Towards Usable Scoring of Common Weaknesses

Olutola Adebiyi®®* and Massimiliano Albanese

b

Center for Secure Information Systems, George Mason University, Fairfax, U.S.A.
oadebiy @ gmu.edu, malbanese @ gmu.edu

Keywords:

Abstract:

Vulnerability Scanning, Security Metrics, Software Weaknesses.

As the number and severity of security incidents continue to increase, remediating vulnerabilities and weak-

nesses has become a daunting task due to the sheer number of known vulnerabilities. Different scoring systems
have been developed to provide qualitative and quantitative assessments of the severity of common vulnerabili-
ties and weaknesses, and guide the prioritization of vulnerability remediation. However, these scoring systems
provide only generic rankings of common weaknesses, which do not consider the specific vulnerabilities that
exist in each system. To address this limitation, and building on recent principled approaches to vulnerabil-
ity scoring, we propose new common weakness scoring metrics that consider the findings of vulnerability
scanners, including the number of instances of each vulnerability across a system, and enable system-specific
rankings that can provide actionable intelligence to security administrators. We built a small testbed to evalu-
ate the proposed metrics against an existing metric, and show that the results are consistent with our intuition.

1 INTRODUCTION

The increasing volume of common vulnerabilities and
exposures entries published yearly can hinder secu-
rity administrators from quickly prioritizing those that
pose the highest risk to their organization. Sev-
eral efforts have been made by different organi-
zations, including NIST (Mell et al., 2006) and
MITRE (Christey, 2008), to define metrics for scor-
ing vulnerabilities and helping administrators make
informed decisions about vulnerability prioritization,
remediation, and mitigation. However, organizations
still struggle to properly quantify and prioritize their
vulnerabilities because of the many factors they need
to consider. Additionally, available tools and scoring
systems rely on predefined notions of risk and impact
and use predefined equations to capture the primary
characteristics of a vulnerability, giving administra-
tors very little flexibility.

The first step in vulnerability management is to
understand which types of vulnerabilities are the most
critical for the security of an organization. MITRE’s
Common Weakness and Enumeration (CWE) pro-
vides a way to abstract software-specific flaws into
broader classes of vulnerabilities, referred to as weak-
nesses, and rank these classes of vulnerabilities by
their aggregate severity. Rankings of software weak-

https://orcid.org/0000-0002-3207-5096
5@ nttps://orcid.org/0000-0002-2675-5810

Adebiyi, O. and Albanese, M.
Towards Usable Scoring of Common Weaknesses.

nesses are published yearly by MITRE and OWASP,
but these rankings do not effectively assist administra-
tors in prioritizing remediation efforts, as many of the
vulnerabilities mapped to the top-ranking weaknesses
may not exist in their own system.

Many organizations also run periodic vulnerabil-
ity scans to discover unpatched vulnerabilities, but
without proper prioritization, the results of vulner-
ability scanning may not help protect critical assets
from cyber attacks. According to a recent study, only
about 1.4% of published vulnerabilities are known to
have been exploited (Sabottke et al., 2015).

To effectively prioritize vulnerabilities and sup-
port security-related decisions that are specific to tar-
get system, it is important to identify and score the
vulnerabilities that exist on that system rather than
using generic rankings. Information about new vul-
nerabilities is constantly updated in NVD, but scoring
of new vulnerabilities does not keep the pace with the
rate at which new vulnerabilities are discovered. It is
possible to have vulnerabilities on the system which
are yet to be assigned a CVSS score. Figure 1 shows
that over 800 vulnerabilities are yet to be scored as of
March 8, 2023.!

The Mason Vulnerability Scoring Framework
(MVSF) attempted to addresses some of these con-
cerns by establishing a framework that allows users

IThe live NVD Dashboard can be accessed at
https://nvd.nist.gov/general/nvd-dashboard

183

In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 183-191

ISBN: 978-989-758-666-8; ISSN: 2184-7711

Copyright © 2023 by SCITEPRESS - Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

