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This paper presents novel finite element solvers for Stokes flow that are pressure-robust due to the use of a lifting 
operator. Specifically, weak Galerkin (WG) finite element schemes are developed for the Stokes problem on 
quadrilateral and hexahedral meshes. Local Arbogast-Correa or Arbogast-Tao spaces are utilized for construction 
of discrete weak gradients. The lifting operator lifts WG test functions into 𝐻(div)-subspaces and removes 
pressure dependence of velocity errors. The pressure robustness of these solvers is validated theoretically and 
illustrated numerically. Comparison with the non-robust classical Taylor-Hood (𝑄2 , 𝑄1) solver is presented.

1. Introduction

In this paper, we consider the following Stokes flow problem

⎧⎪⎨⎪⎩

−𝜇Δ𝐮+∇𝑝 = 𝐟 , in Ω,

∇ ⋅ 𝐮 = 0, in Ω,

𝐮 = 𝐠, on 𝜕Ω,
(1)

where Ω ⊂ℝ
𝑑 (𝑑 = 2, 3) is a bounded domain, 𝜇 > 0 is the fluid kinematic 

viscosity, 𝐮 is the unknown fluid velocity, 𝑝 is the fluid pressure, 𝐟 is a 
body force, and 𝐠 is a boundary condition that satisfies the compatibility 
condition ∫

𝜕Ω
𝐠 ⋅ 𝐧 = 0 with 𝐧 being the outward unit normal vector on 

the domain boundary 𝜕Ω.
Among the numerical solvers for Stokes flow, the classical mixed fi-

nite element methods are popular choices [7]. Superconvergence has 
been investigated for the MINI elements [11]. In addition to the mixed 
finite element methods, a hybridizable discontinuous Galerkin (HDG) 
method was developed in [39]. More recent developments in HDG 
based on the M-decomposition can be found in [12]. A staggered dis-
continuous Galerkin method was developed in [49]. However, some 
popular classical finite element methods, e.g., Taylor-Hood elements 
[9,34] and the MINI element [5], are not robust [23], in the sense that 
the velocity error depends on the pressure. More specifically, when the 
velocity is approximated by polynomials of order 𝑘 and the pressure 
is approximated by polynomials of order 𝑘 − 1, the velocity error may 
appear as
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‖∇(𝐮− 𝐮ℎ)‖ ≤ 𝐶1ℎ
𝑘|𝐮|𝑘+1 +𝐶2𝜇

−1ℎ𝑘|𝑝|𝑘, (2)

where 𝐶1, 𝐶2 are positive constants (independent of 𝜇). This clearly re-
sults in large velocity errors for small values of the viscosity parameter 
𝜇.

This issue is related to discretization of the body force term (𝐟 , 𝐯)
in the variational formulation. Consider a Helmholtz decomposition 𝐟 =
𝐰 +∇𝜙, where 𝐰 is divergence-free and ∇𝜙 is irrotational. Assume the 
test function 𝐯 is divergence-free and has a vanishing normal component 
on the domain boundary, then

(𝐟 ,𝐯) = (𝐰,𝐯) + (∇𝜙,𝐯) = (𝐰,𝐯) − (𝜙,∇ ⋅ 𝐯) + ⟨𝜙,𝐯 ⋅ 𝐧⟩ = (𝐰,𝐯). (3)

As stated in [28,29], the velocity should not be affected by the addi-
tional irrotational force ∇𝜙, which should be balanced completely by 
the pressure gradient ∇𝑝. However, in most cases, the test function is 
not divergence-free and a Helmholtz decomposition of 𝐟 is difficult to 
obtain in numerical methods. One remedy is to replace discretization 
of (𝐟 , 𝐯) by that of (𝐟 , 𝜋ℎ𝐯), where 𝜋ℎ is an appropriate reconstruction 
operator in the 𝐻(div)-sense.

Using divergence-free elements, e.g., the popular Scott-Vogelius ele-
ments [17,33], can overcome this issue, although it may require delicate 
mesh refinements or higher orders for interpolation. Another approach 
involves the grad-div stabilization [1,38], which may require delicate 
parameter tuning or additional equations.
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Pressure-robustness methods have also been developed to remove 
pressure dependence of velocity errors. Divergence-free elements were 
developed in [15,40,48]. Enriched divergence-free rational shape func-
tions were used in [21,22]. Divergence-free schemes with tangential 
penalty were investigated in [13,43]. A divergence-free MAC scheme 
on triangular meshes was developed in [10]. Pressure-robust schemes 
using divergence-preserving velocity reconstruction were studied in 
[28,29]. Pressure-robust schemes based on the Taylor-Hood and MINI 
elements were developed in [25]. Continuous and discontinuous pres-
sure elements were used in [8,23–26,47]. Virtual elements [14] are 
versatile and a pressure-robust virtual element method for Stokes flow 
was recently designed in [41].

The weak Galerkin (WG) finite element methods were developed in 
[43] for the second-order elliptic equation. Later in [36], the applica-
tion of WG methods was extended to polygonal meshes with the help of 
stabilizers. One main idea of the WG methods is the usage of weak func-
tions and weak derivatives. The shape functions are defined separately 
in element interiors and on inter-element boundaries. The differential 
operators are approximated in the weak sense at the element level. WG 
finite element methods have been developed for a wide range of prob-
lems, e.g., the elliptic problems [42,43], the Stokes problem [6,30,45], 
the linear elasticity problems [19,46], the Darcy equation [31], the div-
curl systems [27], and the Cahn-Hilliard equation [44].

WG methodology was recently applied to development of pressure-
robust Stokes solvers in [35,37]. The solvers in [35] apply to 2-dim 
problems and use more than necessary degrees of freedom in element 
interiors. The solvers in [37] need to go through decomposition of poly-
topals into simplexes.

In this paper, as motivated by the discussion around Equation (3)
and the existing work, we develop robust Stokes solvers based on a 
lifting operator that lifts WG test functions into 𝐻(div)-subspaces, e.g., 
Arbogast-Correa or Arbogast-Tao spaces. These solvers are designed for 
quadrilateral and hexahedral meshes, which are equally flexible as sim-
plicial meshes in accommodation of complicated domain geometry but 
use less elements, especially in 3-dim. For many applications, they align 
well with certain physical features of the problems to be solved. No sta-
bilizer is needed in our schemes.

The rest of the paper is organized as follows. Section 2 develops 
local bases for Arbogast-Correa/Tao spaces. Section 3 introduces WG 
finite elements and a lifting operator that will play an important role 
later. Section 4 presents WG finite element methods (without and with 
use of the lifting operator). Section 5 presents rigorous analysis to show 
the solvers with the lifting operator are pressure-robust. The robustness 
is illustrated by numerical experiments in Section 6 including compari-
son with the classical Taylor-Hood solver for Stokes flow. The paper is 
concluded in Section 7 with remarks.

2. Local Arbogast-Correa and Arbogast-Tao spaces

Before getting into detailed discussion, we list some usual defini-
tions and notations about function spaces and norms that are used in 
development of finite element methods. Let Ω be an open bounded do-
main in ℝ𝑑 (𝑑 = 2, 3) with a Lipschitz continuous boundary. We adopt 
the standard definitions for Sobolev spaces 𝐻𝑠(Ω) (for 𝑠 ≥ 0) and the 
associated norms/seminorms. The seminorm | ⋅ |𝑠,Ω is defined as

|𝑣|𝑠,Ω =

⎛⎜⎜⎝
∑
|𝛼|=𝑠∫

Ω

|𝜕𝛼𝑣|2
⎞⎟⎟⎠

1
2

with the notations for a multi-index and a partial derivative as shown 
below

𝛼 = (𝛼1, 𝛼2, ..., 𝛼𝑑 ), |𝛼| = 𝛼1 + 𝛼2 + ...+ 𝛼𝑑 , 𝜕𝛼 = 𝜕
𝛼1
𝑥1
𝜕
𝛼2
𝑥2
...𝜕

𝛼𝑑
𝑥𝑑
.

The norm ‖ ⋅ ‖𝑠,Ω is defined as

‖𝑣‖𝑠,Ω =

(
𝑠∑
𝑗=0

|𝑣|2
𝑗,Ω

) 1
2

.

These definitions and notations can be extended to the closed bounded 
domain Ω and individual elements in a finite element mesh as well.

The space 𝐻0(Ω) coincides with 𝐿2(Ω), the space of Lebesgue 
square-integrable functions. We denote by (⋅, ⋅)Ω the standard 𝐿2-inner 
product on Ω and ⟨⋅, ⋅⟩𝜕Ω the 𝐿2-inner product on the boundary 𝜕Ω. 
When there is no ambiguity, we omit the subscripts.

Finite element approximations start with domain discretization. 
While simplicial (triangular and tetrahedral) meshes are frequently 
used, quadrilateral and hexahedral meshes are equally versatile. As 
highlighted in [18], quadrilateral/hexahedral meshes are also flexible 
in accommodating complicated domain geometry but usually involve 
less unknowns in finite element schemes; these meshes could be set in 
good alignment with the geometric and physical features of many prob-
lems in real applications. In this paper, we focus on weak Galerkin finite 
element methods on quadrilateral and hexahedral meshes. Especially, 
we use convex quadrilaterals, and also cuboidal hexahedra, which are 
convex and have flat faces.

For a convex quadrilateral 𝐸, a bilinear mapping from the reference 
unit square 𝐸̂ = [0, 1]2 to 𝐸 can be uniquely determined using the co-
ordinates of the four vertices of 𝐸. Similarly, a trilinear mapping maps 
the reference unit cube 𝐸̂ = [0, 1]3 to a hexahedron [20].

Approximation of a scalar field on a quadrilateral or hexahedron uti-
lizing the aforementioned bi/trilinear mapping is straightforward. But 
approximation of vector fields on quadrilaterals or hexahedra usually 
involves the Piola transformation.

