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Abstract

Continual learning, or lifelong learning, is a formidable current challenge to machine learning.

It requires the learner to solve a sequence of k different learning tasks, one after the other, while

retaining its aptitude for earlier tasks; the continual learner should scale better than the obvious

solution of developing and maintaining a separate learner for each of the k tasks. We embark on

a complexity-theoretic study of continual learning in the PAC framework. We make novel uses

of communication complexity to establish that any continual learner, even an improper one,

needs memory that grows linearly with k, strongly suggesting that the problem is intractable.

When logarithmically many passes over the learning tasks are allowed, we provide an algorithm

based on multiplicative weights update whose memory requirement scales well; we also establish

that improper learning is necessary for such performance. We conjecture that these results may

lead to new promising approaches to continual learning.
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1 Introduction

Machine learning has made dizzying empirical advances over the last decade through the powerful
methodology of deep neural networks — learning devices consisting of compositions of parametrized
piecewise linear functions trained by gradient descent — achieving results near or beyond human
performance at a plethora of sophisticated learning tasks in a very broad number of domains. There
are several remaining challenges for the field, however, and in order to address these theoretical work
seems to be needed. These challenges include the methodology’s reliance on massive labeled data,
the brittleness of the resulting learning engines to adversarial attacks, and the absence of robust
explainability and the ensuing risks for applying the technique to classification tasks involving
humans. This paper is about another important ability that deep neural networks appear to lack
when compared to animal learners: They do not seem to be able to learn continually.

Brains interact with the environment through sensory and motor organs, and survive by learning
the environment’s ever changing structure and dynamics, constraints and rules, risks and opportu-
nities. This learning activity continues throughout the animal’s life: it is continual and life-long.
We learn new languages, new math and new skills and tricks, we visit new cities and we adapt to
new situations, we keep correcting past mistakes and misapprehensions throughout our lives.

It has long been observed that neural networks cannot do this [MMO95]. In fact, when a neural
network is tasked with learning a sequence of data distributions, the phenomenon of catastrophic
interference or catastrophic forgetting is likely to occur: soon, the performance of the device on
past tasks will degrade and ultimately collapse. This phenomenon seems to be quite robust and
ubiquitous, see [GMX+13, PKP+19]. This inability is important, because many applications of
machine learning involve autonomous agents and robots, domains in which one needs to continually
learn and adapt [PKP+19].

There is a torrent of current empirical work in continual/life-long learning. There is a multitude
of approaches, which can be roughly categorized this way: First, regularization of the loss function is
often used to discourage changes in learned parameters in the face of new tasks. Second, the learning
architecture (the parameter space of the device) can be designed so that it unfolds dynamically with
each new task, making new parameters available to the task and freezing the values of some already
learned parameters. Finally, there is the approach of replay, influenced by the complementary
learning systems theory of biological learning [MMO95], in which previously used data are selected
and revisited periodically. Even though none of these families of approaches seems to be particularly
successful currently, our positive results seem to suggest that this latter replay approach may be
the most promising.

Theoretical work on PAC learning over the past four decades [SSBD14] has shed light on the
power and limitations of learning algorithms. The powerful tool of the VC-dimension [VC15] cap-
tures nicely the training data requirements of the learning task, while it also serves as a useful
proxy for the number of parameters required of any neural network for solving a particular PAC
learning task. The PAC theory’s predictions of computational intractability, on the other hand,
have been upended by the avalanche of deep nets, and the surprising aptness of gradient descent to
approximate exquisitely a certain broad class of non-convex minimization problems. This paper is
a complexity analysis of continual learning in the context of PAC learning.

How can one model continual learning in the PAC framework? Assume a sequence of k learning
tasks, that is, a sequence of distributions over labeled data from corresponding hypothesis classes.
Our goal is to learn these k tasks sequentially, starting from the first and proceeding, and end up
with a learning device that performs well on all. That is, the device with high probability tests well
in all tasks — this can be modeled by testing at the end on a randomly chosen task from those
already learned.
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Obviously, this problem can be solved by training k different devices. The interesting question
is, can it be done with fewer resources, by reusing experience from past learning to achieve the next
task? Is there quantity discount in continual learning? Our results strongly suggest, in a qualified
way, a negative answer. Our main lower bound result is for improper learning — the more powerful
kind, where the learner is allowed distributions outside the hypothesis class — this is crucial, since
deep neural networks can be considered improper.

Our main result bounds from below the amount of memory needed for continual learning. Mem-
ory has been identified at a recent continual learning workshop [RTCM+21] as one of the main
bottlenecks in the practice of continual learning. If we know that there is no “quantity discount” in
memory, this suggests that a new parameter space is needed to accommodate new learning tasks
— in effect, one essentially needs a new device for each task to avoid catastrophic forgetting.

On the positive side, we show that, if we are allowed to make multiple passes over the sequence
of tasks, an algorithm based on the multiplicative weight update competition of several learners
(inspired by the algorithm in [BBFM12]) requires significantly less memory to successfully learn
the distributions. At a first glance, multiple pass algorithms may seem of limited value to life-
long learning — after all, you only live once ... But in application domains such as robotics or
autonomous driving, the revisiting of similar environments may be routine. Also, the positive result
does suggest that the replay strategy in continual learning explained above may achieve some less
exacting goal than learning all distributions — for example, passing the k+1 distributions test with
some high probability. We develop this idea further in the Discussion section.

Finally, we show an exponential separation result establishing the power of improper learning
algorithms in the multi-pass case: We show that any proper learning algorithm requires at least
polynomial number of passes to match the performance of the best improper learner.

1.1 Our results

Let H be a hypothesis class with VC dimension d. Let X be its data universe and let b = log2 |X |
be its description size (so every hypothesis h ∈ H maps X to {0, 1} and every data point takes b
bits to store). We are interested in continual learners that make one pass (or multiple passes) on
a sequence of k learning tasks D1, . . . ,Dk, each of which is a data distribution (i.e., supported on
X × {0, 1}). When making a pass on Di, the learner can draw as many samples as it wants from
Di and uses them to update its memory. We consider the realizable setting where there exists a
hypothesis h ∈ H that is consistent with all Di’s. The goal of a (ε, δ)-continual learner is to recover
a function h : X → {0, 1} that, with probability at least 1 − δ, has no more than ε error with
respect to every distribution Di. We say a learner is proper if the function h is always a hypothesis
in H, and we will consider both proper and improper learners. We are interested in minimizing the
memory of continual learners. Formal definitions of the model can be found in Section 2.

Our main result is a lower bound, showing that Ω(kdb/ε)-bit memory is necessary for any general
improper continual learning algorithm. In other words, there is no gain in learning resources from
the sequential process:

Theorem 1.1. There exists a sufficiently large constant C0 such that the following holds. For any
ε ∈ (0, 0.01] and any positive integers k, d and b with b ≥ C0 log(kd/ε), there is a hypothesis class H
of VC dimension 2d over a universe X of description size b such that any (ε, 0.01)-continual learner
for H over a sequence of k + 1 tasks requires Ω(kdb/ε) bits of memory.

Next we show that allowing a continual learner to make multiple passes can significantly reduce
the amount of memory needed. More formally, we give a boosting algorithm that uses (k/ε)O(1/c)db
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bis of memory only by making c passes over the sequence of k tasks. Note that, after a logarithmic
number of passes, the memory resource almost matches the requirement of a single task.

Theorem 1.2. Let ε ∈ (0, 1/10] and k, d, b, c be four positive integers. Let H be any hypothesis class
of VC dimension d over a data universe X of description size b. There is a c-pass (ε, 0.01)-continual
learner for H over sequences of k tasks that has memory requirement and sample complexity

(
k

ε

)2/c

· db · poly
(
c, log k/ε

)
and

(
k

ε

)4/c

· k + d

ε
· poly

(
c, log kd/ε

)
,

respectively. Whenever c ≥ 4 log(k/ε), the memory requirement becomes db · polylog(kd/ε) and the
sample complexity becomes Õ((k + d)/ε), both are optimal up to a polylogarithmic factor.

Our continual learner in Theorem 1.2 is improper, and our last result shows that this is necessary:
We prove that any proper c-pass continual learner needs (roughly) kdb/(c3ε) memory. This gives
an exponential separation between proper and improper continual learning in terms of c.

Theorem 1.3. There exists a sufficiently large constant C0 such that the following holds. For any
ε ∈ (0, 1/4] and any positive integers c, k, d and b such that d ≥ C0c and b ≥ C0 log(kd/(cε)), there
is a hypothesis class H of VC dimension d defined over a universe X of description size b such that
any c-pass (ε, 0.01)-continual learner for H over 2k tasks requires (1/c2) · Ω̃(kdb/(cε)) memory.

1.2 Technique overview

1.2.1 Lower bounds for improper learning

We start by explaining the main ideas in our lower bound proof of Theorem 1.1.

The third party. Communication complexity is a commonly used approach for establishing lower
bounds in learning theory. Some of recent examples include [DKS19] and [KLMY19], both of which
make reductions from two-party communication problems. A natural formulation of our continual
learning setting as a two-party communication problem is to split the k tasks D1, . . . ,Dk as inputs
of Alice and Bob, and the goal is to lowerbound the one-way communication complexity for Bob
to output a function that has small loss for every Di. However, this two-party approach is doomed
to fail since Alice can just send a hypothesis function h ∈ H that is consistent with her tasks (by
Sauer-Shelah, each function in H can be described using roughly db bits). After receiving h, Bob
can output a function h′ such that for any x ∈ X : (1) If x is in the support of any Di held by Bob,
h′(x) is set according to Di; (2) Otherwise, h′(x) = h(x). It is easy to verify that h′ achieves 0 loss
for all Di (given that we are in the realizable setting).

The reason why the two-party approach fails is that it fails to capture the following key challenge
behind improper learning with limited memory: The function returned by the learner at the end,
while can be any function, must have a concise representation since it is determined by the learner’s
limited memory. Our main conceptual contribution in circumventing this difficulty is the introduction
of a third party: Charlie as a tester. While D1, . . . ,Dk are split between Alice and Bob as before,
Charlie receives a data point drawn from a certain mixture of distributions of Alice and Bob and
needs to return its correct label after receiving the message from Bob. This three-party model
captures the challenge described above since the number of bits needed to represent the function
(in the message from Bob to Charlie) is counted in the communication complexity. We believe that
the introduction of a third party in the communication problem may have further applications in
understanding communication/lower bounds for improper learning problems in the future.
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A warm-up: Low-dimensional data. We will consider ε as a small positive constant throughout
the overview for convenience. We start with a warm-up for the case when the data universe is low-
dimensional, i.e., when b := log2X = O(log(kd)), and we aim for a memory lower bound of Ω(kd).

The basic building block is the following one-way three-party communication problem:

• Let B = kd. Alice holds a single element a ∈ [B] with label 1;

• Bob holds B/2 elements from [B] \ {a} with label 0;

• Charlie receives an element that is either a with probability 1/2 or drawn uniformly from
Bob’s elements with probability 1/2, and needs to output its label.

It is not difficult to show that either Alice sends Ω(1) bits of information to Bob, or Bob needs to
send Ω(B) bits of information to Charlie, in order for Charlie to succeed with say probability 2/3.

Next we construct a hypothesis class H and use it to define a communication problem that (1)
can be reduced to the continual learning of H and (2) can be viewed as an indexing version of the
direct sum of kd copies of the building block problem described above. The data universe X of H
is [k]× [d]× [B] (so b = O(log(kd)) given that B = kd). Each hypothesis hi,A : X → {0, 1} in H is
specified by an i ∈ [k] and A = (a1, . . . , ad) ∈ [B]d as follows:

hi,A(x) =





1 if x1 6= i

1 if x1 = i and x3 = ax2

0 otherwise (i.e., x1 = i and x3 6= ax2)

It is easy to show that H has VC dimension O(d). In the three-party communication problem:

• Alice holds (ai,j : i ∈ [k], j ∈ [d]), where each ai,j is drawn from [B] independently and
uniformly at random, and she views her input as a sequence of k data distributions
D1, . . . ,Dk, where Di is uniform over (ai,j : j ∈ [d]) and all labels are 1.

• Bob holds i∗ drawn uniformly random from [k] and (Aj : j ∈ [d]), where each Aj is a
size-(B/2) subset drawn from [B] \ {ai∗,j} independently and uniformly at random. Bob
views his input as a data distribution Dk+1 that is uniform over ∪jAj and all labels are 0.
(Note that D1, . . . ,Dk+1 are realizable in H.)

• Charlie holds i∗, j∗ and r∗, where j∗ is drawn uniformly from [d] and r∗ is ai∗,j∗ with
probability 1/2 and is drawn uniformly from Ai∗,j∗ with probability 1/2, and Charlie needs
to return the label of (i∗, j∗, r∗).

On the one hand, there is an intuitive reduction from this three-party communication problem
to continual learning of H: Alice and Bob simulates a continual learner for H over their k+ 1 data
distributions D1, . . . ,Dk+1 and Bob sends the memory of the learner at the end to Charlie. Charlie
recovers a function h : X → {0, 1} from Bob’s message and uses it to return the label of (i∗, j∗, r∗).
As a result, communication complexity of the three-party communication problem is a lower bound
for memory requirement of the continual learning of H (of VC dimension O(d)) over k + 1 tasks.

On the other hand, to see (informally) why Ω(kd) is a natural lower bound for the communication
complexity, we note that Alice has no idea about i∗ and j∗ so the amount of information she sends
about ai∗,j∗ is expected to be o(1) if her message to Bob is of length o(kd) (this can be made formal
using information-theoretic direct-sum-type arguments). When this happens, Bob must send Ω(B)
= Ω(kd) bits (even if Bob knows j∗) in order for Charlie to have a good success probability.
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We prove that in order for Charlie to succeed with high probability, either Alice needs to send a
message of length Ω(log p) to Bob, or Bob needs to send a message of length Ω(p0.5) to Charlie. We
leave the technical detail of this lower bound to Section 3, and outline the key intuition here: (i) The
advantage of the line function is that Charlie needs Ω(log p) bits of information about Alice’s line to
succeed with high probability; (ii) If Alice’s message has length o(log p), then many of Bob’s Θ(p)
candidate lines are equally likely to be Alice’s line, in which case Bob must send a large amount of
information to Charlie to satisfy (i).

