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Near-wall flow simulation remains a central challenge in aerodynamics modelling:
Reynolds-averaged Navier–Stokes predictions of separated flows are often inaccurate,
and large-eddy simulation (LES) can require prohibitively small near-wall mesh sizes.
A deep learning (DL) closure model for LES is developed by introducing untrained neural
networks into the governing equations and training in situ for incompressible flows around
rectangular prisms at moderate Reynolds numbers. The DL-LES models are trained using
adjoint partial differential equation (PDE) optimization methods to match, as closely as
possible, direct numerical simulation (DNS) data. They are then evaluated out-of-sample
– for aspect ratios, Reynolds numbers and bluff-body geometries not included in the
training data – and compared with standard LES models. The DL-LES models outperform
these models and are able to achieve accurate LES predictions on a relatively coarse mesh
(downsampled from the DNS mesh by factors of four or eight in each Cartesian direction).
We study the accuracy of the DL-LES model for predicting the drag coefficient, near-wall
and far-field mean flow, and resolved Reynolds stress. A crucial challenge is that the
LES quantities of interest are the steady-state flow statistics; for example, a time-averaged
velocity component 〈ui〉(x) = limt→∞(1/t)

∫ t
0 ui(s, x) ds. Calculating the steady-state flow

statistics therefore requires simulating the DL-LES equations over a large number of flow
times through the domain. It is a non-trivial question whether an unsteady PDE model
with a functional form defined by a deep neural network can remain stable and accurate on
t ∈ [0, ∞), especially when trained over comparatively short time intervals. Our results
demonstrate that the DL-LES models are accurate and stable over long time horizons,
which enables the estimation of the steady-state mean velocity, fluctuations and drag
coefficient of turbulent flows around bluff bodies relevant to aerodynamics applications.
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1. Introduction

Large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) simulations
enable computationally tractable predictions by reducing the spatial and/or temporal
resolution of the flow field. This comes at the cost of significant physical approximations:
unclosed terms, representing the neglected scales, require modelling, which significantly
degrades predictive accuracy for realistic flight geometries and conditions. The NASA
2030 CFD Vision Report (Slotnick et al. 2014) highlights the inadequacy of RANS
predictions of separated flows, while explicitly modelled LES has its own disadvantages.
For example, Smagorinsky-type subgrid-scale (SGS) models (Smagorinsky 1963),
including the widely used dynamic models (Germano et al. 1991; Lilly 1992) have
been successful for free shear flows, but significant challenges remain for LES of
wall-bounded flows (Spalart & Venkatakrishnan 2016), wing geometries (Bose & Park
2018) and flow-separation predictions at high angles of attack (Kaltenbach & Choi
1995). Applications of LES to realistic geometries are further limited by prohibitively
small near-wall mesh sizes required for accuracy (Spalart & Venkatakrishnan 2016),
and full-scale modelling remains a heroic effort even with current supercomputing
capabilities (Goc et al. 2021). Therefore, it is critically important to develop accurate
closure models for LES to enable coarse-mesh simulations with comparable predictive
accuracy to high-fidelity LES and direct numerical simulation (DNS). Doing so will enable
faster, more aggressive design cycles and a higher degree of simulation-driven design
optimization.
As an initial step towards this goal, this article develops and evaluates deep

learning (DL) closure models for LES of incompressible flows around canonical bluff
bodies, including rectangular prisms, triangular prisms and cylinders. Our approach
models the unclosed LES terms using a deep neural network (DNN). The solution
to the LES partial differential equation (PDE) system then becomes a function of
the embedded DNN, which requires that the DNN parameters are selected such that
the LES prediction closely approximates the target data. Training therefore requires
optimizing over the LES PDEs, which is both mathematically and computationally
challenging. To address this, we derive and implement adjoint PDEs, which enable
efficient evaluation of the gradients with respect to the DNN parameters for large
datasets.
In contrast to this PDE-constrained optimization approach, the vast majority of

current DL closure methods for RANS and LES continue to rely primarily on a priori
optimization, which estimates the neural network parameters offline, without solving
the governing equations. These include works that have established fluids-motivated
DNN architectures for RANS (Ling, Jones & Templeton 2016a; Ling, Kurzawski &
Templeton 2016b) and LES (Beck, Flad & Munz 2019). The foundational challenges
and current approaches for a priori machine learning modelling of turbulence have been
summarized in recent review articles (Duraisamy, Iaccarino & Xiao 2019; Brunton, Noack
& Koumoutsakos 2020), although these articles do not extensively discuss adjoint-based
modelling.
In the a priori approach, standard supervised-learning methods are used to predict

the DNS-evaluated Reynolds stress/SGS stress using the a priori time-averaged/filtered
velocities (from DNS) as model inputs. The objective function for a priori training
is therefore decoupled from the RANS/LES PDE model, which hinders predictive
accuracy and even stability in a posteriori predictions (i.e. substituting the trained closure
model into RANS or LES calculations). Thus, the a priori optimization approach is
suboptimal for DL closure models for physics: for example, a neural network is trained
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with DNS variables as inputs but will receive RANS/LES variables during predictive
simulations.
Recent a priori applications of deep learning to LES include the three-dimensional

decaying isotropic turbulence simulations by Beck et al. (2019), who positioned their
analysis within the context of ‘optimal LES’ (Langford & Moser 1999). Their a posteriori
simulations had limited predictive accuracy and were not tested for generalization. Guan
et al. (2022) showed a method by which to extend a priori-trained DNN models to
higher Reynolds numbers via transfer learning, though extensions to three-dimensional
and anisotropic turbulence have not been shown.
For wall-bounded flows, near-wall modelling is necessary if wall-resolving grids are