Let 𝐸̂ be the unit square/cube and 𝐸 be a quadrilateral or hexahe-
dron. The Piola transformation maps a vector field 𝐮̂(𝐱̂) defined on 𝐸̂ to 
a vector field 𝐮(𝐱) defined on 𝐸 via

𝐮(𝐱) = 𝐸 (𝐮̂) = 𝐉𝐸

𝐽𝐸
𝐮̂(𝐱̂), (4)

where 𝐱 = 𝐹𝐸 (𝐱̂) is the previously mentioned bi/trilinear mapping, 𝐉𝐸
is its Jacobian matrix and 𝐽𝐸 is the Jacobian determinant. The Piola 
transformation preserves the normal fluxes and divergence [3] (p. 5 
formulas (12)(13)).

The Arbogast-Correa and Arbogast-Tao mixed finite element pairs 
were introduced in [2,3], respectively. These elements use rational 
vector-valued shape functions due to the Piola transformation. They 
have advantages over the classical Raviart-Thomas elements, but global 
basis functions are hard to construct, especially for the 3-dim case 
(cuboidal hexahedra).

In this paper, we use the Arbogast-Correa/Tao (ACT) spaces in the 
weak Galerkin framework, but only local bases are needed.

Strictly speaking, there are three types of ACT spaces.

(i) Local space 𝐴𝐶𝑇 (𝐸) on an individual quadrilateral or cuboidal hex-
ahedron;

(ii) Broken space  (ℎ) on a quadrilateral or hexahedral mesh ℎ, 
which is simply the Cartesian product of all local ACT spaces;

(iii) Global space 𝐴𝐶𝑇 (ℎ) is understood as  (ℎ) ∩𝐻(div, Ω), which 
implies normal continuity for the vector functions in 𝐴𝐶𝑇 (ℎ).

It is difficult, especially for hexahedra, to construct a global basis for 
𝐴𝐶𝑇 (ℎ) in the mixed finite element context [3]. However, in the weak 
Galerkin framework, only the local ACT spaces are used, and certain 
global properties, e.g., normal continuity, can be reinforced through 
the bilinear forms used.

In this paper, we focus on the lowest-order local 𝐴𝐶0(𝐸) spaces in 
2-dim and 𝐴𝑇0(𝐸) spaces in 3-dim. For convenience of presentation and 
also deal.II implementation, we introduce a unified notation

𝐴𝐶𝑇0(𝐸) =

{
𝐴𝐶0(𝐸), 𝑑 = 2,

𝐴𝑇0(𝐸), 𝑑 = 3.
(5)
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It is known [2,32] that dim(𝐴𝐶0(𝐸)) = 4 and

𝐴𝐶0(𝐸) = 𝑃0(𝐸)
2 + 𝐱𝑃0(𝐸) +𝐸𝕊0, (6)

where 𝑃0(𝐸)2 is the space of all constant vectors on 𝐸, 𝑃0(𝐸) is the 
space of all homogeneous polynomials of degree 0, and 𝕊0 = Span(𝐬0)

with 𝐬0 =
[
𝑥̂

−𝑦̂

]
. Clearly, 𝕊0 is the space of divergence-free vector fields 

on the reference element 𝐸̂ = [0, 1]2. In other words, a local basis for 
𝐴𝐶0(𝐸) can be chosen as [32]
[
1

0

]
,

[
0

1

]
,

[
𝑋

𝑌

]
, 𝐸

[
𝑥̂

−𝑦̂

]
, (7)

where 𝑋 = 𝑥 − 𝑥𝑐 , 𝑌 = 𝑦 − 𝑦𝑐 and (𝑥𝑐 , 𝑦𝑐) is the element center.
Similarly, dim(𝐴𝑇0(𝐸)) = 6, and a local basis for 𝐴𝑇0(𝐸) can be cho-

sen as

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

𝑋

𝑌

𝑍

⎤
⎥⎥⎦
, 𝐸

⎡
⎢⎢⎣

𝑥̂

−𝑦̂

0

⎤
⎥⎥⎦
, 𝐸

⎡
⎢⎢⎣

0

𝑦̂

−𝑧̂

⎤
⎥⎥⎦
, (8)

where 𝑋 = 𝑥 − 𝑥𝑐 , 𝑌 = 𝑦 − 𝑦𝑐 , 𝑍 = 𝑧 − 𝑧𝑐 are the normalized coordinates 
with (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) being the element center, (𝑥̂, 𝑦̂, ̂𝑧) are the reference coor-
dinates.

Lemma 1 (ACT0 div and flux). An 𝐴𝐶𝑇0(𝐸) space defined in (5) has the 
following properties.

• Divergence:

∇ ⋅ 𝐮 ∈ 𝑃0(𝐸), ∀𝐮 ∈𝐴𝐶𝑇0(𝐸). (9)

• Normal flux: For any edge/face 𝑒 of 𝐸,

𝐮 ⋅ 𝐧 ∈ 𝑃0(𝑒), ∀𝐮 ∈𝐴𝐶𝑇0(𝐸). (10)

See also [2,3,32]. □

Now we consider matrix-version local spaces 𝐴𝐶𝑇0(𝐸)𝑑 . Specifically, 
𝐴𝐶0(𝐸)

2 is the space of 2 ×2 matrices whose row vectors are in 𝐴𝐶0(𝐸). 
So dim(𝐴𝐶0(𝐸)

2) = 8. Similarly, 𝐴𝑇0(𝐸)3 is the space of 3 × 3 matrices 
whose row vectors are in 𝐴𝑇0(𝐸). Thus dim(𝐴𝑇0(𝐸)

3) = 18.

3. Weak Galerkin FE elements and a lifting operator

The weak Galerkin finite element methodology differs from other 
existing finite element methods by considering shape functions sepa-
rately defined in element interiors and inter-element boundaries (edges 
or faces). Discrete versions of differential operators (gradient, div, curl, 
etc.) are constructed via integration by parts for these shape functions. 
This brings a great deal of flexibility to approximation of the variables 
and their derivatives in many variational forms derived from partial dif-
ferential equations. For convenience, we list briefly here the major WG 
notations used in this paper.

• 𝐸: A quadrilateral or hexahedra element, 𝐸◦ denotes its interior 
whereas 𝐸𝜕 denotes its boundary;

• 𝐯ℎ = {𝐯◦
ℎ
, 𝐯𝜕
ℎ
}: A weak vector function; Such a WG shape function 

has two independent pieces: 𝐯◦
ℎ
is defined in 𝐸◦, but 𝐯𝜕

ℎ
is defined 

on 𝐸𝜕 ;
• ∇𝑤𝐯: The weak gradient of a WG weak function 𝐯, see definition in 
(11);

• ∇𝑤 ⋅ 𝐯: The weak divergence of a weak functions 𝐯, see definition 
in (12);

• 𝚲ℎ: The lifting operator defined in (14) that plays a critical role in 
ensuring pressure robustness;

• 𝚷ℎ: A global interpolation operator defined in (47) that facilitates 
the 𝐿2 error analysis.

Now we consider WG finite elements (𝑃 𝑑
0
, 𝑃 𝑑

0
; 𝐴𝐶𝑇 𝑑

0
, 𝑃0), where 𝑑 =

2, 3 is the space dimension that should be clear from the context.

WG(𝑃 𝑑
0
, 𝑃 𝑑

0
; 𝐴𝐶𝑇 𝑑

0
, 𝑃0) finite elements for quadrilateral and hexahe-

dra. We consider WG(𝑃 𝑑
0
, 𝑃 𝑑

0
) vector-valued discrete weak functions on 

𝐸. On each element 𝐸, a vector-valued weak function 𝐯 = {𝐯◦, 𝐯𝜕} is 
defined in the element interior and element faces respectively.

The discrete weak gradients ∇𝑤𝐯 ∈ 𝐴𝐶𝑇 𝑑0 (𝐸) is defined via integra-
tion by parts,

∫
𝐸

∇𝑤𝐯 ∶𝑊 = ∫
𝐸𝜕

𝐯𝜕 ⋅ (𝑊 𝐧) − ∫
𝐸◦

𝐯◦ ⋅ (∇ ⋅𝑊 ), ∀𝑊 ∈𝐴𝐶𝑇0(𝐸)
𝑑 , (11)

where ∶ is the colon product among matrices.
The discrete weak divergence ∇𝑤 ⋅ 𝐯 ∈ 𝑃0(𝐸) is calculated via inte-

gration by parts,

∫
𝐸

(∇𝑤 ⋅ 𝐯)𝑤 = ∫
𝐸𝜕

𝐯𝜕 ⋅ (𝑤𝐧) − ∫
𝐸◦

𝐯◦ ⋅ (∇𝑤), ∀𝑤 ∈ 𝑃0(𝐸). (12)

Note that we may take 𝑤 = 1 in 𝑃0(𝐸). But ∇𝑤 = 𝟎 in 𝐸◦, the above 
formula is reduced to ∇𝑤 ⋅ 𝐯 = (𝐯𝜕 ⋅ 𝐧)|𝑒|∕|𝐸|.

Remarks. Note that 𝐯◦ is defined in element interior 𝐸◦ and 𝐯𝜕 is de-
fined on element boundary 𝐸𝜕 . But for analysis later, we shall extend 
𝐯◦ to 𝐸𝜕 and consider the discrepancy 𝐯𝜕 − 𝐯◦, when needed.

Let ℎ be a shape-regular convex quadrilateral or hexahedron parti-
tion of Ω. For any element 𝐸 ∈ ℎ, let 𝐸◦ be its interior and 𝐸𝜕 be its 
boundary. Denote by ℎ𝐸 its diameter. The mesh size of ℎ is defined as 
ℎ =max𝐸∈ℎ ℎ𝐸 .

We consider the following finite element spaces

𝐕ℎ = {𝐮ℎ = {𝐮◦
ℎ
,𝐮𝜕
ℎ
} ∶ 𝐮◦

ℎ
|𝐸◦ ∈ 𝑃0(𝐸

◦)𝑑 , 𝐮𝜕
ℎ
|𝑒 ∈ 𝑃0(𝑒)𝑑 ,

∀𝐸 ∈ ℎ, 𝑒 ⊂ 𝐸𝜕},
𝑊ℎ = {𝑝 ∈𝐿2

0
(Ω) ∶ 𝑝|𝐸 ∈ 𝑃0(𝐸), ∀𝐸 ∈ ℎ}.

