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ABSTRACT: Extending polymer chains results in a positive chain tension, 𝑓𝑐ℎ, due primarily to conformational restrictions. At the 
level of individual bonds, however, tension 𝑓𝑏 is either negative or positive and depends both on chain tension and bulk pressure. In 
specific systems, this dependence may not be intuitive, whereby 𝑓𝑐ℎ increases while 𝑓𝑏 decreases, i.e., the entire chain is extended, 
while bonds are compressed. Specifically, increasing the grafting density of a polymer brush results in chain extension along the 
direction perpendicular to the grafting surface, while the underlying bonds are compressed. Similarly, upon compression of polymer 
networks, the extension of chains oriented in the “free” direction increases, while their bonds are getting more compressed. We 
demonstrate this phenomenon in molecular dynamics simulations and explain it by the fact that the pressure contribution to 𝑓𝑏 is 
dominant over a wide range of network deformations and brush grafting densities.  

The response of polymeric materials to mechanical stimuli is of 
fundamental importance  for elastomers and gels under stress, 
molecular brushes, and polymers under flow. The macroscopic 
stress in polymer networks is transduced to tension at the level 
of single chains, as well as the individual chemical bonds. Both 
chain and bond tension are of great importance: while chain ten-
sion results in the elastic response of the material, bond tension 
affects a multitude of chemical properties.1 Chemical reactivity, 
for example, exponentially depends on the bond tension.2–4 
Therefore, relatively small changes in the bond tension, on the 
order of several percent, can change bond lifetime by orders of 
magnitude5 and affect the behavior of biological systems. In 
polymers, the average bond tension depends on both its local 
environment, i.e. interaction with surrounding molecules, and 
on the chain tension itself. Bond tension in specific sections of 
molecules is also a control characteristic in the design of single-
molecule sensors, self-healing, or active materials, and  deter-
mines the overall stability of polymers under externally applied 
forces. For example, incorporating mechanophores in a poly-
mer allows for tailored activation upon reaching a specific bond 
tension.6,7 Understanding the relationship between bond and 
chain tensions is thus of fundamental importance. 
Differences between Chain and Bond Tension: Chain tension, 
𝑓𝑐ℎ⃗⃗⃗⃗  ⃗, is defined as the rate of change of the chain free energy 𝐹𝑐ℎ 
with respect to its end-to-end vector 𝑅⃗    
𝑓𝑐ℎ⃗⃗⃗⃗  ⃗ = 𝜕𝐹𝑐ℎ(𝑅⃗ ) 𝜕𝑅⃗ ⁄ .                                                                        (1) 
Chain free energy includes both entropic contribution due to 
variation of polymer conformations and energetic contribution 
due to the deformation of bonds along the chain. In some cases, 
chain tension is not uniform but varies along the chain. For ex-
ample, in polymer brushes, the tension in the grafted chain is 

highest near the grafting point and low near the free end.8,9 An-
other example is a polyelectrolyte chain in dilute solution, with 
tension induced by intramolecular electrostatic repulsion that is 
highest in the middle of the chain and lowest near chain ends.10 
Other examples of non-uniform tension are related to friction 
induced by a polymer moving with respect to surrounding me-
dia and include a polymer in elongational flow11 and a polymer 
pulled through the solution12. In all these cases of non-uniform 
tension, the definition in Eq. 1 applies to polymer sections of 
size 𝑅 small enough to have an almost constant tension, but 
larger than the Kuhn segment, so that 𝐹𝑐ℎ is still well-defined.  
Examples of uniform chain tension include polymers stretched 
by equal and oppositely directed forces applied to their ends, 
such as unentangled network strands or polymers stretched by 
optical or magnetic tweezers, see inset in Fig. 1a. In these cases, 
the average chain tension is equal to the externally applied force 
with magnitude 𝑓𝑐ℎ = 𝑓𝑒𝑥𝑡 . Below we will describe the stretch-
ing case and will hence use 𝑓𝑐ℎ and 𝑓𝑒𝑥𝑡 interchangeably.   
The force-extension curve, Fig. 1a, is measured experimentally 
by the single-molecule force spectroscopy technique. For exter-
nal forces lower than 𝑘𝑇/𝑏, where 𝑘𝑇 is the thermal energy and 
𝑏 is the Kuhn length, the chain tension arises primarily due to 
restrictions on polymer conformations and is therefore predom-
inantly entropic. In the θ-solvent or the melt state in this regime 
𝑓𝑒𝑥𝑡 ≪ 𝑘𝑇/𝑏, the polymer behaves as a Gaussian chain  
𝑓𝑐ℎ =

