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where only one state is switched in each iteration and Simplex ap-

plied to the LP for the MDP. Howard’s PI corresponds to performing

simultaneously many Simplex pivots.

The (worst-case) time complexity of Howard’s PI was open for

a long time, until it was finally resolved by Fearnley in [15], who

showed an exponential lower bound under the total reward and

the average reward objectives. This was extended to the discounted

reward objective in [20] for discount factors that are exponentially

close to 1 (in discounted reward MDPs, future rewards are dis-

counted by a given discount factor 𝛾 < 1). For constant discount

factor 𝛾 however, or even if 1 − 𝛾 > 1/𝑝𝑜𝑙𝑦, Howard’s PI runs in

strongly polynomial time [34]; this holds more generally even in

2-player turned-based stochastic games for the analogous strategy

improvement algorithm [18]. The complexity of PI where only one

state is switched in each iteration was studied earlier by Meleko-

poglou and Condon [24], who gave exponential lower bounds for

several pivoting rules. More recently, the close connection between

single-switch Policy Iteration for MDPs and Simplex for LPs has

been exploited to show exponential or subexponential lower bounds

for Simplex under various open pivoting rules, by first showing the

results for MDPs and then translating them to Simplex: this was

shown for the Random-Facet and the Random-Edge rules in [17],

for Cunningham’s rule in [2], and for Zadeh’s rule in [12]. There is

ongoing extensive literature on the complexity of Policy Iteration,

studying various variants (e.g. randomized PI, geometric PI etc.),

special cases (e.g. deterministic MDP) and/or improving the bounds

[21, 27, 31, 33].

Thus, although PI runs fast in practice, its worst-case complexity

is exponential for Howard’s PI, as well as other variants. This is

similar to the behavior of the Simplex algorithm, and more gener-

ally a host of other local search algorithms for various optimiza-

tion problems. To provide a more realistic explanation for the ob-

served performance of Simplex, Spielman and Teng introduced the

smoothed analysis framework [30], a hybrid between worst-case

and average-case analysis. On one hand, average-case complexity

is an algorithm’s expected runtime given a probability distribution

over inputs. On the other hand, we can think of worst-case com-

plexity as the maximum of an algorithm’s expected runtime over

all input distributions, including those with all probability mass

on a single input. The smoothed complexity of an algorithm is its

maximum expected runtime over all input distributions with some

smoothness constraint. For example, an input is picked arbitrarily

by an adversary and then its parameters (for example the entries

of the matrix in an LP, the rewards and transition probabilities in

an MDP) are perturbed randomly according to a distribution with

density function bounded by a parameter 𝜙 (for example, uniform,

Gaussian or some other distribution). The smoothed complexity of

the algorithm then is the expected running time as a function of the

input size 𝑛 and 𝜙 . Ideally we would like to have polynomial time

in 𝑛 and 𝜙 . Note this is useful if 𝜙 is polynomially bounded in 𝑛 (or

constant), because for exponentially large 𝜙 (i.e. perturbations that

are sharply concentrated), polynomial time in 𝑛 and 𝜙 is simply

exponential time, which is not useful. Smoothed analysis may cap-

ture runtime in practice more effectively than worst-case analysis,

especially when the numerical values in the input may have some

natural variation, as problems formulated from the real world often

do. Spielman and Teng showed that the Simplex algorithm under

a certain pivoting rule has polynomial smoothed complexity [30]

(and there is a series of subsequent papers simplifying the proof

and improving on the bounds, eg. [9, 11]).

Smoothed analysis has since been applied to a range of problems

in areas such as mathematical programming, machine learning,

numerical analysis, etc. [29]. In the area of combinatorial optimiza-

tion, it has been applied to local search algorithms for problems

such as the Traveling Salesperson Problem (TSP), Max-Cut and

others. It has been shown for example that the simple 2-Opt algo-

rithm for TSP has polynomial smoothed complexity [13], in contrast

to its worst-case exponential complexity [23]. For Max-Cut, the

simple Flip algorithm has smoothed complexity that is at most

quasi-polynomial for general graphs [6, 14] and polynomial for the

complete graph [1, 5], again in contrast to its worst-case exponential

complexity [26].

Given the good empirical performance of PI and its relation-

ship to the Simplex algorithm, it is natural to hypothesize that the

smoothed complexity of PI may well be also polynomial. Note that

this does not follow from the result for Simplex, despite their strong

connection, for various reasons. First, in the smoothed model for

Linear Programming all the numerical parameters are randomly

perturbed independently. In the MDP, we want to perturb simi-

larly the rewards and transition probabilities, however we want

the perturbed model to be also an MDP, in particular the transi-

tion probabilities for each action must sum to 1. Second, in the LP

smoothed model, all entries of the constraint matrix are perturbed

randomly, even those that are 0; if we apply such perturbation to

the LP of an MDP, it will have the effect of introducing arbitrary

new transitions that have no justification. In defining the smoothed

model for an MDP, it is more natural to preserve the structure of the

MDP (i.e. available actions at each state and possible transitions for

each action), since there are usually constraints in the application

that is modeled by the MDP that determine which transitions can

or cannot occur from a state for each action. On the other hand,

the rewards and transition probabilities may well be estimates, and

thus for them it is reasonable to allow perturbations. Thus, in our

smoothed model for MDP, we preserve the structure of the MDP,

and allow perturbations of the (nonzero) transition probabilities

and rewards.