The rest of the proof is similar to the low-dimensional case. We introduce a hypothesis class
H and a three-party communication problem that (1) can be reduced to the continual learning of
H and (2) can be viewed as an indexing version of the direct sum of kd copies of the building
block problem. See Figure 1 for an illustration for hard instances of the communication problem.
Our lower bound is then obtained by reducing to that of the building block problem via standard
compression and direct-sum arguments.

1.2.2 The multi-pass algorithm

When a continual learner can make c passes over the sequence of tasks, we show that its memory
requirement can be significantly reduced to (roughly) (k/ε)O(1/c)db. In this overview, we focus on
the case when c = Θ(log(k/ε)).

Our algorithm builds on the idea of multiplicative weights update (MWU) [AHK12] or boosting
[Sch90], which has been used before in similar but different contexts.

• [BHPQ17, CZZ18, NZ18] focus on the sample complexity of multi-task learning. By viewing
each distribution Di (i ∈ [k]) as an expert, one can run MWU over O(log k) rounds and
return the majority vote. Implementing their algorithm as a O(log k)-pass continual learner
reduces the memory to Õ(db/ε+ k), with the optimal sample complexity of Õ((d+ k)/ε).
However, the linear dependence on ε in the memory upper bound is inevitable, as they treat
each distribution as a black box.

• [BBFM12] focuses on the communication aspect of PAC learning over a uniform mixture of
tasks and gives an approach that achieves a logarithmic dependency on ε. More precisely,
their protocol first draws O(d/ε) samples from the uniform mixture distribution D and
maintains a weighted distribution over the empirical samples set (initially set to be uniform).
Each round, it only transmits O(d) samples and obtains a weak learner with O(1) error. By
updating the weighted distribution via MWU and taking a majority vote after O(log(1/ε))
rounds, the communication complexity is Õ(db).

MWU with rejection sampling. Our approach resembles that of [BBFM12]. The algorithm
optimizes the loss on the uniform mixture D = (1/k)

∑k
i=1Di of D1, . . . ,Dk and obtains an (ε/k)-

accurate classifier of D, which is a sufficient condition for the continual learner to succeed. However,
to execute the MWU algorithm, the continual learner cannot draw an empirical training set as it
requires Ω(kdb/ε) memory already. Instead, we run the boosting algorithm over the entire distri-
bution D and implicitly maintain the importance weight of every data point. In particular, (1) we
explicitly compute the importance weight of each distribution Di; (2) we implicitly maintain the
updated weight of every data point in Di. For (1), we can simply estimate the empirical weights
via finite samples and a multiplicative approximation suffices. For (2), we cannot explicitly write
down the updated weights of every single data point, but it suffices to sample from the updated
distribution. In particular, we can run rejection sampling on the original distribution Di, and due to
the MWU rule, the updated weights are within a multiplicative factor of Õ(k2/ε2). Combining with
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show that input pairs (fA, fB) with fA, fB : [n]→ [n] of the pointer chasing problem can be viewed
equivalently as a special class of Boolean functions over X .

To this end, we partition X into Y ∪ Z, Y (or Z) is partitioned into k blocks Y1, . . . , Yk (or
Z1, . . . , Zk), each block Yi is further partitioned into d cells Yi,1, . . . , Yi,d (or Zi,1, . . . , Zi,d), and each
cell Yi,j (or Zi,j) is a disjoint copy of [(kdb)b] (which we will view as a tuple from [n]b given that
n = kdb). Note that log2 |X | = O(b log(kdb)) = Õ(b) as promised. Next we view fA as kd data
points in X , one from each cell Yi,j : (fA(1), . . . , fA(b)) identifies an data point in Y1,1 (viewing Y1,1
as a copy of [n]b) and in general (fA((i − 1)db + (j − 1)b + 1), . . . , fA((i − 1)db + (j − 1)b + b))
identifies an data point in Yi,j . Similarly we view fB as kd data points, one from each cell Zi,j .
Then (fA, fB) corresponds to the function h that is 1 over these 2kd data points and 0 elsewhere.

Let H denote the class of all such Boolean functions h over X (for now). Then ideally we would
like to reduce the pointer chasing problem about (fA, fB) to the c-pass continual learning of H. To
this end, we have Alice and Bob follow the following steps:

• Given fA, Alice prepares the following k data distributions D1, . . . ,Dk: each Di is uniform
over the d data points she identifies in Yi (one from each Yi,j) using fA and all are labelled 1;

• Given fB, Bob prepares the following k data distributions Dk+1, . . . ,D2k: each Dk+i is
uniform over the d data points he identifies in Zi using fB and all are labelled 1;

• Alice and Bob run a c-pass proper continual learner for H over these 2k data distributions
using 2c− 1 rounds of communication; When the continual learner terminates, Bob uses the
function h ∈ H it returns (since the learner is proper) to decodes fA and then solve the
pointer chasing problem.

There are two issues with this approach. First, the idea of having Bob recover fA at the end
feels too good to be true. One would see the caveat when analyzing the VC dimension of H defined
above, which turns out to be O(kd) instead of the O(cd) we aim for. To resolve this issue, we
refine the definition of the hypothesis class H by requiring each h ∈ H to have c+ 1 special blocks
Yi, each of which contains d data points labelled by 1 and everything else labeled by 0 as before;
all data points in other non-special blocks must have label 1, and the same condition holds for Z.
As expected, these 2c + 2 special blocks are exactly those involved in the pointer chasing process.
On the one hand, this refinement makes sure that the VC dimension of the new H stays at O(cd)
instead of O(kd); on the other hand, if Bob recovers h, he can obtain label-1 data points from those
c+ 1 relevant blocks of Y which are sufficient for him to follow the pointer chasing process.

Incorporating error correction codes. The second issue is that the function h ∈ H that Bob
receives from the continual learner only has the weak guarantee that its loss with respect to each
Di is small. In particular, for any relevant block Yi of Y , this means that Bob is only guaranteed to
recover a large portion of the d label-1 data points in it (or equivalently, a large portion of db many
entries of fA in which one of them is the next pointer for Bob to follow). However, this is not good
enough since the wrong data points may contain the entry of fA that Bob should follow.

Our key idea to circumvent this issue is to incorporate error correction codes (ECC) into the
construction. To this end, the new data universe X will be similarly partitioned into blocks Yi
and Zi but now each block Yi has 2d cells Yi,1, . . . , Yi,2d instead, each cell being a disjoint copy of
[(kdb)b]. Taking the first block Y1 as an example, Alice will still identify d elements in [(kdb)b]:

(
fA(1), . . . , fA(b)

)
, . . . ,

(
fA((d− 1)b+ 1), . . . , fA((d− 1)b)

)
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using fA but now she will apply the Reed-Solomon code to obtain a 2d-tuple (z1, . . . , z2d) with zj
∈ [(kdb)b] (for now imagine that [(kdb)b] is a finite field). The function will have 2d data points
labelled 1 in Y1: zi in each Y1,i. Modifying the hypothesis classH this way allows Bob to fully decode
the c+1 relevant blocks in Y even if he only receives a hypothesis h ∈ H from the continual learner
that has small loss on every Di. We believe that the use of ECC may find broader applications in
helping understand the complexity of learning problems in the future.

1.3 Additional related work

Continual/Lifelong learning. The study of continual/lifelong learning dates back to [TM95]
with the central goal of alleviating catastrophic forgetting [MC89, MMO95]. There is a surge of in-
terest from both the machine learning and neuroscience communities in recent years. Most empirical
approaches fall into three categories: regularization, replay, and dynamic architecture. The regu-
larization approach penalizes the movement of hypothesis function across tasks. The elastic weight
consolidation (EWC) [KPR+17] adds weighted `2 regularization to penalize the movement of neural
network parameters. The orthogonal gradient descent (OGD) [FAML20, CKDT20] performs gra-
dient descent orthogonal to previous directions. The replay based approach stores training samples
from old tasks and rehearses during later task. The experience replay method [RAS+19] stores old
experience for future use. Instead of explicitly storing data, [SLKK17] train a simulator of past
data distributions using generative adversarial network (GAN). [vdVST20] propose a brain-inspired
variant of replay method. The dynamic architecture approach gradually adds new components to
the neural network. The progressive network approach [RRD+16] allocates new subnetworks for
each new task while freezing parts of the existing component. We note that almost all current con-
tinual learning approaches suffer from a memory problem due to explicitly or implicitly retaining
information from past experience. In [LPR17, CRRE18] the authors observe that allowing multiple
passes over the sequence of tasks helps improve the accuracy. We refer the interested reader to the
comprehensive survey of [PKP+19].

In contrast to the vast experimental literature, the theoretical investigation continual/lifelong
learning is limited. Almost all existing theoretical analysis [RE13, PU16, BBV15, CLV21, PR22]
fall into the dynamic architecture approach: They require known task identity at inference time and
maintain task specific linear classifiers. [BBV15, CLV21] provide sample complexity guarantee for
linear representation function. The work of [KHD20] is closer to ours, as they aim to quantify the
memory requirement of continual learning. However, they only show a lower bound of Ω(db) for
proper learning.

Communication complexity of learning. The study of the communication aspect of learning
was initiated by the work of [BBFM12]; they apply the idea of boosting and prove that O(db log(1/ε))
bits of communication is sufficient for learning a uniform mixture of multiple tasks, in sharp contrast
with the sample complexity lower bound of Ω(d/ε) . [KLMY19] study the two party communication
problem of learning and prove a sample complexity lower bound. Their work is significantly different
from ours as they consider an infinite data domain and data point transmission takes only one unit
of communication. This makes their communication model non-uniform and they focus on sample
complexity instead. In contrast, our work uses a finite data domain and takes into account the data
description size. Communication complexity has also been examined for convex set disjointness
[BKMS21] and optimization problems [VWW20].

In addition to these works, [DKS19] study space lower bound for linear predictor under streaming
setting and prove a lower bound of Ω(d2) for a proper learner. Other related work includes the time-
space trade off [Raz18, GRT18, SSV19] and memorization [Fel20, BBF+21].
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2 Preliminaries

PAC learning. We formulate the problem of continual learning through the PAC learning frame-
work. Let X be the data universe. A hypothesis (or a function) is a mapping h : X → {0, 1}, and
a hypothesis class H contains a collection of functions. A sample is a pair from X × {0, 1} and a
data distribution D is a distribution of samples, i.e., a distribution over X × {0, 1}. Given a set S
of n samples {(xi, yi)}i∈[n], the empirical loss of a function h with respect to S is defined as

`S(h) =
1

|S|
∑

(x,y)∈S

1[h(x) 6= y].

Given a data distribution D, the loss of h with respect to D is is defined as

`D(h) = Pr
(x,y)∼D

[h(x) 6= y].

Definition 2.1 (PAC learning [Val84]). Given a hypothesis class H over X , an (ε, δ)-PAC learner A
with sample complexity n is a learning algorithm that, given any data distribution D over X ×{0, 1},
draws n samples S ∼ Dn and outputs a function h : X → {0, 1} such that

Pr
S∼Dn, h=A(S)

[
`D(h) ≥ min

h∗∈H
`D(h

∗) + ε
]
≤ δ.

In the realizable setting, we assume that there exists a hypothesis h∗ ∈ H that satisfies `D(h
∗) = 0.

Hence an (ε, δ)-PAC learner satisfies that

Pr
S∼Dn, h=A(S)

[
`D(h) ≥ ε

]
≤ δ.

We say a learner is proper if it always outputs a hypothesis from the class H; an improper learner
is allowed to output an arbitrary mapping from X to {0, 1}.

The VC dimension measures the complexity of a function class and captures its learnability.

Definition 2.2 (VC dimension [VC15]). Given a set of data S = {x1, . . . , xd} ⊆ X , we say the set
S is shattered by function class H if |H(S)| = 2d, where H(S) := {(h(x1), . . . , h(xd)) : h ∈ H} ⊆
{0, 1}d. The VC dimension of H is defined as the largest cardinality of sets shattered by H.

Lemma 2.3 (Sauer–Shelah Lemma [Sau72, She72]). Let H be a hypothesis class with VC dimension
d, then for any S ⊆ X with |S| = n, |H(S)| ≤∑d

i=0

(
n
i

)
. In particular, |H(S)| ≤ (en/d)d if n ≥ d.

Lemma 2.4 (Learning with ERM [VC15]). Let H be a hypothesis class with VC dimension d. Given
any data distribution D over X × {0, 1} that is realizable in H, the ERM learner A(S) := {h ∈ H :
`S(h) = 0} is an (ε, δ)-PAC learner with sample complexity

n = O

(
d+ log(1/δ)

ε

)
.

Continual learning. We next define the continual learning problem.

Definition 2.5 (Continual learning). Let H be a hypothesis class with VC dimension d over a data
universe X of description size b := dlog2 |X |e. In the continual learning problem over H, a learner
has sequential access to k tasks, specified by k data distribution D1, . . . ,Dk over X ×{0, 1}. We will
focus on the realizable setting: there exists a hypothesis h ∈ H such that `Di

(h) = 0 for all i ∈ [k].
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A continual learner A with m bits of memory is initiated with a memory state M0 ∈ {0, 1}m and
the learning process is divided into k stages. During the i-th stage, A can draw as many samples as
it wants from Di and use them to update the memory state from Mi−1 to Mi ∈ {0, 1}m:

Si ∼ D∗
i and Mi = A(Mi−1, Si).

At the end, A recovers a function h : X → {0, 1} from Mk. We say A is an (ε, δ)-continual learner
for H over k tasks if, with probability at least 1−δ, the function h satisfies `Di

(h) ≥ ε for all i ∈ [k].
Similar to the standard PAC model, a learner is proper if it always outputs a hypothesis h ∈ H. We
are interested in understanding the memory requirement m as a function of k, d, b and ε for both
proper and improper learners.

A c-pass continual learner is defined similarly, except that it can now make c sequential passes
on D1, . . . ,Dk. We are interested in understanding m as a function of c, k, d, b and ε.