(13)

Note that for any 𝐮ℎ ∈ 𝐕ℎ, 𝐮𝜕ℎ is single-valued on each edge/face 𝑒. Let 
Γℎ be the set of all edges/faces on the domain boundary 𝜕Ω. Denote by 
𝐕0
ℎ
the subspace of 𝐕ℎ with 𝐮𝜕ℎ|Γℎ = 𝟎.
In general, an Arbogast-Correa or Arbogast-Tao space contains ra-

tional vector functions and is larger than the constant vector space, in 
which the WG shape functions reside. It will be beneficial to map or lift 
discrete weak vector shape functions into the space 𝐴𝐶𝑇0, first elemen-
twise and then mesh-wise.

Definition (Lifting operator 𝚲ℎ). This operator maps from 𝐕ℎ to 
𝐴𝐶𝑇0(ℎ), which is an 𝐻(div)-subspace. For any 𝐯 = {𝐯◦, 𝐯𝜕} ∈𝐕ℎ,

⟨(𝚲ℎ𝐯) ⋅ 𝐧,𝑤⟩𝑒 = ⟨𝐯𝜕 ⋅ 𝐧,𝑤⟩𝑒, ∀𝑤 ∈ 𝑃0(𝑒),∀𝑒 ⊂ 𝐸
𝜕 . (14)

The definition implies that a lowest order vector-valued WG shape func-
tion has the same normal flux as its lifted image in 𝐴𝐶𝑇0(ℎ).

Remarks. The lifted image 𝚲ℎ𝐯 is solely determined by the values of 𝐯𝜕

on the inter-element boundaries. The interior part 𝐯◦ makes no contri-
bution.

We shall see later, with the help of the lifting operator 𝚲ℎ , the weak 
Galerkin finite element solvers for Stokes problems are robust. More 
specifically, the numerical velocity errors are not affected by small val-
ues of the viscosity parameter 𝜇.
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4. WG finite element schemes for Stokes flow

For the Stokes boundary value problem (1), based on integration 
by parts, the variational formulation is established as follows. Seek 𝐮 ∈
𝐻1(Ω)𝑑 and 𝑝 ∈𝐿2

0
(Ω) such that 𝐮|𝜕Ω = 𝟎 and

{
𝜇(∇𝐮,∇𝐯) − (𝑝,∇ ⋅ 𝐯) = (𝐟 ,𝐯), ∀𝐯 ∈𝐻1

0
(Ω)𝑑 ,

−(∇ ⋅ 𝐮, 𝑞) = 0, ∀𝑞 ∈𝐿2
0
(Ω),

(15)

where 𝐿2
0
(Ω) is the subspace of 𝐿2(Ω) consisting of the functions that 

have mean-value zero, i.e., ∫
Ω
𝑝 𝑑𝐱 = 0. The condition ensures unique-

ness of the pressure solution and shall be inherited by finite element 
schemes.

One advantage of the weak Galerkin methodology is that the classi-
cal gradient or divergence in the variational form (15) can be replaced 
by the discrete weak gradient/divergence of WG shape functions and 
finite element schemes are readily established.

Scheme I. For Stokes boundary value problem (1), seek 𝐮ℎ ∈ 𝐕ℎ and 
𝑝ℎ ∈𝑊ℎ such that 𝐮𝜕ℎ|Γℎ =𝐐𝜕

ℎ
𝐠, and there hold

⎧⎪⎨⎪⎩

ℎ(𝐮ℎ,𝐯) +ℎ(𝑝ℎ,𝐯) = ℎ(𝐯), ∀𝐯 ∈𝐕0
ℎ
,

ℎ(𝐮ℎ, 𝑞) = 0, ∀𝑞 ∈𝑊ℎ,
(16)

where

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℎ(𝐮ℎ,𝐯) ∶= 𝜇(𝐮ℎ,𝐯)ℎ ∶= 𝜇
∑
𝐸∈ℎ

(∇𝑤𝐮ℎ,∇𝑤𝐯)𝐸 ,

ℎ(𝑝ℎ,𝐯) ∶= −(𝑝ℎ,∇𝑤 ⋅ 𝐯)ℎ ∶= −
∑
𝐸∈ℎ

(𝑝ℎ,∇𝑤 ⋅ 𝐯)𝐸 ,

ℎ(𝐮ℎ, 𝑞) ∶= −(∇𝑤 ⋅ 𝐮ℎ, 𝑞)ℎ ,

ℎ(𝐯) ∶=
∑
𝐸∈ℎ

(𝐟 ,𝐯◦)𝐸 ,

(17)

where 𝐐𝜕
ℎ
is the 𝐿2-projection operator from 𝐿2(𝑒)𝑑 to 𝑃0(𝑒)𝑑 on any 

edge/face 𝑒.

Note that our definition for ℎ(⋅, ⋅)may be slightly different than what is 
found in the literature. A negative sign is introduced in the 2nd equation 
in (16) to maintain symmetry of the discrete linear system.

Scheme II (based on the lifting operator). For Stokes boundary value 
problem (1), seek 𝐮ℎ ∈𝐕ℎ and 𝑝ℎ ∈𝑊ℎ such that 𝐮𝜕ℎ|Γℎ =𝐐𝜕

ℎ
𝐠, and there 

holds

⎧
⎪⎨⎪⎩

ℎ(𝐮ℎ,𝐯) +ℎ(𝑝ℎ,𝐯) = Λ
ℎ
(𝐯), ∀𝐯 ∈𝐕0

ℎ
,

ℎ(𝐮ℎ, 𝑞) = 0, ∀𝑞 ∈𝑊ℎ,
(18)

where ℎ, ℎ are the same as in Scheme I. However,
Λ
ℎ
(𝐯) =

∑
𝐸∈ℎ

(𝐟 ,𝚲ℎ𝐯)𝐸 . (19)

The change in the linear form on the right-hand side of the 1st equa-
tion in (18) seems very little. But it brings in significant benefits that 
ensure robustness of the numerical scheme. We shall show theoretically 
and numerically that Scheme II is robust or locking-free, i.e., the con-
vergence orders of the errors in velocity and pressure are well kept for 
small values of 𝜇 or large Reynolds numbers.

5. Analysis: robustness of scheme II

In this section, we show rigorously that Scheme II is robust.

5.1. Properties of the WG finite element spaces

First, we need to understand the properties of the WG finite element 
spaces.

Definition (Local 𝐿2-projections). Three versions are considered: scalar, 
vector, and matrix.

• 𝑄ℎ is the 𝐿2-projection operator from 𝐿2(Ω) onto space 𝑃0(ℎ).
• 𝐐ℎ: For each element 𝐸 ∈ ℎ, 𝐐◦

ℎ
is the 𝐿2-projection operator from 

the space 𝐿2(𝐸)𝑑 to the space 𝑃0(𝐸◦)𝑑 , whereas 𝐐𝜕
ℎ
is the previously 

defined 𝐿2-projection for element boundaries. On the whole mesh 
ℎ, 𝐐ℎ = {𝐐◦

ℎ
, 𝐐𝜕

ℎ
} is the 𝐿2-projection from 𝐿2(Ω) onto 𝐕ℎ.

• ℎ is the 𝐿2-projection from 𝐿2(Ω)𝑑×𝑑 onto space 𝐴𝐶𝑇0(ℎ)𝑑 .
WG commuting identities. Based on the definitions of discrete weak 
gradient and discrete weak divergence, the properties of 𝐴𝐶𝑇0 spaces 
(9)-(10), and the definitions of the above projection operators, it is clear 
that, on each element 𝐸 ∈ ℎ, for any 𝐰 ∈𝐻1(𝐸)𝑑 , there hold

⎧
⎪⎨⎪⎩

(∇𝑤(𝐐ℎ𝐰),𝑊 )𝐸 = (ℎ(∇𝐰),𝑊 )𝐸 , ∀𝑊 ∈𝐴𝐶𝑇0(𝐸)
𝑑 ,

(∇𝑤 ⋅ (𝐐ℎ𝐰),𝑤)𝐸 = (𝑄ℎ(∇ ⋅𝐰),𝑤)𝐸 , ∀𝑤 ∈ 𝑃0(𝐸).
(20)

These commuting identities will be frequently used later.

Definition (Semi-norm on 𝐕ℎ). For 𝐯 ∈𝐕ℎ, we define

⦀𝐯⦀2 = ∑
𝐸∈ℎ

‖∇𝑤𝐯‖2𝐸 . (21)

This is a semi-norm on 𝐕ℎ, but it becomes a norm on 𝐕0
ℎ
.

Lemma 2 (Trace inequalities). Consider any 𝐸 ∈ ℎ. There exists a con-
stant 𝐶 > 0 such that for any 𝑤 ∈𝐻1(𝐸) and any edge/face 𝑒 ⊂ 𝐸𝜕 , we 
have

‖𝑤‖2𝑒 ≤ 𝐶(ℎ−1‖𝑤‖2𝐸 + ℎ‖∇𝑤‖2
𝐸
). (22)

Moreover, for any 𝑊 ∈𝐴𝐶𝑇 𝑑
0
, the following property holds true

‖𝑊 ‖2
𝐸
≤ 𝐶ℎ‖𝑊 𝐧‖2

𝐸𝜕
. (23)

A proof for the 2nd estimate needs the techniques used in [31] but is skipped 
here. □

Lemma 3 (Bounding weak function discrepancy by its discrete weak gradi-
ent). For any 𝐯 ∈𝐕0

ℎ
, the following estimate holds

∑
𝐸∈ℎ

ℎ−1‖𝐯𝜕 − 𝐯◦‖2
𝐸𝜕

≤ 𝐶⦀𝐯⦀2, (24)

where 𝐶 > 0 is a constant independent of ℎ and 𝜇.