3𝑘𝑇

𝑁𝑏2
〈𝑅𝑧〉  (2) 

where 𝑁 is the number of Kuhn segments, and 〈𝑅𝑧〉 is the aver-
age projection of the chain end-to-end vector onto the direction 
of the applied force. At tensions higher than ~𝑘𝑇/𝑏, (~4𝑝𝑁 for 
𝑏 = 1𝑛𝑚) the force-extension dependence becomes strongly 
non-linear due to the finite extensibility of the chain but is still 
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primarily entropic. At still higher external forces, the enthalpic 
contributions to the elasticity due to bond deformation become 
dominant.  
Bond tension is fundamentally different from chain tension. For 
a chemical bond of length 𝑙 , the instantaneous bond tension is 
defined as 𝑓𝑏(𝑙) = 𝜕𝑈𝑏(𝑙)/𝜕𝑙, Fig. 1b, where  𝑈𝑏(𝑙) is the bond 
potential (Fig. 1b, inset). The average bond tension is therefore  
〈𝑓𝑏〉 = 〈

𝜕𝑈𝑏

𝜕𝑙
〉                                                                            (3) 

where the brackets represent the time average with an averaging 
window larger than the relaxation time of pressure and chain 
conformations. The deformation characteristics of the bond are 
determined by its stiffness 𝜅 = 𝜕2𝑈𝑏 𝜕𝑙2⁄ . To compare differ-
ent bonds, it is useful to introduce the dimensionless stiffness 
parameter, 𝑆 = 𝜅⟨𝑙⟩2 𝑘𝑇⁄ , where ⟨𝑙⟩ is the equilibrium bond 
length. For example, for a carbon-carbon covalent bond 𝑆 ≈ 4 ⋅
103, and for a silicon-oxygen bond 𝑆 ≈ 2 ⋅ 103.5,13,14 The value 
of 𝑆 determines the relative amplitude of fluctuations of the 
bond length and instantaneous bond tension.  The average bond 
tension can be roughly estimated by assuming that the cohesive 
energy associated with molecular attraction in a liquid state ex-
ceeds -3

2
𝑘𝑇,15 which for a bond of 𝑙 ≈ 1Å suggests 〈𝑓𝑏〉 ≈

−60𝑝𝑁.  
 

Figure 1. (a) Schematic of a force-extension curve, depicting 
chain tension, 𝑓𝑐ℎ, as a function of the average extension nor-
malized by the undeformed contour length 𝐿. The curve corre-
sponds to the freely-jointed chain (FJC) model16 with Kuhn 
length 𝑏 = 1𝑛𝑚. The cartoon illustrates the pulling of a teth-
ered polymer chain by AFM. (b) Schematic of bond tension, 𝑓𝑏, 
and (inset) energy, 𝑈𝑏 as functions of bond length l. The curves 
correspond to a Morse parametrization of a C-C bond5,13 at 𝑇 =
298𝐾. Shaded red areas correspond to the range of bond lengths 
where the potential is up to 𝑘𝑇 above the minimum. Cartoon 
depicts a bond (the black line between two black circles) along 
with its characteristic area per bond, 𝐴 (blue oval).  
 
The elasticity of polymer networks is determined by the tension 
in their strands, i.e., chain tension, 𝑓𝑐ℎ.16–18 Bond tension is qual-
itatively different from chain tension in that it also depends on 
pressure. It is therefore important to examine the relation be-
tween chain and bond tensions.  
Below, we present the results of simulations, where we observe 
a counterintuitive relationship between chain and bond tensions 
upon increasing grafting density 𝜎𝑔 of the polymer brush, Fig. 
2a. Chain tension increases with 𝜎𝑔 as the chains of a denser 
brush are more elongated. Surprisingly, however, 〈𝑓𝑏〉 decreases 
with increasing 𝜎𝑔, Fig. 2c.  