SECRYPT 2023 - 20th International Conference on Security and Cryptography

CVEs Received and Processed

Modified CVEs
Received by NVD

Time
Period

New CVEs
Received by NVD

New CVEs
Analyzed by NVD

Modified CVEs Re-
analyzed by NVD

CVSS V3 Score Distribution

Severity Number of Vulns

18637

Today 53 55 5 0

This Week 238 31 20

ThisMonth 533 131 451

Last Month 2127 2184 2757 1379

This Year 5029 5030 3456 3143

NVD Contains

CVE Vulnerabilities

CVE Status Count

Total 209306

Received Checklists

Awaiting Analysis US-CERT Alerts

Undergoing Analysis US-CERT Vuln Notes

Modified 71023 OVAL Queries

Deferred CPE Names

Rejected 12227

209306

606

249

4436

10286

1040292

50953

48080

2159

CVSS V2 Score Distribution

Severity

MEDIUM

Number of Vulns

56836

104177

Low 19076

Figure 1: Screenshot of the NVD Dashboard as of 6:00pm EDT on March 08, 2023.

to generate custom ranking by tuning several param-
eters used to calculate vulnerability and weakness
scores (Iganibo et al., 2022). MVSF builds on previ-
ous work aimed at identifying variables that influence
an attacker’s decision to exploit a given vulnerabil-
ity (Iganibo et al., 2021) but it is limited by the lack of
integration with vulnerability scanning tools, which
would enable customization of the rankings based on
the specific vulnerabilities that exist in a given sys-
tem. We address this limitation by designing a simple
yet elegant and effective solution to integrate infor-
mation from vulnerability scanning into the weakness
scoring process. We propose two new scoring met-
rics that consider vulnerability scanning information
at two different levels of granularity. The first metric
considers average exploitation likelihoods and expo-
sure factors across detected vulnerabilities, whereas
the second metric computes weighted averages us-
ing the numbers of instances of each vulnerability as
weights. The results on a small testbed indicate that
these metrics can provide rankings consistent with in-
tuition, and thus can help identify the most critical
weaknesses for an organization.

The remainder of this paper is organized as fol-
lows. Section 2 discusses related work. Section 3 pro-
vides preliminary definitions and describes the base
metrics which this work builds upon. Then, Sec-
tion 4 describes the new metrics for scoring weak-
nesses and the rationale behind them. Finally, Sec-
tion 5 describes the experimental setup and results,
and Section 6 provides some concluding remarks and
a roadmap for future work.

184

2 RELATED WORK

Vulnerability management aims at effectively and in-
telligently prioritizing remediation efforts based on
actionable recommendations that consider both exter-
nal variables and intrinsic features of existing vulner-
abilities. Organizations have made attempts to score
and rank software vulnerabilities, and find ways to as-
sess and quantify their impact.

The U.S. government, through the National In-
stitute of Standards and Technology maintains the
National Vulnerability Database (NVD) which is a
repository of vulnerability information. NVD is fully
synchronized with MITRE Common Vulnerabilities
and Exposures (CVE) list, and augments it with sever-
ity scores, impact ratings based on the Common Vul-
nerability Scoring System (CVSS). Recent work has
shown the limitations of CVSS. (Ruohonen, 2019)
highlighted the time delays that affect CVSS scoring
work in the context of NVD. (Spring et al., 2021) in-
dicated that the CVSS formula lacks empirical justifi-
cation and does not address some risk elements.

Common Weakness Enumeration (CWE) pro-
vides a community-developed list of software and
hardware weaknesses’>. MITRE’s Common Weak-
ness Scoring System (CWSS) provides a mecha-
nism for prioritizing software weaknesses in a con-
sistent, flexible, open manner through a collaborative
community-based effort’.

The CWE team leverages the Common Vulnera-
bilities and Exposures data and the CVSS scores as-

Zhttps://cwe.mitre.org/
3https://cwe.mitre.org/cwss/

sociated with each CVE record to publish a list of Top
25 Most Dangerous Software Weaknesses 4. The aim
is to provide security professionals with resources to
help mitigate risk in their organizations. Similarly, the
Open Web Application Security Project (OWASP) re-
leases its Top 10 Web Application Security Risks list
yearly>. The OWASP Top 10 does not not consider
the number of instances of a CWE in calculation for
the top 10. The ranking is subjective and difficult to
replicate by users as there is no published quantitative
approach to back it up.

Several metrics (Wang et al., 2009; Mukherjee and
Mazumdar, 2018; Wang et al., 2019) use scores from
the Common Vulnerability Scoring Systems (CVSS)
or the Common Weakness Scoring Systems (CWSS)
in isolation or as the dominant factor in determining
the severity of a vulnerability. (Jacobs et al., 2021)
developed a data-driven threat scoring system for pre-
dicting the probability that a vulnerability will be ex-
ploited within the 12 months following public disclo-
sure. Most of these metrics cannot be easily extended
to consider the effect of additional variables, and do
not specifically focus on system-centric evaluations.
Our metrics are designed to provide system-specific
rankings of common weaknesses, building upon ex-
tensible vulnerability-level metrics.