In the literature on smoothed complexity, both models have been

used, the full perturbation model, where all numerical parameters

are perturbed, including those that are 0, and what we may call

the structured model, where only the nonzero parameters are per-

turbed and the structure of the input is preserved. For example

the analysis of Simplex uses the full perturbation model. Work on

local search algorithms for combinatorial optimization have used

both models. For example, in the case of the FLIP algorithm for

Max Cut, [1, 5] use the full perturbation model and show that the

smoothed complexity is polynomial. On the other hand, [6, 14] use

the structured model and show that smoothed complexity is quasi-

polynomial for every graph; note that the full model coincides with

the structured model in the special case when the input graph is

complete. Although the structured part of the input (the graph) is

not perturbed, thus allowing for arbitrarily complex, "pathologi-

cal" instances, the smoothening of the numerical parameters (the

edge weights) brings the complexity down from exponential to
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quasi-polynomial; the conjecture is in fact that the true smoothed

complexity is polynomial.

Depending on the application, one or the other model may be

more reasonable. In the case of MDPs, we believe that the structured

model is more natural for the reasons discussed above. The MDP

typically models an application at hand (for example, a probabilistic

program that is analyzed, a control design problem, a game etc.),

and the transitions have some meaning in the application. The

precise values of probabilities and rewards may be fungible, but

their existence is important. Changing the structure of the instance

changes the problem, or may even render it meaningless.

For example, consider an MDP with a reachability objective. If

perturbations are applied also to the zero-probability (i.e. nonexis-

tent) transitions, then in the perturbed MDP every possible transi-

tion between any two states will be included with nonzero probabil-

ity. This means that for any policy the graph of the MDP becomes

strongly connected, every policy will reach the target with proba-

bility 1, and the problem has disappeared.

The issue of preserving the (zero-nonzero) structure is especially

important when the model is used to formulate and solve other

problems. For a simple example, consider the following: MDPs with

rewards can be used to solve the simple reachability optimization

problem for MDPs (without rewards), since the latter can be viewed

as a special case (can be reduced to) the former: All transitions of the

reachabilty MDP are given 0 reward, except for the transitions into

the target state that are given reward 1; maximizing the expected

total reward in the resulting MDP is equivalent to maximizing the

probability of reaching the target state in the reachability MDP.

If in the reward MDP we are allowed to perturb the zero rewards

then the problem has changed, and optimization in the MDP with

rewards no longer correctly captures the MDP reachability problem.

1.1 Our Results

In this paper we study the smoothed complexity of Policy Iteration.

Given its similarity to the Simplex algorithm, one might hope to

show polynomial smoothed upper bounds for PI. We show the

contrary: for several prominent policy iteration variants, such a

result is impossible; the smoothed complexity is subexponential or

even exponential. We concentrate here mainly on the total reward

objective.

Our main result concerns the classical Howard’s (Greedy) PI

which switches simultaneously all switchable states to their actions

with greatest appeal. We show that Howard’s PI has at least subex-

ponential smoothed complexity under the total reward objective; a

similar result holds for the average reward objective. Furthermore,

the lower bound holds not only for the expected complexity under

random independent perturbations of the parameters, but it holds

in fact for all (arbitrary) perturbations within a certain inverse

polynomial range. (The amount of perturbation corresponds to

the 1/𝜙 parameter of the smoothed model, so to be meaningful, 𝜙

has to be at most polynomial.) Specifically, we construct an MDP

with 𝑁 states and bounded parameters (rewards and transition

probabilities), such that in every MDP obtained by perturbing the

parameters by any amount up to 1/𝑁 , Howard’s PI requires at least

2Ω (𝑁 1/3 ) iterations.

Our initial approach for this was to examine whether the con-

struction of [15] for the worst-case complexity can be modified

to prove a smoothed lower bound. However, we were not able to

do this. Unfortunately, the construction seems to be brittle and

does not hold up under perturbations. Thus, we started fresh and

designed a new construction with robustness in mind. The con-

struction and the proof are quite involved. This is to be expected,

considering that the construction of [15] was also quite intricate.

That construction involved positive and negative rewards, exponen-

tially small probabilities, and exponentially large rewards. We show

that the parameters do not need to be exponentially large or small,

and furthermore they can tolerate arbitrary perturbations up to an

inverse polynomial, without affecting the behavior of Howard’s PI

algorithm.

Furthermore, we use the robustness of our construction for MDP

with rewards, to show that the worst-case complexity of Howard’s

PI for MDPs with the simple reachability objective is exponential.

Note that these MDPs have no rewards (or as mentioned above

they are a special case of MDPs with rewards 0 and 1). In some

sense, this second construction is an approximate reduction from

MDPs with rewards to the special case of reachability MDP. The

robustness of the original reward MDP is essential to establish the

correctness of the result for the weaker reachability MDP.

We also analyze three simple variants of PI from [24] that switch

a single (switchable) state in each iteration, chosen according to

some rule. In Simple PI the state is chosen according to an arbitrary

initial priority order; in Topological PI it is chosen according to a

topological order; and in Difference PI it is chosen according to the

difference in value between the new and the old action of the state;

see Section 2 for a formal definition of the variants. We make slight

modifications to the constructions from [24] and prove that they are

robust to perturbations. These constructions are reachability MDPs;

thus the only numerical parameters are the transition probabilities,

there are no rewards (or equivalently, all the rewards are 0 except

for the transitions to the target state that have reward 1). Simple PI

and Topological PI take exponential time, for very large (constant)

perturbations of the transition probabilities. Difference PI takes at

least subexponential time for inverse polynomial perturbations.

