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ABSTRACT

We show subexponential lower bounds (i.e., 22 (°)) on the smoothed
complexity of the classical Howard’s Policy Iteration algorithm for
Markov Decision Processes. The bounds hold for the total reward
and the average reward criteria. The constructions are robust in
the sense that the subexponential bound holds not only on the
average for independent random perturbations of the MDP param-
eters (transition probabilities and rewards), but for all arbitrary
perturbations within an inverse polynomial range. We show also
an exponential lower bound on the worst-case complexity for the
simple reachability objective.
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1 INTRODUCTION

Markov Decision Processes (MDP) are a fundamental model for dy-
namic optimization in a stochastic environment with applications
in many areas, including operations research, artificial intelligence,
game theory, robotics, control theory, and verification. They were
originally introduced by Bellman [4] and have been studied exten-
sively since then; see [10, 22, 25] for general expositions. We will
define formally MDPs in Section 2, but we give here an informal
brief description. MDPs are an extension of Markov chains with an
agent, who can affect the evolution of the chain. An MDP consists
of a set of states and a set of possible actions that the agent can
take at each state, where each action yields a reward to the agent,
and results in a probabilistic transition to a new state. Execution of
the MDP starts at some state and then moves (probabilistically) in
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discrete steps from state to state according to the action selected
by the agent in each step. The problem is to find an optimal policy
for the agent, i.e. choice of action in each step, that maximizes a
desired objective, such as the expected total reward collected during
the execution. Although the agent is allowed in each step to use
randomization in their choice of action and to base their decision
on the complete past history, it is known that there is always a
so-called positional optimal policy that is deterministic and memo-
ryless, i.e. it depends only on the state and selects a unique action
for each state.

In some applications (for example in verification and control
theory), the objective is not based on rewards, but rather the goal
is to maximize the probability that the execution that is generated
satisfies a desirable property (expressed for example in a temporal
logic); see e.g. [3, 7, 8, 32]. It is known that for a broad range of
properties this problem reduces to the case of a simple reachability
objective, where the goal is to hit a certain target state in a larger
MDP that combines the desired property and the original MDP.
The reachability objective can be viewed as a special case of the
total reward objective (see Section 2), thus the solution methods for
reward-based MDPs can be used also for the class of applications
that seek to optimize the probability of a desirable execution.

MDPs can be solved in polynomial time using Linear Program-
ming. From an MDP, one can construct a Linear Program (LP),
whose basic feasible solutions (bfs) correspond to positional poli-
cies of the MDP, and the optimal bfs yields the optimal policy. The
usual way however of solving MDPs in practice is using the Pol-
icy Iteration (PI) algorithm of Howard [22]. This is essentially a
local search algorithm, an iterative algorithm which starts with
an initial positional policy, and keeps improving it until it arrives
at an optimal (positional) policy. In each iteration, the algorithm
computes the value for each state according to the current policy
and determines whether switching the selected action for a state
would improve its value; if there are such switchable states, then
their actions are switched to obtain the new policy, otherwise the
policy is optimal, i.e., in this case local optimality guarantees global
optimality. If at some point there are multiple switchable states,
and/or multiple choices of a new action that improves the value
for a state, then there is flexibility on which states the algorithm
chooses to switch and to which actions, resulting in different ver-
sions of Policy Iteration. The most commonly used version, called
Howard’s PI (or Greedy PI), switches simultaneously all switchable
states to their most “appealing” action (see Section 2 for the formal
definition). At the other extreme one may choose to switch only
one of the switchable states, where the choice of the state and the
new action is based on some criterion. We refer to these choices as
pivoting rules, in analogy with the Simplex algorithm. Indeed, there
is a close correspondence between the variants of Policy Iteration
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where only one state is switched in each iteration and Simplex ap-
plied to the LP for the MDP. Howard’s PI corresponds to performing
simultaneously many Simplex pivots.

The (worst-case) time complexity of Howard’s PI was open for
a long time, until it was finally resolved by Fearnley in [15], who
showed an exponential lower bound under the total reward and
the average reward objectives. This was extended to the discounted
reward objective in [20] for discount factors that are exponentially
close to 1 (in discounted reward MDPs, future rewards are dis-
counted by a given discount factor y < 1). For constant discount
factor y however, or even if 1 — y > 1/poly, Howard’s PI runs in
strongly polynomial time [34]; this holds more generally even in
2-player turned-based stochastic games for the analogous strategy
improvement algorithm [18]. The complexity of PI where only one
state is switched in each iteration was studied earlier by Meleko-
poglou and Condon [24], who gave exponential lower bounds for
several pivoting rules. More recently, the close connection between
single-switch Policy Iteration for MDPs and Simplex for LPs has
been exploited to show exponential or subexponential lower bounds
for Simplex under various open pivoting rules, by first showing the
results for MDPs and then translating them to Simplex: this was
shown for the Random-Facet and the Random-Edge rules in [17],
for Cunningham’s rule in [2], and for Zadeh’s rule in [12]. There is
ongoing extensive literature on the complexity of Policy Iteration,
studying various variants (e.g. randomized PI, geometric PI etc.),
special cases (e.g. deterministic MDP) and/or improving the bounds
[21, 27, 31, 33].

Thus, although PI runs fast in practice, its worst-case complexity
is exponential for Howard’s PI, as well as other variants. This is
similar to the behavior of the Simplex algorithm, and more gener-
ally a host of other local search algorithms for various optimiza-
tion problems. To provide a more realistic explanation for the ob-
served performance of Simplex, Spielman and Teng introduced the
smoothed analysis framework [30], a hybrid between worst-case
and average-case analysis. On one hand, average-case complexity
is an algorithm’s expected runtime given a probability distribution
over inputs. On the other hand, we can think of worst-case com-
plexity as the maximum of an algorithm’s expected runtime over
all input distributions, including those with all probability mass
on a single input. The smoothed complexity of an algorithm is its
maximum expected runtime over all input distributions with some
smoothness constraint. For example, an input is picked arbitrarily
by an adversary and then its parameters (for example the entries
of the matrix in an LP, the rewards and transition probabilities in
an MDP) are perturbed randomly according to a distribution with
density function bounded by a parameter ¢ (for example, uniform,
Gaussian or some other distribution). The smoothed complexity of
the algorithm then is the expected running time as a function of the
input size n and ¢. Ideally we would like to have polynomial time
in n and ¢. Note this is useful if ¢ is polynomially bounded in n (or
constant), because for exponentially large ¢ (i.e. perturbations that
are sharply concentrated), polynomial time in n and ¢ is simply
exponential time, which is not useful. Smoothed analysis may cap-
ture runtime in practice more effectively than worst-case analysis,
especially when the numerical values in the input may have some
natural variation, as problems formulated from the real world often
do. Spielman and Teng showed that the Simplex algorithm under
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a certain pivoting rule has polynomial smoothed complexity [30]
(and there is a series of subsequent papers simplifying the proof
and improving on the bounds, eg. [9, 11]).

Smoothed analysis has since been applied to a range of problems
in areas such as mathematical programming, machine learning,
numerical analysis, etc. [29]. In the area of combinatorial optimiza-
tion, it has been applied to local search algorithms for problems
such as the Traveling Salesperson Problem (TSP), Max-Cut and
others. It has been shown for example that the simple 2-Opt algo-
rithm for TSP has polynomial smoothed complexity [13], in contrast
to its worst-case exponential complexity [23]. For Max-Cut, the
simple Flip algorithm has smoothed complexity that is at most
quasi-polynomial for general graphs [6, 14] and polynomial for the
complete graph [1, 5], again in contrast to its worst-case exponential
complexity [26].

Given the good empirical performance of PI and its relation-
ship to the Simplex algorithm, it is natural to hypothesize that the
smoothed complexity of PI may well be also polynomial. Note that
this does not follow from the result for Simplex, despite their strong
connection, for various reasons. First, in the smoothed model for
Linear Programming all the numerical parameters are randomly
perturbed independently. In the MDP, we want to perturb simi-
larly the rewards and transition probabilities, however we want
the perturbed model to be also an MDP, in particular the transi-
tion probabilities for each action must sum to 1. Second, in the LP
smoothed model, all entries of the constraint matrix are perturbed
randomly, even those that are 0; if we apply such perturbation to
the LP of an MDP, it will have the effect of introducing arbitrary
new transitions that have no justification. In defining the smoothed
model for an MDP, it is more natural to preserve the structure of the
MDP (i.e. available actions at each state and possible transitions for
each action), since there are usually constraints in the application
that is modeled by the MDP that determine which transitions can
or cannot occur from a state for each action. On the other hand,
the rewards and transition probabilities may well be estimates, and
thus for them it is reasonable to allow perturbations. Thus, in our
smoothed model for MDP, we preserve the structure of the MDP,
and allow perturbations of the (nonzero) transition probabilities
and rewards.