3 PRELIMINARY DEFINITIONS

In this section, we provide an overview of generalized
versions of the base vulnerability metrics that were
originally introduced in (Iganibo et al., 2021), namely
the exploitation likelihood and the exposure factor of
a vulnerability. We also provide an overview of the
metrics used by MITRE to score and rank CWEs and
a generalized version of a similar CWE scoring met-
ric introduced in (Iganibo et al., 2022). The work pre-
sented in this paper builds upon these metrics, but of-
fers a simple yet elegant solution to make vulnerabil-
ity and weakness scoring more useful in practice.

3.1 Exploitation Likelihood

The exploitation likelihood (or simply likelihood)
p(v) of a vulnerability v is defined as the probabil-
ity that an attacker will attempt to exploit that vul-
nerability, if given the opportunity. An attacker has
the opportunity to exploit a vulnerability if certain
preconditions are met, most notably if they have ac-
cess to the vulnerable host. Specific preconditions

“https://cwe.mitre.org/top25/
Shttps://owasp.org/Top10/

Towards Usable Scoring of Common Weaknesses

may vary depending on the characteristics of each
vulnerability, as certain configuration settings may
prevent access to vulnerable portions of the target
software. Several variables may influence the like-
lihood that an attacker will exploit a given vulnera-
bility v, including but not limited to: (i) the vulner-
ability’s exploitability score as determined by CVSS,
Exploitability(v); (ii) the amount of time elapsed since
the vulnerability was made public, Age(v); and (iii) the
set of known IDS rules associated with the vulnerabil-
ity, Known_IDS_Rules(v). Formally, the exploitation
likelihood is modeled as a function p : V — [0, 1] de-
fined by Equation 1.

My (1 _ e—ocx~fx<x<v>>)
— 1
p(v) = ng(L e%x fx(X(v)
1

ey

where)ClT and)(li denote the sets of variables that
respectively contribute to increasing and decreasing
the likelihood as their values increase. Each variable
contributes to the overall likelihood as a multiplica-
tive factor between 0 and 1 that is formulated to ac-
count for diminishing returns. Factors corresponding
to variables in XIT are of the form 1 — e~ % /x(X(v)),
where X is the variable, oy is a tunable parameter,
X (v) is the value of X for v, and fx is a monotonically
increasing function used to convert values of X to
scalar values, i.e., x] <xp = fx(x1) < fx(x2). Sim-
ilarly, factors corresponding to variables in XlL are of
the form — 1 = e~ @ /x(X(") Ttis assumed that
e*XIX

each product evaluates to 1 when the corresponding
set of variables is empty, i.e., [Iyex (...) = | when
X =0.

For the analysis presented in this paper, we
selected the three variables mentioned earlier,
that is XlT = {Exploitability, Age} and .Xll =
{Known_IDS_Rules}, thus Equation 1 can be instan-
tiated as follows. However, we remind the reader that
the proposed approach for ranking CWE:s is indepen-
dent of the specific variables chosen for)ClT and X,l.

HXG{Exploitability,Age} (1 — e*(xx-fX(X(v)))
" oy @

a .
[Tx e {Known_IDS_Rules} €*X /X

We then define fe,pioitability (V) = Exploitability (v),
nge (V) = Age(v)’ and fKnown,IDS,RuIes (V) =
|Known_IDS_Rules(v)|, but discussing how these
functions are defined for each variable is beyond the
scope of this work. To simplify the notation, we use
OE, Oa, and Ok to refer to Oleyploitabilitys OAge, and
OlKnown_IDS_Rules Tespectively. Thus, Equation 2 can be
rewritten as follows.