We finally discuss the relationship between our results for the

Single switch PI variants and the Simplex algorithm, describing

precisely how our perturbations of an MDP translate to the cor-

responding LP. We state the lower bounds implied by our Policy

Iteration results for Bland’s and Dantzig’s pivot rules in the Simplex

algorithm for LPs arising from MDPs, though these bounds are not

new for Simplex.

1.2 Outline of Proof Techniques

The construction and proof of the main result on Howard’s (Greedy)

PI are quite complex and involved. We first design a new construc-

tion of an MDP 𝑀1 for the exponential worst-case complexity of

Greedy PI, which is more amenable to modifications to achieve the

desired robustness. As is usual in exponential lower bounds for

many problems, the MDP is constructed so that the iterations of

Greedy PI will simulate a binary counter counting from 0 up to 2𝑛 .

There is a set of 𝑛 states 𝑏𝑖 of the MDP (among many others), each

with two distinguished actions 0, 1, where the choices of states 𝑏𝑖
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correspond to the bits of the counter. The MDP𝑀1 is constructed so

that if in the initial policy all states 𝑏𝑖 choose action 0, then Greedy

PI will go through 2𝑛 rounds until it arrives at the optimal policy

where all states 𝑏𝑖 choose action 1. Each round involves a number

of steps. To manage the complexity of the construction, we build it

in stages. We first design a simpler MDP 𝑀0, which exhibits this

exponential (worst-case) behavior for a slight variant of Greedy

PI, call it Hybrid PI, which has an additional rule that a switchable

state 𝑏𝑖 can switch from action 0 to 1 only if all 𝑏 𝑗 with 𝑗 < 𝑖 have

chosen action 1, and no other non-𝑏𝑖 states are switchable. We then

modify𝑀0 to an MDP𝑀1 by using a suitable gadget at the states

𝑏𝑖 which serves the purpose of delaying the switches at states 𝑏𝑖
when running Greedy PI on𝑀1 in such a way that it behaves like

Hybrid PI on𝑀0. As a result, Greedy PI on𝑀1 simulates a binary

counter and takes exponential time.

The MDP𝑀1 has exponentially large and small rewards (both

positive and negative), and exponentially small probabilities. The

next stage in the proof transforms 𝑀1 to another MDP 𝑀2 that

has bounded rewards and probabilities, and which is robust in the

sense that Greedy PI has the same behavior for any perturbation of

the rewards and probabilities up to an inverse polynomial amount.

This transformation is done using appropriate gadgets. We design

gadgets to simulate exponentially large and exponentially small

rewards and transition probabilities, and ensure that the gadgets

are robust, i.e., they perform correctly (approximately) even under

perturbation of their rewards and probabilities. Finally, we ensure

that the analysis for𝑀1 is robust enough, so that the behavior of

Greedy PI on it is simulated by𝑀2 even under perturbation of its

parameters.

The proof for the worst-case exponential complexity of Greedy

PI under the reachability objective uses the constructed MDP𝑀1

for the total reward objective (with somewhat modified parameters).

The MDP𝑀1 has positive and negative rewards, whereas there are

no rewards in the reachability objective. We design suitable gadgets

to eliminate positive and negative rewards using random actions,

and apply them to transform𝑀1 to a newMDP𝑀3, without rewards,

for the reachability problem. The effective rewards simulated by

these gadgets change slightly for different policies; thus they are

similar to additive rewards with perturbations. In order to argue

that these perturbations are small, we must know bounds on the

minimum and maximum values of the nodes where the gadgets are

plugged in, which we have from the analysis of𝑀1. The robustness

of the MDP𝑀1 is critical for the correctness of the transformation,

i.e. so that the behavior of Greedy PI under the reachability objective

in 𝑀3 simulates the behavior of Greedy PI in 𝑀1 under the total

reward objective.

The proofs for the results on the variants of PI with a single

switch use the constructions of [24], sometimes with some small

modifications. The proofs are relatively simple and offer a gentle

introduction to the issues, and the unfamiliar reader might like to

read this section first. In the case of Simple PI and Topological PI,

the analysis follows closely that of [24], except that it is carried

out for general values of the transition probabilities, rather than

specific values. In the case of Difference PI, we use a parameterized

gadget with suitable choice of parameters to modify the construc-

tion in such a way that it can tolerate perturbations of the transition

probabilities within an inverse polynomial range.

Most proofs of lemmas and propositions are omitted in this

extended abstract and can be found in the full version.

Organization of the paper. The rest of the paper is organized as

follows. Section 2 gives basic definitions and notation. Section 3,

which is the heart of the paper, shows that Greedy (Howard’s) PI

has at least subexponential smoothed complexity under the total

reward objective. Section 4 builds on our construction to show

the worst-case exponential complexity of Greedy PI under the

simple reachability objective. Section 5 presents the results for

three PI variants with single state switch: Simple PI, Topological PI

and Difference PI, and Section 6 notes the connection to Simplex

pivoting rules.