In the literature on smoothed complexity, both models have been
used, the full perturbation model, where all numerical parameters
are perturbed, including those that are 0, and what we may call
the structured model, where only the nonzero parameters are per-
turbed and the structure of the input is preserved. For example
the analysis of Simplex uses the full perturbation model. Work on
local search algorithms for combinatorial optimization have used
both models. For example, in the case of the FLIP algorithm for
Max Cut, [1, 5] use the full perturbation model and show that the
smoothed complexity is polynomial. On the other hand, [6, 14] use
the structured model and show that smoothed complexity is quasi-
polynomial for every graph; note that the full model coincides with
the structured model in the special case when the input graph is
complete. Although the structured part of the input (the graph) is
not perturbed, thus allowing for arbitrarily complex, "pathologi-
cal" instances, the smoothening of the numerical parameters (the
edge weights) brings the complexity down from exponential to
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quasi-polynomial; the conjecture is in fact that the true smoothed
complexity is polynomial.

Depending on the application, one or the other model may be
more reasonable. In the case of MDPs, we believe that the structured
model is more natural for the reasons discussed above. The MDP
typically models an application at hand (for example, a probabilistic
program that is analyzed, a control design problem, a game etc.),
and the transitions have some meaning in the application. The
precise values of probabilities and rewards may be fungible, but
their existence is important. Changing the structure of the instance
changes the problem, or may even render it meaningless.

For example, consider an MDP with a reachability objective. If
perturbations are applied also to the zero-probability (i.e. nonexis-
tent) transitions, then in the perturbed MDP every possible transi-
tion between any two states will be included with nonzero probabil-
ity. This means that for any policy the graph of the MDP becomes
strongly connected, every policy will reach the target with proba-
bility 1, and the problem has disappeared.

The issue of preserving the (zero-nonzero) structure is especially
important when the model is used to formulate and solve other
problems. For a simple example, consider the following: MDPs with
rewards can be used to solve the simple reachability optimization
problem for MDPs (without rewards), since the latter can be viewed
as a special case (can be reduced to) the former: All transitions of the
reachabilty MDP are given 0 reward, except for the transitions into
the target state that are given reward 1; maximizing the expected
total reward in the resulting MDP is equivalent to maximizing the
probability of reaching the target state in the reachability MDP.
If in the reward MDP we are allowed to perturb the zero rewards
then the problem has changed, and optimization in the MDP with
rewards no longer correctly captures the MDP reachability problem.

1.1 Our Results

In this paper we study the smoothed complexity of Policy Iteration.
Given its similarity to the Simplex algorithm, one might hope to
show polynomial smoothed upper bounds for PI. We show the
contrary: for several prominent policy iteration variants, such a
result is impossible; the smoothed complexity is subexponential or
even exponential. We concentrate here mainly on the total reward
objective.

Our main result concerns the classical Howard’s (Greedy) PI
which switches simultaneously all switchable states to their actions
with greatest appeal. We show that Howard’s PI has at least subex-
ponential smoothed complexity under the total reward objective; a
similar result holds for the average reward objective. Furthermore,
the lower bound holds not only for the expected complexity under
random independent perturbations of the parameters, but it holds
in fact for all (arbitrary) perturbations within a certain inverse
polynomial range. (The amount of perturbation corresponds to
the 1/¢ parameter of the smoothed model, so to be meaningful, ¢
has to be at most polynomial.) Specifically, we construct an MDP
with N states and bounded parameters (rewards and transition
probabilities), such that in every MDP obtained by perturbing the
parameters by any amount up to 1/N, Howard’s PI requires at least

ZQ(NW) iterations.
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Our initial approach for this was to examine whether the con-
struction of [15] for the worst-case complexity can be modified
to prove a smoothed lower bound. However, we were not able to
do this. Unfortunately, the construction seems to be brittle and
does not hold up under perturbations. Thus, we started fresh and
designed a new construction with robustness in mind. The con-
struction and the proof are quite involved. This is to be expected,
considering that the construction of [15] was also quite intricate.
That construction involved positive and negative rewards, exponen-
tially small probabilities, and exponentially large rewards. We show
that the parameters do not need to be exponentially large or small,
and furthermore they can tolerate arbitrary perturbations up to an
inverse polynomial, without affecting the behavior of Howard’s PI
algorithm.

Furthermore, we use the robustness of our construction for MDP
with rewards, to show that the worst-case complexity of Howard’s
PI for MDPs with the simple reachability objective is exponential.
Note that these MDPs have no rewards (or as mentioned above
they are a special case of MDPs with rewards 0 and 1). In some
sense, this second construction is an approximate reduction from
MDPs with rewards to the special case of reachability MDP. The
robustness of the original reward MDP is essential to establish the
correctness of the result for the weaker reachability MDP.

We also analyze three simple variants of PI from [24] that switch
a single (switchable) state in each iteration, chosen according to
some rule. In Simple PI the state is chosen according to an arbitrary
initial priority order; in Topological PI it is chosen according to a
topological order; and in Difference PI it is chosen according to the
difference in value between the new and the old action of the state;
see Section 2 for a formal definition of the variants. We make slight
modifications to the constructions from [24] and prove that they are
robust to perturbations. These constructions are reachability MDPs;
thus the only numerical parameters are the transition probabilities,
there are no rewards (or equivalently, all the rewards are 0 except
for the transitions to the target state that have reward 1). Simple PI
and Topological PI take exponential time, for very large (constant)
perturbations of the transition probabilities. Difference PI takes at
least subexponential time for inverse polynomial perturbations.

We finally discuss the relationship between our results for the
Single switch PI variants and the Simplex algorithm, describing
precisely how our perturbations of an MDP translate to the cor-
responding LP. We state the lower bounds implied by our Policy
Iteration results for Bland’s and Dantzig’s pivot rules in the Simplex
algorithm for LPs arising from MDPs, though these bounds are not
new for Simplex.

1.2 Outline of Proof Techniques

The construction and proof of the main result on Howard’s (Greedy)
PI are quite complex and involved. We first design a new construc-
tion of an MDP M; for the exponential worst-case complexity of
Greedy PI, which is more amenable to modifications to achieve the
desired robustness. As is usual in exponential lower bounds for
many problems, the MDP is constructed so that the iterations of
Greedy PI will simulate a binary counter counting from 0 up to 2".
There is a set of n states b; of the MDP (among many others), each
with two distinguished actions 0, 1, where the choices of states b;
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correspond to the bits of the counter. The MDP M; is constructed so
that if in the initial policy all states b; choose action 0, then Greedy
PI will go through 2" rounds until it arrives at the optimal policy
where all states b; choose action 1. Each round involves a number
of steps. To manage the complexity of the construction, we build it
in stages. We first design a simpler MDP M, which exhibits this
exponential (worst-case) behavior for a slight variant of Greedy
PI, call it Hybrid PI, which has an additional rule that a switchable
state b; can switch from action 0 to 1 only if all b; with j < i have
chosen action 1, and no other non-b; states are switchable. We then
modify My to an MDP M; by using a suitable gadget at the states
b; which serves the purpose of delaying the switches at states b;
when running Greedy PI on M in such a way that it behaves like
Hybrid PI on M. As a result, Greedy PI on M; simulates a binary
counter and takes exponential time.

The MDP M has exponentially large and small rewards (both
positive and negative), and exponentially small probabilities. The
next stage in the proof transforms M; to another MDP M, that
has bounded rewards and probabilities, and which is robust in the
sense that Greedy PI has the same behavior for any perturbation of
the rewards and probabilities up to an inverse polynomial amount.
This transformation is done using appropriate gadgets. We design
gadgets to simulate exponentially large and exponentially small
rewards and transition probabilities, and ensure that the gadgets
are robust, i.e., they perform correctly (approximately) even under
perturbation of their rewards and probabilities. Finally, we ensure
that the analysis for M; is robust enough, so that the behavior of
Greedy PI on it is simulated by M, even under perturbation of its
parameters.

The proof for the worst-case exponential complexity of Greedy
PI under the reachability objective uses the constructed MDP M;
for the total reward objective (with somewhat modified parameters).
The MDP M; has positive and negative rewards, whereas there are
no rewards in the reachability objective. We design suitable gadgets
to eliminate positive and negative rewards using random actions,
and apply them to transform M; to a new MDP M3, without rewards,
for the reachability problem. The effective rewards simulated by
these gadgets change slightly for different policies; thus they are
similar to additive rewards with perturbations. In order to argue
that these perturbations are small, we must know bounds on the
minimum and maximum values of the nodes where the gadgets are
plugged in, which we have from the analysis of Mj. The robustness
of the MDP M; is critical for the correctness of the transformation,
i.e. so that the behavior of Greedy PI under the reachability objective
in M3 simulates the behavior of Greedy PI in M; under the total
reward objective.