Remark 2.6 (Sample complexity). Our lower bounds for continual learning presented in Theorem
1.1 and 1.3 are for memory requirements (which make them stronger); our algorithm in Theorem
1.2, on the other hand, has sample complexity comparable with its memory requirement.

Remark 2.7 (Representation issue and bit complexity). Our memory bounds are measured in terms
of bit complexity. We assume a finite data universe X in which each data point can be written as
b = dlog2 |X |e bits. Due to the Sauer–Shelah Lemma, the total number of hypotheses in H is 2O(db)

and thus, writing down a hypothesis in H requires at most O(db) bits.

Notation We write [k] = {1, 2, . . . , k} and [a : b] = {a, a+1, . . . , b}. We write (i, j) ≺ (i′, j′) if (1)
i < i′ or (2) i = i′ and j < j′. For any x, y, z ∈ R, x = y ± z means x ∈ [y − z, y + z]. The natural
logarithm of x is generally written as log x, and the base 2 logarithm is written as log2 x. For any
two random variables A,B, we use ‖A−B‖TV to denote the total variation distance, KL(A ‖ B) to
denote the KL divergence between A,B and I(A;B) to denote the mutual information. The entropy
function is written as H(A). For any set S, we write a ∼ S if the element a is drawn uniformly at
random from S.

Prerequisites from information theory. We provide some basic facts in information theory.
The proof of Fact 2.9 is provided in the Appendix A for completeness.

Fact 2.8. If A1, . . . , An are totally independent, then
∑

i∈[n]

I(Ai;B) ≤ I(A1, . . . , An;B).

Fact 2.9. For any random variables A1, . . . , An, B, we have
∑

ii[n]

I(Ai;B) ≤ I(A1, . . . , An;B) +
∑

i∈[n]

H(Ai)−H(A1, . . . , An).

Fact 2.10. If A1, . . . , An are totally independent when conditioning on C, then
∑

i∈[n]

I(Ai;B|C) ≤ I(A1, . . . , An;B|C).

Fact 2.11. For random variables A,B,C,D, if B,D are independent when conditioned on C, then

I(A;B|C) ≤ I(A;B|C,D).
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We also need the following compression lemma from [JPY12].

Lemma 2.12 (Lemma 3.4 in [JPY12], taking t = 1). Let X,Y,M,R be random variables such that

I(X;M |Y,R) ≤ c and I(Y ;M |X,R) = 0.

There exists a one-way public-coin protocol between Alice and Bob, with inputs X and Y respectively,
such that Alice sends a single message of size at most

c+ 5

ε′
+O

(
log

1

ε′

)

to Bob and at the end of the protocol, Alice and Bob both hold a random variable M ′ such that
∥∥(X,Y,M,R)− (X,Y,M ′, R)

∥∥
TV
≤ 6ε′.

3 Lower bounds for continual learning

We restate our memory lower bounds for continual learning.

Theorem 1.1. There exists a sufficiently large constant C0 such that the following holds. For any
ε ∈ (0, 0.01] and any positive integers k, d and b with b ≥ C0 log(kd/ε), there is a hypothesis class H
of VC dimension 2d over a universe X of description size b such that any (ε, 0.01)-continual learner
for H over a sequence of k + 1 tasks requires Ω(kdb/ε) bits of memory.

Our plan for the proof of Theorem 1.1 is as follows. In Section 3.1 we first introduce a three-
party one-way (distributional) communication complexity problem parameterized by two positive
integers n, d and a prime number p, where we use fn,d,p to denote the Boolean-valued function
that the three parties would like to evaluate and µn,d,p to denote the (joint) distribution of their
inputs. Given k, d, b and ε that satisfy conditions of Theorem 1.1, we construct a hypothesis class
H = Hk,d,b,ε with VC dimension 2d+ 1 and description size b in Section 3.2, and show via a simple
reduction that the memory requirement of any (ε, 0.01)-continual learner for H over k + 1 tasks is
at least the communication complexity of fn,d,p over µn,d,p with (roughly) n ≈ k/ε and p ≈ 2b/2.
Finally we prove that the communication complexity of latter is at least Ω(min(

√
p, nd log2 p)) in

the rest of the section, from which Theorem 1.1 follows directly.

3.1 Communication problem

Let n, d be two positive integers and p be a prime. We will consider p to be sufficiently large (given
that we will set p to be roughly 2b/2 in the reduction and that C0 can be chosen to be a sufficiently
large constant in Theorem 1.1). Let t := b0.2pc. The communication problem we are interested in
is one-way, distributional, and has three players Alice, Bob and Charlie. We start by describing the
probability distribution µn,d,p over inputs X,Y and Z of Alice, Bob and Charlie, respectively.

We follow the following procedure to draw (X,Y, Z) ∼ µn,d,p:

1. For each i ∈ [n] and j ∈ [d], we draw ai,j = (ai,j,1, ai,j,2) from [p]× [p] independently and
uniformly at random. Each ai,j defines a line in [p]× [p], denoted by L(ai,j) ⊂ [p]× [p],
which contains all points (r1, r2) ∈ [p]× [p] such that ai,j,1r1 + r2 ≡ ai,j,2 (mod p).

2. Next for each i ∈ [n] and j ∈ [d], we draw a size-t subset Ai,j of [p]× [p] independently and
uniformly at random but conditioning on ai,j ∈ Ai,j . We write L(Ai,j) ⊂ [p]× [p] to denote
the union of these t lines: L(Ai,j) := ∪a∈Ai,j

L(a).
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3. Finally we draw i∗ ∈ [n], j∗ ∈ [d] and a secret bit s∗ ∈ {0, 1} independently and uniformly
at random. If s∗ = 0, we draw a point r∗ = (r∗1, r

∗
2) from [p]× [p] \ L(Ai∗,j∗) uniformly at

random; if s∗ = 1, we draw r∗ from L(ai∗,j∗) uniformly at random. Note that possible
choices of r∗ are disjoint in these two cases given that ai∗,j∗ ∈ Ai∗,j∗ .

4. The input X of Alice is (ai,j : i ∈ [n], j ∈ [d]).
The input Y of Bob consists of (Ai,j : i ∈ [n], j ∈ [d]) and i∗.
The input Z of Charlie consists of i∗, j∗ and r∗.
The goal is for Charlie to output a bit that matches s∗.

Equivalently we can define a Boolean-valued function fn,d,p(X,Y, Z) that is set to be 0 by default
if (X,Y, Z) is not in the support of µn,d,p and is set to be s∗ if (X,Y, Z) is in the support of µn,d,p

(note that s∗ can be uniquely determined by (X,Y, Z) given that ai∗,j∗ ∈ Ai∗,j∗). Thus the problem
we are interested in is the distributional communication complexity about fn,d,p over µn,d,p.

An (m1,m2)-bit one-way deterministic communication protocol is a triple (Π1,Π2, Π3) of func-
tions, where (1) Π1(X) ∈ {0, 1}m1 is the message from Alice to Bob, (2) Π2(Y,Π1) ∈ {0, 1}m2 is
the message from Bob to Charlie, and (3) Π3(Z,Π2) ∈ {0, 1} is Charlie’s output.

Our main technical result in this section is the following lower bound.

Theorem 3.1. Let n, d be two positive integers and p be a sufficiently large prime. Any (m1,m2)-bit
protocol that fails in computing fn,d,p over µn,d,p with probability at most 1/40 must have

m1 = Ω(nd log2 p) or m2 ≥
√
p.

We delay the proof of the theorem to Section 3.3.

3.2 Hypothesis class

Let k, d, b and ε be parameters that satisfy conditions of Theorem 1.1. Let

n := k ·
⌊

1

100ε

⌋
= Θ

(
k

ε

)

using ε ≤ 0.01, and let p be the largest prime with

p ≤ 2b/2√
nd

so that p = Θ

(
2b/2√
nd

)

satisfies log2 p = Θ(b) given that b ≥ C0 log(kd/ε) for some sufficiently large C0 in Theorem 1.1.
We describe the hypothesis class H = Hk,d,b,ε below. We start with the data universe X of H.

Data universe. Let X = [n] × [d] × ([p] × [p]). The description size of X is no more than b by
our choice of p. For any data point x ∈ X , we write x = (x1, x2, x3) where x1 ∈ [n], x2 ∈ [d] and
x3 = (x3,1, x3,2) ∈ [p] × [p]. For any i ∈ [n], j ∈ [d], we refer to Xi = {x ∈ X : x1 = i} as the i-th
block and Xi,j = {x ∈ X : x1 = i, x2 = j} as the j-th cell of the i-th block.

Hypothesis class. Each function h in the hypothesis class H is specified by an index i ∈ [n] and
a tuple (a1, . . . , ad) ∈ ([p]× [p])d such that h : X → {0, 1} is defined as

h(x) =





1 if x1 6= i

1 if x1 = i and x3 ∈ L(ax2)

0 if x1 = i and x3 /∈ L(ax2)

14



In short, h ∈ H has label 1 everywhere except in the i-th block Xi, where each cell Xi,j (j ∈ [d]) is
all 0 except for points on the line L(aj).

A quick observation is that H has VC dimension at most 2d.

Lemma 3.2. The VC dimension of H is at most 2d.

Proof. For any subset S = {x(1), . . . , x(2d+1)} of size 2d + 1, we prove H can not shatter S. First,

if there exists two indices i1, i2 ∈ [2d + 1] such that x
(i1)
1 6= x

(i2)
1 , then H can not shatter (0, 0) on

(x(i1), x(i2)). On the other hand, suppose x
(1)
1 = . . . = x

(2d+1)
1 = 1 for simplicity, then there must

exists i1, i2, i3 ∈ [2d + 1] such that x(i1), x(i2), x(i3) satisfy x
(i1)
2 = x

(i2)
2 = x

(i3)
2 , that is, there are

three data points in the same cell. (1) If (x
(i1)
3,1 , x

(i1)
3,2 ), (x

(i2)
3,1 , x

(i2)
3,2 ), (x

(i3)
3,1 , x

(i3)
3,2 ) are on a same line of

([p]× [p]), then H can not shatter (1, 1, 0) on (x(i1), x(i2), x(i3)). (2) If they are not on the same line,
then pick any index i4 ∈ [2d+1], we can assume x(i4) is not on the same cell and same line with any
two of x(i1), x(i2), x(i3) WLOG. Then H can not shatter (1, 1, 1, 0) on (x(i1), x(i2), x(i3), x(i4)).

Via a simple reduction, we show below that communication complexity lower bounds for fn,d,p
over µn,d,p can be used to obtain memory lower bounds for the continual learning problem.

Lemma 3.3 (Reduction). If there is an (ε, δ)-continual learner with an m-bit memory for Hk,d,b,ε

over k + 1 tasks, then there is an (m,m)-bit protocol that fails in computing fn,d,p over µn,d,p with
probability at most 0.01 + δ.

Proof. Fix any pair of inputs X and Y of Alice and Bob, respectively, where X contains (ai,j : i ∈
[n], j ∈ [d]) and Y consists of i∗ and (Ai,j : i ∈ [n], j ∈ [d]). Conditioning on X and Y , Charlie’s
input Z contains i∗, j∗ and r∗, where j∗ is uniform over [d] and r∗ with probability 1/2 is uniform
over L(ai∗,j∗) and with probability 1/2 is uniform over [p] × [p] \ L(Ai∗,j∗). We describe below a
communication protocol such that Charlie fails with probability no more than 0.01 + δ.

Let X be the data universe of Hk,d,b,ε. Given their inputs X and Y , respectively, Alice uses X
to a construct a sequence of k data distributions D1, . . . ,Dk and Bob uses Y to construct one data
distribution Dk+1 over X × {0, 1}. We first describe these distributions and then show that they
are consistent with a function h ∈ Hk,d,b,ε:

1. Let α := d1/(100ε)e. For each i ∈ [k], Di is a uniform distribution over data points
(x1, x2, x3), where x1 = (i− 1)α+ 1, . . . , iα, x2 ∈ [d] and x3 ∈ L(ax1,x2) (so there are αdp
points in total in the support of each Di, each with probability 1/(αdp)). All points in Di

are labelled 1. Alice can construct all these k distributions using her input X only.

2. Bob constructs a data distribution Dk+1 that is uniform over (x1, x2, x3), where x1 = i∗,
x2 ∈ [d] and x3 ∈ ([p]× [p]) \ L(Ai∗,x2), and all points are labelled 0. Given that Bob has i∗

and all of Ai∗,j in Y , Bob can construct Dk+1 using his input Y only.

3. It is clear that these data distributions are consistent with a function h ∈ Hk,d,b,ε that is
specified by i∗ and (ai∗,1, . . . , ai∗,d).

The communication protocol has Alice and Bob simulate the (ε, δ)-continual learner for Hk,d,b,ε

where Alice passes the memory of the learner after going through D1, . . . ,Dk to Bob and Bob finally
passes the memory to Charlie after going through Dk+1. So both messages of Alice and Bob have
m-bits and with probability at least 1− δ, Charlie has in hand a function h∗ : X → {0, 1} such that
`D(h

∗) ≤ ε for all D in D1, . . . ,Dk+1. We finish the proof by showing that when this event happens,
Charlie fails with probability no more than 0.01 (over randomness of Z conditioning on X and Y ).
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First, let i′ be the integer such that (i′ − 1)α + 1 ≤ i∗ ≤ i′α. Then the number of data points
x = (x1, x2, x3) with x1 = i∗, x2 ∈ [d], x3 ∈ L(ax1,x2) and h∗(x) 6= h(x) is no more than ε · αdp
using `Di′

(h∗) ≤ ε. Thus, Charlie fails because of one of these points with probability at most

1

2
· εαdp

dp
≤ 0.01

2

using α ≤ 1/(100ε). The other error 0.01/2 comes from that `Dk+1
(h∗) ≤ ε ≤ 0.01.

We are now ready to prove Theorem 1.1 (assuming Theorem 3.1 for now):

Proof of Theorem 1.1. Given an (ε, 0.01)-continual learner with an m-bit memory for Hk,d,b,ε over
k+1 tasks, by Lemma 3.3, there is an (m,m)-bit protocol that fails in computing fn,d,p over µn,d,p

with probability at most 0.02 < 1
40 . Hence by Theorem 3.1, we conclude m ≥ Ω(min{nd log2 p,

√
p}) =

Ω(kdb/ε).