2 PRELIMINARIES

A Markov Decision Process consists of a (finite) set of states 𝑆 , and

a (finite) set 𝐴𝑠 of available actions for each state 𝑠 ∈ 𝑆 . Let 𝐴 =

∪𝑠∈𝑆𝐴𝑠 denote the set of all actions. For each action𝑎 ∈ 𝐴𝑠 there is a

probability distribution of the state(s) resultingwhen taking action𝑎

at state 𝑠 that is described by a function 𝑝 : 𝑆 × 𝑆 ×𝐴 → R+, where

𝑝 (𝑠′ |𝑠, 𝑎) denotes the probability of ending up at state 𝑠′ when

taking action 𝑎 from 𝑠 . The action 𝑎 is deterministic if 𝑝 (𝑠′ |𝑠, 𝑎) = 1

for some 𝑠′ and 𝑝 (𝑠”|𝑠, 𝑎) = 0 for all other 𝑠”. Each action yields some

(possibly zero) reward, represented by a function 𝑟 : 𝑆 × 𝐴 → R

where 𝑟 (𝑠, 𝑎) denotes the reward obtained by taking action 𝑎 ∈ 𝐴𝑠

from 𝑠 . A (positional) policy is a function 𝜋 : 𝑆 → 𝐴, where for each

state 𝑠 ∈ 𝑆 , 𝜋 (𝑠) ∈ 𝐴𝑠 is the action selected at that state. A policy 𝜋

for an MDP𝑀 induces a Markov chain𝑀𝜋 on the same state set 𝑆 ,

where the transition probabilities out of each state 𝑠 are given by

𝑝 (𝑠′ |𝑠, 𝜋 (𝑠)).

A criterion (or objective) is a function that, given a policy, as-

sociates a value with each state. We consider primarily the total

reward criterion, which yields the following notions of value and

appeal. The value of a state 𝑠 captures the expectation of the sum of

rewards accrued by starting at 𝑠 and taking the actions given in the

policy as time goes to infinity; it is well-defined for MDPs where

one must eventually reach a sink state, one that has no actions and

no outgoing transitions. Under the total reward criterion, the value

of a state 𝑠 under a policy 𝜋 satisfies the equation

Val𝜋 (𝑠) = 𝑟 (𝑠, 𝜋 (𝑠)) +
∑︁
𝑠′∈𝑆

𝑝 (𝑠′ |𝑠, 𝜋 (𝑠)) · Val𝜋 (𝑠′)

Given policy 𝜋 , the appeal of an action 𝑎 at 𝑠 is

Appeal𝜋 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) +
∑︁
𝑠′∈𝑆

𝑝 (𝑠′ |𝑠, 𝑎) · Val𝜋 (𝑠′)

An optimal policy is a policy that maximizes the value of every

state (there is always such a policy).

We later consider the reachability criterion, where the goal is to

maximize the probability of reaching a given target sink state 𝑠∗. In

this case, the value of a state 𝑠 under a policy 𝜋 is the probability

of reaching the target 𝑠∗ following the actions selected in 𝜋 . The

reachability criterion can be viewed as a special case of the total

reward criterion, by assigning reward zero to all transitions except

for those going from other states into the target state 𝑠∗, which are

assigned reward 1.

Policy Iteration or Policy Improvement (PI) is a family of local

search algorithms used to find an optimal policy of an MDP. We
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say a state 𝑠 is switchable under a current policy 𝜋 if there is an

action 𝑎 ∈ 𝐴𝑠 such that Appeal𝜋 (𝑠, 𝑎) > Val𝜋 (𝑠). We also say any

such value-improving action 𝑎 is switchable. In each iteration, PI

switches some number of switchable states to their value-improving

actions. An optimal policy is reached when no states are switchable.

There are several PI variants, which involve various switching rules

for choosing the state(s) and actions(s) to switch in each iteration.

The most widely used variant, Howard’s PI (or Greedy PI ) in-

volves switching all switchable states in each iteration. A switch-

able state with multiple switchable actions is switched to the action

with greatest appeal. More precisely, given that the current policy

is 𝜋 , Greedy PI switches each switchable state 𝑠 to an action in

argmax𝑎∈𝐴𝑠

Appeal𝜋 (𝑠, 𝑎).

We discuss also several variants of PI that switch only one state

in each iteration, Simple PI, Topological PI, and Difference PI. Simple

policy iteration fixes an ordering over the states and switches the

highest-numbered switchable state. If there are multiple improving

actions at a state, one of them is chosen according to some rule; in

the constructions we discuss, every state has only two actions, so

there is no choice of improving action. Topological policy iteration

considers a topological ordering over the states, where if there is a

path (sequence of actions with nonzero probability) from a state 𝑖

to a state 𝑗 , the order of 𝑖 is at least the order of 𝑗 ; that is, the graph

is partitioned into strongly connected components and each state

is assigned the index of its component in a topological order. Topo-

logical PI switches the highest-numbered switchable state of the

component with lowest topological order that contains switchable

states. Difference policy iteration switches the switchable state with

the greatest difference between the appeal of the action it switches

to its current value.

We represent MDPs graphically, where states are vertices and

actions are directed edges. We sometimes use this terminology in

our discussion. Each deterministic action is shown as a directed edge

between two nodes. Each probabilistic action is shown as starting

as a single line at the origin state and branching into multiple lines

to reach the various possible resulting states. Given a policy 𝜋 , the

set of directed edges corresponding to the selected actions form a

subgraph of the MDP (this is the graph of the Markov chain𝑀𝜋 ).

That is, a node 𝑠 selecting action 𝑎 under 𝜋 has a directed edge to

every node 𝑠′ that 𝑎 takes 𝑠 to with nonzero probability. We say a

node 𝑠′ is reachable from 𝑠 if there exists a path from 𝑠 to 𝑠′ in this

subgraph.

