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ABSTRACT: Extending polymer chains results in a positive chain tension, f,j, due primarily to conformational restrictions. At the
level of individual bonds, however, tension f, is either negative or positive and depends both on chain tension and bulk pressure. In
specific systems, this dependence may not be intuitive, whereby f, increases while f;, decreases, i.e., the entire chain is extended,
while bonds are compressed. Specifically, increasing the grafting density of a polymer brush results in chain extension along the
direction perpendicular to the grafting surface, while the underlying bonds are compressed. Similarly, upon compression of polymer
networks, the extension of chains oriented in the “free” direction increases, while their bonds are getting more compressed. We
demonstrate this phenomenon in molecular dynamics simulations and explain it by the fact that the pressure contribution to f;, is

dominant over a wide range of network deformations and brush grafting densities.

The response of polymeric materials to mechanical stimuli is of
fundamental importance for elastomers and gels under stress,
molecular brushes, and polymers under flow. The macroscopic
stress in polymer networks is transduced to tension at the level
of single chains, as well as the individual chemical bonds. Both
chain and bond tension are of great importance: while chain ten-
sion results in the elastic response of the material, bond tension
affects a multitude of chemical properties.! Chemical reactivity,
for example, exponentially depends on the bond tension.™
Therefore, relatively small changes in the bond tension, on the
order of several percent, can change bond lifetime by orders of
magnitude’® and affect the behavior of biological systems. In
polymers, the average bond tension depends on both its local
environment, i.e. interaction with surrounding molecules, and
on the chain tension itself. Bond tension in specific sections of
molecules is also a control characteristic in the design of single-
molecule sensors, self-healing, or active materials, and deter-
mines the overall stability of polymers under externally applied
forces. For example, incorporating mechanophores in a poly-
mer allows for tailored activation upon reaching a specific bond
tension.%’ Understanding the relationship between bond and
chain tensions is thus of fundamental importance.

Differences between Chain and Bond Tension: Chain tension,

E, is defined as the rate of change of the chain free energy F,,
with respect to its end-to-end vector R

fen = 0Fen(R)/0R. M)
Chain free energy includes both entropic contribution due to
variation of polymer conformations and energetic contribution
due to the deformation of bonds along the chain. In some cases,
chain tension is not uniform but varies along the chain. For ex-

ample, in polymer brushes, the tension in the grﬁ%%dp%}}%%loiﬁ

highest near the grafting point and low near the free end.®® An-
other example is a polyelectrolyte chain in dilute solution, with
tension induced by intramolecular electrostatic repulsion that is
highest in the middle of the chain and lowest near chain ends.°
Other examples of non-uniform tension are related to friction
induced by a polymer moving with respect to surrounding me-
dia and include a polymer in elongational flow'' and a polymer
pulled through the solution'?. In all these cases of non-uniform
tension, the definition in Eq. 1 applies to polymer sections of
size R small enough to have an almost constant tension, but
larger than the Kuhn segment, so that F, is still well-defined.
Examples of uniform chain tension include polymers stretched
by equal and oppositely directed forces applied to their ends,
such as unentangled network strands or polymers stretched by
optical or magnetic tweezers, see inset in Fig. l1a. In these cases,
the average chain tension is equal to the externally applied force
with magnitude f, = f,,;. Below we will describe the stretch-
ing case and will hence use f,; and f,,, interchangeably.
The force-extension curve, Fig. 1a, is measured experimentally
by the single-molecule force spectroscopy technique. For exter-
nal forces lower than kT /b, where kT is the thermal energy and
b is the Kuhn length, the chain tension arises primarily due to
restrictions on polymer conformations and is therefore predom-
inantly entropic. In the #-solvent or the melt state in this regime
fext < KT /b, the polymer behaves as a Gaussian chain
fon =22 (R, @)
where N is the number of Kuhn segments, and (R,) is the aver-
age projection of the chain end-to-end vector onto the direction
of the applied force. At tensions higher than ~kT /b, (~4pN for
b = 1nm) the force-extension dependence becomes strongly
on-linear due to the finite extensibility of the chain but is still
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primarily entropic. At still higher external forces, the enthalpic
contributions to the elasticity due to bond deformation become
dominant.