A similar phenomenon is observed in biaxially compressed 
elastomers, as shown schematically in Fig. 2b for the network 
extended along the unconstrained (vertical) direction by a de-
formation ratio 𝜆𝑧. As a result, chains oriented along an uncon-
strained direction are extended with  𝑓𝑐ℎ increasing with 𝜆𝑧, Fig. 
2b-c. Naively, one would expect that 〈𝑓𝑏〉 in these chains ori-
ented in the “free” z-direction would also increase, but we show 
herein that 〈𝑓𝑏〉 decreases in compressed networks, Fig. 2b-c.  
 

Figure 2. (a) Upon increasing brush grafting density, 𝜎𝑔, the 
elongation of chains along the vertical direction increases. (b) 
The same phenomenon is encountered in the case of the biaxial 
compression of a polymer network. A strand of a biaxially com-
pressed network oriented in the “free” vertical 𝑧-direction is, on 
average, extended along this direction by the deformation ratio 
𝜆𝑧. (c) The chain tension increases due to chain elongation with 
increasing 𝜎𝑔 and 𝜆𝑧 for brushes and networks, respectively 
(top). However, the bond tension decreases, due to increasing 
pressure (bottom). 
 
We explain this counterintuitive result by accounting for the de-
pendence of the bond tension on both chain tension and pres-
sure, 𝑃. We discuss this phenomenon for compressed polymer 
networks as well as with increasing grafting density in polymer 
brushes. Our theoretical predictions are compared with the re-
sults of molecular dynamics simulations of the Kremer-Grest 
bead-spring model of networks and brushes,19,20 see Section S1 
in the Supporting Information (SI) for simulation details. 
Contributions to Bond Tension: The average bond tension, 〈𝑓𝑏〉, 
is composed of several contributions, see ref 21 and section S2,  
⟨𝑓𝑏⟩ = ⟨𝑓𝑏

𝑖𝑛ℎ⟩ + ⟨𝑓𝑏
𝑐ℎ⟩ + ⟨𝑓𝑏

𝑖𝑛𝑡⟩.  (4) 
The ⟨𝑓𝑏𝑖𝑛ℎ⟩ term  in Eq. 4 is the inherent bond tension that is 
due to the orientational/vibrational entropy of the bond and is 
always positive. This contribution is ⟨𝑓𝑏𝑖𝑛ℎ⟩ = 2𝑘𝑇〈1 𝑙⁄ 〉, where 
𝑙 is the bond length. Note that for stiff bonds with 𝜅 ≫ 𝑘𝑇/〈𝑙〉2, 
〈1 𝑙⁄ 〉 ≈ 1/〈𝑙〉. The terms ⟨𝑓𝑏𝑐ℎ⟩ and ⟨𝑓𝑏𝑖𝑛𝑡⟩, respectively, are due 
to the bonded and non-bonded interactions of the atoms in-
volved in the bond in question. In the condensed phase, these 
contributions are negative due to cohesive interactions with 
neighboring monomers, unless the chain is strongly stretched.  
The exact differential of ⟨𝑓𝑏⟩ as a function of 𝑓𝑐ℎ and pressure 
can be written as  
𝑑⟨𝑓𝑏(𝑓𝑐ℎ , 𝑃)⟩ = (

𝜕⟨𝑓𝑏⟩

𝜕𝑓𝑐ℎ
)
𝑃
𝑑𝑓𝑐ℎ+(

𝜕⟨𝑓𝑏⟩

𝜕𝑃
)
𝑓𝑐ℎ

𝑑𝑃. (5) 

We separately study the dependence of bond tension on chain 
tension and on pressure and approximate bond tension by 
⟨𝑓𝑏(𝑓𝑐ℎ, 𝑃)⟩ ≅ 
               ⟨𝑓𝑏0⟩ + [∫