Smoothed model. The smoothed analysis framework lies between

average-case analysis and worst-case analysis. It considers input

instances with each parameter drawn independently from some

probability distribution (e.g., Gaussian, uniform or any other distri-

bution) with an upper bound𝜙 on its density function. An algorithm

𝐴 has polynomial smoothed complexity if the maximum expected

runtime of𝐴 over all such distributions is polynomial in both 𝜙 and

in the size of the input. Alternatively, before 𝐴 is given an arbitrary

(worst-case) input 𝑥 , the values of 𝑥 (the numerical parameters) are

perturbed according to some distribution still of bounded density

at most 𝜙 . The perturbed input 𝑥 ′ is then given to𝐴. The smoothed

runtime of 𝐴 is its worst-case (over all inputs 𝑥 ) expected runtime

(expected over the perturbation distribution).

As discussed in the Introduction, we consider the structured

perturbation model for MDPs, where we perturb only the nonzero

transition probabilities and rewards. Our constructions are robust

not only to random perturbations, but moreover to all perturbations

within a certain wide range. When proving our lower bounds, we

model the nonzero rewards and the probabilities associated with

probabilistic actions as adversarially chosen within some pertur-

bation radius 𝜎 = 1/𝜙 , where the adversary aims to minimize the

expected runtime (i.e. to defeat the lower bound construction). That

is, any reward 𝑟 ≠ 0 of 𝑥 can take on any value 𝑟 ′ in [𝑟 −𝜎, 𝑟 +𝜎] in

𝑥 ′. We do not perturb rewards of zero. For any probabilistic action

with nonzero transition probabilities 𝑝1, . . . , 𝑝𝑘 , the corresponding

perturbed probabilities 𝑝′𝑖 in 𝑥 ′ are any (non-negative) values in

[𝑝𝑖 −𝜎, 𝑝𝑖 +𝜎] that sum to 1. Note that we cannot perturb the prob-

abilities independently, since they must sum to 1 for the resulting

MDP to be valid. (An alternative, equivalent model, is to perturb

independently all the 𝑝𝑖 within the allowed range and normalize

them so they sum to 1.) We say such an 𝑥 ′ is within perturbation

radius 𝜎 of 𝑥 .

Each lower bound in this paper gives an MDP 𝑥 where every

MDP within perturbation radius 𝜎 of 𝑥 yields superpolynomial

runtime. Thus, our results are stronger than the usual smoothed

analysis: the superpolynomial lower bounds hold not only for ran-

dom perturbations according to a specific probability distribution

of (inverse polynomial) bounded density, but they moreover hold

for all perturbations within the specified ranges, i.e., even when

an adversary who wants to defeat the construction and minimize

the running time chooses any perturbations they want within the

specified range.

3 A SMOOTHED LOWER BOUND FOR GREEDY

PI UNDER THE TOTAL REWARD AND

AVERAGE REWARD CRITERIA

In this section, we prove a subexponential lower bound on the

smoothed complexity of Greedy PI. More specifically, we construct

an MDP with 𝑁 states and bounded parameters (rewards and tran-

sition probabilities), such that in every MDP obtained by perturbing

the parameters by any amount up to 1/𝑁 , Greedy PI requires at

least 2Ω (𝑁 1/3 ) iterations.We prove this for the total reward criterion.

The same result applies to the average reward criterion.

The construction is quite involved and is presented in several

stages. We present first in Section 3.1 a simplified construction

which forces exponential worst-case runtime for a variation of

Greedy PI (we call it hybrid Greedy PI), in which in certain cases

some switchable states are not switched until some conditions are

satisfied. In Section 3.2, we add suitable gadgets to this MDP so

that Greedy PI in the new MDP simulates the hybrid variant in the

simplified construction; thus, Greedy PI has exponential worst-case

runtime in this full construction. This MDP includes rewards that

are exponentially large and small, and some probabilities that are

exponentially small. In Section 3.3 we transform this MDP to our

final robust MDP by using gadgets that allow us to eliminate the ex-

ponentially large and small rewards and probabilities and simulate

them by parameters that lie in a bounded range in a robust way;

that is, the behavior of Greedy PI is not affected by perturbation of

the parameters up to an inverse polynomial amount.
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3.1 Simple Construction

In this section, we present the simplified construction shown in

Figure 1, which is designed to simulate a binary counter over the

łbit" nodes 𝑏𝑖 . We argue that a variant of greedy policy iteration

takes exponentially many iterations for the total reward criterion.

This variant, which we call hybrid policy iteration and which we

define for this construction only, is nearly greedy policy iteration,

except at the nodes 𝑏𝑖 . We define hybrid PI and the simple construc-

tion for ease of presentation, and later in Section 3.2 we present

our full construction, where we use gadgets to ensure that greedy

PI behaves similarly to hybrid PI.

Definition 1 (hybrid policy iteration). Given a policy 𝜋 , hybrid

policy iteration chooses the next policy 𝜋 ′, where:

• Every switchable non-𝑏𝑖 vertex is switched to its appeal-

maximizing action, as in greedy PI.

• Every switchable 𝑏𝑖 vertex with 𝜋 (𝑏𝑖 ) = 1 is switched so

that 𝜋 ′ (𝑏𝑖 ) = 0.

• Every switchable vertex 𝑏𝑖 with 𝜋 (𝑏𝑖 ) = 0 switches if and

only if no non-𝑏 vertices are switchable and 𝜋 (𝑏 𝑗 ) = 1 for

all 𝑗 < 𝑖 .

The simple construction is shown in Figure 1, with parameters

as follows. Let 𝑟 : [𝑛] → Z be a function where 𝑟 (𝑖) is the reward

on the edge associated with taking action 1 from 𝑏𝑖 . 𝑟 need only

satisfy that for all 𝑖 , 𝑟 (𝑖) >
∑

𝑗<𝑖 𝑟 ( 𝑗). We can achieve this by letting

𝑟 (𝑖) = 22𝑖 . Let −𝜖 denote a very small negative reward. Assume

that 𝜖 ≪ 𝑟 (𝑖) for all 𝑖 .