to be avoided, with many methods relying on discrete wall models (Bose & Park 2018),
i.e. separate from the free stream turbulence models. Recently, Bae & Koumoutsakos
(2022) introduced a discrete wall-modelling approach using reinforcement learning.
Reinforcement learning is not a priori learning under our taxonomy, for it typically
approximates the flow dynamics using a DNN model, though model-free reinforcement
learning can also be used (Pino et al. 2023). Its main challenge is ensuring consistency
of the closure optimization problem, which depends on the fidelity of the ‘agent’ (often
a DNN model) to the physical dynamics (e.g. as represented by PDEs). Adjoint-based
methods utilize the PDEs directly during gradient calculations and therefore they do
not suffer this inconsistency challenge. Rather than develop discrete wall models, we
train unified free stream–wall models using adjoint-based training. This is a significant
challenge, for it requires a single model to flexibly account for highly varying unclosed
terms across different flow regions.
Adjoint-based turbulent modelling approaches have primarily centred on RANS,

with relatively few examples for LES. Parish & Duraisamy (2016) used adjoint-based
optimization to learn model-consistent turbulence closures for RANS, and the approach
was extended for complex geometries and pressure-data assimilation by He, Liu
& Gan (2018). Recently, Sirignano, MacArt & Spiliopoulos (2023) have shown
an application of adjoint-based deep learning to RANS wall modelling as well as
discussed the global convergence of adjoint-based deep learning methods. Adjoint
methods have also been applied to correct the eddy viscosity in linear-eddy-viscosity
RANS models (Brenner, Piroozmand & Jenny 2022). The use of adjoint methods
for data assimilation is well-established in other fields including aerodynamic shape
optimization (Jameson 2003) and numerical weather prediction (Rabier 2006), among
others.
Our adjoint-trained DL-LES approach has been previously implemented for decaying

isotropic turbulence (Sirignano, MacArt & Freund 2020) and turbulent jet flows (MacArt,
Sirignano & Freund 2021). Two new problems are considered in this paper. The
first is modelling near-wall turbulent flows, which is a central modelling challenge in
aerodynamics. The second is modelling the steady-state flow statistics of a turbulent flow.
Sirignano et al. (2020) and MacArt et al. (2021) only study the accuracy of DL-LES
models for transient flows over a short time span. In many applications (e.g. an airfoil
or wing), although the flow itself does not converge (it is unsteady), the flow statistics
– such as the drag coefficient, mean velocity and Reynolds stress averaged over time
t – do converge as t → ∞. These steady-state flow statistics evaluate the long-time,
average performance of an aerodynamic design and, therefore, their accurate prediction is
crucial.
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2. Governing equations, closure model and optimization scheme

We solve the incompressible Navier–Stokes equations,

∂ui
∂t

= − ∂p
∂xi

− ∂uiuj
∂xj

+ 1
Re

∂2ui
∂x2j

, x ∈ Ω,

0 = ∂uj
∂xj

, x ∈ Ω,

(2.1)

where Ω is the interior of the domain, x = (x1, x2, x3) is the Cartesian coordinate
system, u = (u1, u2, u3) is the velocity field, and p is the pressure field that satisfies
Neumann boundary conditions on all boundaries. For the current applications to flow
around bluff bodies, the velocity field satisfies standard no-slip boundary conditions
on the body, Dirichlet inlet boundary conditions ui = (1, 0, 0), and outflow boundary
conditions governed by a convection equation. For training, a Dirichlet outflow was set to
the constant unity inflow velocity, which is correct at infinite distance but introduces error
for finite domains; future research could improve our results by training over the DNS
convective outflow boundary condition or using DNS data for a time-varying Dirichlet
outflow condition. The spanwise direction (x3) has periodic boundary conditions, and
the transverse direction (x2) has slip-wall boundaries (Dirichlet u2 = 0 and homogeneous
Neumann conditions for u1 and u3).
Define an arbitrary filtered quantity φ̄(x, t) ≡ ∫

Ω
G(x − r)φ(r, t) dr, where G( y) is a

three-dimensional filter kernel. The filtered velocity ū satisfies the LES equations

∂ ūi
∂t

= − ∂ p̄
∂xi

− ∂ ūiūj
∂xj

+ 1
Re

∂2ūi
∂x2j

−
∂τ SGS

ij

∂xj
+ Γi,

0 = ∂ ūk
∂xk

.

(2.2)

The SGS stress τ SGS
ij ≡ uiuj − ūiūj is unclosed and cannot be evaluated using the resolved

flow state ū. Here Γ are additional unclosed terms produced by integration by parts at the
boundary of the bluff body (i.e. the pressure term will produce an extra unclosed term at
the boundary). In addition, if a non-uniform filter is used on non-uniform computational
meshes, then additional unclosed terms will arise due to the non-commutativity of filtering
with differentiation (Ghosal 1996); these will also be included in Γ . In our approach, we
model all unclosed terms −∂τ SGS

ij /∂xj + Γi using a DNN model h(ūx; θ), where ux = ∇u
is the velocity-gradient tensor and θ are model parameters. This leads to the DL-LES
equations

∂ ūi
∂t

= − ∂ p̄
∂xi

− ∂ ūiūj
∂xj

+ 1
Re

∂2ūi
∂x2j

− ∂hij
∂xj

(ūx; θ),

0 = ∂ ūk
∂xk

,

(2.3)

where the DL model for each velocity component takes the full filtered-velocity-gradient
tensor as its input.
Let ūθ be the solution to (2.3), where we explicitly denote the dependence on the

embedded DNN parameters θ . These must be selected such that the solution ūθ matches
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trusted data (high-fidelity numerical and/or experimental data) as closely as possible. For
example, the parameters could be selected to minimize the objective function

J(θ) = 1
2

∫ T

0

∫
Ω

∥∥ūθ (t, x) − ūDNS(t, x)
∥∥ d x dt, (2.4)

where ūDNS is the filtered DNS velocity field. The optimization problem (2.4) requires
optimizing over the system of nonlinear PDEs (2.3) which are a function of a
high-dimensional set of neural network parameters:

Parameters θ −→ Neural network h −→ Solve PDEs (2.3) for ūθ −→ J(θ). (2.5)

This is a computationally challenging optimization problem, for the neural network
parameters θ are high-dimensional. We derive and solve adjoint PDEs (§ 2.2) to enable
computationally efficient optimization of the DL-LES equations (2.3).
A non-uniform mesh is necessary for the numerical simulation of (2.3) for wall-bounded

flows. For our current application to bluff bodies, smaller mesh sizes are required
near the walls of the immersed body, while larger mesh sizes can be used farther
away where boundary-layer resolution is not required. Before deriving the adjoint
equations, we rewrite (2.3) on a non-uniform Cartesian mesh using a coordinate
transformation,