𝜕⟨𝑓𝑏⟩

𝜕𝑓𝑐ℎ
𝑑𝑓𝑐ℎ

𝑓𝑐ℎ

0
]
𝑃=0

+ [∫
𝜕⟨𝑓𝑏⟩

𝜕𝑃
𝑑𝑃

𝑃

0
]
𝑓𝑐ℎ=0

,    (6) 
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where ⟨𝑓𝑏0⟩ is the average bond tension in the unperturbed melt 
at zero pressure. 
Applying an external force to a polymer chain, for example by 
stretching a tethered chain in solution using an Atomic Force 
Microscope (Fig. 1a) or by extending a network strand oriented 
in the “free” direction in an elastomer under compression, in-
creases ⟨𝑓𝑏⟩ in extended chains. This 𝑓𝑐ℎ-induced increase in 
⟨𝑓𝑏⟩ is equal to the average projection of the external force ap-
plied to chain ends onto the direction of the bond and, thus, is 
proportional to the average cosine of the angle 𝜃 between the 
applied force and the bond vector. This prediction is confirmed 
by molecular dynamics simulations, in which a single chain in 
the melt is extended by applying a pair of equal oppositely di-
rected forces 𝑓𝑐ℎ to its ends, Fig. 3a. For a freely jointed chain, 
this increase in bond tension due to the application of chain ten-
sion at constant pressure 𝑃 is proportional to the Langevin func-
tion ℒ 16 

[∫
𝜕⟨𝑓𝑏⟩

𝜕𝑓𝑐ℎ
𝑑𝑓𝑐ℎ

𝑓𝑐ℎ

0

]
𝑃

= ⟨𝑓𝑏(𝑓𝑐ℎ , 𝑃)⟩ − ⟨𝑓𝑏(0, 𝑃)⟩ 

                                    ≅ 𝑓𝑐ℎℒ(𝑓𝑐ℎ𝑏/𝑘𝑇).                                   (7) 
This contribution (Eq. 7) scales quadratically with 𝑓𝑐ℎ at low 
forces, 𝑓𝑐ℎ ≪ 𝑘𝑇/𝑏, and linearly with 𝑓𝑐ℎ at high forces 𝑓𝑐ℎ ≫
𝑘𝑇/𝑏. The prediction of Eq. 7 with the Kuhn length of the chain, 
𝑏 = 1.78 𝜎, overestimates the simulation data, while the phe-
nomenological value of 𝑏 = 0.7𝜎 yields good agreement. We 
explain this difference in Kuhn lengths in Section S3.  
The simulation results presented in Fig. 3b confirm the expec-
tation that increasing pressure applied to the polymer melt at 
constant chain tension compresses the bonds and thereby de-
creases ⟨𝑓𝑏⟩. This negative contribution to ⟨𝑓𝑏⟩ (the third term 
in the rhs of Eq. 6) varies almost linearly with applied pressure 

[∫
𝜕⟨𝑓𝑏⟩

𝜕𝑃
𝑑𝑃

𝑃

0

]
𝑓𝑐ℎ

= ⟨𝑓𝑏(𝑓𝑐ℎ, 𝑃)⟩ − ⟨𝑓𝑏(𝑓𝑐ℎ , 0)⟩ 

                                 ≅ −𝑃 ∙ 𝐴 (8) 
where 𝐴 is the average area per bond. We note that 𝐴 does not 
depend on the bonded potential itself, see Section S4, but rather 
on the bond length and molecular packing.  
This approximation for pressure contribution to ⟨𝑓𝑏⟩ with a con-
stant 𝐴 = 𝐴0 is valid over a wide interval of chain tensions, 
𝑓𝑐ℎ ≲ 10 𝑘𝑇/𝜎 and pressures 𝑃 ≲ 10 𝑘𝑇/𝜎3, as shown by the 
black line in Fig.3b. At higher pressures, the melt compressibil-
ity becomes important and can be accounted for by including a 
linear correction 𝐴 = 𝐴0(1 − 𝑃/𝑃1), see the green line in Fig. 
3b and Section S5.  
The simulation data justify our approximation for the depend-
ence of bond tension on 𝑓𝑐ℎ and pressure, Eq. 6, which can be 
written explicitly as  
⟨𝑓𝑏(𝑓𝑐ℎ, 𝑃)⟩ ≅ ⟨𝑓𝑏

0⟩ + 𝑓𝑐ℎℒ (
𝑓𝑐ℎ𝑏

𝑘𝑇
) − 𝑃𝐴.  (9)  

Bond and Chain Tensions in Polymer Networks The concurrent 
effect of pressure and 𝑓𝑐ℎ on bond tension is of special im-
portance in deformed polymer networks. We demonstrate this 
relationship by computer simulations of the uniaxial and biaxial 
deformation of an end-linked polymer network with an average 
number 〈𝑛𝑥〉 ≈ 35 of beads per network strand (see Section S1).  
 