We describe the available actions at each state, for each 𝑖 ≤ 𝑛:

• 𝑏𝑖 : 𝑏𝑖 has a deterministic action 0 to𝑤𝑖+1 with reward 0 and

a deterministic action 1 to 𝑑𝑖+1 with reward 𝑟 (𝑖).

• 𝑐𝑖 : 𝑐𝑖 has a deterministic action 0 to𝑤𝑖+1 with reward 0 and

a deterministic action 1 to 𝑏𝑖 with reward −𝜖 .

• 𝑑𝑖 : 𝑑𝑖 has a deterministic action 0 to𝑤𝑖+1 with reward 0 and

a deterministic action 1 to 𝑐𝑖 with reward −𝜖 .

• 𝑤𝑖 :𝑤𝑖 has a deterministic action 1 to 𝑏𝑖 with reward 0. It also

has a deterministic action to 𝑏 𝑗 for every 𝑗 > 𝑖 with reward

0, and a deterministic action to the sink with reward 0.

𝑤𝑛+1 has only a deterministic action to the sink node with reward

0. 𝑐𝑛+1 has a deterministic action to the sink with reward −𝜖 . 𝑑𝑛+1
has a deterministic action to 𝑐𝑛+1 with reward −𝜖 .

In the following we will often simply write 𝑏𝑖 = 0 or 𝑏𝑖 = 1 for

the action of a policy at a node, instead of 𝜋 (𝑏𝑖 ) = 0 or 1.

At a high level, our construction simulates a binary counter.

Each state 𝑏𝑖 represents a bit. When 𝑏𝑖 = 1, a large reward is

incurred when leaving 𝑏𝑖 . When 𝑏𝑖 = 0, no reward is incurred. The

starting policy for our lower bound will have all bits 𝑏𝑖 set to 0, and

the optimal policy is when all bits 𝑏𝑖 are set to 1. The following

two properties ensure that the bits behave as a binary counter,

iterating through all binary strings of length 𝑛 before reaching

the optimal policy. We state them here and prove them later. We

achieve Property 1 by construction, and we achieve Property 2 by

definition of hybrid PI.

Property 1. When a bit 𝑏𝑖 is set to 1, all lower bits 𝑏 𝑗 for 𝑗 < 𝑖 are

reset to 0 within two iterations.

Property 2. For each 𝑖 , 𝑏𝑖 switches to 1 only after 𝑏 𝑗 = 1 for all

𝑗 < 𝑖 .

We will show using these properties that hybrid policy iteration

proceeds in three phases. We will show that between every set of

three phases (i.e., before the first phase and after the third phase),

the following invariant always holds. Let 𝐵 = {𝑖 |𝑏𝑖 = 1}.

Invariant. For all 𝑖 ∈ 𝐵,𝑤𝑖 = 𝑏𝑖 = 𝑐𝑖 = 𝑑𝑖 = 1 for all 𝑖 ∈ 𝐵. For all

𝑖 ∉ 𝐵, we have 𝑏𝑖 = 𝑐𝑖 = 𝑑𝑖 = 0. For all 𝑖 ∉ 𝐵 and 𝑖 > max(𝐵 ∪ {0}),

𝑤𝑖 chooses the deterministic action to the sink. Otherwise, if 𝑖 ∉ 𝐵

and 𝑖 ≤ max𝐵,𝑤𝑖 chooses the deterministic action to 𝑏ℓ where ℓ is

the smallest index such that ℓ ∈ 𝐵 and ℓ ≥ 𝑖 .

Phases. We now describe the phases. Each set of 3 phases in-

volves adding the minimum index 𝑖 = min( [𝑛] \ 𝐵) to 𝐵 and reset-

ting all lower indices, so that 𝑖 is the minimum index in 𝐵.

(1) 𝑏𝑖 switches from 0 to 1.

(2) 𝑤 𝑗 switches to 𝑏𝑖 for all 𝑗 ≤ 𝑖 . 𝑐𝑖 switches to 1.

(3) 𝑏 𝑗 switches to 0 for all 𝑗 < 𝑖 . 𝑑𝑖 switches to 1. 𝑐 𝑗 , 𝑑 𝑗 switch

to 0 for all 𝑗 < 𝑖 .

At the end of the 3 phases, the invariant is again satisfied.

All-zero policy. Let 𝜋0 denote the policy with each𝑤𝑖 choosing

the action to the sink and all other nodes’ actions equal to 0.

We show that Hybrid PI indeed follows the above phases when

starting with 𝜋0. We first prove several useful facts. The proofs

of the following propositions and lemmas are deferred to the full

version of this paper.

Proposition 1. When the invariant is satisfied, for every 𝑖 ∉ 𝐵 and

𝑖 < max𝐵 we have Val(𝑏𝑖 ) = Val(𝑐𝑖 ) = Val(𝑑𝑖 ) = Val(𝑏ℓ ) where ℓ

is the smallest index such that ℓ ∈ 𝐵 and ℓ ≥ 𝑖 .

Proposition 2. When the invariant is satisfied, for every 𝑖 ∈ [𝑛]

we have (
∑

𝑗≥𝑖
𝑗∈𝐵

𝑟 ( 𝑗)) − 2(𝑛 − 𝑖 + 1)𝜖 ≤ Val(𝑏𝑖 ) ≤
∑

𝑗≥𝑖
𝑗∈𝐵

𝑟 ( 𝑗).