Proof. Let 𝐯 ∈ 𝐕0
ℎ
. Consider a fixed element 𝐸 ∈ ℎ. There are 2𝑑2 lin-

ear combination coefficients for the local space 𝐴𝐶𝑇0(𝐸)𝑑 . But 𝐯𝜕 offers 
2𝑑2 constant vectors on all edges/faces together. There exists a function 
𝑊 ∈𝐴𝐶𝑇0(𝐸)

𝑑 such that

(𝑊 𝐧)|𝐸𝜕 = 𝐯𝜕 − 𝐯◦.

Together with the definition of the discrete weak gradient, this implies 
(since ∇𝐯◦ = 0)

(∇𝑤𝐯,𝑊 )𝐸 = (∇𝐯◦,𝑊 )𝐸◦ + ⟨𝐯𝜕 − 𝐯◦,𝑊 𝐧⟩𝐸𝜕 = ‖𝐯𝜕 − 𝐯◦‖2
𝐸𝜕
.

Applying the Cauchy-Schwarz inequality, Young’s inequality, and the 
2nd trace inequality in (23), (see [19] also), we obtain

93



Z. Wang, R. Wang and J. Liu Computers and Mathematics with Applications 125 (2022) 90–100

‖𝐯𝜕 − 𝐯◦‖2
𝐸𝜕

= (∇𝑤𝐯,𝑊 )𝐸 ≤ 𝛿
2
‖𝑊 ‖2

𝐸
+

1

2𝛿
‖∇𝑤𝐯‖2𝐸

≤ 𝛿
2
𝐶ℎ‖𝑊 𝐧‖2

𝐸𝜕
+

1

2𝛿
‖∇𝑤𝐯‖2𝐸 .

Rearranging terms and then taking 𝛿 = 1∕(𝐶ℎ) yields

𝐶−1ℎ−1‖𝐯𝜕 − 𝐯◦‖2
𝐸𝜕

≤ ‖∇𝑤𝐯‖2𝐸 ,
which completes the proof. □

Remarks. In the estimate in the above lemma, the left-hand side can be 
understood as a derivative in the discrete sense (difference quotients), 
whereas the right-hand side involves the discrete weak gradient.

5.2. Properties of the lifting operator

The lifting operator 𝚲ℎ plays an important role. Replacing (𝐟 , 𝐯◦) in 
Scheme I by (𝐟 , 𝚲ℎ𝐯), we obtain Scheme II.

Lemma 4. The lifting operator 𝚲ℎ has the following property
∑
𝐸∈ℎ

‖𝚲ℎ𝐯− 𝐯◦‖𝐸 ≤ 𝐶ℎ⦀𝐯⦀, ∀𝐯 = {𝐯◦,𝐯𝜕} ∈𝐕ℎ. (25)

Proof. Let 𝐸 ∈ ℎ. By the definition of 𝚲ℎ, we have
⟨(𝚲ℎ𝐯− 𝐯◦) ⋅ 𝐧, 𝑤⟩𝐸𝜕 = ⟨(𝐯𝜕 − 𝐯◦) ⋅ 𝐧, 𝑤⟩𝐸𝜕 , ∀𝑤 ∈ 𝑃0(𝐸

𝜕).

Setting 𝑤 = (𝚲ℎ𝐯 − 𝐯◦) ⋅ 𝐧 ∈ 𝑃0(𝐸𝜕), we obtain

‖(𝚲ℎ𝐯− 𝐯◦) ⋅ 𝐧‖2
𝐸𝜕

= ⟨(𝐯𝜕 − 𝐯◦) ⋅ 𝐧, (𝚲ℎ𝐯− 𝐯◦) ⋅ 𝐧⟩𝐸𝜕

≤ ‖𝐯𝜕 − 𝐯◦‖𝐸𝜕‖(𝚲ℎ𝐯− 𝐯◦) ⋅ 𝐧‖𝐸𝜕 .
A cancellation of ‖(𝚲ℎ𝐯 − 𝐯◦) ⋅ 𝐧‖𝐸𝜕 yields
‖(𝚲ℎ𝐯− 𝐯◦) ⋅ 𝐧‖𝐸𝜕 ≤ ‖𝐯𝜕 − 𝐯◦‖𝐸𝜕 .
Applying the above inequality, (23), and the properties of 𝚲ℎ, we obtain

‖𝚲ℎ𝐯− 𝐯◦‖𝐸 ≤ 𝐶ℎ 1
2 ‖(𝚲ℎ𝐯− 𝐯◦) ⋅ 𝐧‖𝐸𝜕 ≤ 𝐶ℎ(ℎ− 1

2 ‖𝐯𝜕 − 𝐯◦‖𝐸𝜕 ).
A summation over the mesh yields the desired result. □

5.3. Error equations

Let 𝐮 ∈𝐻2(Ω)𝑑 , 𝑝 ∈𝐻1(Ω) be the solutions of Stokes problem (1). 
Let 𝐮ℎ ∈ 𝐕ℎ, 𝑝ℎ ∈𝑊ℎ be the numerical solutions of Scheme II. We split 
the errors as the projection errors and discrete errors as follows
{

𝐮− 𝐮ℎ = (𝐮−𝐐ℎ𝐮) + 𝐞ℎ, 𝐞ℎ ∶=𝐐ℎ𝐮− 𝐮ℎ,

𝑝− 𝑝ℎ = (𝑝−𝑄ℎ𝑝) + 𝑒ℎ, 𝑒ℎ ∶=𝑄ℎ𝑝− 𝑝ℎ.
(26)

The projection errors 𝐮 −𝐐ℎ𝐮, 𝑝 −𝑄ℎ𝑝 are determined by the approxi-
mation capacity of the finite element spaces. We focus on the discrete 
errors 𝐞ℎ and 𝑒ℎ.

Lemma 5 (Scheme II truncation errors). Let 𝐮 ∈𝐻2(Ω)𝑑 , 𝑝 ∈𝐻1(Ω) be the 
solutions of Stokes problem (1). Let 𝐐ℎ𝐮, 𝑄ℎ𝑝 be the 𝐿2-projections defined 
previously. Then there hold
{ℎ(𝐐ℎ𝐮,𝐯) +ℎ(𝑄ℎ𝑝,𝐯) = Λ

ℎ
(𝐯) + 𝜇1(𝐯) + 𝜇2(𝐯), ∀𝐯 ∈𝐕0

ℎ
,

ℎ(𝐐ℎ𝐮, 𝑞) = 0, ∀𝑞 ∈𝑊ℎ,

(27)

where the remainders are

⎧
⎪⎪⎨⎪⎪⎩

1(𝐯) =
∑
𝐸∈ℎ

⟨𝐯𝜕 − 𝐯◦, (ℎ∇𝐮−∇𝐮)𝐧⟩𝐸𝜕 ,

2(𝐯) =
∑
𝐸∈ℎ

(Δ𝐮, 𝚲ℎ𝐯− 𝐯◦)𝐸 .
(28)

Proof. We perform a rigorous proof in five steps.

Step (i). To check ℎ(𝐐ℎ𝐮, 𝐯), we consider elementwise

(∇𝑤(𝐐ℎ𝐮),∇𝑤𝐯)𝐸 = (ℎ(∇𝐮),∇𝑤𝐯)𝐸 (WG commuting identity)

= ⟨𝐯𝜕 , (ℎ∇𝐮)𝐧⟩𝐸𝜕 − (𝐯◦,∇ ⋅ (ℎ∇𝐮))𝐸◦ (Definition of ∇𝑤)

= ⟨𝐯𝜕 , (ℎ∇𝐮)𝐧⟩𝐸𝜕 − ⟨𝐯◦, (ℎ∇𝐮)𝐧⟩𝐸𝜕 (Integration by parts)

+(∇𝐯◦,ℎ∇𝐮)𝐸 (Note∇𝐯◦ = 0 zero matrix)

= ⟨𝐯𝜕 − 𝐯◦, (ℎ∇𝐮)𝐧⟩𝐸𝜕 .

(29)

Then summation over the whole mesh yields

ℎ(𝐐ℎ𝐮,𝐯) = 𝜇
∑
𝐸∈ℎ

(∇𝑤(𝐐ℎ𝐮),∇𝑤𝐯)𝐸 = 𝜇
∑
𝐸∈ℎ

⟨𝐯𝜕 − 𝐯◦, (ℎ∇𝐮)𝐧⟩𝐸𝜕 . (30)

Step (ii). Recall the definition of ℎ to get
ℎ(𝑄ℎ𝑝, 𝐯) = −

∑
𝐸∈ℎ

(𝑄ℎ𝑝, ∇𝑤 ⋅ 𝐯)𝐸 . (31)

Step (iii). To handle Λ
ℎ
(𝐯), we use Stokes 1st equation 𝐟 = −𝜇Δ𝐮 + ∇𝑝

to get

(𝐟 ,𝚲ℎ𝐯)𝐸 = (−𝜇Δ𝐮,𝚲ℎ𝐯)𝐸 + (∇𝑝,𝚲ℎ𝐯)𝐸

= −𝜇(Δ𝐮,𝚲ℎ𝐯− 𝐯◦)𝐸 − 𝜇(Δ𝐮,𝐯◦)𝐸 + (∇𝑝,𝚲ℎ𝐯)𝐸 .
(32)

For the 3rd term in the last line, we use integration by parts and the 
properties of 𝑄ℎ and 𝚲ℎ to obtain

(∇𝑝,𝚲ℎ𝐯)𝐸 = ⟨𝑝, (𝚲ℎ𝐯) ⋅ 𝐧⟩𝐸𝜕 − (𝑝, ∇ ⋅ (𝚲ℎ𝐯))𝐸

= ⟨𝑝, (𝚲ℎ𝐯) ⋅ 𝐧⟩𝐸𝜕 − (𝑄ℎ𝑝, ∇ ⋅ (𝚲ℎ𝐯))𝐸

= ⟨𝑝, (𝚲ℎ𝐯) ⋅ 𝐧⟩𝐸𝜕 − (𝑄ℎ𝑝, ∇𝑤 ⋅ 𝐯)𝐸 .