∂ ūi
∂t

= −ci(xi)
∂ p̄
∂xi

− cj(xj)
∂ ūiūj
∂xj

+ 1
Re

cj(xj)
∂

∂xj

[
cj(xj)

∂ ūi
∂xj

]
− cj(xj)

∂hij
∂xj

(c�ūx; θ),

0 = ck(xk)
∂ ūk
∂xk

,

(2.6)

where the non-uniform mesh is zj = gj(xj) with transformation cj = (∂gj/∂x(xj))−1.
In the spanwise direction, g3(x) = x, i.e. a uniform mesh is used. While subsequent
equations include the coordinate transformation for completeness, in principle any
discretization (e.g. finite differences, finite volumes or finite elements) could be used with
no fundamental changes to the optimization algorithm.

2.1. Deep learning closure model
The neural network h(z; θ) has the following architecture:

H1 = σ(W1z + b1),

H2 = σ(W2H1 + b2),

H3 = G1 	 H2 with G1 = σ(W5z + b5),

H4 = σ(W3H3 + b3),

H5 = G2 	 H4 with G2 = σ(W6z + b6),

h(z; θ) = W4H5 + b4,

(2.7)

where σ is a tanh() element-wise nonlinearity, 	 denotes element-wise multiplication,
and the parameters are θ = {W1,W2,W3,W4,W5,W6, b1, b2, b3, b4, b5, b6}. The layers
G1 and G2 are similar to the gates frequently used in recurrent network architectures such
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as long short-term memory and gated recurrent unit networks. These ‘gate layers’ increase
the nonlinearity of the model via the element-wise multiplication of two layers, which
can potentially be helpful for modelling highly nonlinear functions. The final machine
learning closure model hθ , which is used in the DL-LES equation (2.3), applies a series
of derivative operations on h(z; θ). Note that the closure model output h(z; θ) is a 3 × 3
stress tensor. The input z to h(z; θ) at an LES grid point (i, j, k) are the LES velocity
derivatives. Since the closure model inputs are the velocity derivatives, the DL-LES model
therefore has Galilean invariance (but not rotational invariance). Each layer has 50 hidden
units.
It is worthwhile noting that we use the same closure model h(z; θ) over all regions

in the flow, in particular both near-wall mesh points and far-from-the-wall mesh points.
The model is therefore optimized over the entire flow and must learn multiple types of
flow behaviours in different regions using a single set of parameters θ .

2.2. Optimization of the closure model
We train closure models by optimizing over (2.6) for a large number of short-time
intervals (τ = 0.1 time units). Parameters are updated using a gradient descent algorithm
(RMSprop). The gradients are efficiently evaluated using the adjoint PDEs of (2.6), which
we describe subsequently. In summary, the training algorithm is as follows.

(i) Select training time intervals [tn, tn + τ ], n = 1, . . . ,N, for N total samples.
(ii) Initialize the DL-LES solution with the filtered DNS solution at times tn, n =

1, . . . ,N.
(iii) Solve the DL-LES equations in parallel for each sample n = 1, . . . ,N.
(iv) Construct the objective function by summing over the N samples,

J(θ) =
N∑

n=1

∫
Ω

∥∥ūθ (tn + τ, x) − ūDNS(tn + τ, x)
∥∥ dx. (2.8)

(v) Solve the N adjoint PDEs in parallel to obtain gradients of the objective function
∇θJ(θ).

(vi) Update the parameters θ using the RMSprop algorithm.

We efficiently evaluate the gradient of J with respect to the high-dimensional parameters
θ by solving adjoint PDEs on [tn, tn + τ ]:

−∂ ûi
∂t

= − ∂

∂xi
[cip̂] + ūj

∂

∂xj
[cjûi] + ūj

∂

∂xi
[ciûj] + 1

Re
∂

∂xj

[
cj

∂

∂xj
[ûicj]

]

+ ∂

∂xm

[
cmûkcj

∂2hkj
∂xj∂zmi

(c�ūx; θ)

]
,

0 = ∂

∂xk
[ckûk],

(2.9)

where zmi = ∂ ūi/∂xm, and ûi(tn + τ, x) = ∇ui
∥∥ū(tn + τ, x) − ūDNS(tn + τ, x)

∥∥ is the final
condition from which the solution for û begins. Boundary conditions û = 0 are imposed
on the bluff body and at the inlet. In the transverse direction, û2 = 0 is imposed at
the boundaries. To simplify computational implementation for the training algorithm, a
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constant Dirichlet boundary condition is imposed at the exit, which leads to û = 0 at
the outflow boundary. Assuming ∂cj/∂xj = 0 at x1 = {0, L1} and x2 = {−L2/2, L2/2}, û2
and û3 satisfy Neumann boundary conditions at x2 = {−L2/2, L2/2}. The adjoint pressure
field p̂ satisfies Neumann boundary conditions. We assume that the solutions to (2.6) and
(2.9), and their derivatives, are periodic in x3. Then, by multiplying (2.6) by the adjoint
variables and using integration by parts, we obtain the gradient of the loss function∇θJ(θ)

that satisfies

∇θJ(θ) =
3∑

i,j=1

∫ T

0

∫
Ω

ûicj
∂2hij
∂xj∂θ

(c�ūx; θ) dx dt, (2.10)

from which ∇θJ(θ) is evaluated using the adjoint solution. Doing so enables fast,
computationally efficient training of the DL-LES model, since the adjoint equation has the
same number of equations (three momentum and one continuity equation) as the original
Navier–Stokes system, no matter the dimension of the parameter space θ .
The adjoint variable ûi(x) can be viewed as the sensitivity of the objective function