Figure 3. (a) Change in bond tension upon increasing chain ten-
sion, 𝑓𝑐ℎ, at several constant pressures (𝑃 = 0, 1, 10 𝑘𝑇/𝜎3, in 
blue, red, and green, respectively). Top inset: A cartoon depict-
ing a simulation setup where the pressure 𝑃 on the simulation 
box is controlled and external pair of forces 𝑓𝑒𝑥𝑡 is applied to 
the ends of a single chain in the melt, resulting in chain tension 
𝑓𝑐ℎ = 𝑓𝑒𝑥𝑡. At low chain tension, 𝑓𝑐ℎ < 𝑘𝑇/𝑏, the bonds are 
weakly oriented and the dependence of ⟨𝑓𝑏⟩ on 𝑓𝑐ℎ is quadratic, 
whereas at high tensions bonds are strongly aligned along the 
direction of the applied force and the dependence is linear. The 
black and cyan lines represent fits to the theoretical dependen-
cies in Eq. 7 with 𝑏 = 1.78𝜎 and 0.7𝜎, respectively (see Section 
S3  for details). (b) Change in bond tension (with a minus sign) 
upon increasing pressure, 𝑃, at several applied chain tensions. 
The black line represents the linear prediction of Eq. 8 with con-
stant 𝐴 = 𝐴0 = 1.23 𝜎2, while the green line corresponds to a 
pressure-dependent 𝐴 = 𝐴0(1 − 𝑃/𝑃1) with 𝑃1 = 34 𝑘𝑇/𝜎3 
based on isothermal compressibility of the melt (Section S5). 
Both panels present the results (symbols) obtained from simu-
lations of a polymer melt with chains containing 𝑛 = 128 beads 
with full LJ potential (see Section S1).  
 
We compare uniaxial and equi-biaxial network deformations 
with linear deformation ratios 𝜆𝛼, where 𝛼 = 𝑥, 𝑦, 𝑧. Upon uni-
axial deformation along the 𝑧 direction, 𝜆𝑧 = 𝐿𝑧 𝐿𝑧,0⁄  is the ratio 
of the final elastomer length 𝐿𝑧 to its initial length 𝐿𝑧,0, while 
the other two dimensions, 𝐿𝑥 and 𝐿𝑦, are unconstrained under 
the condition of overall constant pressure 𝑃. For equi-biaxial 
deformation, the deformation ratios 𝜆𝑥 = 𝜆𝑦 along the 𝑥 and 𝑦 
directions are controlled, whereby 〈𝜆𝑧〉 is the average defor-
mation ratio in the unconstrained z-direction. In our simula-
tions, the ratio of bulk to shear moduli is ~103, implying the 
Poisson ratio of elastomer is close to ½ and 𝜆𝑧 ≅ 𝜆𝑥𝑦

−2. We note 
that for the equi-biaxial deformation, the value of 𝜆𝑧 differed 
from 𝜆𝑥𝑦