Bond tension is fundamentally different from chain tension. For
a chemical bond of length [ , the instantaneous bond tension is
defined as f;, (1) = 0U,(1)/dl, Fig. 1b, where U, (l) is the bond

potential (Fig. 1b, inset). The average bond tension is therefore
o0,

(fy) = (&2 3)
where the brackets represent the time average with an averaging
window larger than the relaxation time of pressure and chain
conformations. The deformation characteristics of the bond are
determined by its stiffness k = 02U, /d1?. To compare differ-
ent bonds, it is useful to introduce the dimensionless stiffness
parameter, S = k(l)2/kT, where (l) is the equilibrium bond
length. For example, for a carbon-carbon covalent bond S =~ 4 -
103, and for a silicon-oxygen bond S ~ 2 - 103 .5!3!4 The value
of S determines the relative amplitude of fluctuations of the
bond length and instantaneous bond tension. The average bond
tension can be roughly estimated by assuming that the cohesive
energy associated with molecular attraction in a liquid state ex-
ceeds -2kT," which for a bond of | ~ 1A suggests (f},) =
—60pN.
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Figure 1. (a) Schematic of a force-extension curve, depicting
chain tension, f,,, as a function of the average extension nor-
malized by the undeformed contour length L. The curve corre-
sponds to the freely-jointed chain (FJC) model!® with Kuhn
length b = 1nm. The cartoon illustrates the pulling of a teth-
ered polymer chain by AFM. (b) Schematic of bond tension, f;,
and (inset) energy, U, as functions of bond length /. The curves
correspond to a Morse parametrization of a C-C bond> at T =
298K. Shaded red areas correspond to the range of bond lengths
where the potential is up to kT above the minimum. Cartoon
depicts a bond (the black line between two black circles) along
with its characteristic area per bond, A (blue oval).

The elasticity of polymer networks is determined by the tension
in their strands, i.e., chain tension, f,.'"'® Bond tension is qual-
itatively different from chain tension in that it also depends on
pressure. It is therefore important to examine the relation be-
tween chain and bond tensions.

Below, we present the results of simulations, where we observe
a counterintuitive relationship between chain and bond tensions
upon increasing grafting density g,; of the polymer brush, Fig.
2a. Chain tension increases with o, as the chains of a denser
brush are more elongated. Surprisingly, however, (f},) decreases
with increasing g, Fig. 2c.

A similar phenomenon is observed in biaxially compressed
elastomers, as shown schematically in Fig. 2b for the network
extended along the unconstrained (vertical) direction by a de-
formation ratio 4,. As a result, chains oriented along an uncon-
strained direction are extended with f, increasing with 1, Fig.
2b-c. Naively, one would expect that (f;,) in these chains ori-
ented in the “free” z-direction would also increase, but we show
herein that (f;,) decreases in compressed networks, Fig. 2b-c.
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Figure 2. (a) Upon increasing brush grafting density, oy, the
elongation of chains along the vertical direction increases. (b)
The same phenomenon is encountered in the case of the biaxial
compression of a polymer network. A strand of a biaxially com-
pressed network oriented in the “free” vertical z-direction is, on
average, extended along this direction by the deformation ratio
A,. (¢) The chain tension increases due to chain elongation with
increasing g, and A, for brushes and networks, respectively
(top). However, the bond tension decreases, due to increasing
pressure (bottom).