to a change in the solution ui(x) at spatial location x. Adjoint optimization therefore
naturally focuses the optimization of the closure model on the spatial regions which will
produce the largest decrease in the objective function. It is possible – since the DL-LES
model is highly non-convex – that the gradient descent optimization will converge to a
suboptimal local minimizer or train very slowly due to the parameter gradient (which is an
integral over the entire domain of the adjoint variables multiplied by the neural network
gradients) vanishing/becoming very small. We have recently studied the convergence of
neural network-PDE models (Sirignano et al. 2023), where global convergence is proven
(as the number of neural network hidden units → ∞ and training time t → ∞) for adjoint
optimization when the PDE operator is linear. It remains an open problem to extend these
results to PDEs with nonlinear operators.
The training algorithm optimizes the DL-LES system to match the evolution of the

filtered DNS velocity over short time intervals τ . Our ultimate goal of course is simulations
of the DL-LES equations over many flow times, for example, to estimate time-averaged
statistics including the drag coefficient, mean velocity and resolved Reynolds stress. In
our a posteriori simulations to evaluate the model (§ 3), we test whether learning the
short-term evolution can produce accurate long-run simulations for the time-averaged
statistics.
Since the DL-LES model has been trained on DNS data for relatively short-time

intervals (only a fraction of the mean-flow time scale), a fundamental question is whether
it will generate accurate estimates for the steady-state flow statistics. The DL-LES model
does not exactly reproduce the DNS evolution even on these short-time intervals; there
is some error. The error is a complex function of the Navier–Stokes equations and the
nonlinear, non-convex machine learning closure model. When simulated on t ∈ [0, ∞)

(i.e. for a large number of flow times), there is no guarantee that this error does not
accumulate in highly nonlinear ways (due to the Navier–Stokes equations), leading to
inaccurate long-time predictions or even instability. Another way to view this question
is that, by introducing a machine learning model, we have now developed a ‘machine
learning PDE’ that is nontrivially different from the Navier–Stokes equations. There is no
a priori guarantee that such a PDE is stable as t → ∞. An important result of this paper
is that DL-LES models can yield stable, accurate Navier–Stokes solutions on t ∈ [0, ∞)

(§ 3).
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Case Identifier N1, N2, N3 L1, L2, L3 H0, L0 AR Re0 tf − ts min y+

(i) AR1 Re0 = 1000 512, 256, 64 20, 12, 4 1, 1 1 1000 427 2.15
(ii) AR2 Re0 = 1000 512, 256, 64 20, 12, 4 1, 2 2 1000 77.0 1.77
(iii) AR2 Re0 = 2000 1024, 512, 128 20, 12, 4 1, 2 2 2000 96.5 2.18
(iv) AR4 Re0 = 1000 512, 256, 64 20, 12, 4 1, 4 4 1000 194 1.71

Table 1. The DNS configuration parameters. All units are dimensionless.
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Figure 1. (a) Schematic of the wake problem geometry. (b) Instantaneous x1–x2 snapshot of the
dimensionless velocity magnitude for case (i).

2.3. Multi-GPU accelerated, PDE-constrained optimization
Despite its efficiency in evaluating loss-function gradients, the training algorithm in
§ 2.2 still requires the solution of the LES and adjoint equations for many optimization
iterations, which is computationally intensive. Furthermore, solving the DL-LES PDEs
requires evaluating a neural network at each mesh point and every time step. We vectorize
these computations using graphics processing units (GPUs). Each GPU simultaneously
solves multiple DL-LES forward and adjoint equations by representing a PDE solution as
a 4 × N1 × N2 × N3 × M tensor, where (N1,N2,N3) are the number of mesh cells in the
(x1, x2, x3)-directions, and M is the number of independent, simultaneous simulations.
The overall training is distributed across tens to hundreds of GPUs by parallelizing
along M. Model parameters are updated using synchronized distributed gradient descent
(RMSprop), in which the communication between GPUs is implemented using the
message passing interface.

3. Numerical experiments

3.1. Direct numerical simulations
Data for model training and evaluation is obtained using DNS. Four configurations of
rectangular prisms in a confined cross-flow are simulated for different blockage aspect
ratios AR = L0/H0 and bulk Reynolds numbers Re0 = ρu∞H0/μ, where ρ = 1 is the
constant density, u∞ = 1 is the uniform free stream velocity, H0 = 1 is the blockage
height (fixed for all cases), and μ is the dynamic viscosity. The blockage length L0 is
varied to generate distinct geometries. Mesh sizes, dimensions, aspect ratios and bulk
Reynolds numbers are listed in table 1. A schematic of the computational domain is shown
in figure 1.
For both DNS and LES, the dimensionless Navier–Stokes equations are solved

in the incompressible limit using second-order centred differences on a staggered
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mesh (Harlow & Welch 1965), and the continuity condition is enforced using a
fractional-step method (Kim & Moin 1985). Two distinct solvers are used. The DNS
and comparison-LES (i.e. non-DL) solver uses linearized-trapezoid time advancement in
an alternating-direction implicit framework (Desjardins et al. 2008; MacArt & Mueller
2016) and computes derivatives using non-uniformly weighted central differences. The
DL-LES models are trained and evaluated using a standalone, Python-native solver
with fourth-order Runge–Kutta time advancement and coordinate transforms calculated
via statistical interpolation from the LES mesh (using the Scipy package’s smooth
spline approximation). In § 6, the trained DL-LES models are implemented in the
DNS/comparison-LES solver, and the impact of its slightly ‘out-of-sample’ numerics is
evaluated. The time step 
t is fixed with steady-state Courant–Friedrichs–Lewy numbers
of approximately 0.4 for all cases.
The rectilinear mesh is non-uniform in x1–x2 planes, with local refinement within the

blockage boundary layers, and uniform in the x3 direction. The refinement uses piecewise
hyperbolic tangent functions in three regions (upstream, downstream and along the bluff
body), with stretching factors s1 = 1.8 along the bluff body and s2 = 1.1 in the far-field
regions. The x3 mesh is uniform. The minimum DNS boundary layer mesh spacings, in
wall units, are listed in table 1.
At the inflow boundary (−x1), Dirichlet conditions prescribe the uniform free stream

velocity profile. The streamwise (±x2) boundaries are slip walls, and a convective outflow
is imposed at the +x1 boundary. The cross-stream (x3) direction is periodic.
Flow statistics are obtained by averaging in the cross-stream (x3) direction and time,

〈φ〉(x1, x2) = 1
L3(tf − ts)