3.3 Communication lower bound

We prove the communication lower bound in Theorem 3.1. The proof proceeds as follows. First we
prove a lower bound for the communication problem over one single cell in Section 3.3.1. Then we
follow a standard direct sum argument to extend it to a lower bound for fn,d,p over µn,d,p in Section
3.3.2.

3.3.1 Communication problem over one cell

Let p be a sufficiently large prime. We first focus on the following three-party one-way distributional
communication problem over one single cell [p] × [p]. The inputs (a∗, A∗, r∗) of the three players
Alice, Bob and Charlie are drawn from a distribution µp as follows: (1) Alice’s input a∗ is drawn
from [p] × [p] uniformly at random, which defines a line L(a∗) of p points; (2) Bob’s input A∗ is a
size-t subset of [p] × [p] drawn uniformly at random conditioning on a∗ ∈ A∗, and we write L(A∗)
to denote the union of L(a) over a ∈ A∗; (3) With probability 1/2, Charlie’s input r∗ ∈ [p] × [p]
is drawn uniformly at random from L(a∗); with probability 1/2, r∗ is drawn uniformly at random
from ([p]× [p]) \ L(A∗). The function fp(a

∗, A∗, r∗) that Charlie needs to compute is set to be 1 if
r∗ ∈ L(a) and 0 if r∗ ∈ ([p]× [p]) \ L(A∗).

Our goal is to prove the following lower bound for computing fp over µp:

Lemma 3.4. Let Π = (Π1,Π2,Π3) be an (m1,m2)-bit one-way deterministic communication pro-
tocol. If m1 ≤ 0.05 log2 p and m2 ≤

√
p, then Charlie has error probability at least 9/200.

In the proof we use Π1 (or Π2) to denote the random variable as the m1-bit (or m2-bit) message
from Alice to Bob (or from Bob to Charlie, respectively). Lemma 3.4 is a direct corollary of Lemma
3.5 and Lemma 3.6 below. In Lemma 3.5 we show that our construction makes sure that in order for
Charlie to succeed with high probability, he must receive at least (1−o(1)) log2 p bits of information
regarding the hidden line a from Π2. Formally, we have

Lemma 3.5. For any communication protocol Π = (Π1,Π2,Π3), we have

Pr
(a∗,A∗,r∗)∼µp

[
Π succeeds on (a∗, A∗, r∗)

]
≤ 19

20
+

1

20
· I(a

∗; Π2) + 1

log2 p
. (1)

We next prove the mutual information I(a∗; Π2) is small for any deterministic communication
protocol Π with small amount of communication. Formally
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Lemma 3.6. Let Π = (Π1,Π2,Π3) be an (m1,m2)-bit one-way deterministic communication pro-
tocol. If m1 ≤ 0.05 log2 p and m2 ≤

√
p, then we have I(a∗; Π2) < 0.08 log2 p.

Combining Lemma 3.5 and Lemma 3.6, we conclude the proof of Lemma 3.4.

Proof of Lemma 3.5. Fixing a message Π2 = Π̂2 from Bob, we upper bound the probability that Π
succeeds on (a∗, A∗, r∗) ∼ µp conditioning on Π2 = Π̂2. For convenience, we write µ

p,Π̂2
to denote

this conditional distribution.
With Π̂2 fixed, we can assume that Charlie uses a subset of points H ⊆ [p] × [p] to finish the

protocol, i.e., after receiving Π̂2 from Bob, Charlie returns 1 on input r if r ∈ H and returns 0 if
r /∈ H. We further define a set of lines S from H: a ∈ [p]× [p] is in S iff at least 90% of points in
L(a) lie in H. We divide into two cases:

Case 1: |S| ≥ p. Let a1, . . . , ap be any p lines in S. We have


⋃

i∈[p]

L(ai)


⋂H ≥

∑

i∈[p]

∣∣∣∣∣∣
(
L(ai) ∩H

)
\
⋃

j∈[i−1]

L(aj)

∣∣∣∣∣∣
≥
∑

i∈[p]

max
(
0.9p− (i− 1), 0

)
> 0.4p2.

On the other hand, fixing any inputs â and Â of Alice and Bob such that Bob sends Π̂2, we have

∣∣∣([p]× [p]) \ L(Â)
∣∣∣ ≥ p2 − pt = 0.8p2

and the correct answer for all these points are 0. As a result, we have that when (a∗, A∗, r∗) ∼ µp

conditioning on a∗ = â and A∗ = Â, the probability that Π errors is at least

1

2
· 0.8p

2 + 0.4p2 − p2

p2
= 0.1.

This implies that Π succeeds on (a∗, A∗, r∗) ∼ µ
p,Π̂2

with probability at most 0.9.

Case 2: |S| < p. We show that the probability that Π succeeds on (a∗, A∗, r∗) ∼ µ
p,Π̂2

is at most

19

20
+

1

20
· 2 log2 p−H(a∗ | Π2 = Π̂2) + 1

log2 p
. (2)

To see this, we examine the distribution of a∗ conditioning on Π2 = Π̂2 and write q to denote the
probability that a∗ ∈ S. Using |S| ≤ p, we have

H(a∗ | Π2 = Π̂2) ≤ q · log2
(
p

q

)
+ (1− q) · log2

(
p2 − p

1− q

)

≤ q · log2
(
1

q

)
+ (1− q) · log2

(
1

1− q

)
+ q log2 p+ (1− q) log2 p

2

≤ 1 + (2− q) · log2 p.

Hence, we have

q ≤ 2 log2 p−H(a∗ | Π2 = Π̂2) + 1

log2 p
. (3)
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Given that every line not in S has at least 10% of points not in H, Π errors on (a∗, A∗, r∗) ∼ µ
p,Π̂2

with probability at least

1

2
· (1− q) · 1

10
≥ 1

20
− 1

20
· 2 log2 p−H(a∗ | Π2 = Π̂2) + 1

log2 p

from which (2) follows.

Combining the two cases (and noting that 0.9 < 19/20), we have

Pr
(a∗,A∗,r∗)∼µ

p,Π̂2

[
Π succeeds on (a∗, A∗, r∗)

]
≤ 19

20
+

1

20
· 2 log2 p−H(a∗ | Π2 = Π̂2) + 1

log2 p
.

As a result, using H(a∗) = 2 log2 p we have

Pr
(a∗,A∗,r∗)∼µp

[
Π succeeds on (a∗, A∗, r∗)

]

=
∑

Π̂2

Pr
[
Π2 = Π̂2] · Pr

(a∗,A∗,r∗)∼µ
p,Π̂2

[
Π succeeds on (a∗, A∗, r∗)

]

≤
∑

Π̂2

Pr
[
Π2 = Π̂2] ·

(
19

20
+

1

20
· 2 log2 p−H(a∗ | Π2 = Π̂2) + 1

log2 p

)

=
19

20
+

1

20
· I(a

∗; Π2) + 1

log2 p
.

We conclude the proof.

Proof of Lemma 3.6. For convenience, we denote m1 = γ log2 p with γ ≤ 0.05. For any realization
of Alice’s message Π1 = Π̂1, define

Img(Π̂1) =
{
a ∈ [p]× [p] : Π1(a) = Π̂A

}
.

Next we write Πlarge to denote the set of Π̂1 such that Img(Π̂1) is large:

Πlarge =

{
Π̂1 :

∣∣∣Img(Π̂1)
∣∣∣ ≥ p2−γ

100

}
.

First we show that to bound I(a∗; Π2), it suffices to bound I(a∗; Π2 | Π1 = Π̂1) for Π̂1 ∈ Πlarge:

I(a∗; Π2) ≤ I(a∗; Π1Π2)

≤ I(a∗; Π2 | Π1) + γ log2 p

=
∑

Π̂1∈Πlarge

Pr
[
Π1 = Π̂1

]
· I(a∗; Π2 | Π1 = Π̂1)

+
∑

Π̂1 /∈Πlarge

Pr
[
Π1 = Π̂1

]
· I(a∗; Π2 | Π1 = Π̂1) + γ log2 p

≤
∑

Π̂1∈Πlarge

Pr
[
Π1 = Π̂1

]
· I(a∗; Π2 | Π1 = Π̂1) +

1

p2
· p

2−γ

100
· pγ · 2 log2 p+ γ log2 p

=
∑

Π̂1∈Πlarge

Pr
[
Π1 = Π̂1

]
· I(a∗; Π2 | Π1 = Π̂1) + (γ + 0.02) log2 p. (4)
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It suffices to show that for any message Π̂1 ∈ Πlarge, we have

I(a∗; Π2 | Π1 = Π̂1) = op(1). (5)

Fixing a message Π̂1 ∈ Πlarge, let’s take a pause and review the distribution of (a∗, A∗, r∗) ∼ µp

conditioning on Π1 = Π̂1. In particular, let’s denote the distribution of (a∗, A∗) as µ
p,Π̂1

because we

don’t care about r∗ in this lemma; (a∗, A∗) ∼ µ
p,Π̂1

is drawn as follows:

1. Sample a line a∗ from Img(Π̂1) uniformly at random;

2. Sample a set of t− 1 lines from [p]× [p] \ {a∗} uniformly at random and add a∗ to form A∗.

Let S∗ = A∗ ∩ Img(Π̂1) and T ∗ = A∗ \ S∗. We prove that |S∗| is large with high probability, when
(a∗, A∗) ∼ µ

p,Π̂1
. Formally, after drawing a∗, we draw a sequence of t− 1 lines from [p]× [p] \ {a∗}

without replacements. The probability that the ith line is in Img(Π̂1) is at least

0.01 · p2−γ − i

p2
≥ p−γ

101

using t = 0.2p. Using Chernoff bound, we have

Pr
(a∗,A∗)∼µ

p,Π̂1

[
|S∗| < p1−γ

200

]
≤ exp(−Ω(p1−γ)). (6)

Denote C = p1−γ/200. We show that to prove (5), it suffices to prove that

I
(
a∗; Π2 | Π1 = Π̂1, |S∗| = c

)
= op(1) (7)

for every c ≥ C. This is because

I(a∗; Π2 | Π1 = Π̂1) ≤ I(a∗; Π2 | Π1 = Π̂1, |S∗|)
=
∑

c≥C

Pr
[
|S∗| = c | Π1 = Π̂1

]
· I
(
a∗; Π2 | Π1 = Π̂1, |S∗| = c

)

+
∑

c<C

Pr
[
|S∗| = c | Π1 = Π̂1

]
· I
(
a∗; Π1 | Π1 = Π̂1, |S∗| = c

)

≤
∑

c≥C

Pr
[
|S∗| = c | Π1 = Π̂1

]
· I
(
a∗; Π2 | Π1 = Π̂1, |S∗| = c

)
+ o(1). (8)

The first step holds as |S∗| is independent of a∗ when conditioning on Π1 = Π̂1 (see Fact 2.11). The
last step follows from (6) and that a∗ takes values in [p]× [p].

For a fixed Π̂1 ∈ Πlarge and a fixed c ≥ C, we prove (7) in the rest of the proof. Let’s again take
a pause and think about the distribution of a∗, S∗, T ∗ and Π2 when conditioning on Π1 = Π̂1 and
|S∗| = c. Equivalently, a∗, S∗, T ∗ and Π2 can be drawn as follows:

1. Draw a sequence of c lines a1, . . . , ac uniformly from Img(Π̂1) without replacements;

2. Draw a subset T ∗ of size t− c from ([p]× [p]) \ Img(Π̂1) uniformly at random;

3. Draw i∗ ∈ [c] uniformly at random; and

4. Set a∗ = ai∗ , S
∗ = {a1, . . . , ac} and Π2 = Π2(S

∗ ∪ T ∗, Π̂1).
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From this description we have that

I
(
a∗; Π2 | Π1 = Π̂1, |S∗| = c

)
≤ I

(
a∗; Π2 | Π1 = Π̂1, |S∗| = c, i∗

)

=
1

c

∑

i∈[c ]

I
(
ai ; Π2 | Π1 = Π̂1, |S∗| = c, i∗ = i)

=
1

c

∑

i∈[c ]

I
(
ai ; Π2 | Π1 = Π̂1, |S∗| = c

)
(9)

The first step holds since conditioning on Π1 = Π̂1 and |S∗| = c, the index i∗ and the line a∗ are
independent (no matter what i∗ is, a∗ is always uniform over Img(Π̂1)); the last step holds since i∗

is independent of (a1, . . . , ac ,Π2) so whether knowing i∗ = i or not does not affect the distribution
of (ai ,Π2).

Let N = |Img(Π̂1)| ≥ p2−γ/100. To bound the RHS of (9), we have

∑

i∈[c ]

I
(
ai ; Π2 | Π1 = Π̂1, |S∗| = c

)

≤ I
(
a1 . . . ac ; Π2 | Π1 = Π̂1, |S∗| = c

)

+
∑

i∈[c ]

H
(
ai | Π1 = Π̂1, |S∗| = c

)
−H

(
a1 . . . ac | Π1 = Π̂1, |S∗| = c

)

≤ m2 + c · log2N −
∑

i∈[c ]

log2(N − i + 1)

= m2 +
∑

i∈[c ]

log2

(
N

N − i + 1

)

where the first step holds due to Fact 2.9. Using c ≤ t = 0.2p and N ≥ p2−γ/100, we have

∑

i∈[c ]

log2

(
N

N − i + 1

)
≤ 2

∑

i∈[t]

i

N − i
≤ 2

∑

i∈[t]

t

N − t
≤ 2t2

N − t
≤ 100pγ ,

where we used log2(1 + x) ≤ 2x when x ≥ 0. Combining with (9) and c ≥ C, we have

I
(
a∗; Π2 | Π1 = Π̂1, |S∗| = c

)
≤ m2 + 100pγ

c
= op(1), (10)

where we used the assumption that γ ≤ 0.05 and m2 ≤
√
p. This finishes the proof of (7).

3.3.2 Proof of Theorem 3.1 via a direct sum argument

Finally we apply the compression protocol from [JPY12] (see Lemma 2.12) and a direct sum argu-
ment similar to that of [BBCR13, BR11, Bra15] to reduce the lower bound of Theorem 3.1 to that
of Lemma 3.4 for one cell.