(33)

The facts that 𝐯 ∈𝐕0
ℎ
and 𝚲ℎ𝐯 has normal continuity together imply that

∑
𝐸∈ℎ

(∇𝑝, 𝚲ℎ𝐯)𝐸 = −
∑
𝐸∈ℎ

(𝑄ℎ𝑝, ∇𝑤 ⋅ 𝐯)𝐸 =ℎ(𝑄ℎ𝑝, 𝐯). (34)

As for (32) 2nd line 2nd term, we have, due to integration by parts and 
∇𝐯◦ = 0,

−(Δ𝐮,𝐯◦)𝐸 = −⟨𝐯◦, (∇𝐮)𝐧⟩𝐸𝜕 + (∇𝐯◦,∇𝐮)𝐸 = −⟨𝐯◦, (∇𝐮)𝐧⟩𝐸𝜕 . (35)

Applying the normal continuity of ∇𝐮 yields

−𝜇
∑
𝐸∈ℎ

(Δ𝐮,𝐯◦)𝐸 = 𝜇
∑
𝐸∈ℎ

⟨𝐯𝜕 − 𝐯◦, (∇𝐮)𝐧⟩𝐸𝜕 . (36)

Combining (32), (34), (36) together gives

Λ
ℎ
(𝐯) = −𝜇

∑
𝐸∈ℎ

(Δ𝐮,Λℎ𝐯− 𝐯◦)𝐸 + 𝜇
∑
𝐸∈ℎ

⟨𝐯𝜕 − 𝐯◦, (∇𝐮)𝐧⟩𝐸𝜕 +ℎ(𝑄ℎ𝑝,𝐯).
(37)

Step (iv). Now we combine the results in Steps (i)(ii)(iii) together to get

ℎ(𝐐ℎ𝐮,𝐯) +ℎ(𝑄ℎ𝑝,𝐯) − Λ
ℎ
(𝐯)

= 𝜇
∑
𝐸∈ℎ

⟨𝐯𝜕 − 𝐯◦, (ℎ∇𝐮−∇𝐮)𝐧⟩𝐸𝜕 + 𝜇
∑
𝐸∈ℎ

(Δ𝐮,Λℎ𝐯− 𝐯◦)𝐸

= 𝜇1(𝐯) + 𝜇2(𝐯),

(38)

as appeared in the 1st of equation for the truncation errors (27).
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Step (v). Since the exact velocity 𝐮 satisfy ∇ ⋅𝐮 = 0, based on the 2nd WG 
commuting identity in (20), we have, for any 𝐸 ∈ ℎ and any 𝑞 ∈ 𝑃0(𝐸),

(∇𝑤 ⋅ (𝐐ℎ𝐮), 𝑞)𝐸 = (𝑄ℎ(∇ ⋅ 𝐮), 𝑞)𝐸 = 0.

Hence ℎ(𝐐ℎ𝐮, 𝑞) = 0 for any 𝑞 ∈𝑊ℎ, as expected. □

Lemma 6 (Scheme II error equations). There hold

{ℎ(𝐞ℎ,𝐯) +ℎ(𝑒ℎ,𝐯) = 𝜇1(𝐯) + 𝜇2(𝐯), ∀𝐯 ∈𝐕0
ℎ
,

ℎ(𝐞ℎ, 𝑞) = 0, ∀𝑞 ∈𝑊ℎ,
(39)

where 1, 2 are already defined in (28).

Proof. Recall that the numerical solutions 𝐮ℎ and 𝑝ℎ satisfy the equa-
tions (18) in Scheme II, whereas the projections of the exact solutions 
satisfy the equations (27) derived in the previous lemma. Subtractions 
based on linearity of the linear and bilinear forms yield the desired 
equations in (39). □

5.4. Error estimates

Lemma 7 (Inf-sup condition). There exists a constant 𝛽 > 0 independent of 
𝜇, ℎ so that

sup
𝐯∈𝐕0

ℎ
,⦀𝐯⦀≠0

|ℎ(𝐯, 𝑞)|
⦀𝐯⦀ ≥ 𝛽‖𝑞‖, ∀𝑞 ∈𝑊ℎ. (40)

Proof. It is known that there exists a constant 𝐶 > 0 so that for any 
𝑞 ∈𝑊ℎ ⊂ 𝐿

2
0
(Ω), there exists 𝐯 ∈𝐻1

0
(Ω)𝑑 ,

(∇ ⋅ 𝐯, 𝑞)

‖∇𝐯‖ ≥ 𝐶‖𝑞‖. (41)

Let 𝐯 =𝐐ℎ𝐯 ∈𝐕ℎ. The 1st WG commuting identity in (20) implies

⦀𝐯⦀2 = ∑
𝐸∈ℎ

‖∇𝑤𝐯‖2𝐸 =
∑
𝐸∈ℎ

‖∇𝑤𝐐ℎ𝐯‖2𝐸 =
∑
𝐸∈ℎ

‖ℎ∇𝐯‖2𝐸 ≤ ‖∇𝐯‖2. (42)

Applying the 2nd WG commuting identity in (20), we obtain

∑
𝐸∈ℎ

(∇𝑤 ⋅𝐯, 𝑞)𝐸 =
∑
𝐸∈ℎ

(∇𝑤 ⋅ (𝐐ℎ𝐯), 𝑞)𝐸 =
∑
𝐸∈ℎ

(𝑄ℎ∇ ⋅𝐯, 𝑞)𝐸 =
∑
𝐸∈ℎ

(∇ ⋅𝐯, 𝑞)𝐸 .

Therefore,

∑
𝐸∈ℎ (∇𝑤 ⋅ 𝐯, 𝑞)𝐸

⦀𝐯⦀ ≥ (∇ ⋅ 𝐯, 𝑞)

‖∇𝐯‖ ≥ 𝐶‖𝑞‖, (43)

as expected. □

Lemma 8 (Scheme II truncation error estimates). Let 𝐮 ∈ 𝐻2(Ω)𝑑 , 𝑝 ∈
𝐻1(Ω) be the solutions of Stokes problem (1). Then for any 𝐯 ∈ 𝐕0

ℎ
, the 

remainders satisfy the following estimates

1(𝐯) ≤ 𝐶ℎ‖𝐮‖2⦀𝐯⦀,
2(𝐯) ≤ 𝐶ℎ‖𝐮‖2⦀𝐯⦀,

(44)

where 𝐶 > 0 is a constant independent of ℎ and 𝜇.

Proof. Using the Cauchy-Schwarz inequality, trace inequality (22), 
(24), and approximation properties of the projection operators, we ob-
tain

1(𝐯) =
∑
𝐸∈ℎ

⟨𝐯𝜕 − 𝐯◦, (ℎ∇𝐮−∇𝐮)𝐧⟩𝐸𝜕

≤ 𝐶
( ∑
𝐸∈ℎ

ℎ−1‖𝐯𝜕 − 𝐯◦‖2
𝐸𝜕

) 1
2
( ∑
𝐸∈ℎ

ℎ‖(∇𝐮−ℎ∇𝐮)𝐧‖2𝐸𝜕
) 1

2

≤ 𝐶⦀𝐯⦀
( ∑
𝐸∈ℎ

‖∇𝐮−ℎ∇𝐮‖2𝐸 + ℎ2|∇𝐮−ℎ∇𝐮|21,𝐸
) 1

2

≤ 𝐶ℎ‖𝐮‖2⦀𝐯⦀.
It follows from the Cauchy-Schwarz inequality and (25) that

2(𝐯) =
∑
𝐸∈ℎ

(Δ𝐮, 𝚲ℎ𝐯− 𝐯◦)𝐸

≤ 𝐶
( ∑
𝐸∈ℎ

‖Δ𝐮‖2
𝐸

) 1
2
( ∑
𝐸∈ℎ

‖𝚲ℎ𝐯− 𝐯◦‖2
𝐸

) 1
2

≤ 𝐶ℎ‖𝐮‖2⦀𝐯⦀,
as expected. □

Theorem 1 (Estimates for discrete errors in velocity and pressure). Let 𝐮 ∈
𝐻2(Ω)𝑑 , 𝑝 ∈𝐻1(Ω) be the solutions of Stokes problem (1). Let 𝐮ℎ ∈ 𝐕ℎ, 
𝑝ℎ ∈𝑊ℎ be the numerical solution of Scheme II (lifting). Then the following 
estimates hold

⦀𝐐ℎ𝐮− 𝐮ℎ⦀ ≤ 𝐶ℎ‖𝐮‖2, ‖𝑄ℎ𝑝− 𝑝ℎ‖ ≤ 𝐶𝜇ℎ‖𝐮‖2, (45)

where 𝐶 > 0 is a constant independent of ℎ and 𝜇.

Proof. Taking 𝐯 = 𝐞ℎ, 𝑞 = 𝑒ℎ in (39) and applying (44), we obtain

𝜇⦀𝐞ℎ⦀2 =(𝐞ℎ, 𝐞ℎ) = 𝜇1(𝐞ℎ) + 𝜇2(𝐞ℎ) ≤ 𝐶ℎ𝜇‖𝐮‖2⦀𝐞ℎ⦀.
Then a cancellation yields

⦀𝐐ℎ𝐮− 𝐮ℎ⦀ = ⦀𝐞ℎ⦀ ≤ 𝐶ℎ‖𝐮‖2.
A combination of the error equations, the inf-sup condition, and the 
estimates for the truncation errors (44) implies that

𝛽‖𝑒ℎ‖ ≤ sup
𝐯∈𝐕0

ℎ
,⦀𝐯⦀≠0

|ℎ(𝐯, 𝑒ℎ)|
⦀𝐯⦀

= sup
𝐯∈𝐕0

ℎ
,⦀𝐯⦀≠0

ℎ(𝐞ℎ,𝐯) − 𝜇1(𝐯) − 𝜇2(𝐯)

⦀𝐯⦀

≤ 𝐶𝜇ℎ‖𝐮‖2.
This, in turn, yields

‖𝑄ℎ𝑝− 𝑝ℎ‖ = ‖𝑒ℎ‖ ≤ 𝐶𝜇ℎ‖𝐮‖2,
as expected. □

Theorem 2 (𝐿2-norm error estimates for pressure). Under the same condi-
tions for Theorem 1, there holds

‖𝑝− 𝑝ℎ‖ ≤ 𝐶ℎ‖𝐟‖, (46)

with 𝐶 > 0 being a constant that is independent of ℎ and 𝜇.