∫ L3/2

−L3/2

∫ tf

ts
φ(x1, x2, x3, t) dt d x3, (3.1)

where ts and tf are the start and end times for averaging, respectively. The DNS
calculations were advanced to steady state before recording statistics; the minimum time
to steady state was ts = 41.5 dimensionless units (AR2 Re0 = 2000), and the maximum to
steady state was ts = 393 units (AR1 Re0 = 1000). The minimum DNS recording window
was tf − ts = 77 time units (AR2 Re0 = 1000), and the maximum was tf − ts = 427
time units (AR1 Re0 = 1000). The recording window for each case is listed in table 1.
Spectra for the DNS lift coefficients have a minimum of two wavenumber decades below
the shedding frequency for each case, indicating that the long-time vortex dynamics are
sufficiently well represented in the statistics.
Instantaneous DNS fields ui(x, t) were postprocessed to obtain filtered fields ūi(x, t),

ūi(x, t) =
∫

Ω

G(x′, x)ui(x − x′, t) d x′, (3.2)

where G(x′, x) is a box filter kernel with unit support within a Δ̄
3 cube centred on x

(Clark, Ferziger & Reynolds 1979). The DNS cases were filtered with local coarsening
ratios Δ̄/ΔDNS = 4 (cases i, ii, iv) or 8 (case iii), where Δ̄ is the local LES mesh spacing
and ΔDNS is the local DNS mesh spacing, such that a constant filtering ratio Δ̄/ΔDNS

was maintained throughout the non-uniform computational mesh. One-sided filter kernels
were applied near wall boundaries. All filtering was performed in the physical space. The
resulting filtered fields were then downsampled by the same filter-to-DNS mesh ratios to
obtain coarse-grained fields, representative of implicitly filtered LES solutions.
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3.2. A posteriori LES
A posteriori LES calculations were initiated by restarting from filtered, downsampled
DNS fields and were allowed to advance for several thousand time units before recording
statistics. These calculations use grids coarsened by the same constant factors as the
filtered, downsampled DNS fields, which is consistent with the common practice of
implicitly filtered LES. The LES calculations therefore use 1/64 (Δ̄/ΔDNS = 4) or 1/512
(Δ̄/ΔDNS = 8) the mesh points of the corresponding DNS calculations.
Comparison LES solutions were calculated for an implicit model (‘no-model LES’) and

two eddy-viscosity models: the dynamic Smagorinsky (DS) model (Germano et al. 1991;
Lilly 1992) and the anisotropic minimum dissipation (AMD) model (Rozema et al. 2015).
Both model the SGS stress as

τ SGS
ij = −2νtS̄ij + 1

3τ
SGS
kk δij, (3.3)

where νt is the eddy viscosity to be computed, S̄ij = (∂ ūi/∂xj + ∂ ūj/∂xi)/2 is the
filtered strain-rate tensor, and δij is the Kronecker delta function. In incompressible
solvers, the isotropic component is typically not modelled and is combined with the
pressure-projection step. The Smagorinsky model (Smagorinsky 1963) closes the SGS
stress as

τ SGS
ij,DS ≈ −2(CSΔ̄)2|S̄|S̄ij, (3.4)

where |S̄| is the strain-rate magnitude, and the dynamic approach evaluates the coefficient
CS using test filtering, least-squares solution and averaging across homogeneous
directions. Our implementation uses the standard approach; for full details, the reader is
referred to Germano et al. (1991) and Lilly (1992). The AMD model closes the SGS stress
using (3.3) with the eddy viscosity evaluated as

νt,AMD = CAMD

max
[
−

(
Δ̄k

∂ ūi
∂xk

) (
Δ̄k

∂ ūj
∂xk

)
S̄ij, 0

]
∂ ūm
∂xl

∂ ūm
∂xl

, (3.5)

where Δ̄k are the directional non-uniformmesh spacings andCAMD = 0.3 for second-order
central discretizations (Rozema et al. 2015). The AMD model is known to outperform the
DS model on highly anisotropic meshes (Zahiri & Roohi 2019), as is the case here.

3.3. Deep learning model training and validation
Two DL-LES models are trained: one for case (i) and one for case (iii); these are denoted
‘DL-AR1’ and ‘DL-AR2’, respectively. Note that these training cases have different
Reynolds numbers. Models are trained for a single configuration and tested in a posteriori
LES on all configurations. The three out-of-sample configurations for each trained model
have new physical characteristics (either AR or Re0) for which the model has not been
trained. The out-of-sample configurations are test/validation cases for the model. For
example, one model is trained on data from case (iii) and then tested on cases (i), (ii),
(iii) and (iv). Cases (i), (ii) and (iv) would then be completely out-of-sample. Case (iii)
would be ‘quasi-out-of-sample’ in that the model has been trained on data from (iii) but
only on short time intervals (see § 2.2) and is then simulated for (iii) over many flow times.
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Model

Case Identifier f-DNS NM DS AMD DL-AR1 DL-AR2

(i) AR1 Re0 = 1000 2.45 1.88 2.15 2.53 2.43 2.51
(ii) AR2 Re0 = 1000 1.94 1.61 1.65 1.96 1.90 1.95
(iii) AR2 Re0 = 2000 2.09 1.62 1.68 1.89 1.84 1.96
(iv) AR4 Re0 = 1000 1.61 1.53 1.54 1.67 1.54 1.61

Table 2. Drag coefficients cd evaluated from filtered DNS (f-DNS) and LES with different models:
no-model (NM); dynamic Smagorinky (DS); anisotropic minimum dissipation (AMD); and deep learning (DL)
models trained for cases (i) and (iii).

4. Mean-flow results

4.1. Drag coefficient
The predicted drag coefficients for the two DL-LES models and three comparison models,
for each test case, are reported in table 2. Compared with the filtered DNS data, the deep
learning models consistently perform as well or better than the dynamic Smagorinsky and
AMD models. (No significant difference was observed between the DNS-evaluated and
filtered-DNS-evaluated drag coefficients.) The AMD model is the most accurate of the
non-DL models, though in all cases it is outperformed by the in-sample or nearest DL
model. For example, for case (iv), the DL-AR2 model outperforms the DL-AR1 model,
likely due to the higher degree of geometric similarity of the former to the AR4 bluff
body. The implicitly modelled LES underperforms the learned models in all cases. The
outperformance of DL-LES for predicting the drag coefficient is a direct consequence of
its improved accuracy for modelling the mean velocity and Reynolds stress. Section 4.2
evaluates the DL-LES models’ accuracy for these statistics.