Proof of Theorem 3.1. Recall in the one-cell problem, Alice receives a ∈ [p] × [p], Bob receives a
size-t subset A of [p]× [p] with a ∈ A, and Charlie receives r ∈ [p]× [p], distributed according to µp.

Assume for a contradiction that there is an (m1,m2)-bit deterministic communication protocol
(Π1,Π2,Π3) for fn,d,p over µn,d,p with m1 = o(nd log p), m2 <

√
p, and failure probability at most

1/40. We first use it to obtain an (m1,m2)-bit public-coin communication protocol Π′ for the single
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cell communication problem fp over µp that has the same failure probability as Π. While the first
message Π′

1 of Π′ has length m1 (which is too large to reach a contradiction with Lemma 3.4), we
show the amount of (internal) information it contains is small:

I(Π′
1; a | A,R) = o(log p),

where R denotes the public random string of Π′. Then we apply a compression on Π′
1 to obtain a new

public-coin communication protocol Π′′ for the single-cell problem such that the first message has
o(log p) bits only (while the second message remains the same as Π′). This leads to a contradiction
with our lower bound for the single-cell problem in Lemma 3.4.

Consider the single-cell communication problem fp over µp, with (a,A, r) ∼ µp as inputs of the
three players, respectively. Given Π = (Π1,Π2,Π3) for fn,d,p over µn,d,p, we describe a public-coin
protocol for the single-cell communication problem as follows:

1. Public-coin randomness R: The protocol starts by sampling a public-coin random string R.
First R contains i∗ ∈ [n] and j∗ ∈ [d] sampled independently and uniformly at random. For
each (i, j) ∈ [n]× [d] with (i, j) ≺ (i∗, j∗), R contains ai,j drawn from [p]× [p] independently
and uniformly at random. For each (i, j) ∈ [n]× [d] with (i, j) � (i∗, j∗), R contains a size-t
subset Ai,j sampled from [p]× [p] independently and uniformly at random.

2. Alice, Bob and Charlie run Π on (X,Y, Z) constructed as follows and Charlie returns the
same bit that Π returns. The input X of Alice contains (ai,j : i ∈ [n], j ∈ [d]), where ai,j for
each (i, j) ≺ (i∗, j∗) is from R, ai∗,j∗ is set to be a (which is her original input in the
single-cell problem), and ai,j for each (i, j) � (i∗, j∗) is sampled from Ai,j (from R)
independently and uniformly at random using her private randomness. The input Y of Bob
contains i∗ and (Ai,j : i ∈ [n], j ∈ [d]), where Ai,j for each (i, j) ≺ (i∗, j∗) is sampled as a
size-t subset of [p]× [p] that contains ai,j (from R) independently and uniformly at random
using his private randomness, Ai∗,j∗ is set to be A (which is his original input), and Ai,j for
each (i, j) � (i∗, j∗) is from R. Finally the input Z of Charlie contains i∗, j∗ and r (which is
his original input).

It is easy to verify that when (a,A, r) ∼ µp, the triple (X,Y, Z) above is distributed exactly the
same as µn,d,p and thus, the error probability of the above single-cell protocol Π′ is exactly the same
as the error probability of Π (at most 1/40).

We next bound the amount of internal information the first message Π′
1 = Π1(X) contains:

I(Π′
1; a | A,R) = I(Π1; a | A,R).

To this end, note that these four random variables we care about can also be drawn equivalently as
follows: First we draw (ai,j : i ∈ [n], j ∈ [d]) uniformly and then draw (Ai,j : i ∈ [n], j ∈ [d]) as size-t
subsets that contain ai,j uniformly at random. Next we draw i∗ ∈ [n] and j∗ ∈ [d] uniformly. Finally
we set Π1 to be Π1(ai,j : i ∈ [n], j ∈ [d]), a to be ai∗,j∗ , A to be Ai∗,j∗ , R to be (i∗, j∗, a≺i∗,j∗ , A

�
i∗,j∗),

where we write a≺i∗,j∗ to denote the ordered tuple of ai,j with (i, j) ≺ (i∗, j∗) and A�
i∗,j∗ to denote

the ordered tuple of Ai,j with (i, j) � (i∗, j∗).
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In this view we have the following sequence of inequalities:

I(Π1; a | A,R) =
1

nd

∑

i∈[n],j∈[d]

I(Π1; ai,j | a≺i,j , Ai,j , A
�
i,j)

≤ 1

nd

∑

i∈[n],j∈[d]

I(Π1; ai,j | a≺i,j , A1,1, . . . , An,d)

=
1

nd
· I(Π1; a1,1, . . . , an,d | A1,1, . . . , An,d) ≤

m1

nd
= o(log p),

where the second step follows from Fact 2.11 as A≺
i,j is independent of ai,j conditioning on a≺i,j , Ai.j ,

A�
i,j , the third step follows from the chain rule of mutual information.

Now we apply Lemma 2.12 on the first message Π′
1 of Π. Formally in Lemma 2.12 we take X

to be the input a of Alice, Y to be the input A of Bob, R to be the public randomness, and M to
be the first message Π′

1 from Alice to Bob. Setting ε′ = 1/600 in Lemma 2.12 and noting that Π′
1

is independent of Y conditioning on X and R, we can replace the first message Π′
1 by a public-coin

one-way protocol from Alice to Bob, where Bob uses the random variable M ′ in Lemma 2.12 as the
message from Alice to continue to run Π′. Let Π′′ be the new public-coin protocol. Then the length
of its first message by Lemma 2.12 is at most

o(log p) + 5

ε′
+O

(
log

1

ε′

)
= o(log p)

and the length of its second message is still at most
√
p. The error probability of Π′′ is at most

1

40
+ 6ε′ =

1

40
+

1

100
<

9

200

by Lemma 2.12. This contradicts with Lemma 3.4. Hence we conclude the proof.

4 Memory efficient multi-pass algorithm

When the continual learner is allowed to take multiple passes over the sequence of tasks, the memory
requirement can be significantly reduced. Formally, we recall the following theorem:

Theorem 1.2. Let ε ∈ (0, 1/10] and k, d, b, c be four positive integers. Let H be any hypothesis class
of VC dimension d over a data universe X of description size b. There is a c-pass (ε, 0.01)-continual
learner for H over sequences of k tasks that has memory requirement and sample complexity

(
k

ε

)2/c

· db · poly
(
c, log k/ε

)
and

(
k

ε

)4/c

· k + d

ε
· poly

(
c, log kd/ε

)
,

respectively. Whenever c ≥ 4 log(k/ε), the memory requirement becomes db · polylog(kd/ε) and the
sample complexity becomes Õ((k + d)/ε), both are optimal up to a polylogarithmic factor.

Notation Let δ = 0.01 be the confidence parameter and γ = 1
10c2

. We assume a lexical order
for elements in X and slightly abuse of notation, for any x1, x2 ∈ X and q1, q2 ∈ R, we write
(x1, q1) � (x2, q2) if (q1 < q2) ∨ (q1 = q2 ∧ x1 < x2). Let µDi

(x) be the probability density of x
on the i-th distribution Di (i ∈ [k]). It is WLOG to assume µDi

(x) = o( ε
c3
) for every i ∈ [k] and

x ∈ X , as one can always append log2(c/ε) random bits to the data point x.
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Algorithm 1 Multi-pass continual learner

1: Initialize α = 1
4(

2k
ε )

−2/c, η = log 1−α
α , εt = (1 + 1

c )
t · ε

20c , ∀t ∈ [0 : c]

2: Initialize N = Θ(d+log(c/δ)
α ), M1 = Θ( c

4 log(kc/δ)
ε0

), M2 = Θ( log(kc/δ)
ε0α2 )

3: for t = 1, 2, . . . , c do
4: ŵt ← 0, St ← DN

1

5: for i = 1, 2, . . . , k do
6: {(xi,t,τ , q̂i,t,τ )}τ∈[t−1] ← EstimateQuantile(Di, h1, . . . , ht−1)
7: ŵi,t ← EstimateWeight(Di, h1, . . . , ht−1)
8: ŵt ← ŵt + ŵi,t

9: D̂i,t ← TruncatedRejectionSampling(Di, h1, . . . , ht−1)
10: for each training data in St do
11: With probability ŵi,t/ŵt, replace it with a sample from D̂i,t

12: end for
13: end for
14: ht = argminh∈H `St(h)
15: end for
16: Return h = maj(

∑
t∈[c] ht)

EstimateQuantile(Di, h1, . . . , ht−1)

1: for τ = 1, 2, . . . , t− 1 do
2: Sq

i,t,τ ∼ DM1
i

3: S
q
i,t,τ = {(x, y) ∈ Sq

i,t,τ : (x, exp(η
∑ν

ξ=1 1[hξ(x) 6= y])) � (xi,t,ν , q̂i,t,ν), ∀ν ∈ [τ − 1]}
4: Sort {(x, exp(η∑τ

ν=1 1[hν(x) 6= y]))}x∈Sq

i,t,τ
and select the the top εt-quantile (xi,t,τ , q̂i,t,τ )

5: end for
6: Return {(xi,t,τ , q̂i,t,τ )}τ∈[t−1]

EstimateWeight(Di, h1, . . . , ht−1)

1: Sw
i,t ∼ DM2

i

2: S
w
i,t = {(x, y) ∈ Sw

i,t : (x, exp(η
∑τ

ν=1 1[hν(x) 6= y])) � (xi,τ , q̂i,t,τ ), ∀τ ∈ [t− 2]}
3: Return 1

|M2|

∑
(x,y)∈S

w

i,t
min{exp(η∑t−1

τ=1 1[hτ (x) 6= y]), q̂i,t,t−1}

TruncatedRejectionSampling(Di, h1, . . . , ht−1)

1: Sample (x, y) ∼ Di

2: Reject and go back to Step 1 if ∃τ ∈ [t− 2], s.t. (x, exp(η
∑τ

ν=1 1[hν(x) 6= y])) � (xi,t,τ , q̂i,t,τ )
3: Sample λ from [0, q̂i,t,t−1] uniformly
4: Reject and return to Step 1 if λ ≥ min{exp(η∑t−1

ν=1 1[hν(x) 6= y]), q̂i,t,t−1}
5: Return (x, y)

Overview of the algorithm We provide a high level overview of our approach, the pseudocode
can be found at Algorithm 1. Our algorithm is based on the idea of boosting (note that this means
it will be improper). During each pass t ∈ [c], the algorithm maintains a hierarchical truncated set
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of the i-th data distribution Di for each i ∈ [k]. Let

Xi,t,τ =



x ∈ X : (x, exp(

ν∑

ξ=1

1[hξ(x) 6= y])) � (xi,t,ν , q̂i,t,ν), ∀ν ∈ [τ − 1]



 , ∀τ ∈ [t] (11)

and we take Xi,t,1 = · · · = Xk,t,1 = X in the above definition. These are hierarchical sets and with
high probability satisfy (See Lemma 4.2 for the proof)

(1) Xi,t,t ⊆ Xi,t,t−1 ⊆ · · · ⊆ Xi,t,1, ∀i ∈ [k], t ∈ [c];

(2) Xi,c,τ ⊆ · · · ⊆ Xi,τ+1,τ ⊆ Xi,τ,τ , ∀i ∈ [k], τ ∈ [c].

These sets are obtained via the EstimateQuantile procedure, which iteratively computes the top
εt-quantile of Di.

Roughly speaking, Xi,t,t−1 is the “support” of Di in the t-th pass. Our algorithm performs multi-
plicative weights update over every data point in X and the distribution Di gets reweighted at every
round. EstimateWeight estimates the updated weight of Xi,t,t−1 with the top εt-quantile trun-
cated. TruncatedRejectionSampling has access to the original distribution Di and performs
rejection sampling to get samples from the truncated distribution.

We sample the training set St of the t-th round in a streaming manner. Initially we add N
dummy samples. In the i-th task, we discard old data and replace them with a new one with
probability ŵi,t/ŵt. We run ERM over the training set St at the end, and derive a hypothesis ht.
The final output is determined by the majority vote h = maj(

∑
t∈[c] ht), defined as

h(x) = maj


∑

t∈[c]

ht(x)


 =

{
1
∑

t∈[c] ht(x) ≥ c/2

0 otherwise

We sketch the proof of Theorem 1.2 and detailed proof of this section can be found in the
Appendix B. We first prove that the EstimateQuantile procedure provides good estimations on
the quantile each step.

Lemma 4.1 (Quantile estimation). With probability at least 1− δ
20 , the following event holds

1. For any i ∈ [k], t ∈ [c], τ ∈ [t− 1],

Pr
(x,y)∼Di|x∈Xi,t,τ

[(
x, exp(η

τ∑

ν=1

1{hτ (x) 6= y})
)
� (xi,t,τ , q̂i,t,τ )

]
∈ [(1− γ)εt, (1 + γ)εt] .

Here Di|x ∈ Xi,t,τ denotes the conditional distribution of Di on the event of x ∈ Xi,t,τ .

2. Denote Pi,t,τ := Pr(x,y)∼Di
[x ∈ Xi,t,τ ]. For any i ∈ [k], t ∈ [c], τ ∈ [t− 1],

Pi,t,τ+1 ∈ [(1− (1 + γ)εt)Pi,t,τ , (1− (1− γ)εt)Pi,t,τ ] .

We next prove the sets {Xi,t,τ}i∈[k],t∈[c],τ∈[t] have a hierarchical structure.

Lemma 4.2 (Hierarchical set). Condition on the event of Lemma 4.1, we have

1. Xi,t,t ⊆ Xi,t,t−1 ⊆ · · · ⊆ Xi,t,1, ∀i ∈ [k], t ∈ [c];

2. Xi,c,τ ⊆ · · · ⊆ Xi,τ+1,τ ⊆ Xi,τ,τ , ∀i ∈ [k], τ ∈ [c].
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We formally define the updated distribution at each pass. Ideally, we sample from the truncated
distribution.