185

SECRYPT 2023 - 20th International Conference on Security and Cryptography

(1 _ efocE»EproitabiIity(v)> , (1 _ e—om«ﬂ?(v))

0k |Known_IDS_Rules}(v)| ©)

p(v) =
3.2 Exposure Factor

The exposure factor ef(v) of a vulnerability v is de-
fined as the relative loss of utility of an asset due to
a vulnerability exploit. The term is borrowed from
classic risk analysis terminology, where the expo-
sure factor (EF) represents the relative damage that
an undesirable event — a cyber attack in our case —
would cause to the affected asset. The single loss ex-
pectancy (SLE) of such an incident is then computed
as the product between its exposure factor and the as-
set value (AV), that is SLE = EF x AV. Several vari-
ables may increase or decrease the exposure factor of
a vulnerability v, including but not limited to: (i) the
vulnerability’s impact score as captured by CVSS,
Impact(v); and the set of deployed IDS rules asso-
ciated with the vulnerability, Deployed_IDS_Rules(v).
Formally, the exposure factor is defined as a function
ef : V — [0, 1] defined by Equation 4.

T . (1—e o /xXMV)
ef (v) = — == () @)

HXex} eox fx (X(v))

where)(eT and)Cei denote the sets of variables that
respectively contribute to increasing and decreasing
the exposure as their values increase. Similar to the
likelihood, each variable contributes to the exposure
factor as a multiplicative factor between 0 and 1 that
accounts for diminishing returns. Factors correspond-
ing to variables in X are of the form 1 — e~ -/x(X()

and factors corresponding to variables in X} are of the
1

1 —ox-fx(X(v
foml eotx-fx(X(U)) —e X X(()).

For our analysis, we considered the CVSS impact
score as the only variable affecting the exposure fac-
tor, that is XJ = {Impact} and Xj = 0, thus Equa-
tion 4 can be instantiated as follows. However, as
mentioned earlier, the proposed approach for ranking
CWE:s is independent of the specific variables chosen

for XeT and Xei.

ef(v) =

1 efotx-fx(X(V))) (5)
Xe{lmpact}

We then define fimpact(v) = Impact(v) and, to
simplify the notation, we use o to refer to OQmpact.
Thus, Equation 5 can be rewritten as follows.

ef(v) = 1 — ¢~ impact) ©

186

3.3 Common Weakness Score

MITRE publishes a yearly ranking of the top 25
most dangerous software weaknesses. Each weak-
ness is scored based on the number of vulnerabilities
mapped to that weakness and the average severity of
such vulnerabilities. The score proposed in (Iganibo
et al., 2022) is semantically equivalent to MITRE’s
score, but relies on the more general vulnerability
metrics introduced in (Iganibo et al., 2021), which
allow administrators to control the ranking by fine-
tuning several parameters used in the computation of
vulnerability-level metrics, whereas MITRE’s score
relies on fixed severity scores from CVSS. In the fol-
lowing, we provide the background on CWE ranking
and an overview of the state of the art.

Equation 9 defines the set of CVEs mapped to
each CWE W;, and Equation 10 defines the frequen-
cies of all CWEs, that is the set of cardinalities of
the sets of vulnerabilities associated with each CWE.
This set of frequencies is used in Equation 11 to de-
rive a normalization factor max(Fregs) —min(Fregs).

C(W;) = {CVE; e NVD,CVE; - W;} (9)

Fregs = {|C(W))|.W; eNVD} ~ (10)

Equations 11 and 12 respectively compute a fre-
quency and a severity score for each CWE, where the
severity is based on the average CVSS score of all
CVE:s in that CWE category. Frequency and severity
scores are both normalized between 0 and 1.

Fr(W)) = |C(W;)| — min(Fregs) an
""" max(Freqs) — min(Fregs)

avgy, (CVSS) — min(CVSS)

max(CVSS) —min(CVSS)

Svmirre(Wi) = (12)

Finally, Equation 13 defines the overall score that
MITRE assigns to each CWE as the product of its fre-
quency and severity scores, normalized between 0 and
100.

Smirre(Wi) = Fr(W;) - Svmrrre (W;) - 100 (13)

In (Iganibo et al., 2022), the severity of a weak-
ness W; is defined as the product of the average like-
lihood p(W;) of vulnerabilities mapped to W; and the
average exposure factor ef(W;) of such vulnerabili-
ties, as shown in Equation 14 below.

Svmvse (Wi) = p(W;) - ef (W) (14)

Mycy' (1 _ e—ax~.f'x<x<v>))

Towards Usable Scoring of Common Weaknesses

Suvse(Wi) = |C(W;)| - avg
veC(W;)

e

1
Suvse(Wi) = |C(W;)| - avg (

[yex! e fr(X(v)
1

_ ,—ag-Exploitability

(V)> . (l — efaA‘\/F(V»

avg
veC(W;)

My A0 @

veC(W;)

where p(W;) and ef(W;) are defined by Equations 15
and 16 respectively.

p(W;) = avg p(v) (15)
veC(W;)

ef(W)= avg ef(v) (16)
veC(W;)

Thus, an alternative common weakness score is
given by Equation 17, where the frequency Fr(W;) in
Equation 13 is replaced by |C(W;)| and the average
severity Svarre (W;) is replaced by Svyysr (W;).