The proofs for the results on the variants of PI with a single
switch use the constructions of [24], sometimes with some small
modifications. The proofs are relatively simple and offer a gentle
introduction to the issues, and the unfamiliar reader might like to
read this section first. In the case of Simple PI and Topological PI,
the analysis follows closely that of [24], except that it is carried
out for general values of the transition probabilities, rather than
specific values. In the case of Difference PI, we use a parameterized
gadget with suitable choice of parameters to modify the construc-
tion in such a way that it can tolerate perturbations of the transition
probabilities within an inverse polynomial range.
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Most proofs of lemmas and propositions are omitted in this
extended abstract and can be found in the full version.

Organization of the paper. The rest of the paper is organized as
follows. Section 2 gives basic definitions and notation. Section 3,
which is the heart of the paper, shows that Greedy (Howard’s) PI
has at least subexponential smoothed complexity under the total
reward objective. Section 4 builds on our construction to show
the worst-case exponential complexity of Greedy PI under the
simple reachability objective. Section 5 presents the results for
three PI variants with single state switch: Simple PI, Topological PI
and Difference PI, and Section 6 notes the connection to Simplex
pivoting rules.

2 PRELIMINARIES

A Markov Decision Process consists of a (finite) set of states S, and
a (finite) set Ag of available actions for each state s € S. Let A =
UsesAs denote the set of all actions. For each action a € A thereisa
probability distribution of the state(s) resulting when taking action a
at state s that is described by a function p : S X S X A — R*, where
p(s’|s, a) denotes the probability of ending up at state s’ when
taking action a from s. The action a is deterministicif p(s’|s,a) = 1
for some s” and p(s”|s, a) = 0 for all other s”. Each action yields some
(possibly zero) reward, represented by a functionr : SX A — R
where r(s, a) denotes the reward obtained by taking action a € Ag
from s. A (positional) policy is a function 7 : S — A, where for each
state s € S, (s) € Ag is the action selected at that state. A policy x
for an MDP M induces a Markov chain M, on the same state set S,
where the transition probabilities out of each state s are given by
p(s'ls, m(s)).

A criterion (or objective) is a function that, given a policy, as-
sociates a value with each state. We consider primarily the total
reward criterion, which yields the following notions of value and
appeal. The value of a state s captures the expectation of the sum of
rewards accrued by starting at s and taking the actions given in the
policy as time goes to infinity; it is well-defined for MDPs where
one must eventually reach a sink state, one that has no actions and
no outgoing transitions. Under the total reward criterion, the value
of a state s under a policy r satisfies the equation

Val™ (s) = r(s, m(s)) + Z p(s’|s, (s)) - Val™ (s”)

s’eS

Given policy 7, the appeal of an action a at s is

Appeal™ (s, a) = r(s,a) + Z p(s’|s,a) - Val™ (s”)
s’eS

An optimal policy is a policy that maximizes the value of every
state (there is always such a policy).

We later consider the reachability criterion, where the goal is to
maximize the probability of reaching a given target sink state s*. In
this case, the value of a state s under a policy 7 is the probability
of reaching the target s* following the actions selected in 7. The
reachability criterion can be viewed as a special case of the total
reward criterion, by assigning reward zero to all transitions except
for those going from other states into the target state s*, which are
assigned reward 1.

Policy Iteration or Policy Improvement (PI) is a family of local
search algorithms used to find an optimal policy of an MDP. We
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say a state s is switchable under a current policy x if there is an
action a € A such that Appeal” (s, a) > Val” (s). We also say any
such value-improving action a is switchable. In each iteration, PI
switches some number of switchable states to their value-improving
actions. An optimal policy is reached when no states are switchable.
There are several PI variants, which involve various switching rules
for choosing the state(s) and actions(s) to switch in each iteration.

The most widely used variant, Howard’s PI (or Greedy PI) in-
volves switching all switchable states in each iteration. A switch-
able state with multiple switchable actions is switched to the action
with greatest appeal. More precisely, given that the current policy
is 7, Greedy PI switches each switchable state s to an action in
arg max,e 4 Appeal” (s, a).

We discuss also several variants of PI that switch only one state
in each iteration, Simple PI Topological PI, and Difference PL Simple
policy iteration fixes an ordering over the states and switches the
highest-numbered switchable state. If there are multiple improving
actions at a state, one of them is chosen according to some rule; in
the constructions we discuss, every state has only two actions, so
there is no choice of improving action. Topological policy iteration
considers a topological ordering over the states, where if there is a
path (sequence of actions with nonzero probability) from a state i
to a state j, the order of i is at least the order of j; that is, the graph
is partitioned into strongly connected components and each state
is assigned the index of its component in a topological order. Topo-
logical PI switches the highest-numbered switchable state of the
component with lowest topological order that contains switchable
states. Difference policy iteration switches the switchable state with
the greatest difference between the appeal of the action it switches
to its current value.

We represent MDPs graphically, where states are vertices and
actions are directed edges. We sometimes use this terminology in
our discussion. Each deterministic action is shown as a directed edge
between two nodes. Each probabilistic action is shown as starting
as a single line at the origin state and branching into multiple lines
to reach the various possible resulting states. Given a policy 7, the
set of directed edges corresponding to the selected actions form a
subgraph of the MDP (this is the graph of the Markov chain Mj).
That is, a node s selecting action a under 7 has a directed edge to
every node s’ that a takes s to with nonzero probability. We say a
node s’ is reachable from s if there exists a path from s to s” in this
subgraph.

Smoothed model. The smoothed analysis framework lies between
average-case analysis and worst-case analysis. It considers input
instances with each parameter drawn independently from some
probability distribution (e.g., Gaussian, uniform or any other distri-
bution) with an upper bound ¢ on its density function. An algorithm
A has polynomial smoothed complexity if the maximum expected
runtime of A over all such distributions is polynomial in both ¢ and
in the size of the input. Alternatively, before A is given an arbitrary
(worst-case) input x, the values of x (the numerical parameters) are
perturbed according to some distribution still of bounded density
at most @. The perturbed input x” is then given to A. The smoothed
runtime of A is its worst-case (over all inputs x) expected runtime
(expected over the perturbation distribution).
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As discussed in the Introduction, we consider the structured
perturbation model for MDPs, where we perturb only the nonzero
transition probabilities and rewards. Our constructions are robust
not only to random perturbations, but moreover to all perturbations
within a certain wide range. When proving our lower bounds, we
model the nonzero rewards and the probabilities associated with
probabilistic actions as adversarially chosen within some pertur-
bation radius o = 1/¢, where the adversary aims to minimize the
expected runtime (i.e. to defeat the lower bound construction). That
is, any reward r # 0 of x can take on any value r’ in [r — o, r + 0] in
x’. We do not perturb rewards of zero. For any probabilistic action
with nonzero transition probabilities p, . .., px, the corresponding
perturbed probabilities p; in x” are any (non-negative) values in
[pi — o, pi + o] that sum to 1. Note that we cannot perturb the prob-
abilities independently, since they must sum to 1 for the resulting
MDP to be valid. (An alternative, equivalent model, is to perturb
independently all the p; within the allowed range and normalize
them so they sum to 1.) We say such an x’ is within perturbation
radius o of x.

Each lower bound in this paper gives an MDP x where every
MDP within perturbation radius o of x yields superpolynomial
runtime. Thus, our results are stronger than the usual smoothed
analysis: the superpolynomial lower bounds hold not only for ran-
dom perturbations according to a specific probability distribution
of (inverse polynomial) bounded density, but they moreover hold
for all perturbations within the specified ranges, i.e., even when
an adversary who wants to defeat the construction and minimize
the running time chooses any perturbations they want within the
specified range.

3 A SMOOTHED LOWER BOUND FOR GREEDY
PI UNDER THE TOTAL REWARD AND
AVERAGE REWARD CRITERIA

In this section, we prove a subexponential lower bound on the
smoothed complexity of Greedy PI. More specifically, we construct
an MDP with N states and bounded parameters (rewards and tran-
sition probabilities), such that in every MDP obtained by perturbing
the parameters by any amount up to 1/N, Greedy PI requires at
least 22N') iterations. We prove this for the total reward criterion.
The same result applies to the average reward criterion.