Definition 4.3 (Truncated distribution). For any i ∈ [k], t ∈ [c], define the truncated distribution
Di,t,trun as

µDi,t,trun
(x) =

1[x ∈ Xi,t,t−1] · µDi
(x) ·min{exp(η∑t−1

τ=1 1[hτ (x) 6= y]), q̂i,t,t−1}∑
x′∈X 1[x′ ∈ Xi,t,t−1] · µDi

(x′) ·min{exp(η∑t−1
τ=1 1[hτ (x

′) 6= y]), q̂i,t,t−1}
, ∀x ∈ X .

The mixed truncated distribution Dt,trun is defined as

µDt,trun(x) =

∑k
i=1 1[x ∈ Xi,t,t−1] · µDi

(x) ·min{exp(η∑t−1
τ=1 1[hτ (x) 6= y]), q̂i,t,t−1}∑k

i=1

∑
x′∈X 1[x′ ∈ Xi,t,t−1] · µDi

(x′) ·min{exp(η∑t−1
τ=1 1[hτ (x

′) 6= y]), q̂i,t,t−1}
, ∀x ∈ X .

To connect Dt,trun and Di,t,trun, we define the weights {wi,t}i∈[k]

wi,t =
∑

x∈X

1[x ∈ Xi,t,t−1] · µDi
(x) ·min

{
exp(η

t−1∑

τ=1

1[hτ (x) 6= y]), q̂i,t,t−1

}

and pi,t =
wi,t∑

i′∈[k] wi′,t
. The mixed distribution Di,trun can be derived by first drawing an index i from

[k] according to {pi,t}i∈[k], and then drawing from Di,t,trun. That is to say, Dt,trun =
∑k

i=1 pi,tDi,t,trun.

We next prove that the EstimateWeight procedure approximately estimates the weight of
each distribution Di,t.

Lemma 4.4 (Weight estimation). Condition on the event of Lemma 4.1, with probability at least
1 − δ

20 , the EstimateWeight procedure outputs ŵi,t = (1 ± α/8)wi,t. Furthermore, define p̂i,t =
ŵi,t∑

i′∈[k] ŵi′,t
, then p̂i,t = (1± α/3)pi,t for any i ∈ [k], t ∈ [c].

We then analyse the TruncatedRejectionSampling process and prove that it returns a
sample from Di,t,trun without much overhead on sample complexity.

Lemma 4.5 (Truncated rejection sampling). For any i ∈ [k], t ∈ [c], condition on the event of
Lemma 4.1, the TruncatedRejectionSampling(Di, h1, . . . , ht−1) returns a sample from the dis-
tribution of Di,t,trun. With probability at least 1 − δ

20 , the total number of samples that have been

drawn for the training set {St}t∈[c] is at most O
(
dc2 log3(kdc/εδ)

εα

)
.

For any t ∈ [c], define D̂t,trun =
∑t

i=1 p̂i,tDi,t,trun. Recall that our algorithm samples and updates
the training data St in a streaming manner. It is easy to verify that each data of St is drawn from
D̂t,trun.

Lemma 4.6. For any t ∈ [c], the training set St is drawn from D̂N
t,trun.

Additionally, combining Lemma 4.4 and Lemma 4.5, one can prove D̂t,trun is close to Dt,trun

Lemma 4.7 (Bounded TV distance). For any t ∈ [c], conditioned on the events of Lemma 4.1 and
Lemma 4.4, the empirical truncated distribution D̂t,trun and truncated distribution Dt,trun satisfies

‖D̂t,trun −Dt,trun‖TV ≤ α/3.

By a standard application of VC theory, we can show the hypothesis ht returned by Algorithm
1 in the t-th pass achieves good accuracy on Dt,trun.

25



Lemma 4.8. For any t ∈ [c], condition on the events of Lemma 4.7, with probability at least 1− δ
20c ,

we have `Dt,trun(ht) ≤ α
2 .

Now we are able to derive the accuracy guarantee.

Lemma 4.9. Let h = maj(
∑

t∈[c] ht) be the function returned by Algorithm 1, with probability at

least 1− δ
4 , `Di

(h) ≤ ε holds for any i ∈ [k].

Proof. We proceed the proof by conditioning on the event of Lemma 4.1, Lemma 4.4 and Lemma
4.8. The key is to track the following potential

Φt =
1

k

k∑

i=1

∑

x∈Xi,t,t−1

µDi
(x) exp(η

t−1∑

τ=1

1[hτ (x) 6= y]), t ∈ [c+ 1].

Note that, when t = 1, we take Xi,t,0 = X and therefore Φ1 = 1
k

∑k
i=1

∑
x∈X µDi

(x) = 1; When
t = c + 1, for the purpose of purpose, we extend the definition to Xi,c+1,c by imagining an extra
pass and assuming that the hierarchical property holds (i.e., Lemma 4.2) as well.

For any t ∈ [2 : c], we have that

log Φt+1 − log Φt

= log

k∑

i=1

∑

x∈Xi,t+1,t

µDi
(x) exp(η

∑t
τ=1 1[hτ (x) 6= y])

∑k
i=1

∑
x′∈Xi,t,t−1

µDi
(x′) exp(η

∑t−1
τ=1 1[hτ (x

′) 6= y])

≤ log

k∑

i=1

∑

x∈Xi,t,t

µDi
(x) exp(η

∑t
τ=1 1[hτ (x) 6= y])

∑k
i=1

∑
x′∈Xi,t,t−1

µDi
(x′) exp(η

∑t−1
τ=1 1[hτ (x

′) 6= y])

= log

k∑

i=1

∑

x∈Xi,t,t

µDi
(x) exp(η

∑t−1
τ=1 1[hτ (x) 6= y])

∑k
i=1

∑
x′∈Xi,t,t−1

µDi
(x′) exp(η

∑t−1
τ=1 1[hτ (x

′) 6= y])
· exp(η1[ht(x) 6= y]))

≤ log

k∑

i=1

∑

x∈Xi,t,t

µDi
(x) ·min{exp(η∑t−1

τ=1 1[hτ (x) 6= y]), q̂i,t,t−1}∑k
i=1

∑
x′∈Xi,t,t−1

µDi
(x′) ·min{exp(η∑t−1

τ=1 1[hτ (x
′) 6= y]), q̂i,t,t−1}

· exp(η1[ht(x) 6= y]))

≤ log

k∑

i=1

∑

x∈Xi,t,t−1

µDi
(x) ·min{exp(η∑t−1

τ=1 1[hτ (x) 6= y]), q̂i,t,t−1}∑k
i=1

∑
x′∈Xi,t,t−1

µDi
(x′) ·min{exp(η∑t−1

τ=1 1[hτ (x
′) 6= y]), q̂i,t,t−1}

· exp(η1[ht(x) 6= y]))

= log(1− `Dt,trun(ht) + `Dt,trun(ht) · exp(η))
≤ log(1− α+ α · exp(η))
≤ log 2(1− α) (12)

The second step follows from Xi,t+1,t ⊆ Xi,t,t (see Lemma 4.2), the fourth step follows from

exp(η

t−1∑

τ=1

1[hτ (x) 6= y]) ≤ q̂i,t,t−1, ∀x ∈ Xi,t,t.

The fifth step follows from Xi,t,t ⊆ Xi,t,t−1, the sixth step follows from the definition of `Dt,trun(ht)
and the seventh step follows from `Dt,trun(ht) ≤ α (Lemma 4.8) and we plug in η = log(1−α

α ) in the
last step.
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For any i ∈ [k], define

Xi,bad =

{
x ∈ Xi,c+1,c :

c∑

t=1

1[ht(x) 6= y] ≥ c/2

}
.

That is to say, Xi,bad contains all data points that are wrongly labeled by function h in Xi,c+1,c.
Note that

Φc+1 =
1

k

k∑

i′=1

∑

x∈Xi′,c+1,c

µDi′
(x) exp(η

c∑

t=1

1[ht(x) 6= y])

≥ 1

k

∑

x∈Xi,c+1,c

µDi
(x) exp(η

c∑

t=1

1[ht(x) 6= y])

≥ 1

k

∑

x∈Xi,bad

µDi
(x) exp(ηc/2). (13)

Now taking a telescopic summation on Eq. (12), we have

c log 2(1− α) ≥ log Φc+1 − log Φ1 = logΦc+1 ≥ ηc/2 + log
∑

x∈Xi,bad

µDi
(x)− log k

=
c

2
log

1− α

α
+ log

∑

x∈Xi,bad

µDi
(x)− log k,

where the second step holds as Φ1 = 1, the third step holds due to Eq. (13), we plug in η = log 1−α
α

in the last step. Rearranging these terms and plug in α = 1
4(

2k
ε )

−2/c,

log
∑

x∈Xi,bad

µDi
(x)− log k ≤ c log 2

√
α(1− α) ≤ log(ε/2k),

Therefore, we have

∑

x∈Xi,bad

µDi
(x) ≤ ε

2
. (14)

For those outside of Xi,bad, we have

Pr
x∼Di

[x /∈ Xi,c+1,c] ≤ 1− (1− (1− γ)εc+1)
c ≤ 3cε0 ≤

ε

2
. (15)

The first step follows from Lemma 4.1, the third step holds as ε0 = ε
10c . Combining Eq. (14) and

Eq. (15), we conclude `Di
(h) ≤ ε and finish the proof.

We now wrap up the proof of Theorem 1.2.

Proof of Theorem 1.2. The accuracy guarantee of Algorithm 1 has already been established by
Lemma 4.9. We next calculate the memory requirement and sample complexity.
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Memory requirement For the memory requirement, we need (1) storing the training data St,
which takes O(N) ≤ O((kε )

2/cdb log(kc/δ))) bits; (2) storing samples Sq
i,t for EstimateQuantile,

which takes O(bc + M1bε0) = O(bc4 log(kc/δ)) bits using streaming implementation; (3) storing
samples Sw

i,t for EstimateWeight, which takes O(log(k/ε)) bits using streaming implementation;
(4) storing the hypothesis h1, . . . , hc, which takes O(dbc) bits; Hence the total space requirement is

O

((
k

ε

)2/c

db log(kc/δ) + bc4 log(kc/δ) + dbc+ log(k/ε)

)
.

Sample complexity Algorithm 1 draws (M1c+M2)kc = O(kc7 log(kc/δ)ε−1+(kε )
4/ckc2 log(kc/δ)ε−1)

samples for estimating weights and quantile. By Lemma 4.5, with probability at least 1 − δ
20 , the

training set {St}t∈[c] takes O
(
dc2 log3(kdc/εδ)

εα

)
samples. Hence the sample complexity is

O

((
k

ε

)2/c

dc2 log3(kdc/εδ)ε−1 + kc7 log(kc/δ)ε−1 +

(
k

ε

)4/c

kc2 log(kc/δ)ε−1

)
.

This concludes the proof.

5 An exponential separation result for multi-pass learning

We prove a lower bound for the memory requirement of c-pass proper continual learners, showing
that making c passes can only help save memory by a factor of no more than c3. This is in sharp
contrast to the 1/c saving in the exponent by the improper learner presented in the last section.

Theorem 1.3. There exists a sufficiently large constant C0 such that the following holds. For any
ε ∈ (0, 1/4] and any positive integers c, k, d and b such that d ≥ C0c and b ≥ C0 log(kd/(cε)), there
is a hypothesis class H of VC dimension d defined over a universe X of description size b such that
any c-pass (ε, 0.01)-continual learner for H over 2k tasks requires (1/c2) · Ω̃(kdb/(cε)) memory.

5.1 Pointer chasing

We reduce from the classic communication problem of pointer chasing.

Definition 5.1 (Pointer chasing [PS82]). Let n and c be two positive integers. In a pointer chasing
problem, Alice gets an input map fA : [n]→ [n] and Bob receives another input map fB : [n]→ [n].
The pointers w(1), w(2), . . . are recursive defined as

w(1) = 1, w(2) = fA(w
(1)), w(3) = fB(w

(2)), w(4) = fA(w
(3)), w(5) = fB(w

(4)), . . .

In the communication problem, Alice speaks first and the communication proceeds in at most 2c− 1
rounds. The goal is for Bob to output the binary value of w(2c+2) (mod 2).

The problem requires Ω(n/c− c log n) bits of (total) communication:

Theorem 5.2 ([NW91, Kla00, Yeh20]). The randomized communication complexity of the pointer
chasing problem (with error probability at most 1/3) is at least n/(2000c)− 2c log n.

5.2 Hypothesis class

Let c, k, d and b be four positive integers. We describe the hypothesis class H = Hc,k,d,b that will
be used to prove our lower bound in Theorem 1.3. We start with the data universe X of H:
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Data universe. Let p be the smallest prime with p ≥ (kdb)b. The data universe X consists of
X = Y ∪ Z, where Y and Z can be further partitioned into

Y = Y1 ∪ · · · ∪ Yk and Z = Z1 ∪ · · · , Zk,

and each of Yi and Zi is a disjoint copy of [2d]× Fp.
For notation convenience, we use a 4-tuple x = (x1, x2, x3, x4) to represent a data point x ∈ X ,

where x1 ∈ {1, 2} determines x ∈ Y (when x1 = 1) or x ∈ Z (when x1 = 2), x2 ∈ [k] indicates that
x is from Yx2 or Zx2 (depending on the value of x1), x3 ∈ [2d] and x4 ∈ Fp.

We will refer to a triple q ∈ [k]× [d]× [b] as a pointer (looking ahead we will set n = kdb in our
reduction from the pointer chasing problem over [n]), and write Q = [k] × [d] × [b] to denote the
set of pointers. Let B = {1, . . . , (kdb)b} be (kdb)b elements in Fp; the choices do not matter. Given
|B| = (kdb)b, we view each element a ∈ B as a tuple (a1, . . . , ab) of b pointers with ai ∈ Q; this can
be done by picking an arbitrary bijection between B and Qb.

Hypothesis class. Our main challenge lies in the construction of the hypothesis class H. First
we review the Reed-Solomon code, which is a key building block of our construction.

Definition 5.3 (Reed-Solomon code). Let p be a prime number and let m,n be two positive integers
that satisfy n ≤ m ≤ p. The Reed-Solomon code RSn,m : Fn

p → F
m
p maps F

n
p to F

m
p by setting

(z1, . . . , zm) = RSn,m(y1, . . . , yn), where zj =
∑

i∈[n]

yif
i−1
j , ∀j ∈ [m],

where fj is the j-th element of Fp under an arbitrary ordering.