4.2. Mean-flow accuracy
The DNS- and LES-evaluated flow streamlines are shown in figures 2, 3, 4 and 5 for
cases (i), (ii), (iii) and (iv). The LES-predicted streamlines are shown in colours; the
no-model and dynamic Smagorinsky LES are combined on one plot.
The DL-AR1 model is in-sample for the AR1, Re0 = 1000 case (figure 2), and produces

the overall best a posteriori LES prediction. The implicitly modelled LES underpredicts
the upper separation region and overpredicts the extent of the wake recirculation, while
the opposite is true for the dynamic Smagorinsky- and AMD-modelled LES. The two DL
models qualitatively match the DNS recirculation regions, with the DL-AR1 (in-sample)
being visually more accurate.
For the AR2, Re0 = 1000 case (figure 3), the no-model and dynamic Smagorinsky LES

both underpredict the extent of the upper separation region and overpredict that of the wake
recirculation. The AMD model better predicts the upper separation but still overpredicts
the wake recirculation. The DL-AR1 model is visually more accurate than the DL-AR2
model in this case despite its geometric similarity to the latter. This is likely due to the fact
that the DL-AR1 model was trained for Re0 = 1000, while the DL-AR2 model was trained
for Re0 = 2000. Both DL models are out-of-sample for this case, which highlights the DL
models’ ability to generalize within small neighbourhoods of the training geometry and
Reynolds number while remaining more accurate than the comparison models.
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Figure 2. AR1, Re0 = 1000 (i): streamlines of the mean flow field (DNS, black lines; LES, coloured lines).
This case is in-sample for the DL-AR1 model. The flow is averaged across the centreline y = 0.

1

0

1

0

1

0

1

0
–1 0 1 2 3 –1 0 1 2 3

–1 0 1 2 3 –1 0 1 2 3

x/H0

y/
H

0
y/

H
0

x/H0

No model Dynamic Smagorinsky

DL-AR1 DL-AR2

AMD

(a) (b)

(c) (d )

Figure 3. AR2, Re0 = 1000 (ii): streamlines of the mean flow field (DNS, black lines; LES, coloured lines).
This case is out-of-sample for all models. The flow is averaged across the centreline y = 0.

Increasing the Reynolds number in the AR2, Re0 = 2000 case (figure 4) significantly
worsens the no-model prediction and slightly improves the dynamic Smagorinsky and
AMD results. The DL-AR2 model, in-sample for this case, is more accurate than the
DL-AR1 model (trained for the lower Re0 = 1000) and each of the comparison models.
The AR4, Re0 = 1000 case (figure 5) is out-of-sample for both DL models, which both

significantly outperform the no-model and dynamic Smagorinsky LES. In particular, the
DL-AR1 model almost perfectly matches both recirculation regions. One would expect the
DL-AR2 model to outperform the DL-AR1 model (due to the greater geometric similarity
of the former to the AR4 test case), though the opposite is observed. One possibility is a
greater influence of the Reynolds number on model accuracy than the blockage geometry.
Both DL models are comparably accurate with the AMD model for this case, though the
DL-AR2 model more accurately predicts the drag coefficient (table 2) than the AMD
model.
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Figure 4. AR2, Re0 = 2000 (iii): streamlines of the mean flow field (DNS, black lines; LES, coloured lines).
This case is in-sample for the DL-AR2 model. The flow is averaged across the centreline y = 0.
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Figure 5. AR4, Re0 = 1000 (iv): streamlines of the mean flow field (DNS, black lines; LES: coloured lines).
This case is out-of-sample for all models. The flow is averaged across the centreline y = 0.

Contour plots in figures 6 and 7 visualize the LES models’ domain accuracy for the
AR2 Re0 = 1000 case (ii). At each mesh node, the LES-evaluated mean flow 〈ūi〉, RMS
velocity 〈ū′′

i 〉 and shear component of the resolved Reynolds stress τRij ≡ 〈ūiūj〉 − 〈ūi〉〈ūj〉
are compared with the corresponding filtered-DNS fields using the �1 error

�1,φ = ∣∣〈φLES〉 − 〈φDNS〉∣∣ (4.1)

for a flow statistic φ. Compared with the benchmark LES models, the DL-LES
models consistently reduce the prediction error for the mean-flow and RMS statistics.
The DL-LES models achieve particular accuracy improvements near the walls of the
rectangular prism; this leads directly to higher accuracy in computing the drag coefficient.
Figures 8 and 9 show scatter plots of the LES-predicted fields versus the filtered

DNS fields for cases (i) and (iv), respectively. The scatter plots provide a compact
representation of the accuracy of the LES calculations across the simulation domain. The
1 : 1 line represents predictions with 100% accuracy relative to the filtered-DNS fields.
The DL-LES models consistently outperform the benchmark LES models, and in several
cases, the DL-LES models dramatically improve the predictive accuracy.
Regions of severely outlying points are visible in the resolved Reynolds for the

no-model and dynamic Smagorinsky LES. These points are confined to the boundary-layer
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Figure 6. The �1 error for the streamwise and cross-stream mean velocity components (a,b) and the shear
component of the resolved Reynolds stress (c) for the AR2 Re0 = 1000 configuration (ii).
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Figure 7. The �1 error for the resolved velocity fluctuations for the AR2 Re0 = 1000 configuration (ii).

regions, where the filtered-DNS statistics approach zero but the no-model and dynamic
Smagorinsky LES are incorrectly large. The AMD model improves the near-wall
predictions, though it still exhibits larger variance about the 1 : 1 line for τR11 and τR22 than
the DL-LESmodels. For all cases and all statistics, the DL-LES results more closely match
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Figure 8. AR1 Re0 = 1000 (i): comparison of averaged a posteriori LES fields with a priori filtered DNS
fields for (a) 〈ū1〉, (b) 〈ū2〉, (c) τR12, (d) τR11, (e) τR22 and ( f ) τR33 (black lines indicate 1 : 1).
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Figure 9. AR4 Re0 = 1000 (iv): comparison of averaged a posteriori LES fields with a priori filtered DNS
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the filtered-DNS-evaluated statistics than the no-model, dynamic Smagorinsky and AMD
LES.