The construction is quite involved and is presented in several
stages. We present first in Section 3.1 a simplified construction
which forces exponential worst-case runtime for a variation of
Greedy PI (we call it hybrid Greedy PI), in which in certain cases
some switchable states are not switched until some conditions are
satisfied. In Section 3.2, we add suitable gadgets to this MDP so
that Greedy PI in the new MDP simulates the hybrid variant in the
simplified construction; thus, Greedy PI has exponential worst-case
runtime in this full construction. This MDP includes rewards that
are exponentially large and small, and some probabilities that are
exponentially small. In Section 3.3 we transform this MDP to our
final robust MDP by using gadgets that allow us to eliminate the ex-
ponentially large and small rewards and probabilities and simulate
them by parameters that lie in a bounded range in a robust way;
that is, the behavior of Greedy PI is not affected by perturbation of
the parameters up to an inverse polynomial amount.
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3.1 Simple Construction

In this section, we present the simplified construction shown in
Figure 1, which is designed to simulate a binary counter over the
“bit" nodes b;. We argue that a variant of greedy policy iteration
takes exponentially many iterations for the total reward criterion.
This variant, which we call hybrid policy iteration and which we
define for this construction only, is nearly greedy policy iteration,
except at the nodes b;. We define hybrid PI and the simple construc-
tion for ease of presentation, and later in Section 3.2 we present
our full construction, where we use gadgets to ensure that greedy
PI behaves similarly to hybrid PI.

Definition 1 (hybrid policy iteration). Given a policy 7, hybrid
policy iteration chooses the next policy 7’, where:

e Every switchable non-b; vertex is switched to its appeal-
maximizing action, as in greedy PL

e Every switchable b; vertex with 7(b;) = 1 is switched so
that 7’ (b;) = 0.

e Every switchable vertex b; with 7(b;) = 0 switches if and
only if no non-b vertices are switchable and 7 (b;) = 1 for
all j < i.

The simple construction is shown in Figure 1, with parameters
as follows. Let r : [n] — Z be a function where r(i) is the reward
on the edge associated with taking action 1 from b;. r need only
satisfy that for all i, r (i) > 3. ;<; r(j). We can achieve this by letting
r(i) = 2%. Let —e denote a very small negative reward. Assume
that e < r(i) for all i.

We describe the available actions at each state, for each i < n:

e b;: b; has a deterministic action 0 to w;+1 with reward 0 and
a deterministic action 1 to dj+1 with reward r(i).

¢;: ¢; has a deterministic action 0 to wj;+; with reward 0 and
a deterministic action 1 to b; with reward —e.

d;: d; has a deterministic action 0 to w;+1 with reward 0 and
a deterministic action 1 to ¢; with reward —e.

wi: w;j has a deterministic action 1 to b; with reward 0. It also
has a deterministic action to b; for every j > i with reward

0, and a deterministic action to the sink with reward 0.

wp+1 has only a deterministic action to the sink node with reward
0. cp+1 has a deterministic action to the sink with reward —e. d;4+1
has a deterministic action to ¢,4+1 with reward —e.

In the following we will often simply write b; = 0 or b; = 1 for
the action of a policy at a node, instead of 7#(b;) = 0 or 1.

At a high level, our construction simulates a binary counter.
Each state b; represents a bit. When b; = 1, a large reward is
incurred when leaving b;. When b; = 0, no reward is incurred. The
starting policy for our lower bound will have all bits b; set to 0, and
the optimal policy is when all bits b; are set to 1. The following
two properties ensure that the bits behave as a binary counter,
iterating through all binary strings of length n before reaching
the optimal policy. We state them here and prove them later. We
achieve Property 1 by construction, and we achieve Property 2 by
definition of hybrid PI.

Property 1. When a bit b; is set to 1, all lower bits b; for j < i are
reset to 0 within two iterations.
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Property 2. For each i, b; switches to 1 only after b; = 1 for all
Jj<i.

We will show using these properties that hybrid policy iteration
proceeds in three phases. We will show that between every set of

three phases (i.e., before the first phase and after the third phase),
the following invariant always holds. Let B = {i|b; = 1}.

Invariant. For alli € B,w; = b; = ¢; =d; = 1forall i € B. For all
i ¢ B,we have b; =¢;j =d; =0.Foralli ¢ Band i > max(BU {0}),
w; chooses the deterministic action to the sink. Otherwise, if i ¢ B
and i < max B, w; chooses the deterministic action to by where £ is
the smallest index such that £ € Band ¢ > i.

Phases. We now describe the phases. Each set of 3 phases in-
volves adding the minimum index i = min([n] \ B) to B and reset-
ting all lower indices, so that i is the minimum index in B.

(1) b; switches from 0 to 1.

(2) wj switches to b; for all j < i. ¢; switches to 1.

(3) bj switches to 0 for all j < i. d; switches to 1. cj,d; switch
to0forall j < i.

At the end of the 3 phases, the invariant is again satisfied.

All-zero policy. Let my denote the policy with each w; choosing
the action to the sink and all other nodes’ actions equal to 0.

We show that Hybrid PI indeed follows the above phases when
starting with 7. We first prove several useful facts. The proofs
of the following propositions and lemmas are deferred to the full
version of this paper.

Proposition 1. When the invariant is satisfied, for every i ¢ B and
i < max B we have Val(b;) = Val(c;) = Val(d;) = Val(by) where ¢
is the smallest index such that £ € Band ¢ > i.

Proposition 2. When the invariant is satisfied, for every i € [n]
we have (X j>i 7(j)) —2(n—i+1)e < Val(b;) < X j>i r(j).

JjeB jeB
Proposition 3. Let b; = 1. Then when the invariant is satisfied,
Val(b;) > Val(by) + r(i) — 2en for all £ > i.

Lemma 1. When the invariant is satisfied, the set of switchable
nodes is exactly the set of bits not in B.

The proof of this lemma is by verifying using the propositions
that the values of the nodes are such that the bits in B are switchable,
and all other nodes are not switchable.

Proposition 4. When the invariant is satisfied, Val(b;) — 2¢ <
Val(d;) < Val(b;) for every i < n.

Theorem 1. Given the simple construction and starting policy o,
hybrid policy iteration requires at least 2" iterations to reach the
optimal policy under the total reward criterion.

Proor. We show that if the invariant is satisfied, the algorithm
proceeds in the three phases. For each phase, we argue that the
switches made follow hybrid PI.

Phase 1. By Lemma 1, the set of switchable nodes is exactly the
bits not in B. By definition of hybrid P, the only node that switches
is b; where i is the minimum index such that b; = 0. b; thus switches
to 1, and its value is now Val(b;) = Val(dj+1) + r(i).
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1 +r(1)

(=

by

O 1
wq

Figure 1: The base MDP for our greedy PI construction. The
sink is shown with a double border. Each w; has a deter-
ministic edge with reward 0 to every b; for j € [i,n],and a
deterministic edge to the sink. These edges are omitted in
the figure for clarity.
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Phase 2. Switching b; in Phase 1 affected the value of only b;,
since no node selects an action to b; according to the invariant.
The only nodes that may become switchable in Phase 2 are those
with actions to b;; these nodes are exactly c; and w; for j < i.
Now, applying Proposition 4 for the first inequality, Val(b;) >
Val(bi+1) +7(i) —2€ = r(i) = 2€ + ¥ j#»j11 7(j’)- Thus, for any j > i,

i’€B
Val(b;) > Val(b;). For any j < i, by]Proposition 2 and the fact that
switching b; affected the value of only b;, we have

Val(b) < (i) = 3 (G + Y r()

Jj'=j J/ =i+l Jj<j'<i
j'€B j'€B j'€B

< Z r(j") |+ r(i) - 2¢
J =i+l
j'€B
since r(i) > 3 js<; r(j’) and € is sufficiently small. Thus, b; has the
highest value of any bit, and all w; for j < i switch to b;. When
c; = 0, it takes on the value of some higher bit (or zero), so c¢;
switches to 1 and takes on the greater value of b;.

Phase 3. By choice of b;, we have bj = c¢; =dj = 1forall j < i.
After the switches in Phase 2, we have w; = b;. Thus, for any fixed
bj, bj follows the right column up to d;, which follows its action 0
to wi4+1 and does not collect the reward r(i). Since r(i) > Y p<; r(£),
we have Val(bj) < Val(wiy1) + Xp<; r(£) < Val(b;) = Val(wjt1).
Thus each bj for j < i switches to action 0 going to wj1, and
Property 1 holds. Similarly, c¢j and b; switch to 0, since Val(wjt1) =
Val(b;) > Val(b;). d; switches to 1, since Val(wit1) < Val(b;) — 2e.