−2 by less than 1.2% up to 〈𝜆𝑧〉 = 3. In the following, we 
compare ⟨𝑓𝑏⟩̅̅ ̅̅ ̅, the time and ensemble average bond tension over 
the entire network, and 𝑓𝑐ℎ in networks deformed uniaxially and 
equi-biaxially to a “similar” final shape, i.e., a similar 𝜆𝑧 and 
thus having similar elastic stress. 
The chain tension in each strand of the network is determined 
from its average end-to-end distance and using the melt fit to 
the mFJC (Eq. S20) with a tension-dependent Kuhn length (Eq. 
S21) (see Section S6 for details). As mentioned above, chain 
tension is independent of pressure (Fig. 3a). Hence, the chain 
tension 𝑓𝑐ℎ averaged over all strands of the network, denoted by 
𝑓𝑐̅ℎ, does not depend on the specific deformation protocol, as 
shown in Fig. 4a by comparing identical results of uniaxial and 
equi-biaxial deformations with the same network shape (same 
𝜆𝑧). The stress-strain curves 𝜎𝐸(𝜆𝑧) are also identical for such 
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deformations since the pressure tensor contribution is sub-
tracted from the expression for stress, and hence the stress-
strain dependence of the network does not give any indication 
on the difference in bond tension for different types of defor-
mation (see red and black symbols in Fig. 4a, inset).  
In contrast to the identical stress, the pressure inside the elasto-
mer of the same shape under two types of deformations (com-
pression vs stretching at the same 𝜆𝑧) differs significantly, Fig. 
4b. Upon uniaxial extension (black circles for 𝜆𝑧 > 1) or equi-
biaxial extension in xy-direction (red triangles for 𝜆𝑧 < 1), the 
pressure is negative. In experiments, this negative pressure 
eventually leads to cavitation and fracture of the material at 
large deformations.22 In contrast, upon compression, either uni-
axial (black circles for 𝜆𝑧 < 1) or equi-biaxial (red triangles for 
𝜆𝑧 > 1), the pressure is positive, which leads to bond compres-
sion. The average chain tension in the unperturbed network, 
𝑓𝑐̅ℎ,0 (at 𝜆𝑧 = 1) is nonzero due to the stretching of the strands 
trapped by crosslinks at the preparation conditions. Yet, ⟨𝑓𝑏⟩̅̅ ̅̅ ̅ at 
𝜆𝑧 = 1 and in the unperturbed melt at 𝑃 = 0 are almost exactly 
identical (a difference of ~0.1%). See Section S7 for further 
details.  
The positive pressure developed in the network upon compres-
sion leads to the decreasing ⟨𝑓𝑏⟩̅̅ ̅̅ ̅ with an increasing 𝜆𝑧 under 
equi-biaxial compression (red triangles in Fig. 4c) and decreas-
ing ⟨𝑓𝑏⟩̅̅ ̅̅ ̅ upon reducing 𝜆𝑧 for uniaxial compression (black cir-
cles in Fig. 4c). These two qualitatively different dependencies 
⟨𝑓𝑏⟩̅̅ ̅̅ ̅(𝜆𝑧) for uniaxial and equi-biaxial deformations (black and 
red symbols in Fig. 4c) are in very good agreement with the 
theoretical prediction (Eq. 9) of the sum of contributions from 
𝑓𝑐ℎ (Fig. 4a) and 𝑃 (Fig. 4b) – see red and black solid lines in 
Figure 4c.  
This result reflects the fundamental difference between bond 
and chain tensions. The chain tension averaged over all strands 
of the network, 𝑓𝑐̅ℎ, increases under network deformation in all 
cases (the lowest 𝑓𝑐̅ℎ is for undeformed networks), but the 
change in pressure is either positive or negative depending on 
whether the network is compressed or stretched, respectively. 
Since bond tension depends strongly on pressure, this results in 
qualitatively different bond tensions within the networks for 
compression and stretching protocols, despite the similar net-
work shapes obtained under these deformations.  
Since the elastomer shape at a certain 𝜆𝑧 is almost the same for 
the two deformation protocols, the difference in ⟨𝑓𝑏⟩̅̅ ̅̅ ̅ between 
them should be dependent only on the pressure difference. 
Based on Eq. 8, ⟨𝑓𝑏⟩̅̅ ̅̅ ̅

𝑏𝑖 − ⟨𝑓𝑏⟩̅̅ ̅̅ ̅
𝑢𝑛𝑖 = Δ𝑃 ∙ 𝐴, where we assume a 

constant 𝐴. This prediction (solid line in Fig. 4d) based on the 
dependence of ⟨𝑓𝑏⟩ on 𝑃 that we find in the pure melt, Fig. 3b 
is in excellent agreement with the elastomer simulations, (blue 
circles in Fig. 4d).  
For incompressible affine or phantom networks, the depend-
ence of the tensile stress 𝜎𝐸 on 𝜆𝑧 is predicted to be of neo-
Hookean form16  
𝜎𝐸 = 𝐺(𝜆𝑧

2 − 𝜆𝑧
−1) (10) 

where 𝐺 is the shear modulus (black line in Fig. 4a, inset). The 
corresponding pressure is given by23 
𝑃 = −

𝛼

3
𝜎𝐸 = −

𝛼𝐺

3

(𝜆𝑧
2+𝜆𝑧+1)