4.3. Near-wall accuracy
Comparing the DNS- and LES-predicted flow fields close to the bluff-body
walls is instructive to understand the performance of the trained DL-LES models
within boundary-layer regions. With the mean shear stress at the wall computed
as τ12(x1, ±H0/2) = ρν(∂〈ū1〉(x1, ±H0/2)/∂x2), the wall shear stress is τw(x1) =
(τ12(x1,H0/2) − τ12(x1, −H0/2))/2, the friction velocity is uτ = √

τw/ρ, and the viscous
length scale is δv = ν/uτ . The flow near the wall is presented in wall units, y+ = x2/δv ,
and the corresponding normalized, averaged, filtered velocity components are 〈ūi〉+ =
〈ūi〉/uτ .
Figure 10 plots the DNS- and LES-evaluated mean streamwise and cross-stream velocity

components in wall units. In the figures, the velocity components are offset on the
abscissas to show several streamwise locations, and all data are averaged about the domain
centreline, accounting for the sign change in the mean cross-stream velocity. The LES
and DNS data are reported on the respective coarse LES and fine DNS meshes, which
illustrates the reduction in near-wall resolution inherent to the testing LES cases: for most
cases and streamwise locations, the LES mesh does not resolve within y+ = 10. Wall
models were not employed in any of the LES calculations.
For most cases, the DL-LES models generally slightly outperform the AMD model and

dramatically outperform the dynamic Smagorinsky model and implicitly modelled LES.
For the AR1, Re0 = 1000 cross-stream velocity, only the in-sample trained DL-AR1model
captures the sign reversal near x1 = 0, which directly affects the shape of the predicted
separation bubble (figure 2). For AR2, Re0 = 2000 case, the in-sample DL-AR2 model
likewise best predicts the cross-stream velocity field at all streamwise locations, and the
AMD model is not more accurate than the dynamic Smagorinsky and implicitly modelled
LES. The DL-LES models are also robust to every out-of-sample case, for which they
outperform the dynamic Smagorinsky and implicitly modelled LES and are competitive
to the in-sample DL-LES models.

5. Adjoint-based optimization versus a priori optimization

We also numerically compare our adjoint-optimization approach with a priori
optimization. The latter has been widely used in fluid dynamics. A priori optimization
does not optimize over the LES equations but instead calibrates neural-network parameters
offline: it uses standard supervised-learning methods to predict the DNS-evaluated SGS
stress (Reynolds stress) using the a priori filtered (averaged) DNS velocities as model
inputs. The objective function for a priori training is therefore decoupled from the
RANS/LES PDE model, which can reduce predictive accuracy and even cause instability
in a posteriori predictions (i.e. substituting the trained closure model into a LES or
RANS calculation) (Sirignano et al. 2020; MacArt et al. 2021). A priori optimization does
not optimize over the predictive model (the LES equations) but instead over a different
objective function that might not be well aligned with the true objective function (the
predictive accuracy of the LES equations). For example, an a priori-trained neural network
will receive DNS variables as inputs during optimization but will receive LES/RANS
variables during simulations.
Instead, the adjoint-based approach optimizes over the a posteriori LES calculation,

which is the ‘true’ predictive model, in the sense that the overall predictive accuracy of
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Figure 10. Near-wall streamwise (a,c,e,g) and cross-stream (b,d, f,h) mean velocity profiles in wall units.
Vertical dashed lines indicate x1 locations. Reference DNS data are plotted on the fine DNS meshes. All lines
start at the first mesh node away from the wall.

966 A26-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.446


J. Sirignano and J.F. MacArt

0

0

0.05

0.10

0.15

0.20

0.25

0.05 0.10 0.15 0.20 0.25

τij      DNSSGS

τ ij 
   

  
A-

pr
io

ri
 n

eu
ra

l 
n
et

w
o
rk

S
G

S

τ11
SGS

τ22
SGS

τ12
SGS

τ33
SGS

Figure 11. A priori-learned τ SGS
ij (AR1 Re0 = 1000) compared with the target DNS values used for training.

Values are averaged over the spanwise (x3) direction and time.

LES (not merely the SGS stress) is desired. Unlike a priori optimization, the objective
function for the adjoint-based approach is entirely consistent with the predictive model. In
practice, the adjoint-based approach has been consistently found to outperform offline
training in numerical simulations (Sirignano et al. 2020; MacArt et al. 2021). The
present numerical comparison between the two optimization approaches reaches a similar
conclusion.
We train a neural network closure model using a priori optimization on the filtered

DNS data for the AR1 Re0 = 1000 case. The a priori-trained closure model has identical
architecture and hyperparameters as the neural network used for adjoint-trained DL-LES
models (§ 2.1). Figure 11 illustrates the accuracy of the a priori-trained model outputs
versus the ‘exact’, DNS-evaluated SGS stress components. The modelled SGS stress
aligns almost perfectly with the DNS SGS stress, indicating that the a priori model
has been sufficiently trained. It should be noted that figure 11 displays the output of
the closure model evaluated on the filtered DNS (i.e. it shows a priori results). As we
demonstrate subsequently, the a priori-trained closure model produces less-accurate a
posteriori predictions than the adjoint-trained DL-LES model.
Once trained, the a priori-neural network closure model is substituted into the LES

equations and simulated a posteriori. Figure 12 compares the a posteriori LES mean flow
and variance terms using the two models for the AR1 Re0 = 1000 configuration (in-sample
only). For all flow statistics, the adjoint-trained DL-LESmodel – which has been trained by
optimizing over the entire LES equations – substantially outperforms the a priori-trained
model, even for this in-sample test.