Observe that the invariant is again satisfied. Thus, if we start
with all actions equal to 0 and each w; choosing the action taking it
to the sink, the invariant is satisfied after every set of three phases.

Furthermore, since the only bit that switches to 1 is b; where i
is the minimum index such that b; = 0, Property 2 holds. O

We have thus shown that hybrid policy iteration on the simple
construction simulates a binary counter on the n bits, taking at
least 2™ iterations to reach the optimal policy.

3.2 Full Construction

We now show that we can insert a gadget at each b; node for i # 1
in order to satisfy Property 2. This gadget is depicted in Figure 2. b;
remains as in the simple construction, with no added gadget. For
the other nodes b;, we add f(i) + 1 actions al, a’i, el a}(l.) to b,
where f(i) = 3 + 6i. a(i) is deterministic and goes to w; with zero
reward. Each other action @’ for j > 1 returns to b; with high prob-
ability, and goes to b1 and incurs a small reward with the remaining
probability. The 0 actions of b; from the simple constructions are
deleted; they are replaced by these new actions aé and aj.ZI. These
actions @’ for j > 0 have increasing rewards (relative to index j)
but decreasing appeals. Thus, policy iteration starts by selecting
the action aé with the largest appeal but smallest reward and cycles
through a’i, a;, ... 1in order. We also amend the action 1 from the
simple construction to loop back to b; with overwhelming probabil-
ity (this trick was also used by [15]). Without changing any values,
this lowers the appeal of action 1 so that all of the actions a; are
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more appealing. Consequently, these extra actions delay b; from
switching to action 1.

The gadget is reset (b; chooses a(i)) whenever any bit other than
by is set to 1. When this bit is switched to 1, w; will have greater
value than b; in Phase 3 of that switch. Thus, in Phase 3, b; will
switch to the action aé that goes to wy.

We achieve this using the following probabilities and rewards
for each action a;:

1

ﬁ and

L

227"
9—100n

Probabilities. aj. goes from b; to by with probability
from b; back to itself with the remaining probability 1 —
Reward. ag. gives a reward of ; = 3j - §, where 6 =

We also slightly modify the rewards r(i), introduce costs c(i),
and change the actions at the nodes w; to incur these costs. When
b; is set to 0 in the full construction, its value is a bit higher than
that of wy or by, which is greater than the value b; would have
when set to 0 in the simple construction. Since we do not want w;
to set its action to 1 until b; switches to 1, we add the cost c(i) from
b;” to bj to counteract this extra value, and direct action 1 from w;
to b;". We redefine r(i) = 2241 We set ¢(i) = # =22 fori > 1,
and let ¢(1) = 0. Setting c(1) = 0 is for ease of notation; as there is
no gadget for by, there is no real cost attached to by. The effective
reward (as seen by w;) associated with b; = 1is r(i) — c(i) = 2%, as
in the simple construction. We show later that this preserves the
property that w; does not switch to 1 until b; has switched to 1.
We also add an action aé from b; to wy with no reward and with
probability 1. We add a probabilistic action 1 from b; to b} that
loops back to b; with extremely high probability 1 — 210% This
ensures that the appeal of action 1 is smaller than the appeal of any
other action a’.

We refer to the rewards, costs, and probabilities as parameter
values. When analyzing the behavior of policy iteration on our
constructions, we point out which of our arguments depend on
these exact parameter values and which do not.

Invariant. At the beginning of the phases, we have w; = b; =
c¢ci=dj=1foralli € B.Foralli ¢ B, we have ¢; = d; = 0. For all
i ¢ Band i > max(B U {0}), w; chooses its deterministic action
to the sink. Otherwise, if i ¢ B and i < max B, w; chooses the
deterministic action to by where ¢ is the smallest index such that
¢ € Band ¢ > i. If the last bit added to B was not by, b; = a(i) for all
i ¢ B.If the last bit added to B was b1, we have b; = af) orb; = aé
for all i ¢ B.

Phases. Each set of 3 phases involves adding an index i to B and
resetting all lower indices, so that i is now the minimum index in
B. Suppose first that i # 1. For each phase, we show the modified
behavior compared to in the simple construction. We also introduce
a new phase 0, where the bits not in B cycle through their actions
aj.

(0) If by is switchable to 1, proceed to Phase 1. Otherwise, for

each j ¢ B, bj increments its current action al, to the next

action a{n +1- This repeats until m+1 = f(i) for some i; when

this happens, the next iteration begins Phase 1. We will show
later that this i is unique, and in fact i = min B.
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f(i) actions to by

i i
— ai, ...,llf(i)

Figure 2: The structure of the full construction at node b;.
Probabilities are shown with dotted boxes around them; ac-
tion names are shown with dotted ovals around them. Re-
wards are free-floating with plus or minus signs. The nodes
b; and b} have only one action and are shown as squares.

(1) b; where i = min B switches to 1. For all i’ # i, i ¢ B, by
switches from its current action a? to agﬂ.

(2) wj switches to b; for all j < i. ¢; switches to 1. For all i # i,
i ¢ B, bjs switches from ai;l to af,:rz.

(3) bj switches to aé for all j < iand j > 1. d; switches to 1.
¢j,dj switch to 0 for all j < i.If i > 1, for all i’ > i where

i’ ¢ B, by switches to a(’;, resetting the actions. Otherwise,

e .y _— . i’ i’
ifi =1, for all i’ > i, by switches from ap,, to ap 5.

Cycling, and defining f(-). We let f(i) := 3 + 6i. We first note
that this choice of f is large enough that each bit by for i’ ¢ B can
indeed increment up to a;’+3 when specified. More precisely, we

want to show that when b; selects action ain 41 in Phase 0, by is

selecting an action a;',' where ¢ < f(i’) — 3 (so there are enough
actions for by to make its remaining increments). For each i, i/, f(i)
and f(i’) differ by at least 6. In the worst case, Phase 0 starts with

b; = aé and by = ag by the invariant. Thus, when b; = afn 4 0
Phase 0, we have by = ai’ for¢ < f(i") - 3.

We now show the properties that we claimed in Phase 0: if the
invariant is satisfied at the start of Phase 0 and the bits increment
their actions as described, then the unique first index i to reach

m+ 1= f(i) is i = min B. See the full version for a proof.

3.2.1 Propositions. As in our proof of the lower bound for the
simple construction, we first present propositions and lemmas that
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we’ll use to show that policy iteration follows the outlined phases.
We again defer their proofs to the full version. For the sake of these
propositions, we introduce a weak invariant. The weak invariant is
the same condition as the strong invariant, except that any bit b;
not in B may select any action a’.

These propositions establish relationships between the values
and appeals of the vertices. We prove them here in more generality
than is necessary for proving the main theorem of this subsection,
Theorem 2, since this generality will be useful when we reuse them
later for the robust construction. We let eax denote the maximum
value of any small cost €; here, emax = € since all small costs are the
same. We let Smax denote the maximum value of any small reward
J; here, max = 3(6n+3)3. We let e(d;) and e(c;) denote the values
of the small € costs on the 1 actions from d; and c; respectively. In
the full construction, e(d;) = e(c;) = €.

In proving the propositions, we use a notion of reachability in
the MDP. At any point ¢ in time, we consider the subgraph G(¢)
induced by the actions selected at the nodes. A node v is reachable
from a node u if there is a path from u to v in G(¢).

Propositions 5 and 6 below relate the large rewards r(i) and large
costs c(i). Proposition 5 shows that the reward r(i) is substantially
larger than the sum of all smaller rewards. As in the simple con-
struction, we use this to show that when a bit b; is set to 1, all lower
bits b; are enticed by its large reward and reset to 0. Proposition 6
will be used to show that w; does not switch to any b; until b; has
switched to 1.

Recall that r(i) = 2%*1 and c(i) = % = 22i_Thus, the effective
reward associated with b; = 1 is r(i) — c(i) = 2%, as in the simple
construction.

Proposition 5. r(i) — (i) — 2n€max — Smax > X j<; r(j) for all i.
Proposition 6. c(i) > Smax + 2n€max + Zj<,- r(j) for all i.

Proposition 7 establishes an upper bound on the value of by,
helping us later upper bound the appeal of switching any bit to 1.
Proposition 7. When the weak invariant is satisfied, Val(b1) <
r(1) + Xiepr(i) —c(i).

i>1

Proposition 8 gives an upper and a lower bound for every bit b;

fori e B..