We need the following error correction guarantee of Reed-Solomon code.

Lemma 5.4. For any distinct y, y′ ∈ F
n
p , z = RSn,m(y) ∈ F

m
p and z′ = RSn,m(y′) ∈ F

m
p satisfy

∣∣j ∈ [m] : zj 6= z′j
∣∣ ≥

(
1− n

m

)
m.

We can describe the hypothesis class H now. Each function hA : X → {0, 1} is specified by a
tuple A = (ai,j ∈ B : i ∈ [2c + 1], j ∈ [d]). As discussed earlier, we view each ai,j in A as a tuple
(ai,j,` : ` ∈ [b]) from Qb. We use the following procedure to determine hA over X = Y ∪ Z:

1. Initialization: Let I : [k]→ [2c+ 1] ∪ {nil} and J : [k]→ [2c+ 2] ∪ {nil} be two arrays such
that all entries are set to nil. Let q(1) ∈ Q be a point set to be (1, 1, 1).

2. For each τ = 2, . . . , 2c+ 2 (letting q denote the previous pointer q(τ−1)):

(a) If τ is even and I(q1) = nil, we set hA(x) for all data points x in Yq1 as follows (the fact
that I(q1) = nil makes sure that we have not set hA(x) for points in Y1,q1 before). Let

(z1, . . . , z2d) = RSd,2d(aτ−1,1, . . . , aτ−1,d) ∈ F
2d
p . (16)

For each data point x ∈ X with x1 = 1 and x2 = q1,

hA(x) =

{
1 if x4 = zx3

0 if x4 6= zx3

Recall that x3 ∈ [2d] and x4 ∈ Fp. We set I(q1) = τ − 1 (since hA has been set for
points in Yq1 using (aτ−1,j : j ∈ [d]) from A). Before moving to the next loop, we set
the new pointer q(τ) to be aτ−1,q2,q3 ∈ Q (recall that q2 ∈ [d], q3 ∈ [b], and we view each
aτ−1,q2 ∈ B as a tuple from Qb).
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(b) If τ is even and t = I(q1) 6= nil, we don’t need to set hA for points in Yq1 (since they
have already been set using (at,j : j ∈ [d])). We just set the new pointer q(τ) = at,q2,q3 .

(c) The cases with τ being odd is symmetric, with Y being replaced by Z and I being
replaced by J . If τ is odd and J(q1) = nil, we set hA(x) for points in Zq1 as follows: Let

(z1, . . . , z2d) = RSd,2d(aτ−1,1, . . . , aτ−1,d) ∈ F
2d
p . (17)

For each data point x ∈ X with x1 = 2 and x2 = q1, we set

hA(x) =

{
1 if x4 = zx3

0 if x4 6= zx3

We set J(q1) = τ − 1 and set the new pointer q(τ) to be aτ−1,q2,q3 .

(d) If τ is odd and t = J(q1) 6= nil, we just set the new pointer q(τ) = at,q2,q3 .

3. For any Yi with I(i) = nil (so these data points have not been set yet), we set hA(x) = 1 for
all points in Yi; similarly for any Zi with J(i) = nil, we set hA(x) = 1 for all points in Zi.

This finishes the description hA and the hypothesis class H.
We first observe that the VC dimension of H is bounded above by O(cd).

Lemma 5.5. The VC dimension of H is at most 4cd+ 2c+ 2d+ 1.

Proof. For any subset S ⊆ X with size |S| = 4cd+ 2c+ 2d+ 2, we prove that the hypothesis class
H can not shatter S.

Case 1 |S ∩ Y | ≥ (c + 1)(2d + 1) + 1. Let SY = {x(1), . . . , x((c+1)(2d+1)+1)} ⊆ S ∩ Y . First,
if SY contains data points from at least c + 2 blocks, that is, there exists c + 2 indices i1, . . . , ic+2

such that Yi1 ∩ SY 6= ∅, . . . , Yic+2 ∩ SY 6= ∅, then H can not shatter (0, . . . , 0). The reason is
that for any function h ∈ H, there are at most (c + 1) blocks contain label 0 data points, i.e.,
|{i ∈ [k] : I(i) 6= nil}| ≤ c+ 1. On the other hand, if SY contains data points from at most (c+ 1)
blocks, then by pigeonhole principle, there exists an index i ∈ [k] such that |SY ∩Yi| ≥ 2d+2. Note
that any function h in H either labels all data points in Yi with 1, or labels at most 2d data points
with 1, hence H can not shatter (1, . . . , 1, 0).

Case 2 |S ∩ Z| ≥ c(2d+ 1) + 1. This follows from a similar argument of the first case.
In summary, whenever |S| ≥ (2c+1)(2d+1)+ 1 = 4cd+2c+2d+2, H can not shatter the set

S. Hence the VC dimension of H is at most 4cd+ 2c+ 2d+ 1.

5.3 Reduction from pointer chasing to proper learning

We prove Theorem 1.3 by reducing from the communication problem of pointer chasing.

Proof of Theorem 1.3. For notation convenience, we use ε, c, k′, d′ and b′ to denote parameters in
the statement of Theorem 1.3 (because we will use k, d and b to denote integers used to specify
the hypothesis class H). So ε ∈ (0, 1/4] and c, k′, d′, b′ are positive integers such that d′ ≥ C0c and
b′ ≥ C0 log(k

′d′/(cε)) for some sufficiently large constant C0.
Let α = b1/(4ε)c and k = k′α = Θ(k′/ε). Let d be the largest integer such that

4cd+ 2c+ 2d+ 2 ≤ d′
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so we have d = Θ(d′/c) given that d′ ≥ C0c. Finally, we choose b to be the largest integer such that
the description size log2 |X | of hypothesis class Hc,k,d,b is at most b′. Given that

log2 |X | = O
(
b log(kdb)

)

and b′ ≥ C0 log(k
′d′/(cε)), we have that b is a positive integer that satisfies

b = Ω

(
b′

log(k′d′b′/(cε))

)
.

With these choices of k, d and b, we use H = Hc,k,d,b as the hypothesis class in the rest of the proof,
which has VC dimension at most d′ and description size at most b′. We prove below that any c-pass
(ε, 0.01)-continual learner for H over 2k′ tasks must require Ω̃(kdb/c2) memory; the theorem follows
since by our choices of k, d and b, we have

kdb

c2
= Ω

(
k′

ε
· d

′

c
· b′

log(k′d′b′/(cε))
· 1
c2

)
= Ω̃

(
k′d′b′

c3ε

)
=

1

c2
· Ω̃
(
k′d′b′

cε

)
.

For this purpose, we show that any c-pass (ε, 0.01)-continual learner for H over 2k′ tasks with
an m-bit memory can be used to obtain a protocol for the pointer chasing communication problem
with parameters n := kdb and c (as in Definition 5.1) that has total communication 2cm and success
probability 0.99. Our goal then follows from Theorem 5.2.

Reduction. With n := kdb, we let ρ be the following bijection between Q = [k]× [d]× [b] and [n]:

ρ(i, j, `) = (i− 1)db+ jb+ `, for all (i, j, `) ∈ Q.

with ρ(1, 1, 1) = 1.
On input fA : [n]→ [n], Alice creates k′ data distributions D1, . . . ,Dk′ over X as follows. First

she views fA as a tuple of pointers (yi,j,` ∈ Q : i ∈ [k], j ∈ [d], ` ∈ [b]), with

yi,j,` = ρ−1
(
fA
(
ρ(i, j, `)

))
∈ Q.

She also views yi,j = (yi,j,1, . . . , yi,j,b) ∈ Qb as an element in B (and recall that B is a subset of Fp).
For each i ∈ [k′], the data distribution Di is constructed as follows:

• The distribution Di is supported on Y(i−1)α+1, . . . , Yiα. For each j : (i− 1)α+ 1 ≤ j ≤ iα,
Di has probability 1/(2αd) on each of the following 2d points in Yj :

(1, j, 1, zj,1), . . . , (1, j, 2d, zj,2d),

where (zj,1, . . . , zj,2d) come from

(zj,1, . . . , zj,2d) = RSd,2d(yj,1, . . . , yj,d) ∈ F
2d
p .

Note that there are 2αd points so the probabilities sum to 1. All these points are labelled 1.

Similarly Bob uses fB : [n]→ [n] to create k′ data distributions Dk′+1, . . . ,D2k′ ; the only difference
is that these distributions are supported on Z. We prove in the following claim that these 2k′ data
distributions are consistent with a function h : X → {0, 1} in the hypothesis class H.

Claim 5.6. For any fA : [n]→ [n] and fB : [n]→ [n], there is a function h in H that is consistent
with all 2k′ data distributions D1, . . . ,D2k′ .
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Proof. Let w(1), . . . , w(2c+2) be defined in Definition 5.1 using fA and fB. Consider the function
h ∈ H specified by the tuple (ai,j ∈ [B] : i ∈ [2c + 1], j ∈ [d]), where ai,j = yρ−1(w(i))1,j

for
i ∈ [2c+ 1], j ∈ [d]. It is easy to verify that h is consistent with D1, . . . ,D2k′ .

After creating these data distributions (with no communication so far), Alice and Bob simulate
a c-pass (ε, 0.01)-continual learner for H over D1, . . . ,D2k′ . If the c-pass learner uses m-bit memory,
the simulation can be done by a (2c− 1)-round protocol with total communication O(cm). At the
end of the simulation, Bob recovers from the learner a function hA ∈ H for some tuple A = (ai,j ∈
B : i ∈ [2c+ 1], j ∈ [d]). With probability at least 0.99, we have

`Di
(hA) ≤ ε, for all i ∈ [2k′]. (18)

Let q(1), . . . , q(2c+2) ∈ Q be the sequence of 2c+2 pointers obtained by following the procedure on A
described in the definition of the hypothesis class H. The following claim shows that whenever hA
satisfies (18), we must have ρ(q(τ)) = w(τ) for all τ ∈ [2c+2], where w(1), . . . , w(2c+2) are defined in
Definition 5.1 using fA and fB. As a result, to end the protocol, Bob just follows the procedure to
compute q(1), . . . , q(2c+2) and output ρ(q(2c+2)) (mod 2). This gives a (2c−1)-round communication
protocol for the pointer chasing problem with success probability 0.99. This finishes the proof.

Claim 5.7. When hA satisfies (18), we have ρ(q(τ)) = w(τ) and

y
q
(τ−1)
1 ,j

=




a
I(q

(τ−1)
1 ),j

for even τ

a
J(q

(τ−1)
1 ),j

for odd τ

for all τ = 2, . . . , 2c+ 2 and j ∈ [d].

Proof. We prove by induction on τ = 2, . . . , 2c+ 2. We start with the base case when τ = 2. Note
that ρ(q(1)) = 1 = w(1) since ρ(1, 1, 1) = 1. We also have I(q

(1)
1 ) = 1. Assume for a contradiction

(a1,1, . . . , a1,d) 6= (y1,1, . . . , y1,d).

Then it follows from the error correction guarantee of Reed-Solomon code that at least d entries of

RSd,2d(a1,1, . . . , a1,d) and RSd,2d(y1,1, . . . , y1,d)

are different. This implies that D1 is inconsistent with hA on at least d points and thus,

`D1(hA) ≥
d

3αd
≥ 1

2α
> ε,

a contradiction with (18). So (a1,1, . . . , a1,d) = (y1,1, . . . , y1,d). To prove ρ(q(2)) = w(2), note that

q(2) = a1,1,1 = y1,1,1 = ρ−1(fA(ρ(1, 1, 1))) = ρ−1(fA(1)) = ρ−1
(
w(2)

)
.

This finishes the proof of the base case.
The induction step is similar. Assume that the statement holds for all 2, . . . , τ − 1 and we now

prove it holds for τ ≤ 2c + 2. Assume τ is even; the proof for odd τ is symmetric. Consider two
cases. If in the τ -th loop of the procedure, t = I(q

(τ−1)
1 ) 6= nil, then t < τ and q

(τ−1)
1 = q

(t)
1 . Hence

y
q
(τ−1)
1 ,j

= a
I(q

(τ−1)
1 ),j

(19)
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for all j ∈ [d] follows from the inductive hypothesis. If in the τ -th loop, I(q
(τ−1)
1 ) = nil, then we set

I(q
(τ−1)
1 ) = τ − 1 at the end of this loop and (19) follows from an argument similar to the base case

using the error correction guarantee of Reed-Solomon code. So (18) holds in both cases.
In both cases, let t ≤ τ − 1 be the final value of I(q

(τ−1)
1 ). Then

q(τ) = a
t,q

(τ−1)
2 ,q

(τ−1)
3

= y
q
(τ−1)
1 ,q

(τ−1)
2 ,q

(τ−1)
3

= ρ−1
(
fA
(
ρ(q(τ−1))

))
= ρ−1

(
w(τ)

)
,

where the last step used the inductive hypothesis ρ(q(τ−1)) = w(τ−1). This finishes the proof.

6 Discussion

The problem of continual, or lifelong, learning is a major and crucial open challenge for Machine
Learning, a key roadblock in the field’s quest to transcend the stereotype of individual specialized
tasks and make small steps towards brain-like learning: robust, unsupervised, self-motivated, em-
bodied in a sensory-motor apparatus and embedded in the world, where data collection is deliberate
and the sum total of the animal’s experience is applied to each new task. There seems to be a con-
sensus in the field that the chief problem in extending the practical successes of Machine Learning
in this direction is memory.

We formulated the problem of continual learning as a sequence of k PAC learning tasks followed
by a test, and showed a devastating lower bound for memory: the memory requirements for solving
the problem are essentially increased from that of individual tasks by a factor of k. That is,
unless a new approach is discovered — or the PAC formalism is for some fundamental reason
inadequate to model this variant of learning — continual learning is impossible, with respect to
memory requirements, in the worst case.

It has been argued that worst-case lower bounds do not always predict the difficulty of making
practical progress in computational problems, and that this is especially true in the context of
Machine Learning. However, such lower bounds have a way of identifying the aspects of the problem
that must be attended to in order to make progress, and pointing to alternative formulations that
are more promising. We feel that a comprehensive understanding of the theoretical difficulties of
continual learning is a prerequisite for making progress in this important front.