Proposition 3. Let 𝑏𝑖 = 1. Then when the invariant is satisfied,

Val(𝑏𝑖 ) ≥ Val(𝑏ℓ ) + 𝑟 (𝑖) − 2𝜖𝑛 for all ℓ > 𝑖 .

Lemma 1. When the invariant is satisfied, the set of switchable

nodes is exactly the set of bits not in 𝐵.

The proof of this lemma is by verifying using the propositions

that the values of the nodes are such that the bits in 𝐵 are switchable,

and all other nodes are not switchable.

Proposition 4. When the invariant is satisfied, Val(𝑏𝑖 ) − 2𝜖 ≤

Val(𝑑𝑖 ) ≤ Val(𝑏𝑖 ) for every 𝑖 ≤ 𝑛.

Theorem 1. Given the simple construction and starting policy 𝜋0,

hybrid policy iteration requires at least 2𝑛 iterations to reach the

optimal policy under the total reward criterion.

Proof. We show that if the invariant is satisfied, the algorithm

proceeds in the three phases. For each phase, we argue that the

switches made follow hybrid PI.

Phase 1. By Lemma 1, the set of switchable nodes is exactly the

bits not in 𝐵. By definition of hybrid PI, the only node that switches

is𝑏𝑖 where 𝑖 is the minimum index such that𝑏𝑖 = 0.𝑏𝑖 thus switches

to 1, and its value is now Val(𝑏𝑖 ) = Val(𝑑𝑖+1) + 𝑟 (𝑖).
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we’ll use to show that policy iteration follows the outlined phases.

We again defer their proofs to the full version. For the sake of these

propositions, we introduce a weak invariant. The weak invariant is

the same condition as the strong invariant, except that any bit 𝑏𝑖
not in 𝐵 may select any action 𝑎𝑖𝑗 .

These propositions establish relationships between the values

and appeals of the vertices. We prove them here in more generality

than is necessary for proving the main theorem of this subsection,

Theorem 2, since this generality will be useful when we reuse them

later for the robust construction. We let 𝜖max denote the maximum

value of any small cost 𝜖 ; here, 𝜖max = 𝜖 since all small costs are the

same. We let 𝛿max denote the maximum value of any small reward

𝛿 ; here, 𝛿max = 3(6𝑛 + 3)𝛿 . We let 𝜖 (𝑑 𝑗 ) and 𝜖 (𝑐 𝑗 ) denote the values

of the small 𝜖 costs on the 1 actions from 𝑑 𝑗 and 𝑐 𝑗 respectively. In

the full construction, 𝜖 (𝑑 𝑗 ) = 𝜖 (𝑐 𝑗 ) = 𝜖 .

In proving the propositions, we use a notion of reachability in

the MDP. At any point 𝑡 in time, we consider the subgraph 𝐺 (𝑡)

induced by the actions selected at the nodes. A node 𝑣 is reachable

from a node 𝑢 if there is a path from 𝑢 to 𝑣 in 𝐺 (𝑡).

Propositions 5 and 6 below relate the large rewards 𝑟 (𝑖) and large

costs 𝑐 (𝑖). Proposition 5 shows that the reward 𝑟 (𝑖) is substantially

larger than the sum of all smaller rewards. As in the simple con-

struction, we use this to show that when a bit 𝑏𝑖 is set to 1, all lower

bits 𝑏 𝑗 are enticed by its large reward and reset to 0. Proposition 6

will be used to show that𝑤𝑖 does not switch to any 𝑏 𝑗 until 𝑏 𝑗 has

switched to 1.

Recall that 𝑟 (𝑖) = 22𝑖+1, and 𝑐 (𝑖) =
𝑟 (𝑖 )
2 = 22𝑖 . Thus, the effective

reward associated with 𝑏𝑖 = 1 is 𝑟 (𝑖) − 𝑐 (𝑖) = 22𝑖 , as in the simple

construction.

Proposition 5. 𝑟 (𝑖) − 𝑐 (𝑖) − 2𝑛𝜖max − 𝛿max >

∑
𝑗<𝑖 𝑟 ( 𝑗) for all 𝑖 .

Proposition 6. 𝑐 (𝑖) > 𝛿max + 2𝑛𝜖max +
∑

𝑗<𝑖 𝑟 ( 𝑗) for all 𝑖 .

Proposition 7 establishes an upper bound on the value of 𝑏1,

helping us later upper bound the appeal of switching any bit to 1.

Proposition 7. When the weak invariant is satisfied, Val(𝑏1) ≤

𝑟 (1) +
∑
𝑖∈𝐵
𝑖>1

𝑟 (𝑖) − 𝑐 (𝑖).

Proposition 8 gives an upper and a lower bound for every bit 𝑏𝑖
for 𝑖 ∈ 𝐵. .

Proposition 8. When the weak invariant is satisfied, for every

𝑖 ∈ 𝐵 we have

𝑟 (𝑖)+
©­­­«
∑︁
𝑗>𝑖
𝑗∈𝐵

𝑟 ( 𝑗) − 𝑐 ( 𝑗)
ª®®®¬
−2(𝑛−𝑖+1)𝜖max ≤ Val(𝑏𝑖 ) ≤ 𝑟 (𝑖)+

∑︁
𝑗>𝑖
𝑗∈𝐵

𝑟 ( 𝑗)−𝑐 ( 𝑗)

Proposition 9 shows that the actions 𝑎𝑖𝑗 for a bit 𝑏𝑖 have decreas-

ing appeal. This property ensures that 𝑏𝑖 cycles through all of its

actions 𝑎𝑖𝑗 before switching to 1. In its proof, we will make use of

the following fact, which we state as a lemma to use it again in

proving the main theorem.