We explain this counterintuitive result by accounting for the de-
pendence of the bond tension on both chain tension and pres-
sure, P. We discuss this phenomenon for compressed polymer
networks as well as with increasing grafting density in polymer
brushes. Our theoretical predictions are compared with the re-
sults of molecular dynamics simulations of the Kremer-Grest
bead-spring model of networks and brushes, !>’ see Section S1
in the Supporting Information (SI) for simulation details.
Contributions to Bond Tension: The average bond tension, (f},),
is composed of several contributions, see ref 2! and section S2,
(fod = (f5"") + f5™) + (f7). )
The ( fbi"h) term in Eq. 4 is the inherent bond tension that is
due to the orientational/vibrational entropy of the bond and is
always positive. This contribution is ( bmh) = 2kT(1/1), where
[ is the bond length. Note that for stiff bonds with k >> kT /(l)?,
(1/1) = 1/(1). The terms (f£") and (f;"*), respectively, are due
to the bonded and non-bonded interactions of the atoms in-
volved in the bond in question. In the condensed phase, these
contributions are negative due to cohesive interactions with
neighboring monomers, unless the chain is strongly stretched.
The exact differential of (f},) as a function of f,, and pressure
can be written as

Ay fon P = (572) dfent (527), P 3)
We separately study the dependence of bond tension on chain
tension and on pressure and approximate bond tension by

(fo (fen, P)) = s v
G+ RS df] (I ap

]fch:()’ ©
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where (f;) is the average bond tension in the unperturbed melt
at zero pressure.

Applying an external force to a polymer chain, for example by
stretching a tethered chain in solution using an Atomic Force
Microscope (Fig. 1a) or by extending a network strand oriented
in the “free” direction in an elastomer under compression, in-
creases (f,) in extended chains. This f;-induced increase in
(f,) is equal to the average projection of the external force ap-
plied to chain ends onto the direction of the bond and, thus, is
proportional to the average cosine of the angle 8 between the
applied force and the bond vector. This prediction is confirmed
by molecular dynamics simulations, in which a single chain in
the melt is extended by applying a pair of equal oppositely di-
rected forces f,;, to its ends, Fig. 3a. For a freely jointed chain,
this increase in bond tension due to the application of chain ten-
sion at constant pressure P is proportional to the Langevin func-
tion L 16

fcha
[ f o) dfch] — (o P)) — (£ (0, P))

af ch

= fenL(fenb/KT). (M
This contribution (Eq. 7) scales quadratically with f,, at low
forces, f., < kT /b, and linearly with f, at high forces f,;, >
kT /b. The prediction of Eq. 7 with the Kuhn length of the chain,
b = 1.78 g, overestimates the simulation data, while the phe-
nomenological value of b = 0.70 yields good agreement. We
explain this difference in Kuhn lengths in Section S3.
The simulation results presented in Fig. 3b confirm the expec-
tation that increasing pressure applied to the polymer melt at
constant chain tension compresses the bonds and thereby de-
creases (f). This negative contribution to (f},) (the third term
in the rhs of Eq. 6) varies almost linearly with applied pressure

P9
[ f () dp] = (o o PY) = {Fo (o O))

=—-P-A ®)
where A is the average area per bond. We note that A does not
depend on the bonded potential itself, see Section S4, but rather
on the bond length and molecular packing.
This approximation for pressure contribution to (f;) with a con-
stant A = A, is valid over a wide interval of chain tensions,
fen S 10 kT /o and pressures P < 10 kT /a3, as shown by the
black line in Fig.3b. At higher pressures, the melt compressibil-
ity becomes important and can be accounted for by including a
linear correction A = Ay(1 — P/P,), see the green line in Fig.
3b and Section S5.
The simulation data justify our approximation for the depend-
ence of bond tension on f; and pressure, Eq. 6, which can be
written explicitly as