𝜆𝑧
(𝜆𝑧 − 1) (11) 

where in the last expression we used the stress 𝜎𝐸 given by Eq. 
10, and 𝛼 is a constant equal to 1 and −2 for uniaxial and equi-
biaxial deformation, respectively. From Fig. 3b we observed 

that the pressure contribution to the bond tension varies linearly 
with pressure (Eq. 8),  
[∫

𝜕⟨𝑓𝑏⟩

𝜕𝑃
𝑑𝑃

𝑃

0
]
𝑓𝑐ℎ

≅ −𝑃𝐴 ≅ 𝛼𝐺𝐴 [
(𝜆𝑧

2+𝜆𝑧+1)

3𝜆𝑧
] (𝜆𝑧 − 1),        (12) 

where the term in the square brackets in the last expression is 
~1 for small 𝜆𝑧. Hence, for small deformations the pressure 
contribution to ⟨𝑓𝑏⟩ depends linearly on the strain, 𝜆𝑧 − 1. 
For an affine network of Gaussian chains, the chain tension av-
eraged over all network strands follows  
𝑓̅𝑐ℎ

𝑓̅𝑐ℎ,0
= √

1

3
(

2

𝜆𝑧
+ 𝜆𝑧

2) ≈ 1 +
1

2
(𝜆𝑧 − 1)2. (13) 

Therefore, chain tension varies quadratically with strain 
𝑓𝑐̅ℎ~ (𝜆𝑧 − 1)2 for small deformations. For small strains, the 
increase in bond tension ⟨𝑓𝑏⟩  due to increase in chain tension is 
[∫

𝜕⟨𝑓𝑏⟩

𝜕𝑓𝑐ℎ
𝑑𝑓𝑐ℎ

𝑓𝑐ℎ

0
]
𝑃
−

𝑏

3𝑘𝑇
𝑓𝑐̅ℎ,0

2 ≅
𝑏

3𝑘𝑇
𝑓𝑐̅ℎ,0

2 (𝜆𝑧 − 1)2. (14) 

It follows that at small strain 𝜆𝑧 − 1, the pressure contribution 
to the bond tension (varying linearly with strain, Eq. 12) is much 
larger than the chain tension contribution (varying quadratically 
with strain, Eq. 14), and is therefore dominant. See Section S7 
and Fig. S11 for a comparison of these relative contributions.  
 

Figure 4. Comparison of uniaxial and equi-biaxial defor-
mations of end-linked elastomer with 〈𝑛𝑥〉 ≈ 35 beads per net-
work strand. (a) Chain tension 𝑓𝑐̅ℎ  averaged over all network 
strands as a function of  𝜆𝑧. The black line is a fit to Eq. 13. 
Inset: Stress-elongation dependencies. The black line is a fit to 
the affine prediction, Eq. 10. (b) Pressure as a function of  𝜆𝑧. 
Lines correspond to Eq. 11 with shear modulus 𝐺 =
0.03 𝑘𝑇 𝜎−3. (c) Bond tension ⟨𝑓𝑏⟩ averaged over all network 
strands as a function of 𝜆𝑧. The solid lines are obtained from 
Eq. 9 using the measured average chain tension, 𝑓𝑐̅ℎ, and the 
pressure 𝑃 calculated in the simulations. The dotted lines are 
predictions of Eq. 12 accounting only for the pressure contribu-
tion, with 𝐴 = 1.23 𝜎2 and 𝐺 = 0.03 𝑘𝑇 𝜎−3. Inset: The same 
data over a broader range of 𝜆𝑧. (d) The difference between av-
erage bond tension ⟨𝑓𝑏⟩̅̅ ̅̅ ̅ for equi-biaxial and uniaxial defor-
mations at the same deformation ratio, as a function of the 
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pressure difference. The solid line is the prediction based on the 
linear approximation Eq. 8.  
 