Proposition 8. When the weak invariant is satisfied, for every
i € B we have

r(i)+ > r() = () |-2(n=i+1)emax < Val(bi) < r()+ Y. r()=e())

j>i
JjE€B

Jj>i

jeB
Proposition 9 shows that the actions a;. for a bit b; have decreas-

ing appeal. This property ensures that b; cycles through all of its

actions a} before switching to 1. In its proof, we will make use of

the following fact, which we state as a lemma to use it again in

proving the main theorem.

Lemma 2. When the weak invariant is satisfied, regardless of the
parameter values, Val(by) = Val(w).

i
f@)
Then for any parameters values for which Propositions 5-8 hold,
the action of b; with greatest appeal is 1.

Lemma 3. Let the weak invariant be satisfied, where b; = a
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Proposition 9. If the weak invariant is satisfied, and b; = a;, bj is
switchable and the action with greatest appeal is aj. £ 7 # fQ),
and action 1if j = f(i).

3.2.2 Main theorem. Our main result of this subsection is that
on the full construction, Greedy PI takes subexponentially many
iterations. The proof follows the same structure as the proof of the
analogous result for the simple construction. We first state Lemma 4,
which is analogous to Lemma 1. We then state Theorem 2, arguing
as in the simple construction that Greedy PI follows our prescribed
phases. This shows that with the all-zero starting policy, Greedy PI
behaves like a binary counter, iterating through all 2" bit strings to
reach the optimal policy.

All-zero policy. The all-zero policy 7y for the full construction is
the same as that of the simple construction for all nodes other than
the b; nodes. Each node b; selects its action a(’).

Lemma 4. Let Propositions 5 through 9 hold given the parameter
values. When the weak invariant is satisfied, the set of switchable

nodes is exactly the set of bits not in B.

Theorem 2. Let the parameter values be such that propositions 5
through 9 hold. If we start at the all-zero policy, Greedy PI on the
full construction takes at least 2" iterations to arrive at the optimal
policy under the total reward criterion.

The outline of this proof is similar to that of the proof of The-
orem 1, the equivalent theorem for the simple construction. We
start with the all-zero policy, which satisfies the invariant. We first
show that when the invariant is satisfied, Greedy PI proceeds in the
four previously described phases, ending Phase 4 with the invariant
again satisfied. Since each set of four phases involves adding the
lowest zero bit to B and resetting all lower bits to zero, Greedy PI
behaves exactly as a binary counter and iterates through all binary
strings for the bits b; before reaching the optimal all-one policy,
where all bits b; are set to 1. Thus, it remains only to show that
Greedy P1I follows the four phases, preserving the invariant at the
end of Phase 4. The complete proof is provided in the full version.

We showed previously that for our parameter values (r(i) =
2211 c(i) = 221 ¢ = 27100n 4nd § = 2_100"), the propositions hold.
Therefore, Greedy PI takes at least 2" iterations to arrive at the
optimal policy on the full construction MDP with these parameter
values.

This result also holds for the average reward criterion. Policy
iteration under the average reward criterion determines which
actions to switch based first on a gain function, then based on a bias
function in the case that multiple actions yield equal gain. Fearnley
[15] notes that for MDPs that are guaranteed to reach a 0-reward
sink state, like our full construction, this gain function is always
zero. Here, the bias function also becomes equivalent to our appeal
function. Thus, on the full construction, the choices that Greedy
PI makes under the average reward criterion are the same as those
made under the total reward criterion. This gives us the following
corollary:

Corollary 2. Let the parameter values be such that propositions 5
through 9 hold. If we start at the all-zero policy, Greedy PI on the
full construction takes at least 2" iterations to arrive at the optimal
policy under the average reward criterion.
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Figure 3: Gadget g2 (k) with k intermediate vertices allows us
to manufacture an exponentially large reward between x and

Y.

(o)
o 2/
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Figure 4: Gadget g3(k) with k intermediate vertices allows
us to manufacture an exponentially small reward between x
and y.
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3.3 Robust Construction

We show that our construction can be made robust to perturbations
of the rewards and probabilities by replacing certain edges with
gadgets shown in Figures 3 and 4. We first present a gadget g that
allows us to manufacture exponentially large positive and negative
rewards, as well as exponentially small probabilities.

Lemma 5. If the probabilities and rewards are perturbed by at most
4%, for any k’ > k, the gadget g,(k) with reward r = 1 — i and
probabilities g; yields Val(y)+2k_2 < Val(x) < Val(y)+2k
after perturbation. If r = —(1 - i), the resulting negative reward

is between —2%*2 and —2k.

1 1
2t

Lemma 6. Let Appeal(x) be the appeal of taking the action lead-
ing to the gadget g2 from x. If the probabilities and rewards are

perturbed by at most Wlonz’ then for any k < 1000n + 2, the gad-
1

get g2(k) with reward r = 0 and probabilities g; = 5 + m
yields Appeal(x) = (1 — p)Val(x) + pVal(y) after perturbation, for
L <p<
ak SPS

We also present a gadget g3 allowing us to make exponentially
small rewards. This is used to make the € costs in the full construc-
tion.

pr=g

Lemma 7. If the probabilities and rewards are perturbed by at
most ﬁ where k’ > k, the gadget g3(k) with reward r = 1 + #
& yields Val(y) + 27k < val(x) <
Val(y) + 27K+2 after perturbation. If r = —(1 + ﬁ), the resulting

and probabilities ¢; = 3 +

negative reward is between —27k+2 and —27k,

3.3.1 Constructing the parameters r(i), c(i), €, §;, pj, a. We use the
gadgets to construct each of these parameters. The raw values of
all the rewards and probabilities used in the resulting MDP lie in
[—2, 2] and the allowed perturbations are inverse polynomial.
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Reward r(i). We construct r(i) using g2(7(i — 1) + 6), with
k’ = 10n. Each probability g; is set to % + ﬁ, with allowable
perturbation up to ﬁ. The reward r used in the gadget is

setto1— with perturbation up to ﬁ.

1
2(7(i-1)+6)’
Cost ¢(i). We construct c¢(i) using g2(7(i — 1) + 3), with k¥’

10n. Each probability g; is set to to % + ﬁ, with allowable

perturbation up to ﬁ. The cost r used in the gadget is set
to—(1-— m) with perturbation up to ﬁ.

Cost e. We construct € using g3(100n), with k” = 100n. Each
probability g; is set to % + ﬁ, with allowable perturbation
up to Tlon‘ The cost r used in the gadget is set to —(1+ ﬁ),
with perturbation up to ﬁ.

Reward §;. We set §; = % +
to #.

Probability p;. We construct p; using g2(4; + 3) as described
in Lemma 6, with reward r = 0, probabilities gy is set to % +

8—312 and allow perturbation up

_1
T0002 Lemma 6

m, with allowable perturbation up to
applies because 4j + 3 < 1000n + 2.
Probability a. Recall that « is the probability associated with
action 1 from each b;. We construct a using ¢g2(1000n + 2)
with reward r = 0, as described in Lemma 6. Each probability

il . 1 1 .
gj within the gadget is set to ;; + 1552, With allowable

: 1
perturbation up to 555—7.

The allowed perturbations for the raw values in the gadgets
induce for each parameter of the full construction (r (i), c(i), etc.)
an effective value that lies in a certain interval of uncertainty:

o r(i) € [27(i—1)+4’ 27(1>1)+6]
o c(i) e [27(i—1)+1’27(i—1)+3]
ecc [2—100n 2—100n+2]
) 2j  2j+l
. 5] € [@, 4n?
Smax < n and |5j - 5j/| >
1 1
*pjc [W T
e qc [n—IOOOn—Z n—lOOOn]

]. Note that 0 < §; < 82 < ... < Smax, and

1
4n?

3.3.2  Reproving the propositions. We reprove Propositions 5-9 and
Lemmas 2-3 from Section 3.2.1. The propositions are sufficient to
prove Theorem 2 for the full construction, giving us the analogous
result for the robust construction: Greedy PI again requires at least
2" iterations to arrive at the optimal policy.

While the original propositions were in terms of single global
parameters € and §, we now have varying values of ¢ and ¢ for
different actions due to the perturbations. We instead define up-
per bounds €max and dmax and redefine the propositions in terms
of these values; the propositions are otherwise unchanged from
Section 3.2.1. More details are given in the full version.

3.3.3 Main theorem. Because the propositions imply the main
theorem from the greedy construction section, Theorem 2, we have
the analogous result for the robust construction given the same
all-zero policy as in the full construction, which we state as the
following lemma:

Lemma 8. Let the robust construction have parameters lying in
[-2, 2] as in Section 3.3.1, with perturbations of up to #. When
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started at the all-zero policy, Greedy PI takes at least 2" iterations
to arrive at the optimal policy under the total reward criterion.