Suvse(W;) = |[C(W;)| - Svpvse (W;) (17)
Combining Equations 1, 4, 15, 16, and 17, we can
rewrite Equation 17 as Equation 7, which provides
a generalization of the the expression for Syysr(W;)
that was introduced in (Iganibo et al., 2022). We will
use this score as the baseline for our analysis, but be-
fore introducing the proposed approach to CWE rank-
ing and the new metrics, we can instantiate Equation 7
based on the set of variables chosen for our analysis.
Thus, considering Equations 3 and 6, we can rewrite
the expression for Syvsr (CWE;) as Equation 8.

4 NEW METRICS

In this section, we propose two new metrics, referred
to as the system weakness score and the weighted
weakness score, that can turn CWE rankings into
actionable intelligence for system administrators by
integrating information gained through vulnerability
scanning into the ranking process. The proposed ap-
proach refines the CWE scoring metric defined in
Section 3.3 by only considering the vulnerabilities
that were identified in the target system. To further
refine the analysis, the second metric also considers
the number of instances of each discovered vulner-
ability. In the following, we use Cs to denote the
set of distinct CVEs identified during vulnerability
scanning. We then use C;(W;) to denote the set of
CVEs in W, that were identified by the scanner, that is
Ci(W;) = CsNC(W;).

% |Known_IDS_Rules}(v)|

avg (1 7e7(x|»|mpact(v)> (8)
veC(W)

4.1 System Weakness Score

The score of a CWE category, as defined by Equa-
tion 7 or its instance Equation 8, is computed by con-
sidering all CVEs in that CWE category. However, as
discussed earlier, any real-world system may only ex-
pose a limited number of such vulnerabilities, making
the resulting score of limited utility for system admin-
istrators. Thus, we redefine the weakness-level like-
lihood and exposure factor used in Equation 14 using
Equations 18 and 19 below, which compute averages
only over the vulnerabilities identified by the scanner.

p(Wi)= ave p(v) (18)
VECS(VVI')

ef(Wy) = avg ef(v) (19)
veCs(W;)

Accordingly, we defined a new CWE scoring met-
rics as follow.

STW;) = [Co(W;)|- avg p(v)-
veCs(W;)

avg ef(v) (20)
veCy (W)

The specific sets of variables used in the computa-
tion of the vulnerability-level likelihood and exposure
factor are independent of the CWE scoring metric.
For the purpose of our analysis, we will continue to
use the variables identified in Section 3. Thus, com-
bining Equations 3, 6, and 20, we obtain Equation 21.

4.2 Weighted Weakness Score

The metric introduced in the previous section and de-
fined by Equation 20 provides more actionable in-
telligence to system administrators than the original
metric, as it only considers vulnerabilities that were
found in the system. However, in large systems, the
same vulnerabilities may exist on different hosts, and
some vulnerabilities may be more common than oth-
ers. Therefore a seemingly less severe vulnerability
may require attention if it is present on a large num-
ber of machines across the network, offering attack-
ers multiple potential entry points. To address this
concern, we further refine our metric to consider the
number of instances of each vulnerability identified
by the scanner.

187

SECRYPT 2023 - 20th International Conference on Security and Cryptography

—OLE~EproitabiIity(v)>) (1 _ e—aA-\/@)

1—e
ST W) = [Cs(Wy)| - ave (
VECY(‘/Vi)

Let I(v) denote the number of instances of vulner-
ability v identified by the scanner across all hosts. We
can then redefine the weakness-level likelihood and
exposure factor used in Equation 14 through Equa-
tions 22 and 23 below, which compute weighted aver-
ages over the vulnerabilities identified by the scanner,
using the numbers of instances as weights.

~ Yiec,wpI(v)-p(v)

W) = 22
P(W) Yvec,wy1(v) (22)
Yoce,wyI(v) -ef(v)

W) = 23
e/ W) Yoec,wyI(v))

Accordingly, Equation 24 defines a new CWE
scoring metric that uses the weakness-level likelihood
and exposure factor defined by Equations 22 and 23.