Our multi-pass approach and the ensuing upper and lower bounds were admittedly inspired by
streaming — an algorithmic domain of a very different nature than continual learning. However, it
does provide a nice demonstration of the power of improper learning. We believe that the multi-pass
MWU-based algorithm developed here may point the way to new empirical approaches to continual
learning, perhaps involving the periodic replay of past data, as well as competition between several
evolving variants of the learning device mediated by boosting. Naturally, experiments will be needed
to explore this direction.
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A Missing proof from Section 2

Proof of Fact 2.9. One has

n∑

i=1

I(Ai;B) =
n∑

i=1

H(Ai)−H(Ai|B)

≤
n∑

i=1

H(Ai)−H(Ai|A1, . . . , Ai−1, B)

=
n∑

i=1

H(Ai)−H(Ai|A1, . . . , Ai−1)

+
n∑

i=1

H(Ai|A1, . . . , Ai−1)−H(Ai|A1, . . . , Ai−1, B)

=
n∑

i=1

H(Ai)−H(A1, . . . , An) +
n∑

i=1

I(Ai;B|A1, . . . , Ai−1)

=
n∑

i=1

H(Ai)−H(A1, . . . , An) + I(A1, . . . , An;B).

This concludes the proof.

B Missing proof from Section 4

First, we provide the proof of Lemma 4.1.

Proof of Lemma 4.1. Fix an index i ∈ [k] and a round t ∈ [c], we prove the first and second claim
by induction. The base case τ = 0 holds trivially and suppose it continues to hold up to time τ − 1,
then

E[|Sq
i,t,τ |] = E[|Sq

i,t,τ ∩ Xi,t,τ |] = M1 · Pr
(x,y)∼Di

[x ∈ Xi,t,τ ] ≥ (1− (1 + γ)εt)
t−1M1 ≥

3

4
M1,

where the first step follows from the definition of S
q
i,t,τ , the second step follows from the linearity

of expectation, the third step holds due to the inductive hypothesis, and the last step holds as
(1− (1 + γ)εt)

t−1 ≥ 1− (1 + γ)εt · (t− 1) ≥ 3
4 .

Therefore, by Chernoff bound, one has

Pr
Sq
i,t,τ∼D

M1
i

[|Sq
i,t,τ ∩ Xi,t,τ | < M1/2] ≤ exp(−M1/36) ≤

δ

60kc2
(20)

Now we condition on |Sq
i,t,τ | = |Sq

i,t,τ ∩Xi,t,τ | ≥M1/2. For any λ ∈ [0, 1], define the exact λ-quantile
of {(x, exp(η∑τ

ν=1 1[hν(x) 6= y]))}(x,y)∼Di|x∈Xi,t,τ
to be (xi,t,τ,λ, qi,t,τ,λ). The EstimateQuantile

returns the εt-quantile of the empirical sample, then we have that

Pr
[
(xi,t,τ , q̂i,t,τ ) � (xi,t,τ,(1+γ)εt , qi,t,τ,(1+γ)εt)

]
≤ exp(−εtγ2M1/24) ≤

δ

60kc2
. (21)
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where the second step holds by Chernoff bound the fact that tie breaking only affects o(ε0/c
3)

quantile. Similarly,

Pr
[
(xi,t,τ , q̂i,t,τ ) � (xi,t,τ,(1−γ)εt , qi,t,τ,(1−γ)εt)

]
≤ exp(−ε0γ2M1/6) ≤

δ

60kc2
. (22)

Combining Eq. (21), Eq. (22) and an union bound, we can conclude the proof the first claim. Note
that

Xi,t,τ\Xi,t,τ+1 =

{
x ∈ Xi,t,τ : (x, exp(η

τ∑

τ=1

1{hτ (x) 6= y})) � (xi,t,τ , q̂i,t,τ )

}
,

and therefore,
Pi,t,τ+1 ∈ [(1− (1 + γ)εt) · Pi,t,τ , (1− (1− γ)εt) · Pi,t,τ ] .

Hence completing the proof of second claim.

We then prove

Proof of Lemma 4.2. The first claim holds due to definition and therefore we focus on the second
claim. We prove by induction on τ . Fix an index i ∈ [k], the case of τ = 1 holds trivially, as
Xi,1,1 = · · · = Xi,t,1 = X by definition. Suppose the induction holds up to time τ − 1, then we prove
Xi,t+1,τ ⊆ Xi,t,τ holds for any t ∈ [τ : c− 1]. By definition, we have (i) Xi,t+1,τ ⊆ Xi,t+1,τ−1 and by
induction, (ii) Xi,t+1,τ−1 ⊆ Xi,t,τ−1. Condition on the event of Lemma 4.1, it suffices to prove for
any data point x ∈ Xi,t+1,τ , it does not belong to the top (1 + γ)εt-quantile of Xi,t,τ−1.

First of all, we know data points in Xi,t+1,τ−1\Xi,t+1,τ has decent amount of probability, i.e.

Pr
(x,y)∼Di

[x ∈ Xi,t+1,τ−1\Xi,t+1,τ ] ≥ (1− γ)εt+1 · Pi,t+1,τ−1.

Combining (i) and (ii), these data points belong to Xi,t,τ−1, i.e.,

Xi,t+1,τ−1\Xi,t+1,τ ⊆ Xi,t,τ−1.

Hence it suffices to prove data points in Xi,t+1,τ−1\Xi,t+1,τ take up at least (1 + γ)εt portion of
Xi,t,τ−1 (again, assuming the event of Lemma 4.1 holds), i.e.,

(1− γ)εt+1 · Pi,t+1,τ−1 ≥ (1 + γ)εtPi,t,τ−1. (23)

This is true as

(1− γ)εt+1

(1 + γ)εt
≥
(

1− (1− γ)εt
1− (1 + γ)εt+1

)c

≥
(

1− (1− γ)εt
1− (1 + γ)εt+1

)τ−1

≥ Pi,t,τ−1

Pi,t+1,τ−1
,

where the first step holds due to the choice of parameter (see Lemma B.1), the third step holds due
to Lemma 4.1. Hence, we have proved Eq. (23) and concludes the proof.

Next, we prove

Proof of Lemma 4.4. For any i ∈ [k], t ∈ [c], according to the Definition 4.3:

wi,t =
∑

x∈X

1[x ∈ Xi,t,t−1] · µDi
(x) ·min

{
exp(η

t−1∑

τ=1

1[hτ (x) 6= y]), q̂i,t,t−1

}

= E
x∼Di

[
1[x ∈ Xi,t,t−1] ·min

{
exp(η

t−1∑

τ=1

1[hτ (x) 6= y]), q̂i,t,t−1

}]
.
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Note each term

1[x ∈ Xi,t,t−1] ·min

{
exp(η

t−1∑

τ=1

1[hτ (x) 6= y]), q̂i,t,t−1

}
∈ [0, q̂i,t,t−1], (24)

condition on the event of Lemma 4.1, the expectation satisfies

E
x∼Di

[
1[x ∈ Xi,t,t−1] ·min

{
exp(η

t−1∑

τ=1

1[hτ (x) 6= y]), q̂i,t,t−1

}]

≥ E
x∼Di

[
1[x ∈ Xi,t,t−1\Xi,t,t] ·min

{
exp(η

t−1∑

τ=1

1[hτ (x) 6= y]), q̂i,t,t−1

}]

= E
x∼Di

1[x ∈ Xi,t,t−1\Xi,t,t] · q̂i,t,t−1

= (Pi,t,t−1 − Pi,t,t) · q̂i,t,t−1

≥ (1− γ)εtPi,t,t−1q̂i,t,t−1 ≥
1

2
εtq̂i,t,t−1. (25)

The second step holds as every x ∈ Xi,t,t−1\Xi,t,t satisfies exp(η
∑t−1

τ=1 1[hτ (x) 6= y]) ≥ q̂i,t,t−1 (see
the definition at Eq. (11)), the third step holds due to the definition of Pi,t,t−1 and Pi,t,t, the fourth
step holds due to Lemma 4.1 and the last holds as (1− γ)Pi,t,t−1 ≥ (1− γ)(1− (1 + γ)εt)

t−1 ≥ 1
2 .

Recall in the procedure of EstimateWeight, we draw M2 = Ω(log(kc/δ)/ε0α
2) samples from

Di to estimate wi,t, hence we have

Pr
[
|ŵi,t − wi,t| ≥

α

8
wi,t

]

= Pr



∣∣∣∣∣∣

1

|M2|
∑

(x,y)∈Sw
i,t∩Xi,t,t−1

min{exp(η
t−1∑

τ=1

1[hτ (x) 6= y]), q̂i,t,t−1} − wi,t

∣∣∣∣∣∣
≥ α

8
wi,t




≤ 2 exp(−M2α
2εt/384) ≤

δ

20kc
.

where the first step holds due to the definition of S
w
i,t, the second step holds due to Chernoff bound,

Eq. (24) and Eq. (25), the last step follows from the choice M2.
Using an union bound over all i ∈ [k], we further have

p̂i,t =
ŵi,t∑k

i′=1 ŵi′,t

∈ (1± α

3
)

wi,t∑k
i′=1wi′,t

= (1± α

3
)pi,t

holds with probability at least 1 − δ
20c . We finish the proof by applying an union bound over

t ∈ [c].

We next analyse the TruncatedRejectionSampling procedure.

Proof of Lemma 4.5. The first claim follows directly from the TruncatedRejectionSampling

procedure. In particular, it rejects element from X\Xi,t,t−1, and for element x ∈ Xi,t,t−1, it accepts
with probability min{exp(η∑t−1

ν=1 1[hν(x) 6= y]), q̂i,t,t−1}/q̂i,t,t−1.
For the second claim, condition on the event of Lemma 4.1, we first bound the expected overhead

of TruncatedRejectionSampling. Note TruncatedRejectionSampling would not reject
element in Xi,t,t−1\Xi,t,t and

Pr
x∼Di

[x ∈ Xi,t,t\Xi,t,t−1] ≥ (1− γ)εtPi,t,t−1 ≥ (1− γ)(1− (1 + γ)εt)
t−1εt ≥

1

2
ε0,
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where the first two steps hold due to Lemma 4.1 and the last step holds due to the choice of εt.
Hence, the overhead from rejection sampling is at most 2/ε0 (in expectation).

Fix a round t ∈ [c], for any i ∈ [k], the expected number of samples drawn from D̂i,t equals

ni,t :=
ŵi,t∑

i′≤i ŵi′,t
·N and it satisfies

k∑

i=1

ni,t = N

k∑

i=1

ŵi,t∑
i′≤i ŵi′,t

≤ N +N

k∑

i=2

log

∑
i′≤i ŵi′,t∑

i′≤i−1 ŵi′,t

≤ log

∑
i∈[k] ŵi,t

ŵ1,t
≤ O(N log(k/ε))

where the first step follows from the definition, the second step follows from a−b
a ≤ log a

b , the last
step holds as ŵ1,t ≥ P1,t,t−1 ≥ 1

2 (Lemma 4.1) and

ŵi,t ≤ exp(η

t−1∑

τ=1

1[hτ (x) 6= y]) ≤ exp((c− 1) · η) = O

(
k2

ε2

)

holds for any i ∈ [k].
Via a simple application of Chernoff bound, one can prove with probability at least 1 − δ

20c ,
(1) the total number of sample drawn from the truncated distribution {Di,t,trun}i∈[k] is at most
O(N log(kdc/εδ)), (2) the overhead of TruncatedRejectionSampling procedure never exceeds
O(c log(kdc/εδ)/ε). Using an union bound, the total number of sample being drawn for the training
set {St}t∈[c] are bounded by

O(N log(kdc/εδ)) ·O(c log(kdc/εδ)/ε) · c ≤ O

(
dc2 log3(kdc/εδ)

εα

)
.

We conclude the proof here.

Next, we prove Lemma 4.6 and Lemma 4.8.

Proof of Lemma 4.6. For any t ∈ [c], and for any training sample preserved at the end, it comes from

the i-th task with probability
ŵi,t∑

i′≤i ŵi′,t
·∏i′≥i+1

∑
i′′<i′ ŵi′′,t∑
i′′≤i ŵi′′,t

=
ŵi,t∑

i′∈[k] ŵi′,t
= p̂i,t. For any training

sample comes from the i-th task, by Lemma 4.5, it follows from the distribution Di,t,trun.

Proof of 4.8. The algorithm draws N = O(d+log(kc/δ)
α ) samples from D̂t,trun and runs ERM on it.

Due to the realizable assumption, with probability at least 1− δ
20c , the output hypothesis satisfies

`Dt,trun(ht) ≤ `
D̂t,trun

(ht) +
α

3
≤ α

2
,

where the first step follows from Lemma 4.7, the seconds step holds due to the VC theory (see
Lemma 2.4)

Lemma B.1 (Technical lemma). Let ε ∈ (0, 1/10), c ≥ 1, γ = 1
10c2

, εt = (1 + 1
c )

t · ε
20c , then

(1− γ)εt+1

(1 + γ)εt
≥
(

1− (1− γ)εt
1− (1 + γ)εt+1

)c

.
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Proof. The RHS satisfies

(
1− (1− γ)εt
1− (1 + γ)εt+1

)c

=

(
1 +

γεt+1 + γεt + εt+1 − εt
1− (1 + γ)εt

)c

≤
(
1 +

ε

c2

)c

≤ exp(
ε

c
) ≤ 1 +

2ε

c

The second step holds as γεt+1 ≤ ε
30c3

, γεt ≤ ε
30c3

, εt+1 − εt ≤ ε
3c2

and 1 − (1 + γ)εt+1 ≥ 1/2,
the second step follows from 1 + x ≤ exp(x), the third step follows from exp(x) ≤ 1 + 2x when
x ∈ (0, 1/10).

Meanwhile, the LHS satisfies

(1− γ)εt+1

(1 + γ)εt
= (1 +

1

c
) · 10c

2 − 1

10c2 + 1
≥ 1 +

2ε

c
.

We complete the proof.
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