Using the cross-sectional area per bond, 𝐴 = 1.23 𝜎2, deter-
mined from a linear fit to Fig. 3b and using the shear modulus 
𝐺 = 0.03 𝑘𝑇 𝜎−3, determined from Mooney-Rivlin analysis of 
Fig. 4a, inset, we can successfully predict average bond tension 
⟨𝑓𝑏⟩̅̅ ̅̅ ̅ as a function of 𝜆𝑧 for small strains |𝜆𝑧 − 1| ≪ 1, Fig 4c, 
dotted lines.  
The elongation of strands in a network is inherently heteroge-
neous. While the pressure is uniform over the whole network, 
the chain tension depends on the relative extension 〈𝑅〉/𝐿 of the 
network strand, where 𝐿 is the contour length. Hence the bond 
tension will be different in different network strands, 
〈𝑓𝑏(〈𝑅〉/𝐿)〉. The distribution of chain tensions will determine 
the distribution of bond tension across the network. The func-
tion  〈𝑓𝑏(〈𝑅〉/𝐿)〉 is controlled by the deformation-dependent 
pressure. We discuss this heterogeneity in Section S7 (Fig. 
S13).  
Summary: Our analyses establish a link between two distinct 
physical tensions: the chain tension, 𝑓𝑐ℎ, which is always posi-
tive, and the average bond tension in the polymer chain, ⟨𝑓𝑏⟩, 
which can be positive or negative. The average bond tension is 
a function of both chain tension 𝑓𝑐ℎ and pressure 𝑃. In polymer 
networks, pressure 𝑃 makes the dominant contribution to ⟨𝑓𝑏⟩ 
averaged over all network strands. This results in bonds being 
on average compressed while chains are extended. However, 
while pressure is a global thermodynamic variable affecting all 
bonds similarly, the chain tension is inherently local and de-
pends on the specific network strands involved and their con-
nectivity. For some highly stretched strands, the average bond 
tension far exceeds its network average.  
The same phenomenon is also demonstrated in polymer 
brushes. With increasing grafting density, 𝜎𝑔, each chain is ex-
tended in the direction normal to the grafting surface. Increasing 
𝜎𝑔 induces additional tension in chains. This effect is analogous 
to the deformations of mesophases of block copolymers upon 
increasing repulsion between the two blocks.8 Unlike networks, 
all chains are on average subjected to the same elongation ratio 
(their time average of 𝑅𝑧 is the same). The increased stress is 
balanced by increased pressure, which leads to an overall bond 
compression in a wide range of 𝜎𝑔 (Fig. 2a,c). This observation 
persists even for swollen brushes and when restricted bond an-
gles are introduced between chain segments. We discuss this in 
more detail in Section S8.  
The average bond tension in the network as a function of chain 
elongation ratio, 〈𝑓𝑏(〈𝑅〉/𝐿)〉, and specifically, the tail of the 
highly stretched strands (Section S7), has major implications 
for the reactivity of the system, for example for fracture,24 and 
mechanophore activation. Changes in pressure imposed either 
indirectly by a tensile deformation or by increased hydrostatic 
pressure can significantly affect bond scission conditions. For 
example, assuming Arrhenius kinetics, the standard force-de-
pendence of the rate constant1,25 changes by the factor 
exp (−𝑓𝑏𝑙𝑎/𝑘𝑇), where 𝑙𝑎 is the activation length. For a typical 
bond of 𝑙𝑎 ≈ 0.4Å at temperature 𝑇 = 300𝐾, a change of bond 
tension by 0.1𝑛𝑁, for example by stretching a chain, will mod-
ify the rate constant by a factor ~𝑒.1 Through Eq. 8 we can pre-
dict that this change can be counteracted by applying 

hydrostatic pressure of ~105 𝑎𝑡𝑚, which is attainable in an ex-
perimental setup, for example by diamond anvil cells.26 
The observed compression of bonds (more negative 〈𝑓𝑏(〈𝑅〉/
𝐿)〉) upon network compression (either uniaxial or equi-biaxial) 
reduces the fraction of highly stretched bonds (Fig. S13 and 
Section S7). This suggests that bond scission is suppressed to 
higher elongation ratios 〈𝑅〉/𝐿 than those expected solely from 
the contribution of chain extension.  
Our results also imply that knowledge of the exact dependence 
of ⟨𝑓𝑏⟩ on  both 𝑓𝑐ℎ and pressure 𝑃 allows the determination of 
chain tension by measuring the bond tension and pressure. This 
may allow the use of covalent bonds as a molecular gauge for 
the tension of the entire chain, which will be helpful in the anal-
ysis of molecular networks and other polymer architectures.  
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