FoFons PY) = (£ + funl (£22) — Pa. ©
Bond and Chain Tensions in Polymer Networks The concurrent
effect of pressure and f_, on bond tension is of special im-
portance in deformed polymer networks. We demonstrate this
relationship by computer simulations of the uniaxial and biaxial
deformation of an end-linked polymer network with an average
number (n,) = 35 of beads per network strand (see Section S1).
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Figure 3. (a) Change in bond tension upon increasing chain ten-
sion, f5,, at several constant pressures (P = 0,1,10 kT /o3, in
blue, red, and green, respectively). Top inset: A cartoon depict-
ing a simulation setup where the pressure P on the simulation
box is controlled and external pair of forces f,,; is applied to
the ends of a single chain in the melt, resulting in chain tension
fen = fext- At low chain tension, f,, < kT /b, the bonds are
weakly oriented and the dependence of {f;,) on f, is quadratic,
whereas at high tensions bonds are strongly aligned along the
direction of the applied force and the dependence is linear. The
black and cyan lines represent fits to the theoretical dependen-
cies in Eq. 7with b = 1.780 and 0.70, respectively (see Section
S3 for details). (b) Change in bond tension (with a minus sign)
upon increasing pressure, P, at several applied chain tensions.
The black line represents the linear prediction of Eq. 8 with con-
stant A = A, = 1.23 o2, while the green line corresponds to a
pressure-dependent A = A,(1 — P/P;) with P, = 34 kT /o3
based on isothermal compressibility of the melt (Section S5).
Both panels present the results (symbols) obtained from simu-
lations of a polymer melt with chains containing n = 128 beads
with full LJ potential (see Section S1).

We compare uniaxial and equi-biaxial network deformations
with linear deformation ratios 1,, where ¢ = x, y, z. Upon uni-
axial deformation along the z direction, A, = L,/L,, is the ratio
of the final elastomer length L, to its initial length L, o, while
the other two dimensions, L, and L,, are unconstrained under
the condition of overall constant pressure P. For equi-biaxial
deformation, the deformation ratios 4, = 4, along the x and y
directions are controlled, whereby (A,) is the average defor-
mation ratio in the unconstrained z-direction. In our simula-
tions, the ratio of bulk to shear moduli is ~10%, implying the
Poisson ratio of elastomer is close to %2 and A, = A;7. We note
that for the equi-biaxial deformation, the value of A, differed
from A} by less than 1.2% up to (1,) = 3. In the following, we

compare (f;,), the time and ensemble average bond tension over
the entire network, and f,;, in networks deformed uniaxially and
equi-biaxially to a “similar” final shape, i.e., a similar 4, and
thus having similar elastic stress.

The chain tension in each strand of the network is determined
from its average end-to-end distance and using the melt fit to
the mFJC (Eq. S20) with a tension-dependent Kuhn length (Eq.
S21) (see Section S6 for details). As mentioned above, chain
tension is independent of pressure (Fig. 3a). Hence, the chain
tension f,;, averaged over all strands of the network, denoted by
fen» does not depend on the specific deformation protocol, as
shown in Fig. 4a by comparing identical results of uniaxial and
equi-biaxial deformations with the same network shape (same
A,). The stress-strain curves o (4,) are also identical for such
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deformations since the pressure tensor contribution is sub-
tracted from the expression for stress, and hence the stress-
strain dependence of the network does not give any indication
on the difference in bond tension for different types of defor-
mation (see red and black symbols in Fig. 4a, inset).

In contrast to the identical stress, the pressure inside the elasto-
mer of the same shape under two types of deformations (com-
pression vs stretching at the same 4,) differs significantly, Fig.
4b. Upon uniaxial extension (black circles for A, > 1) or equi-
biaxial extension in xy-direction (red triangles for 4, < 1), the
pressure is negative. In experiments, this negative pressure
eventually leads to cavitation and fracture of the material at
large deformations.?” In contrast, upon compression, either uni-
axial (black circles for 1, < 1) or equi-biaxial (red triangles for
A, > 1), the pressure is positive, which leads to bond compres-
sion. The average chain tension in the unperturbed network,
feno (at 2, = 1) is nonzero due to the stretching of the strands