As mentioned for the previous metric, the spe-
cific sets of variables used in the computation of the
vulnerability-level likelihood and exposure factor are
independent of the CWE scoring metric. For the pur-
pose of our analysis and for consistency with the S*
metric, we will continue to use the variables identi-
fied in Section 3. Thus, combining Equations 3, 6,
and 24, we can obtain an equation similar to Equa-
tions 8 and 21, but we omit it due to the complexity
of the expression.

S EVALUATION

This section describes the experiments we conducted
to evaluate the proposed metrics. First, we briefly de-
scribe the experimental setup, and then present the re-
sults in detail.

5.1 Experimental Setup

The test environment consisted of of a set of virtual
machines with different operating systems, including
Windows and Linux, and different sets of exposed
vulnerabilities. Table 1 provides a summary of the
machines used, including information about operating
system and exposed vulnerabilities. These machines
were scanned using Nessus Vulnerability Scanner to
obtain an inventory of existing system vulnerabilities.
Nessus uses scripts written in Nessus Attack Script-
ing Language (NASL) to detect vulnerabilities as they
are discovered and released into the public domain.

188

%K [Known_IDS_Rules} (v)|

avg (1 _e—(X|~|mpaCt<V)) (21)
VECS(‘/Vi)

These scripts, referred to as plugins®, include infor-
mation about the vulnerability, set of remediation ac-
tions, and the algorithm to test for the presence of the
security issue.

Table 1: Test machines using in the evaluation.

ID | Operating System # CVEs
1 Windows 11 1
2 Windows 10 0
3 Windows Server 2008 R2 6
4 Windows Server 2008 R2 18
5 Linux Kernel 2.6 on Ubuntu 14.04 1
6 Linux Kernel 3.13 on Ubuntu 14.04 7
7 Linux Kernel 2.6 on Ubuntu 8.04 39

5.2 Results

A total of 72 vulnerability instances were identified
on the 7 machines in our test environment, including
52 distinct CVEs. These CVEs fall under different
CWE categories, as shown in Table 2. Note that NVD
is only using a subset of CWE for mapping instead
of the entire CWE list. Vulnerabilities that are not
mapped to any CWE in this subset are included in a
special category, NVD-CWE-Other. For each CWE,
Table 2 shows the total number of CVEs mapped to
that CWE, that is |C(W;)| and the number of CVEs
found by the scanner, that is |Cs(W;)|. The first is used
as a basis for computing Sysysr whereas the second is
used in the computation of our new metrics.

For each identified CWE category, we computed
the baseline score Sy;vsr and the two new scores N
and S*. Table 2 provides a summary of the results,
which reveal that different scoring metrics may lead
to significantly different outcomes in terms of rank-
ing. We can also notice that scores computed using
the baseline metric may be orders of magnitude larger
than our new scores. This is expected as Syvsr(W;)
is heavily dominated by the total number of CVEs in
W;, which is usually large.

Common weakness scoring based on the vulnera-
bilities that exist on a system can provide useful in-
sights for the organization. When researchers, ven-
dors or users report identified vulnerabilities, their
scores are calculated based on metrics that approx-
imate ease and impact of an exploit. The scoring
does not consider if the vulnerability exists on a spe-
cific system or a safeguard has been implemented to
protect the system. When vulnerability-level scores

Ohttps://www.tenable.com/plugins/families/about

Lvee,wp (V) -P(V) Lec,wyl(v)-ef(v)

Towards Usable Scoring of Common Weaknesses

§*(Wi) = |C(Wh)]

Table 2: Common Weakness Scores Summary.

CWEID | #CVEs | # CVEs | Syvsr St S*
(total) (scan)

CWE-16 74 1 54 1 0.68 | 0.68

CWE-20 4,306 14 | 3,145 | 7.64 | 7.73

CWE-74 568 2 421 | 1.76 | 0.88

CWE-79 12,633

—_

8,341 | 0.68 | 0.68

CWE-89 4,982 1| 4093 | 0.88 | 0.88
CWE-9%4 1,252 1| 1,037 | 0.88 | 0.88
CWE-200 2,613 14 | 1,709 | 3.99 | 3.65
CWE-254 9 2 6 | 1.65 | 1.65
CWE-264 703 2 501 | 1.70 | 1.13
CWE-284 187 2 137 | 1.76 | 1.76
CWE-310 196 8 143 | 3.59 | 3.77
CWE-326 223 2 155 | 0.68 | 0.68
CWE-327 262 2 180 | 0.70 | 0.70
CWE-331 27 1 19 | 0.70 | 0.70
CWE-400 1,021 1 725 | 0.70 | 0.70
CWE-617 290 2 200 | 1.34 | 1.34
CWE-732 818 2 559 | 1.48 | 1.48
CWE-787 6,478 1| 5029 | 0.88 | 0.88