We previously showed that Greedy PI takes at least 2" iterations.
Because of the gadgets, our MDP now has far more than n nodes
(recalling that n is the number of bits). Letting N be the number of
nodes, one can compute that N < (n + 1)(5n% + 12291 + 8) < 6n°
for n sufficiently large. Thus, in terms of N, Greedy PI takes at least

3[N
2V ¢ iterations. Recall that our perturbations were up to $A Since

n<y %, perturbations of % are at most # for sufficiently large
nand N.

Theorem 3. There is an MDP with N nodes and all rewards in
[-2,2], such that for any perturbations of the rewards and the

3N
transition probabilities up to 1/N, Greedy PI takes at least 2‘/7
iterations to arrive at the optimal policy under the total reward
criterion.

By the same argument as in Section 3.2, since the MDP always
terminates at a 0-reward sink state, we have as a corollary the same
result for the average reward criterion:

Corollary 3. There is an MDP with N nodes and all rewards in
[-2,2], such that for any perturbations of the rewards and the

3N
transition probabilities up to 1/N, Greedy PI takes at least 2‘/?
iterations to arrive at the optimal policy under the average reward
criterion.

4 A LOWER BOUND FOR GREEDY PI UNDER
THE REACHABILITY CRITERION

We prove an exponential lower bound for the reachability criterion
in the worst case, without perturbations. The proof is based again
on the full construction of Section 3.2. However, MDPs with the
reachability criterion have no rewards and costs. To adapt our full
construction for the reachability criterion, we introduce gadgets
that simulate rewards and costs using random actions. The simu-
lations are approximate, not exact, thus to ensure the correctness
of the reduction, the starting MDP with rewards must behave ro-
bustly for parameter values within certain ranges. We use in this
section the following ranges for the parameters of the full construc-
tion: r(i) c [24i+2—5n, 24i+3—5n]; C(i) € [24i—5n, 24i+1—5n]; € €
[2—100n—1’ 2—10011]; 5], € [2—200n+2j’ 2—200n+2j+1]; pj = 2—400]'2;
o = 27400n=400f (n)? e again reprove Propositions 5-9 for these
parameter ranges to show that Greedy PI takes exponentially many
iterations.

We then introduce gadgets to eliminate the rewards and costs.
These gadgets require known bounds on the minimum and maxi-
mum values of any nodes.

Claim 1. Given the parameters in this section, the maximum value
of any node is at most %.

Now;, observe that if we add a reward of % upon reaching the sink,
the behavior of policy iteration is not affected. This is because it
increases the value of every vertex by exactly i, and also increases
the appeal of every action by i. Thus, adding this reward does
not affect any appeals or values relative to each other. Since policy
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Figure 5: Gadget g4(p) for simulating positive rewards under
the reachability criterion. The vertex with a double-line bor-
der is the sink that we are trying to reach. p is the probability
of reaching the sink from the depicted action.

Figure 6: Gadget gs(p) for negative rewards under the reach-
ability criterion. The top vertex is the 0-sink that we get no
reward for reaching. p is the probability of reaching the sink
from the depicted action.

iteration depends only on relative appeals, its behavior does not
change.

After adding this reward of % upon reaching the sink, the value of
every node lies in [%, %] throughout the duration of policy iteration.
We use these bounds in our transformation to the reachability
criterion, using the following gadgets.

Lemma 9. Assume that the value of every vertex lies in [% %]
Then, for any p € [0, 1] and any deterministic action between ver-
tices a and b, g4(p), shown in Figure 5, achieves Val(a) = Val(b) +r
P 3P]

where r € [7, x
We also create a gadget g5(p) that simulates a negative reward,

shown in Figure 6.

Lemma 10. Assume that the value of every vertex lies in [i %]

Then, for any p € [0,1] and any deterministic action between

vertices a and b, gs(p) achieves Val(a) = Val(b) — r where r €
P P].

FEl)

We can convert the full construction to use the reachability
criterion by using gadget g4 in place of any action with a positive
reward, and using gadget gs in place of any action with a negative
reward. We slightly edit the actions aj. so that the rewards fall on
deterministic actions, in order to apply the gadgets. This does not
affect the behavior of policy iteration.

The full construction has N = O(n) nodes in total, where n is
the number of bit-nodes b;. This conversion to the reachability
criterion introduces at most O(N) new nodes. Thus, we still have
O(N) vertices in total, giving us the following lower bound:
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Theorem 4. There exists an MDP on N nodes on which Greedy
PI under the reachability criterion takes 2Q(N) jterations to arrive
at the optimal policy.

5 SMOOTHED LOWER BOUNDS FOR SIMPLE,
DIFFERENCE, AND TOPOLOGICAL POLICY
ITERATION

Melekopoglou and Condon [24] constructed MDPs on which policy
iteration requires exponential time in the worst case when using the
simple, topological, and difference switching rules, which switch
only one state in each step. The MDPs in these constructions are
reachability MDPs (thus there are no rewards). The construction
involves two sink nodes, labeled 0* and 1*. The goal is to minimize
the probability of reaching 1*. There are 2n + 1 other vertices:
0’,1,...,n', and 1,2,...,n; see Fig. 7. Vertices 1,2, ...,n, which
we call min-vertices, have two deterministic actions 0, 1. Vertices
1/,...,n’, which we call random vertices, have one action with two
probabilistic transitions as shown in Fig. 7. In [24] all transition
probabilities were 1/2, but here we will parameterize them as p;, 1 —
pi for vertex i’. Vertex 0’ has one deterministic transition to 1x

Let Sy denote the action chosen at vertex k. We write a policy
as a string SpSp—1...S1. Thus, the policy where every vertex k
takes action 0 is denoted 00. .. 0. Observe that the optimal policy is
00...01, with vertex 1 set to action 1, and all other vertices set to
action 0.

We use slightly different notation here than in the earlier sections,
because the MDPs we consider are 2-action MDPs. We use V (k) or
V(k’) to denote the cost of a vertex k or k’, i.e. the probability of
reaching the target sink 1%, starting from vertex k or k’; this is the
same notation used in the original paper [24]. For each min-vertex
k, we use diff (k) to denote the difference in value between the
children of k. This is well-defined for this construction since each
vertex k has at most two children. More precisely, we let diff(1) :=
V(1) = V(0’), and for k > 2, we let diff(k) := V(K’) - V(k - 1).

We show that with small modifications, the Melekopoglou-Condon
(MC) construction requires exponential time even when the proba-
bilities assigned to random edges can be perturbed.

5.1 Simple Policy Iteration Algorithm

Consider Simple PI on the MDP of Fig. 7, where the fixed priority
ordering of the min-verticesisn, .. ., 2, 1;i.e., in each step, we choose
to switch the highest-labeled switchable vertex.

Our proof follows the same format as the analogous one of
MC. First, we derive an expression for diff(k). Then we use this
expression to reprove lemmas from MC, which are sufficient to
prove the lower bound.

1901

Miranda Christ and Mihalis Yannakakis

Lemma 11. For every k > 1, diff(k) = diff(1) [T, (pi — Si—1).

Observe that k is switchable if and only if S = 0 and diff (k) < 0
or Sg = 1 and diff(k) > 0, since the goal is to minimize the cost.
We can use Lemma 11 to compute sgn(diff (k)) and thus determine
whether any vertex k is switchable given the actions of the other
states. The original proof from [24] that policy iteration requires
exponentially many iterations still holds because Lemmas 2.6 and
2.7 from [24] still hold. We state these below as Lemmas 12 and 13.

Lemma 12. If k is switched, and S, ... Sg42Sky1 = 0...01, then
all the vertices k + 1,k + 2,. .., n are switchable.

Lemma 13. The following two statements hold for every k > 1:

(1) If S ... Sg41Sk = 0...01, and the vertices k,k + 1,...,n are
switchable, the next 2"~k*1 — 1 switches of the simple policy
improvement algorithm are made on these vertices, to reach
the policy where S;; ... Sk 1Sk =0...00.

(2) Sy ...Sk:1Sk =0...00, and the vertices k,k + 1,...,n are
switchable, the next 2" k! — 1 switches of the simple policy
improvement algorithm are made on these vertices, to reach
the policy where Sy, ... Sg41Sk =0...01.

Theorem 5. The simple policy improvement algorithm applied
to the MDP of Fig. 7 requires 2" iterations in the worst case, even
when the probabilities associated with the random vertices can be
perturbed arbitrarily within the open interval (0, 1).