trapped by crosslinks at the preparation conditions. Yet, (f,) at
A, = 1 and in the unperturbed melt at P = 0 are almost exactly
identical (a difference of ~0.1%). See Section S7 for further
details.
The positive pressure developed in the network upon compres-
sion leads to the decreasing {(f,,) with an increasing A, under
equi-biaxial compression (red triangles in Fig. 4c) and decreas-
ing (f,) upon reducing A, for uniaxial compression (black cir-
cles in Fig. 4¢). These two qualitatively different dependencies
(f,)(1,) for uniaxial and equi-biaxial deformations (black and
red symbols in Fig. 4c) are in very good agreement with the
theoretical prediction (Eq. 9) of the sum of contributions from
fen (Fig. 4a) and P (Fig. 4b) — see red and black solid lines in
Figure 4c.
This result reflects the fundamental difference between bond
and chain tensions. The chain tension averaged over all strands
of the network, f.j,, increases under network deformation in all
cases (the lowest f, is for undeformed networks), but the
change in pressure is either positive or negative depending on
whether the network is compressed or stretched, respectively.
Since bond tension depends strongly on pressure, this results in
qualitatively different bond tensions within the networks for
compression and stretching protocols, despite the similar net-
work shapes obtained under these deformations.
Since the elastomer shape at a certain A, is almost the same for
the two deformation protocols, the difference in (f,) between
them should be dependent only on the pressure difference.
Based on Eq. 8, (fy,)p; — (fo)uni = AP * A, where we assume a
constant A. This prediction (solid line in Fig. 4d) based on the
dependence of (f;,) on P that we find in the pure melt, Fig. 3b
is in excellent agreement with the elastomer simulations, (blue
circles in Fig. 4d).
For incompressible affine or phantom networks, the depend-
ence of the tensile stress oz on 4, is predicted to be of neo-
Hookean form!®
op =G —AzH) (10)
where G is the shear modulus (black line in Fig. 4a, inset). The
corresponding pressure is given by?
2

—wlEl G, - (1n)
where in the last expression we used the stress g given by Eq.
10, and « is a constant equal to 1 and —2 for uniaxial and equi-
biaxial deformation, respectively. From Fig. 3b we observed

a
P=—=0=
3E

that the pressure contribution to the bond tension varies linearly
with pressure (Eq. 8),

[fop (fp) dp]f ~ _PA = aGA [(Az+/12+1)] 1, — 1), (12)
h

where the term in the square brackets in the last expression is
~1 for small A,. Hence, for small deformations the pressure
contribution to (f;,) depends linearly on the strain, A, — 1.

For an affine network of Gaussian chains, the chain tension av-
eraged over all network strands follows

Ten _ 1(2 4 52) & Lol — 12
= /3(lz+az)~1+2(az 1)2. (13)

Therefore, chain tension varies quadratically with strain
fen~ (A, — 1)? for small deformations. For small strains, the
increase in bond tension (f},) due to increase in chain tension is
[ 572 dfen] = 5 o = 5 o O = D2, (14)
It follows that at small strain A, — 1, the pressure contribution
to the bond tension (varying linearly with strain, Eq. 12) is much
larger than the chain tension contribution (varying quadratically
with strain, Eq. 14), and is therefore dominant. See Section S7
and Fig. S11 for a comparison of these relative contributions.
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Figure 4. Comparison of uniaxial and equi-biaxial defor-
mations of end-linked elastomer with (n,) ~ 35 beads per net-
work strand. (a) Chain tension f,;, averaged over all network
strands as a function of A,. The black line is a fit to Eq. 13.
Inset: Stress-elongation dependencies. The black line is a fit to
the affine prediction, Eq. 10. (b) Pressure as a function of A,.
Lines correspond to Eq. 11 with shear modulus G =
0.03 kT o73. (c) Bond tension (f},) averaged over all network
strands as a function of A,. The solid lines are obtained from
Eq. 9 using the measured average chain tension, f,,, and the
pressure P calculated in the simulations. The dotted lines are
predictions of Eq. 12 accounting only for the pressure contribu-
tion, with A = 1.23 62 and G = 0.03 kT o~ 3. Inset: The same
data over a broader range of 4,. (d) The difference between av-
erage bond tension (f,,) for equi-biaxial and uniaxial defor-
mations at the same deformation ratio, as a function of the
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pressure difference. The solid line is the prediction based on the
linear approximation Eq. 8.