Others 1,839 13 | 1,307 | 8.91 | 9.03

are aggregated to compute weakness level-scores, one
may risk to lose sight of the problem at hand. In fact,
weakness ranking approaches like MITRE’s CWE
Top 25 effort, while providing useful information
about general trends in the security landscape, cannot
provide system-specific actionable insights to admin-
istrators.

In order to help identify the most severe weak-
nesses that threaten a specific system and guide the
prioritization of vulnerability remediation, we must
only consider vulnerabilities that actually exist in the
system when abstracting vulnerability-level metrics
into weakness level metrics. The proposed metrics
address this need, with the second metric going a step
further and giving more weight to vulnerabilities that
exists on multiple machines across the network.

In the following, we discuss how the different
scoring metrics impact the ranking of CWEs. Ta-
bles 3, 4, and 5 show how the CWEs identified in
our test environment rank based on Syysr, ST, and
S* respectively. The ranking based on SyysF is simi-
lar to the most recent version of MITRE’s CWE Top
25. This result is expected as the authors of (Iganibo
et al., 2022) claim that the two rankings are seman-
tically equivalent and are highly correlated. In par-
ticular, the top 4 CWEs are the same, with only two
position switched between the two rankings.

The ranking shown in Table 4 offers some insights
about the effectiveness of our approach. For instance,
CWE-79 slipped from the first position to position 17

Yoec,wy 1(v)

24
Yoec,wy1(v) @9

Table 3: Ranking based on Sysysr.

Rank CWE ID S, MV SF
1 CWE-79 8,391
CWE-787 | 5,029
CWE-89 4,093
CWE-20 3,145
CWE-200 | 1,709
Others 1,307
CWE-%4 1,037
CWE-400 725
9 CWE-732 559
10 CWE-264 501
11 CWE-74 421
12 CWE-617 200
13 CWE-327 180
14 CWE-326 155
15 CWE-310 143
16 CWE-284 137
17 CWE-16 54
18 CWE-331 19
19 CWE-254 6

O Q| | | KW

Table 4: Ranking based on S.

Rank | CWEID ST
1 Others 8.91
CWE-20 | 7.64
CWE-200 | 3.99
CWE-310 | 3.59
CWE-284 | 1.76
CWE-264 | 1.70
CWE-254 | 1.65
CWE-732 | 1.48
9 CWE-617 | 1.34
10 CWE-74 1.76
11 CWE-787 | 0.88
11 CWE-89 | 0.88
11 CWE-94 | 0.88
14 CWE-327 | 0.70
14 CWE-331 | 0.70
14 CWE-400 | 0.70
17 CWE-16 | 0.68
17 CWE-326 | 0.68
17 CWE-79 | 0.68

O I N | K| WD

based on ST. In fact, while over 12,000 vulnerabil-
ities are mapped to CWE-79, only a single instance
of one such CVEs was found across our test environ-
ment, thus making CWE-79 less dangerous than other
CWEs. On the other side, CWE-310 jumped from po-
sition 15 to the fourth position. In fact, while CWE-
310 includes only less than 200 CVEs, 8 instances of
such vulnerabilities were found across our test envi-
ronment.

From the ranking shown in Table 5, we can ob-
serve that CWE-310 went up one more position in

189

SECRYPT 2023 - 20th International Conference on Security and Cryptography

the ranking, surpassing CWE-200. This can be ex-
plained by considering that, although there are more
vulnerabilities mapped to CWE-200 than to CWE-
310 and the average severity is comparable across the
two CWEs, the vulnerability in CWE-200 with the
highest number of instances has lower-than-average
severity and the vulnerability in CWE-310 with the
highest number of instances has higher-than-average
severity, thus shifting the weighted average in favor of
CWE-310.

Finally, we can observe that CWE-20 and CWE-
200 rank high in all three rankings. These can be ex-
plained by considering that these two CWEs have a
significant number of mapped CVEs (4.3k and 2.6k
respectively) — which increases their Syysr score —
and have the largest number of vulnerability instances
discovered by the scanner — which increases their S
and S* scores.