Proof. We have, by a triangle inequality,

‖𝑝− 𝑝ℎ‖ ≤ ‖𝑝−𝑄ℎ𝑝‖+ ‖𝑄ℎ𝑝− 𝑝ℎ‖ ≤ 𝐶ℎ(‖𝑝‖1 + 𝜇‖𝐮‖2) ≤ 𝐶ℎ‖𝐟‖,
where the condition for solution regularity 𝜇‖𝐮‖2 + ‖𝑝‖1 ≤ 𝐶‖𝐟‖ has 
been used. □
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To derive 𝐿2-norm error estimates for velocity, we shall need a 
global interpolation operator.

Definition (Global interpolation operator 𝚷ℎ). This operator from 𝐻1(Ω)𝑑

to 𝐴𝐶𝑇0(ℎ) is defined as
⎧⎪⎨⎪⎩

(𝚷ℎ𝐮)|𝐸 =𝚷ℎ,𝐸 (𝐮|𝐸 ),

⟨𝚷ℎ,𝐸𝐮 ⋅ 𝐧, 𝑣⟩𝑒 = ⟨𝐮 ⋅ 𝐧, 𝑣⟩𝑒, ∀𝑣 ∈ 𝑃0(𝑒),∀𝑒 ⊂ 𝜕𝐸.

(47)

It has the following properties:

(∇ ⋅ 𝐮, 𝑣)𝐸 = (∇ ⋅𝚷ℎ,𝐸𝐮, 𝑣)𝐸 , ∀𝑣 ∈ 𝑃0(𝐸), ∀𝐸 ∈ ℎ,
‖𝚷ℎ,𝐸𝐮− 𝐮‖ ≤ 𝐶ℎ‖𝐮‖1,
(𝐮−𝚷ℎ,𝐸𝐮,𝐯)𝐸 = 0, ∀𝐯 ∈ 𝑃0(𝐸)

𝑑 , ∀𝐸 ∈ ℎ.
(48)

Now we introduce 𝚷𝑑
ℎ
as a matrix interpolation operator, which acts 

on each row of the matrix, as defined by 𝚷ℎ . Then we have

(−∇ ⋅𝑊 ,𝐯◦) = (−∇ ⋅𝚷𝑑
ℎ
𝑊 ,𝐯◦) (Applying (48) 1st eqn. on each row)

=
∑
𝐸∈ℎ

(𝚷𝑑
ℎ,𝐸
𝑊 ,∇𝑤𝐯)𝐸 (Definition of ∇𝑤)

−
∑
𝐸∈ℎ

⟨𝐯𝜕 , (𝚷𝑑
ℎ,𝐸
𝑊 )𝐧⟩𝐸𝜕 ((Πℎ,𝐸∇Ψ)𝐧 continuity)

= (𝚷𝑑
ℎ
𝑊 ,∇𝑤𝐯).

(49)

Remarks. The definitions of the operators 𝐐ℎ, 𝚷ℎ, and 𝚲ℎ together im-
ply that for any 𝚿 ∈𝐻1(Ω)𝑑 , there holds

⟨𝚲ℎ(𝐐ℎ𝚿) ⋅ 𝐧,𝑤⟩𝑒 = ⟨(𝐐𝜕ℎ𝚿) ⋅ 𝐧,𝑤⟩𝑒 = ⟨𝚿 ⋅ 𝐧,𝑤⟩𝑒 = ⟨𝚷ℎ𝚿,𝑤⟩𝑒, (50)

for any 𝑤 ∈ 𝑃0(𝑒) and any 𝑒 ⊂𝐸𝜕 . Therefore,

𝚲ℎ(𝐐ℎ𝚿) =𝚷ℎ𝚿. (51)

Theorem 3 (𝐿2-norm error estimates for velocity). Let 𝐮 ∈𝐻2(Ω)𝑑 be the 
exact solution of Stokes problem (1). Let 𝐮ℎ ∈𝐕ℎ be the numerical solution 
of Scheme II (lifting). Assume 𝐟 ∈𝐻𝑠(Ω)𝑑 with 0 ≤ 𝑠 ≤ 1. Then

‖𝐐◦
ℎ
𝐮− 𝐮◦

ℎ
‖ ≤ 𝐶ℎ1+𝑠(‖𝐟‖𝑠 + ‖𝐮‖2), (52)

‖𝐮◦ − 𝐮◦
ℎ
‖ ≤ 𝐶ℎ‖𝐮‖2, (53)

where 𝐮◦ refers to the exact solution restricted to element interiors. For both 
cases, 𝐶 > 0 is a constant independent of ℎ and 𝜇.

Proof. We make a duality argument to estimate 𝐞◦
ℎ
=𝐐◦

ℎ
𝐮 −𝐮◦

ℎ
. Assume 

that 𝚿 ∈𝐻2(Ω)𝑑 and 𝜓 ∈𝐻1(Ω) ∩ 𝐿2
0
(Ω) are the solutions of the dual 

problem

⎧
⎪⎨⎪⎩

−𝜇Δ𝚿+∇𝜓 = 𝐞◦
ℎ
, in Ω,

∇ ⋅𝚿 = 0, in Ω,

𝚿 = 𝟎, on 𝜕Ω.

(54)

Step (i). We test the 1st dual equation by 𝐞◦
ℎ
=𝐐◦

ℎ
𝐮 − 𝐮◦

ℎ
to get

‖𝐞◦
ℎ
‖2 = ∑

𝐸∈ℎ
(−𝜇Δ𝚿, 𝐞◦

ℎ
)𝐸 +

∑
𝐸∈ℎ

(∇𝜓, 𝐞◦
ℎ
)𝐸 . (55)

Step (ii). Now we consider 
∑
𝐸∈ℎ

(∇𝜓, 𝐞◦
ℎ
)𝐸 . Here are some facts:

𝜓 ∈𝐿2
0
(Ω), 𝑄ℎ𝜓 ∈𝑊ℎ,

∑
𝐸∈ℎ

(𝑄ℎ𝜓,∇𝑤 ⋅ 𝐞ℎ)𝐸 =ℎ(𝐞ℎ,𝑄ℎ𝜓) = 0. (56)

Applying integration by parts, the definitions of 𝑄ℎ and ∇𝑤⋅, we obtain

(∇𝜓, 𝐞◦
ℎ
)𝐸 = ⟨𝜓𝐧, 𝐞◦

ℎ
⟩𝐸𝜕 − (𝜓,∇ ⋅ 𝐞◦

ℎ
)𝐸

= ⟨𝜓𝐧, 𝐞◦
ℎ
⟩𝐸𝜕 − (𝑄ℎ𝜓,∇ ⋅ 𝐞◦

ℎ
)𝐸

= ⟨𝜓𝐧, 𝐞◦
ℎ
⟩𝐸𝜕 − ⟨(𝑄ℎ𝜓)𝐧, 𝐞◦ℎ⟩𝐸𝜕 + (∇(𝑄ℎ𝜓), 𝐞

◦
ℎ
)𝐸

= ⟨𝜓𝐧, 𝐞◦
ℎ
⟩𝐸𝜕 − ⟨(𝑄ℎ𝜓)𝐧, 𝐞◦ℎ⟩𝐸𝜕 + ⟨(𝑄ℎ𝜓)𝐧, 𝐞𝜕ℎ⟩𝐸𝜕 − (𝑄ℎ𝜓,∇𝑤 ⋅ 𝐞ℎ)𝐸 .

Summing over the mesh with application of the fact 
∑
𝐸∈ℎ

⟨𝜓𝐧, 𝐞𝜕
ℎ
⟩𝐸𝜕 = 0

yields

∑
𝐸∈ℎ

(∇𝜓, 𝐞◦
ℎ
)𝐸 =

∑
𝐸∈ℎ

⟨(𝑄ℎ𝜓 −𝜓)𝐧, 𝐞𝜕
ℎ
− 𝐞◦

ℎ
⟩𝐸𝜕 . (57)

Applying the Cauchy-Schwarz inequality, the trace inequality (22), 
(24), the projection properties, and Theorem 1 leads to

∑
𝐸∈ℎ

(∇𝜓, 𝐞◦
ℎ
)𝐸 =

∑
𝐸∈ℎ

⟨(𝑄ℎ𝜓 −𝜓)𝐧, 𝐞𝜕
ℎ
− 𝐞◦

ℎ
⟩𝐸𝜕

≤
( ∑
𝐸∈ℎ

ℎ‖𝑄ℎ𝜓 −𝜓‖2
𝐸𝜕

) 1
2
( ∑
𝐸∈ℎ

ℎ−1‖𝐞𝜕
ℎ
− 𝐞◦

ℎ
‖2
𝐸𝜕

) 1
2

≤
( ∑
𝐸∈ℎ

(‖𝑄ℎ𝜓 −𝜓‖2
𝐸
+ ℎ2‖∇(𝑄ℎ𝜓 −𝜓)‖2

𝐸
)

) 1
2

⦀𝐞ℎ⦀

≤ 𝐶ℎ‖𝜓‖1⦀𝐞ℎ⦀ ≤ 𝐶ℎ2‖𝜓‖1‖𝐮‖2.