Lemma 2. When the weak invariant is satisfied, regardless of the

parameter values, Val(𝑏1) = Val(𝑤1).

Lemma 3. Let the weak invariant be satisfied, where 𝑏𝑖 = 𝑎𝑖
𝑓 (𝑖 )

.

Then for any parameters values for which Propositions 5-8 hold,

the action of 𝑏𝑖 with greatest appeal is 1.

Proposition 9. If the weak invariant is satisfied, and 𝑏𝑖 = 𝑎𝑖𝑗 , 𝑏𝑖 is

switchable and the action with greatest appeal is 𝑎𝑖𝑗+1 if 𝑗 ≠ 𝑓 (𝑖),

and action 1 if 𝑗 = 𝑓 (𝑖).

3.2.2 Main theorem. Our main result of this subsection is that

on the full construction, Greedy PI takes subexponentially many

iterations. The proof follows the same structure as the proof of the

analogous result for the simple construction.We first state Lemma 4,

which is analogous to Lemma 1. We then state Theorem 2, arguing

as in the simple construction that Greedy PI follows our prescribed

phases. This shows that with the all-zero starting policy, Greedy PI

behaves like a binary counter, iterating through all 2𝑛 bit strings to

reach the optimal policy.

All-zero policy. The all-zero policy 𝜋0 for the full construction is

the same as that of the simple construction for all nodes other than

the 𝑏𝑖 nodes. Each node 𝑏𝑖 selects its action 𝑎𝑖0.

Lemma 4. Let Propositions 5 through 9 hold given the parameter

values. When the weak invariant is satisfied, the set of switchable

nodes is exactly the set of bits not in 𝐵.

Theorem 2. Let the parameter values be such that propositions 5

through 9 hold. If we start at the all-zero policy, Greedy PI on the

full construction takes at least 2𝑛 iterations to arrive at the optimal

policy under the total reward criterion.

The outline of this proof is similar to that of the proof of The-

orem 1, the equivalent theorem for the simple construction. We

start with the all-zero policy, which satisfies the invariant. We first

show that when the invariant is satisfied, Greedy PI proceeds in the

four previously described phases, ending Phase 4 with the invariant

again satisfied. Since each set of four phases involves adding the

lowest zero bit to 𝐵 and resetting all lower bits to zero, Greedy PI

behaves exactly as a binary counter and iterates through all binary

strings for the bits 𝑏𝑖 before reaching the optimal all-one policy,

where all bits 𝑏𝑖 are set to 1. Thus, it remains only to show that

Greedy PI follows the four phases, preserving the invariant at the

end of Phase 4. The complete proof is provided in the full version.

We showed previously that for our parameter values (𝑟 (𝑖) =

22𝑖+1, 𝑐 (𝑖) = 22𝑖 , 𝜖 = 2−100𝑛 , and 𝛿 = 2−100𝑛), the propositions hold.

Therefore, Greedy PI takes at least 2𝑛 iterations to arrive at the

optimal policy on the full construction MDP with these parameter

values.

This result also holds for the average reward criterion. Policy

iteration under the average reward criterion determines which

actions to switch based first on a gain function, then based on a bias

function in the case that multiple actions yield equal gain. Fearnley

[15] notes that for MDPs that are guaranteed to reach a 0-reward

sink state, like our full construction, this gain function is always

zero. Here, the bias function also becomes equivalent to our appeal

function. Thus, on the full construction, the choices that Greedy

PI makes under the average reward criterion are the same as those

made under the total reward criterion. This gives us the following

corollary:

Corollary 2. Let the parameter values be such that propositions 5

through 9 hold. If we start at the all-zero policy, Greedy PI on the

full construction takes at least 2𝑛 iterations to arrive at the optimal

policy under the average reward criterion.
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lower bounds. Our main and most involved result concerns the

standard Howard’s PI (Greedy PI) algorithm and holds even when

the perturbations are chosen arbitrarily (rather than randomly)

within a certain inverse polynomial range. We further obtain an

exponential lower bound on the number of iterations required by

Howard’s PI under the reachability criterion in the worst case,

without perturbations. We also extend results from [24] to show

that several single-switch PI variants (Simple PI, Topological PI,

Difference PI) take at least exponential or subexponential time

under large perturbations.

One natural direction for future work is to investigate where

such lower bounds are not possible. Which perturbations yield poly-

nomial expected runtime ś in our model, do constant perturbations

suffice? While we focused on the total reward, average reward, and

reachability criteria, the discounted reward criterion is also popular.

We suspect that similar results hold for discount rates 𝛾 that are

exponentially close to 1, as the behavior of such discounted MDPs

is similar to the total reward. On the other hand, if 1 − 𝛾 is at least

inverse polynomial then we know that Greedy PI converges in

polynomial time by the results of [18, 34].

For the reachability criterion, we showed a lower bound for

Howard’s PI only in the worst case. Can our result for the reacha-

bility criterion be extended to the smoothed and/or robust model?

In the case of several PI variants that switch a single state in each

iteration, Simple PI, Topological PI, and Difference PI, the bounds

hold for reachability MDPs in the robust (and smoothed) model.

Are there similar smoothed/robust lower bounds for other single-

switch policy iteration variants, such as the Random-Facet and

Random-Edge switching rules?
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