Table 5: Ranking based on S*.
Rank | CWEID S*

1 Others 9.03
2 CWE-20 | 7.73
3 CWE-310 | 3.77
4 CWE-200 | 3.65
5 CWE-284 | 1.76
6 CWE-254 | 1.65
7 CWE-732 | 1.48
8 CWE-617 | 1.34

9 CWE-264 | 1.13
10 CWE-74 | 0.88
10 CWE-787 | 0.88
10 CWE-89 | 0.88
10 CWE-94 | 0.88
14 CWE-327 | 0.70
14 CWE-331 | 0.70
14 CWE-400 | 0.70
17 CWE-16 | 0.68
17 CWE-326 | 0.68
17 CWE-79 | 0.68

In summary, the analysis of these results confirms
that the proposed metrics work as expected and can
effectively identify the most severe weaknesses for a
given system.

6 CONCLUSIONS

Building upon the existing body of work on vulner-
ability metrics and ranking of common weaknesses,
we have proposed a simple yet elegant approach for
ranking weaknesses that integrates the results of vul-
nerability scanning. Accordingly, we have defined
two new scoring metrics to enable the generation of
system-specific rankings that can provide administra-

190

tors with actionable intelligence to guide vulnerabil-
ity remediation. Future work may involve establish-
ing a collaboration with MITRE to further evaluate
and possibly standardize the proposed metrics within
the context of the CWE framework, and working with
vendors of scanning software to explore the integra-
tion of our solution into their products.

ACKNOWLEDGEMENTS

This work was funded in part by the National Science
Foundation under award CNS-1822094.

REFERENCES

Christey, S. (2008). The evolution of the CWE development
and research views. Technical report, The MITRE
Corporation.

Iganibo, 1., Albanese, M., Mosko, M., Bier, E., and Brito,
A. E. (2021). Vulnerability metrics for graph-based
configuration security. In Proceedings of the 18th In-
ternational Conference on Security and Cryptography
(SECRYPT 2021), pages 259-270. SciTePress.

Iganibo, I., Albanese, M., Turkmen, K., Campbell, T,
and Mosko, M. (2022). Mason vulnerability scoring
framework: A customizable framework for scoring
common vulnerabilities and weaknesses. In Proceed-
ings of the 19th International Conference on Security
and Cryptography (SECRYPT 2022), pages 215-225,
Lisbon, Portugal. SciTePress.

Jacobs, J., Romanosky, S., Edwards, B., Adjerid, I., and
Roytman, M. (2021). Exploit prediction scoring sys-
tem (EPSS). Digital Threats: Research and Practice,
2(3).

Mell, P., Scarfone, K., and Romanosky, S. (2006). Com-
mon Vulnerability Scoring System. [EEE Security &
Privacy, 4(6):85-89.

Mukherjee, P. and Mazumdar, C. (2018). Attack difficulty
metric for assessment of network security. In Proceed-
ings of 13th International Conference on Availability,
Reliability and Security (ARES 2018), Hamburg, Ger-
many. ACM.

Ruohonen, J. (2019). A look at the time delays in CVSS
vulnerability scoring. Applied Computing and Infor-
matics, 15(2):129-135.

Sabottke, C., Suciu, O., and Dumitras, T. (2015). Vulner-
ability disclosure in the age of social media: Exploit-
ing twitter for predicting real-world exploits. In 24th
USENIX Security Symposium (USENIX Security 15),
pages 1041-1056.

Spring, J., Hatleback, E., Householder, A., Manion, A., and
Shick, D. (2021). Time to change the CVSS? IEEE
Security & Privacy, 19(2):74-78.

Wang, J. A., Wang, H., Guo, M., and Xia, M. (2009). Se-
curity metrics for software systems. In Proceedings of

Towards Usable Scoring of Common Weaknesses

the 47th Annual Southeast Regional Conference (ACM
SE 2009), Clemson, SC, USA. ACM.

Wang, L., Zhang, Z., Li, W., Liu, Z., and Liu, H.
(2019). An attack surface metric suitable for het-
erogeneous redundant system with the voting mech-
anism. In Proceedings of the International Confer-
ence on Computer Information Science and Applica-
tion Technology (CISAT 2018), volume 1168 of Jour-
nal of Physics: Conference Series, Daqing, China.
IOP Publishing.

191