5.2 Topological Policy Iteration Algorithm

Modify the basic graph of Fig. 7, by assigning probability pg to the
edge (0’,1%) and adding an edge (0, n) with probability 1 — py.
Note that in the resulting MDP, all the min-vertices 1,...,n are in
the same strongly connected component (SCC). Consider the Topo-
logical PI algorithm on this MDP with the minimum reachability
criterion. Since all min-vertices are in the same SCC, Topological
PI switches in each step the highest-numbered switchable vertex.

It turns out that adding the edge from 0’ to n does not affect the
switches made by Simple PI (and therefore Topological PI), which
we argue to obtain the following theorem.

Theorem 6. The topological policy iteration algorithm on the
above MDP requires 2" iterations in the worst case, even when
the probabilities and cost are perturbed, as long as we have that
P0s P15 - - -» Pn € (0,1), and the probabilities py and p; satisfy po >

1-p1.

5.3 Difference Policy Iteration Algorithm

The difference policy iteration algorithm. This vertex is chosen to
maximize the difference between the costs of its two children; the
chosen vertex v* from the set of switchable min-vertices V satisfies
v* = argmax,,y |diff(v)| In this section, we use the basic graph of
Fig. 7, and we insert gadgets used in [24], with different parameters
to make the construction robust under perturbations.

For each min-vertex k, we add two copies of the gadget g1 (f(k))
shown in Figure 8 to the basic graph where f is a function that is
defined later: one copy of the gadget is inserted between k and k’,
and one between k and k — 1, replacing the corresponding edges
of the basic graph. We assume that the probabilities g; within the

gadgets are between % and % + %
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Figure 8: The gadget g;(¢) from j to m, with ¢ intermediate
nodes. The edges shown from j are actions 0 and 1. From
each intermediate gadget node i, there is a single zero-reward
probabilistic action going to (i — 1) with probability ¢; and
back to j with probability 1 — g;.

Definition 4. Let k be a min-vertex. Let a be the child of k in the
gadget between k and k — 1; let b be the child of k in the gadget
between k and k’. We define diff’ (k) := V(b) — V(a)

Letq1, ..., qf(k) be the probabilities in the gadget from k to k-1,
and letry,...,7f(k) be the probabilities in the gadget from k to K.
Let a be the child of k in the gadget between k and k — 1, and let
b be the child of k in the gadget between k and k’. We first derive
expressions for the values of diff yielded by the gadget in Lemma 14.
We then use this expression to show that diff is increasing in n, so
difference policy iteration follows the same sequence of policies as
simple policy iteration, flipping higher-numbered bits first.

Lemma 14. If S, = 1, diff’ (k) = (n{:ﬂ") q,-)diff(k). If 5, = o0,
diff’ (k) = ( fk) r,~) diff (k)

Theorem 7. Let f(n) = 0,andlet f (k) = [log 1,1, (3D (4
2 ' n

for1 < k < n. On the MDP obtained from the basic graph by adding
gadgets g1 (f(v)) between each min-vertex v and its two children,
the difference policy improvement algorithm requires 2" iterations,
as long as all the probabilities g; and r; for each gadget lie in the
open interval (%, % + %) and the probabilities p; lie in (0, 1). Fur-
thermore, for all k such that 1 < k < n, f(k) = O(poly(n)), and
the MDP has size O(poly(n)).

6 CONNECTIONS TO THE SIMPLEX
ALGORITHM

Finding an optimal policy in an MDP can be formulated as a linear
program (LP). First, we present a matrix encoding of the MDP given
by Hansen in [19, Definition 2.1.2]. Let the MDP have N states and
m actions. Let e € RN be an all-one vector. Let J,P € R™*N _j
represents the adjacency matrix, where for each action a, J4; = 1
ifa € A;, and J,; = 0 otherwise. P represents the probabilities
associated with the various actions. Py ; is the probability of ending
up in state i from action a. Let ¢ € R™ represent the rewards of the
actions. That is, ¢, is the reward of taking action a.

We can solve the following linear program to obtain the optimal
value y; of each state i:

minimize eTy
subjectto (J-P)y > ¢

This is equivalent to the dual LP in [17].
Several single-state switching rules for policy iteration have been
shown to be equivalent to pivot rules for the simplex algorithm.

N

1902

STOC 23, June 20-23, 2023, Orlando, FL, USA

We show that two of our lower bounds, for Simple Policy and
Improvement and Difference Policy Improvement, imply equivalent
smoothed lower bounds for the simplex algorithm using Bland’s
and Dantzig’s pivot rules respectively.

We note that the perturbations in our MDP setting translate to
non-standard perturbations in the simplex setting. In the celebrated
result by Spielman and Teng that the simplex method has polyno-
mial smoothed complexity [30], all entries in the constraint matrix
and right-hand-side are perturbed. In our MDP formulation, this
would mean perturbing (J — P) and c¢. With such perturbations,
deterministic actions could become probabilistic, and perturbations
of zero entries in J could create new edges between states.

Our smoothed MDP lower bounds translate to semi-smoothed
simplex lower bounds, where weights can be perturbed but the
general structure must be preserved (e.g., zero entries stay zero).
More precisely, we do not perturb the adjacency matrix J at all. We
perturb only the nonzero and non-one entries of P. For each row a
representing a random action, let i be the first state with nonzero
Pgi. We define Py ; = 1 — 3 j4; Pq,j. We perturb all non-zero P j
for j # i. This ensures that the probabilities associated with each
random edge sum to 1. We perturb all nonzero entries of c. We say
that an LP parameterized by e, ], P, c that is perturbed in this way
is MDP-smoothed.

Hansen shows that Bland’s pivoting rule is equivalent to making
the first improving switch according to some fixed permutation
of the edges [19, Section 5.8]. This is exactly the simple policy
improvement algorithm, where the edges are ordered according to
the vertices’ numbers. Thus, our result in Section 5.1 implies a 2"
lower bound on the number of iterations for the simplex algorithm
using Bland’s rule for LPs generated from MDPs, even when the
probabilities and rewards can be perturbed.

Theorem 8. The worst-case MDP-smoothed complexity of the
simplex algorithm with Bland’s pivoting rule for LPs with dimen-
sion N, number of constraints O(N), and allowed perturbations of
up to 1, is 22V

p to 5, is .

There is in fact an exponential smoothed lower bound for Bland’s
pivoting rule under all zero-preserving perturbations of LPs, rather
than our more structured MDP smoothing. Spielman notes in a
lecture that the Klee-Minty cube is robust under zero-preserving
perturbations, yielding an exponential lower bound [28].

Fearnley and Savani [16] show that Dantzig’s pivot rule corre-
sponds to policy iteration where the action with the greatest appeal
is switched. Their definition of appeal is exactly our diff. Thus,
the simplex algorithm with Dantzig’s pivot rule is equivalent to
the difference policy improvement algorithm. Our result in Sec-
tion 5.3 implies an equivalent semi-smoothed result for the simplex
algorithm with Dantzig’s pivot rule.

Theorem 9. The worst case MDP-smoothed complexity of the

simplex algorithm with Dantzig’s pivot rule for LPs with dimension

N, number of constraints O(N), and allowed perturbations of up
1 . 9Q(WN

Q(N),IS 2Q(VN)

7 CONCLUSION

We showed that under a natural smoothed model, several common
variants of policy iteration have subexponential or exponential

to
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lower bounds. Our main and most involved result concerns the
standard Howard’s PI (Greedy PI) algorithm and holds even when
the perturbations are chosen arbitrarily (rather than randomly)
within a certain inverse polynomial range. We further obtain an
exponential lower bound on the number of iterations required by
Howard’s PI under the reachability criterion in the worst case,
without perturbations. We also extend results from [24] to show
that several single-switch PI variants (Simple PI, Topological PI,
Difference PI) take at least exponential or subexponential time
under large perturbations.

One natural direction for future work is to investigate where
such lower bounds are not possible. Which perturbations yield poly-
nomial expected runtime — in our model, do constant perturbations
suffice? While we focused on the total reward, average reward, and
reachability criteria, the discounted reward criterion is also popular.
We suspect that similar results hold for discount rates y that are
exponentially close to 1, as the behavior of such discounted MDPs
is similar to the total reward. On the other hand, if 1 — y is at least
inverse polynomial then we know that Greedy PI converges in
polynomial time by the results of [18, 34].

For the reachability criterion, we showed a lower bound for
Howard’s PI only in the worst case. Can our result for the reacha-
bility criterion be extended to the smoothed and/or robust model?
In the case of several PI variants that switch a single state in each
iteration, Simple PI, Topological PI, and Difference PI, the bounds
hold for reachability MDPs in the robust (and smoothed) model.
Are there similar smoothed/robust lower bounds for other single-
switch policy iteration variants, such as the Random-Facet and
Random-Edge switching rules?
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