Step (iii). Applying (49) and the 1st WG commuting identity (20), we 
have
∑
𝐸∈ℎ

(−𝜇Δ𝚿, 𝐞◦
ℎ
)𝐸 = 𝜇

∑
𝐸∈ℎ

(𝚷𝑑
ℎ
(∇𝚿),∇𝑤(𝐐ℎ𝐮− 𝐮ℎ))𝐸

= 𝜇
∑
𝐸∈ℎ

(𝚷𝑑
ℎ
(∇𝚿) − ∇𝚿,∇𝐮−∇𝑤𝐮ℎ)𝐸

+
∑
𝐸∈ℎ

𝜇(∇𝚿,∇𝐮−∇𝑤𝐮ℎ)𝐸 .

(58)

Re-organizing the last term leads

𝜇
∑
𝐸∈ℎ

(∇𝚿,∇𝐮−∇𝑤𝐮ℎ)𝐸 = 𝜇
∑
𝐸∈ℎ

(∇𝚿,∇𝐮)𝐸

−𝜇
∑
𝐸∈ℎ

(∇𝑤𝐐ℎ𝚿,∇𝑤𝐮ℎ)𝐸 − 𝜇
∑
𝐸∈ℎ

(∇𝚿−∇𝑤𝐐ℎ𝚿,∇𝑤𝐮ℎ)𝐸

= 𝜇
∑
𝐸∈ℎ

(∇𝚿,∇𝐮)𝐸 − 𝜇
∑
𝐸∈ℎ

(∇𝚿−ℎ∇𝚿,∇𝑤𝐮ℎ −∇𝐮)𝐸

−𝜇
∑
𝐸∈ℎ

(∇𝑤𝐐ℎ𝚿,∇𝑤𝐮ℎ)𝐸 − 𝜇
∑
𝐸∈ℎ

(∇𝚿−ℎ∇𝚿,∇𝐮−ℎ∇𝐮)𝐸 .

Applying the Cauchy-Schwarz inequality, the projection properties, and 
Theorem 1, we obtain

𝜇
∑
𝐸∈ℎ

(∇𝚿−ℎ∇𝚿,∇𝑤𝐮ℎ −∇𝐮)𝐸

= 𝜇
∑
𝐸∈ℎ

(∇𝚿−ℎ∇𝚿,∇𝑤𝐮ℎ −∇𝑤(𝐐ℎ𝐮))𝐸

+𝜇
∑
𝐸∈ℎ

(∇𝚿−ℎ∇𝚿,ℎ(∇𝐮ℎ) − ∇𝐮)𝐸

≤ 𝐶𝜇ℎ‖𝚿‖2(⦀𝐞ℎ⦀+ ℎ‖𝐮‖2) ≤ 𝐶ℎ2𝜇‖𝚿‖2‖𝐮‖2.
Applying the properties of matrix 𝐿2-norm and the 2nd property of 
(48), we obtain

𝜇
∑
𝐸∈ℎ

(𝚷𝑑
ℎ
(∇𝚿) − ∇𝚿,∇𝐮−∇𝑤𝐮ℎ)𝐸 ≤ 𝐶ℎ2𝜇‖𝚿‖2‖𝐮‖2. (59)
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Step (iv). It is easy to see that ℎ(𝐐ℎ𝚿, 𝑝ℎ) = 0. Combining the 1st equa-
tion of Scheme II, (51), and the 3rd property of operator 𝚷ℎ (48), we 
obtain

𝜇
∑
𝐸∈ℎ

(∇𝚿,∇𝐮)𝐸 − 𝜇
∑
𝐸∈ℎ

(∇𝑤𝐐ℎ𝚿,∇𝑤𝐮ℎ)𝐸

= (𝐟 ,𝚿) − (𝐟 ,𝚲ℎ(𝐐ℎ𝚿)) = (𝐟 ,𝚿−𝚷ℎ𝚿)

= (𝐟 −𝐐◦
ℎ
𝐟 ,𝚿−𝚷ℎ𝚿) ≤ 𝐶ℎ1+𝑠‖𝐟‖𝑠‖𝚿‖2.

(60)

Step (v). Combining the results in Steps (i)-(iv), we obtain

‖𝐞◦
ℎ
‖2 = ∑

𝐸∈ℎ
⟨(𝑄ℎ𝜓 −𝜓)𝐧, 𝐞𝜕

ℎ
− 𝐞◦

ℎ
⟩𝐸𝜕

+𝜇
∑
𝐸∈ℎ

(𝚷𝑑
ℎ
(∇𝚿) − ∇𝚿,∇𝐮−∇𝑤𝐮ℎ)𝐸

+(𝐟 −𝐐◦
ℎ
𝐟 ,𝚿−𝚷ℎ𝚿)

−𝜇
∑
𝐸∈ℎ

(∇𝚿−ℎ∇𝚿,∇𝑤𝐮ℎ −∇𝐮)𝐸

−𝜇
∑
𝐸∈ℎ

(∇𝚿−ℎ∇𝚿,∇𝐮−ℎ∇𝐮)𝐸
≤ 𝐶ℎ1+𝑠(‖𝐟‖𝑠 + ‖𝐮‖2)(𝜇‖𝚿‖2 + ‖𝜓‖1).

(61)

Step (vi). Combining the estimates above and the dual solution regular-
ity condition

𝜇‖𝚿‖2 + ‖𝜓‖1 ≤ 𝐶‖𝐞◦ℎ‖ (62)

gives

‖𝐞◦
ℎ
‖ ≤ 𝐶ℎ1+𝑠(‖𝐟‖𝑠 + ‖𝐮‖2),

as desired. Then, by the projection properties and a triangle inequality,

‖𝐮◦ − 𝐮◦
ℎ
‖ ≤ ‖𝐮◦ −𝐐◦

ℎ
𝐮‖+ ‖𝐐◦

ℎ
𝐮− 𝐮◦

ℎ
‖

≤ 𝐶ℎ‖𝐮‖2 +𝐶ℎ1+𝑠(‖𝐟‖𝑠 + ‖𝐮‖2) ≤ 𝐶ℎ(‖𝐟‖𝑠 + ‖𝐮‖2),
(63)

as claimed in the Theorem. □

5.5. Reasons why Scheme II works but Scheme I does not

Now we examine why Scheme I does not work. Notice that we have 
the same projections 𝐐ℎ𝐮, 𝑄ℎ𝑝 from the exact solutions. Plugging them 
into Scheme I, we obtain truncation errors as below
{ℎ(𝐐ℎ𝐮,𝐯) +ℎ(𝑄ℎ𝑝,𝐯) = ℎ(𝐯) + 𝜇1(𝐯) + ̃1(𝐯),

ℎ(𝐐ℎ𝐮, 𝑞) = 0,
(64)

where the bilinear forms ℎ, ℎ are the same for Schemes I & II, the 
linear form ℎ =∑𝐸∈ℎ (𝐟 , 𝐯◦)𝐸 (with no lifting) is defined in (17). More-
over, the truncation error 1 is the same as that in Lemma 5 Equation 
(28). But the other truncation error term takes the following form.

̃1(𝐯) =
∑
𝐸∈ℎ

⟨𝐯◦ − 𝐯𝜕 , (𝑄ℎ𝑝− 𝑝)𝐧⟩𝐸𝜕 . (65)

Setting 𝐯 =𝐐ℎ𝐮 − 𝐮ℎ, we obtain an error estimate for Scheme I:

𝜇‖∇𝑤(𝐐ℎ𝐮− 𝐮ℎ)‖ ≤ 𝐶𝜇ℎ‖𝐮‖2 +𝐶ℎ‖𝑝‖1. (66)

For Scheme II (with lifting), there holds

𝜇‖∇𝑤(𝐐ℎ𝐮− 𝐮ℎ)‖ ≤ 𝐶𝜇ℎ‖𝐮‖2.
So Scheme II velocity error does NOT depend on pressure but Scheme I 
does. The lifting operator plays a critical role for pressure robustness of 
Scheme II.

6. Numerical experiments

This section presents numerical experiments on the new solvers 
in this paper and also existing solvers, e.g., the classical Taylor-Hood 
methods. It will be demonstrated that the Taylor-Hood solvers are not 
robust but the new WG solvers (in Scheme II) are indeed robust. The 
numerical procedures for these two schemes are similar to many other 
continuous or weak Galerkin finite element methods: from mesh gener-
ation to computation of element stiffness matrices, and their assembly. 
However, it is interesting to notice the difference between the sparsity 
patterns of Scheme I and Scheme II as follows

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Scheme I:

⎡
⎢⎢⎢⎣

ℎ(⋅, ⋅) ℎ(⋅, ⋅)

ℎ(⋅, ⋅) ℎ(⋅, ⋅) ℎ(⋅, ⋅)
ℎ(⋅, ⋅)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

𝐮◦

𝐮𝜕
ℎ

𝑝ℎ

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

(𝐟 ,𝐯◦)

𝟎

𝟎

⎤
⎥⎥⎥⎦
,

Scheme II:

⎡
⎢⎢⎢⎣

ℎ(⋅, ⋅) ℎ(⋅, ⋅)

ℎ(⋅, ⋅) ℎ(⋅, ⋅) ℎ(⋅, ⋅)
ℎ(⋅, ⋅)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

𝐮◦
ℎ

𝐮𝜕
ℎ

𝑝ℎ

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

𝟎

(𝐟 ,𝚲ℎ𝐯
𝜕)

𝟎

⎤
⎥⎥⎥⎦
.

(67)

Scheme II shows a better matching of sparsity of the stiffness matrix 
and RHS.

Example 1 (A 2-dim example with known analytical solutions). Here we 
consider the domain Ω = (0, 1)2, the exact solutions are

𝐮 =

⎡
⎢⎢⎣

sin(𝜋𝑥)

−𝜋𝑦 cos(𝜋𝑥)

⎤
⎥⎥⎦
, 𝑝 = sin(𝜋𝑥) cos(𝜋𝑦). (68)

Nonhomogeneous Dirichlet boundary conditions are posed on the do-
main boundary using the values of the exact solution for velocity. 
Clearly, the velocity and pressure solutions are infinitely smooth and the 
pressure has mean value zero. The problem is solved by WG Schemes I 
& II with different 𝜇 values on trapezoidal meshes (with slant parameter 
0.25) that have been used in [4,32].