Using the cross-sectional area per bond, A = 1.23 o2, deter-
mined from a linear fit to Fig. 3b and using the shear modulus
G = 0.03 kT 073, determined from Mooney-Rivlin analysis of
Fig. 4a, inset, we can successfully predict average bond tension
(f,) as a function of A, for small strains |1, — 1] < 1, Fig 4c,
dotted lines.

The elongation of strands in a network is inherently heteroge-
neous. While the pressure is uniform over the whole network,
the chain tension depends on the relative extension (R)/L of the
network strand, where L is the contour length. Hence the bond
tension will be different in different network strands,
(f» (R)/L)). The distribution of chain tensions will determine
the distribution of bond tension across the network. The func-
tion (f,({R)/L)) is controlled by the deformation-dependent
pressure. We discuss this heterogeneity in Section S7 (Fig.
S13).

Summary: Our analyses establish a link between two distinct
physical tensions: the chain tension, f,, which is always posi-
tive, and the average bond tension in the polymer chain, (f}),
which can be positive or negative. The average bond tension is
a function of both chain tension f, and pressure P. In polymer
networks, pressure P makes the dominant contribution to {f;,)
averaged over all network strands. This results in bonds being
on average compressed while chains are extended. However,
while pressure is a global thermodynamic variable affecting all
bonds similarly, the chain tension is inherently local and de-
pends on the specific network strands involved and their con-
nectivity. For some highly stretched strands, the average bond
tension far exceeds its network average.

The same phenomenon is also demonstrated in polymer
brushes. With increasing grafting density, oy, each chain is ex-
tended in the direction normal to the grafting surface. Increasing
a4 induces additional tension in chains. This effect is analogous
to the deformations of mesophases of block copolymers upon
increasing repulsion between the two blocks.® Unlike networks,
all chains are on average subjected to the same elongation ratio
(their time average of R, is the same). The increased stress is
balanced by increased pressure, which leads to an overall bond
compression in a wide range of g, (Fig. 2a,c). This observation
persists even for swollen brushes and when restricted bond an-
gles are introduced between chain segments. We discuss this in
more detail in Section S8.

The average bond tension in the network as a function of chain
elongation ratio, (f, ((R)/L)), and specifically, the tail of the
highly stretched strands (Section S7), has major implications
for the reactivity of the system, for example for fracture,?* and
mechanophore activation. Changes in pressure imposed either
indirectly by a tensile deformation or by increased hydrostatic
pressure can significantly affect bond scission conditions. For
example, assuming Arrhenius kinetics, the standard force-de-
pendence of the rate constant'? changes by the factor
exp (—fply/kT), where [, is the activation length. For a typical
bond of I, ~ 0.4A at temperature T = 300K, a change of bond
tension by 0.1nN, for example by stretching a chain, will mod-
ify the rate constant by a factor ~e.! Through Eq. 8 we can pre-
dict that this change can be counteracted by applying

ACS Macro Letters

hydrostatic pressure of ~10° atm, which is attainable in an ex-
perimental setup, for example by diamond anvil cells.?®

The observed compression of bonds (more negative (f, ({R)/
L))) upon network compression (either uniaxial or equi-biaxial)
reduces the fraction of highly stretched bonds (Fig. S13 and
Section S7). This suggests that bond scission is suppressed to
higher elongation ratios (R)/L than those expected solely from
the contribution of chain extension.

Our results also imply that knowledge of the exact dependence
of {f;,) on both f;, and pressure P allows the determination of
chain tension by measuring the bond tension and pressure. This
may allow the use of covalent bonds as a molecular gauge for
the tension of the entire chain, which will be helpful in the anal-
ysis of molecular networks and other polymer architectures.
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