"}) — 1] . (B8)
—L(y,,y,) and D is the dipole correlator for adjoint representation
- |
Dy(x —y.z7) = expy s Ng'm*(z)L(x.y) (B9)
i ] ab (1] a o a‘]'L(r) AN .g* i*T(r
A1) = 3G (x,.y,) = o S fowtine (B10)

with

QoL (r) = — / PPy

(27)* r

Note that this expression requires regularization in the
infrared. Similarly,

I(r) = 2L(r) = 2L(0) = 2 / (‘i P e~ l]pli

1 1
~—— 2] . B12
477: rn |:AQCD r :| ( )
Here the IR scale Agcp enters by replacing the propagator

1/p* with 1/(p* + Ajcp). For convenience, we also
define I'(r) = #l'(r).

For the purpose of the numerics, the momentum space
expression is required for the field correlator. To derive its
semianalytic form, we start with the coordinate space
expression

i —oL. d’F
i) T [on |

Neg’T(r)
i+ 2 () i)

(B13)

—2 1 . d
_ " (si L
N.g*T(r) ( dr?

y [ew%fm _ 1]

Here we used the conventional definition of the saturation
scale Q7 = N g*i*. Note that I'(r) can be written as a
function of > and the derivatives are with respect to r2.
Details of the computation are given in Ref. [37].
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The trace part of the tensor G%W is given by
() g ipr i —8x | 20t
GW(p) =67 | d*re® Gy, (r) =N drrlo(pr)— |e*&T) —1
c9 r

while the traceless part reads

 opipl o
W (p) = —(511 ~PP ) / Pre® Gl (1)
p

= Nj pe / dPre®r (1 —2cosze)r2ﬁ <%> 2F(r)) [ewff(r)—]
= % / drrJ, (pr)#ﬁ ((%)%m) {&Q?W - 1}

2. The (A;A;UUUU) correlator

As discussed in the text we approximate the correlator by the factorized expression

(AR R W)U (R0 R = (ALRIALR) ) {0020 U (R[G5 (RO
(AR U R ) (4R V)R )
(MR UG R ) (4] RV R ).

We focus on the last term and compute the following expectation value (we use the approach of Ref. [25])

(ARUET R ) == [ ac (0 RgA] 0 RU @)U R) )

—0o0

= —/oo dx~ /00 dz‘<U“d(x_,R)U“/(—oo,z_;Zg)TZ'%e,U”(z_,+oo;z’3)Ube(R’)>

X <6§Aj(x‘, R)igA,T,(z‘,zg)> + (¢ < b7y < R).
The correlator of two Wilson lines is proportional to the dipole in the adjoint representation
<Ue’e(x_, +00;25) U (x, +oo;R’)> =&Y D,(x", +oo; R', Z}).
The correlator of three Wilson lines can be readily computed
<U“d(—oo,x‘; R)U (=00, x7;25) U (=00, x~; R’)>T‘Z,b/

=g ep{ gt [ iRl (MR RY 4 TR ) + T RO

[Se]
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Combining the ingredients, we obtained

(ARUEU R ) =7, s

x [6%4,22(r(R,R’)+r(R,zg)—r(zg.R/)) _ 1}

Similarly, analysis also gives

(A RV R ) = 12, [taterms

X |:e%!14l72(F(R/sRHr(R/s%)—F(Z3sR)) — 1:| .

(=ig)oR [L(R.z3) — L(R.R')]

)
} B @(T(R,R’) + I'(R, z;) — ['(z5,R"))

(B20)

(=ig)9 [L(R’.23) - L(R',R)]
¥ ((R.R) +T(R'25) ~T(2;.R))

(B21)

As a consistency check on our expression, consider the limit R — z3, when (AL(R")[U(z3)U"(R)]) =
(Al (R")AL(23))T¢,(—ig)(R — z3)/. Indeed this can be explicitly reproduced from our final expression (B20):

(=ig) (R — 23)10 [0, L(R'. 25)]

<A;';<R/>[U<z3>U*<R>1w> _, 519

B T(R', z3)
= (A (R")AL(23)) T¢4(—ig) (R — z3)/.

[e%}“MQF(R’,Zx) - 1]

(B22)

In the limit |[R —= R’| S 1/p3 < 1/0Q;, Egs. (B20) and (B24) can be further simplified by noting that the exponential
factor can be expanded due to the smallness of the expression in the second exponent, Q?(I'(R,R’) + (R, z}) —

I'(z5,R’)) < 1. We keep only the first-nontrivial order to get

<A5(R)[U(zg)UT(R')]Cb> ~ T [eZQ?f(R“Z’s)] (—ig)ox [L(R,z) — L(R,R)]

and

(AR 0 (RO ) 72, [ 20700 | (ig)of LR 1) - LR R

471'Q§
N.& (B23)
4ﬂQ§
NG (B24)
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