6. Out-of-sample geometries

While the slight geometric differences considered in §§ 3 and 4 are useful for comparing
LES models’ relative performance, true utility requires trained models to maintain
accuracy (generalize) to significantly different geometries. The models trained for
rectangular prisms are now tested for two completely out-of-sample geometries: an
equilateral triangular prism and a cylinder, both for bulk Reynolds number Re0 = 1000
and characteristic height (diameter) H0 = 1. All a posteriori LES calculations for these
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′′〉

τR
12

y/
H

0
y/

H
0

x/H0 x/H0

Figure 12. Comparison of a priori DL to adjoint-based DL: �1 error of the streamwise and cross-stream mean
velocity components, shear component of the resolved Reynolds stress, and resolved velocity fluctuations.
Shown for the AR1 Re0 = 1000 configuration (i).
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Figure 13. Equilateral triangular prism, Re0 = 1000: streamlines of the average flow field (DNS, black lines;
LES, coloured lines). This case is out-of-sample for all models.

geometries – including the DL-LES predictions – use the DNS/comparison-LES flow
solver, which has overall similar numerical methods to the DL-LES model-training solver
but (a) uses semi-implicit time advancement and (b) does not use the same coordinate
transformation-based discretization. The triangle and cylinder tests therefore pose the
additional challenge of evaluating the trained DL-LES models in an out-of-sample
numerical solver.
Streamlines for LES using the trained models and comparison models are shown for

the triangular prism in figure 13 and the cylinder in figure 14. For the triangular prism,
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Figure 14. Cylinder, Re0 = 1000: streamlines of the average flow field (DNS, black lines; LES, coloured
lines). This case is out-of-sample for all models.
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Figure 15. Comparison of a posteriori LES calculations for the AR2, Re0 = 1000 case computed using (a) the
model-training flow solver (DL-AR2) and (b) the DNS/comparison-LES flow solver (NGA-DL-AR2). Both use
the AR2, Re0 = 2000-trained DL-LES model. The DNS solution is shown in black lines.

the AMD model is least accurate, the DL-AR1 model is comparably accurate with the
no-model and dynamic-Smagorinsky LES, and the DL-AR2 model is highly accurate,
nearly matching the DNS streamlines. For the cylinder, the DL-AR1 and DL-AR2 models
both suppress all artificial primary recirculation, which is correct compared with the DNS,
while the implicitly modelled LES and AMD model incorrectly predict two recirculation
regions. The extent of the separation bubble is also more correctly predicted by the
DL-LES models than any of the comparison models.
Figure 15 compares a posteriori LES results of the two flow solvers (the DL-LES

model-training solver versus the DNS/comparison-LES solver) for the AR2, Re0 =
1000 rectangular prism using the AR2, Re0 = 2000-trained DL-LES model, which is
out-of-sample for this case. The two LES solvers produce similar predictions in the
primary separation region, matching the DNS. In the wake region, the comparison-LES
solver is less accurate than the model-training solver, as could be anticipated due to its
numerical differences, though the accuracy difference is smaller than that between the
DL-LES and comparison-LES models (figures 3, 6 and 7).
A major concern in using deep learning for computational physics is that trained models

will not generalize well to out-of-sample geometries. This result is therefore significant,
for it gives hope that adjoint-trained models for realistic aerodynamic geometries could
be successfully applied to substantially different geometries. A further concern with
adjoint-based optimization in particular that the method will overfit, in a sense, to the
numerical methods used for training. The fact that the trained DL-LES models are at
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least stable, and in some cases accurate, indicates a robustness to out-of-sample numerical
methods. Of course, this generalizability can be expected to degrade for far out-of-sample
methods (e.g. finite elements instead of finite differences), though this remains to be tested.

7. Conclusion

Fully resolved calculations of wall-bounded flows can be computationally prohibitive
due to the extremely small mesh sizes needed to adequately resolve boundary-layer
turbulence. A deep learning closure model for LES of wall-bounded flows was developed
and demonstrated for turbulent flows around rectangular prisms of different aspect ratios
and Reynolds numbers, as well as out-of-sample equilateral triangular prism and cylinder
geometries.
Two DL-LES models were trained using adjoint-based, PDE-constrained optimization

methods. These optimize over the entire PDE solution to select the closure-model
parameters, which ensures consistency of the closure model with the PDE. The current
work used deep neural networks, though in practice any multiparametric closure model
(including, for example, traditional one- or two-equation closures) could be substituted.
In a posteriori predictions, the DL-LES models were significantly more accurate than

the commonly used dynamic Smagorinsky model, and implicitly modelled LES, yielding
better predictions for the drag coefficient, mean velocity, RMS velocity, resolved Reynolds
stress for Reynolds numbers and prism aspect ratios not seen in training. Compared with
the recent AMD model, the DL-LES models are generally more accurate for mean-flow
predictions, including near bluff-body walls, even for out-of-sample aspect ratios and
geometries, though the DL-LES and AMD models had similar error for the RMS velocity
components.
Our results indicate that deep learning closure models have the potential to improve the

accuracy of LES calculations for out-of-sample aerodynamic shapes, particularly when
optimization is done over the flow PDEs, which results in long-time stable predictive
calculations that are not necessarily guaranteed by a priori optimization.
Another challenge that should be addressed in future research is to increase the

symmetry of DL-LES simulations, for example, by leveraging tensor basis neural networks
(TBNNs) and rotationally invariant model inputs. Model generalization to more complex
flow geometries, including airfoils at stall conditions, is being pursued.
Our training method (adjoint equations and gradient descent) could also be used to train

an LES closure model for an unstructured-mesh simulation. The optimization method in
§ 2 is presented for a Cartesian mesh with coordinate transforms, though in principle any
semidiscretization – including unstructured finite-volume or finite-element discretizations
– could be used without fundamental changes to the algorithm.
Finally, it should be noted that only low Reynolds numbers were used for training and

testing. Extensions to flight-relevant Reynolds numbers will be crucial, though they will
come of course at high computational expense. We note that preliminary tests of the
present Re0 = 1000 and Re0 = 2000-trained models to a Re0 = 12 000 wake flow are
stable and, in some cases, accurate, though a full exploration of this and extensions to
high-Reynolds-number experimental data are left for future work.
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under award CBET-22-15472. This research used resources of the Oak Ridge Leadership Computing Facility,
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