Shown in Table 1 are the results of Scheme I. For 𝜇 = 1, the er-
rors in velocity and pressure exhibit 1st order convergence. But for 
𝜇 = 10−6, the errors in velocity are simply too large, although there 
may be some kind of convergence (even super-convergence). Scheme I 
is not robust.

Shown in Table 2 are the results of Scheme II. For 𝜇 = 1, 10−6 or 
other small values (not tabulated here), the errors in velocity and pres-
sure exhibit always 1st order convergence. It is also observed that the 
divergence residual 

∑
𝐸∈ℎ (∇𝑤 ⋅ 𝐮ℎ)|𝐸| are fluctuating at the level of 

machine zero. Scheme II is indeed robust.

Example 2 (Flow through a bent duct). This example is adopted from 
[16]. The duct itself has diameter 𝑎. The bent part has a semi-circle 
shape with an inner diameter 𝑏. The duct has a straight piece of length 
𝑙 in both upper and lower parts. When Cartesian coordinates are used 
for domain geometry, the entry is described as {(𝑥, 𝑦) ∶ 𝑥 = 0, 𝑎 + 𝑏 ≤
𝑦 ≤ 2𝑎 + 𝑏}, the exit is described as {(𝑥, 𝑦) ∶ 𝑥 = 0, 0 ≤ 𝑦 ≤ 𝑎}. Gravity 𝐟 =
[0, −𝜌𝑔]𝑇 is considered, where 𝜌 is fluid density and 𝑔 is the gravitational 
constant. A Poiseuille profile of inflow is prescribed at the entry as

𝐮𝐷(𝑥, 𝑦) =

[
(𝑦− (𝑎+ 𝑏)) ((2𝑎+ 𝑏) − 𝑦)

0

]
, for 𝑥 = 0, 𝑦 ∈ [𝑎+ 𝑏,2𝑎+ 𝑏].

(69)

Dirichlet 𝐮𝐷 = 𝟎 (no-slip) boundary condition is specified on the periph-
eral.

Naturally, quadrilateral meshes are used for domain discretization. 
Schemes I and II (with lifting) are applied. Various values of 𝜇 have 
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Table 1
Example 1: Results by (non-robust) Scheme I on trapezoidal meshes.

1∕ℎ ‖𝑢− 𝑢◦
ℎ
‖ Rate ‖𝑝− 𝑝ℎ‖ Rate ‖𝑢− 𝑢◦

ℎ
‖ Rate ‖𝑝− 𝑝ℎ‖ Rate

𝜇 = 1 𝜇 = 10−6

8 1.8439E-1 – 1.2769E-1 – 3.2736E+3 – 8.4716E-2 –
16 9.2409E-2 0.99 6.2157E-2 1.03 8.6406E+2 Errors 4.1713E-2 1.02
32 4.6231E-2 0.99 3.0957E-2 1.00 2.1989E+2 are 2.0690E-2 1.01
64 2.3119E-2 0.99 1.5490E-2 0.99 5.5291E+1 too 1.0310E-2 1.00
128 1.1559E-2 0.99 7.7537E-3 0.99 1.3848E+1 large 5.1488E-3 1.00

Fig. 1. Example 2: Stokes flow (gravity considered) in a bent duct (𝜇 = 10−4). (a) Spurious velocity produced by Scheme I; (b) Numerical velocity and pressure 
produced by Scheme II (with lifting).

Fig. 2. Example 3 (𝜇 = 10−6, ℎ = 1∕16): Comparison of numerical velocity 1st component. (a) WG Scheme II; (b) Taylor-Hood (𝑄2 , 𝑄1). The results by the latter are 
un-reliable.

been tested in numerical experiments. While results look good for both 
schemes when 𝜇 = 1 (not reported though), the results of Scheme I be-
come spurious when 𝜇 gets smaller.

Shown in Fig. 1 are numerical results with 𝑎 = 1, 𝑏 = 2, 𝑙 = 2, 𝜌 =
1, and 𝜇 = 10−4. Clearly, the velocity results in Panel (a) by Scheme 
I are non-physical, whereas the results in Panel (b) by Scheme II are 
reasonable.

Example 3 (A 3-dim problem). This example is taken from deal.II

tutorial step-56. The exact solutions for velocity and pressure are

𝐮 =

⎡
⎢⎢⎢⎢⎣

2 sin(𝜋𝑥)

−𝜋𝑦 cos(𝜋𝑥)

−𝜋𝑧 cos(𝜋𝑥)

⎤
⎥⎥⎥⎥⎦
, 𝑝 = sin(𝜋𝑥) cos(𝜋𝑦) sin(𝜋𝑧). (70)
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Table 2
Example 1: Results by (robust) Scheme II on trapezoidal meshes.

1∕ℎ ‖𝑢− 𝑢◦
ℎ
‖ Rate ‖𝑝− 𝑝ℎ‖ Rate Div residual

𝜇 = 1

8 1.8539E-1 – 2.3126E-1 – -2.1510E-16
16 9.2560E-2 1.00 8.8250E-2 1.38 −9.5409E-17
32 4.6251E-2 1.00 3.5782E-2 1.30 −2.0599E-16
64 2.3121E-2 1.00 1.6003E-2 1.16 −1.1709E-17
128 1.1560E-2 1.00 7.6550E-3 1.06 −9.9312E-17

𝜇 = 10−6

8 1.8539E-1 – 8.1673E-2 – -1.0408E-16
16 9.2560E-2 1.00 4.1032E-2 0.99 5.3776E-17
32 4.6251E-2 1.00 2.0540E-2 0.99 −2.1076E-16
64 2.3121E-2 1.00 1.0273E-2 0.99 −1.2143E-17
128 1.1560E-2 1.00 5.1370E-3 0.99 −6.1392E-17

Table 3
Example 3: Results by WG Scheme II on cubic meshes.

1∕ℎ ‖𝑢− 𝑢◦
ℎ
‖ Rate ‖𝑝− 𝑝ℎ‖ Rate ⦀𝑄◦

ℎ
𝑢− 𝑢◦

ℎ
⦀ Rate

𝜇 = 1

8 2.8384E-1 – 3.2127E-1 – 7.9036E-1 –
12 1.8942E-1 0.99 1.7678E-1 1.47 5.3584E-1 0.95
16 1.4211E-1 0.99 1.1272E-1 1.51 4.0473E-1 0.96
24 9.4757E-2 0.99 5.8807E-2 1.60 2.7140E-1 0.98
32 7.1072E-2 0.99 3.7064E-2 1.60 2.0403E-1 0.98

𝜇 = 10−9

8 2.8384E-1 – 6.8799E-2 – 7.9036E-1 –
12 1.8942E-1 0.99 4.6095E-2 0.98 5.3584E-1 0.95
16 1.4211E-1 0.99 3.4632E-2 0.99 4.0473E-1 0.96
24 9.4757E-2 0.99 2.3116E-2 0.99 2.7140E-1 0.98
32 7.1072E-2 0.99 1.7345E-2 0.99 2.0403E-1 0.98

Table 4
Example 3: Results by Taylor-Hood (𝑄2 , 𝑄1) solver on cubic meshes.

1∕ℎ ‖𝑢− 𝑢ℎ‖ Rate ‖𝑝− 𝑝ℎ‖ Rate ‖𝑢− 𝑢ℎ‖1 Rate

𝜇 = 1

8 6.7088E-4 – 3.6533E-3 – 4.1470E-2 –
12 1.9864E-4 3.00 1.5829E-3 2.06. 1.8445E-2 1.99
16 8.3784E-5 3.00 8.8493E-4 2.04 1.0378E-2 1.99
24 2.4821E-5 3.00 3.9193E-4 2.00 4.6133E-3 1.99
32 1.0471E-5 3.00 2.2023E-4 2.00 2.5951E-3 1.99

𝜇 = 10−9

8 7.2741E+3 3.5791E-3 – 4.0657E+5
12 1.4415E+3 Errors 1.5763E-3 2.02 1.2360E+5 Errors
16 4.5688E+2 are 8.8375E-4 2.01 5.2790E+4 are
24 9.0397E+1 too 3.9182E-4 2.00 1.5828E+4 too
32 2.8628E+1 large 2.2021E-4 2.00 6.7164E+3 large

WG Scheme II and the classical Taylor-Hood method (𝑄2, 𝑄1) (both im-
plemented in deal.II) are tested for various 𝜇 values.

As shown in Table 3, for the numerical solutions obtained from WG 
Scheme II, the convergence of the 𝐿2-norms of the velocity errors is well 
kept at order 1, for 𝜇 = 1 and 𝜇 = 10−9. The semi-norm of the discrete 
errors in velocity ⦀𝐐◦

ℎ
𝐮 − 𝐮◦

ℎ
⦀ also maintains 1st order convergence for 

small 𝜇. However, as shown in Table 4, the classical Taylor-Hood solver 
(𝑄2, 𝑄1) is non-robust. For 𝜇 = 1, all errors look good. But for 𝜇 = 10−9, 
the velocity errors (in 𝐿2- or 𝐻1-norm) are too large.

As shown in Fig. 2, the numerical velocity component obtained from 
the Taylor-Hood method is spurious.

7. Concluding remarks

In this paper, we investigate numerical methods for Stokes flow by 
combining the weak Galerkin methodology and a lifting operator. Two 
finite element schemes are developed, but Scheme II based on the lift-
ing operator is robust in the sense that the scheme maintains an optimal 

convergence order for errors in numerical velocity even for very small 
values of viscosity or large Reynolds numbers. The robustness of the 
novel Stokes solvers is theoretically validated (in Section 5) and numeri-
cally demonstrated (in Section 6). These solvers have been implemented 
in Matlab and deal.II and are readily available.

Although the paper focuses on the lowest-order cases, the approach 
and methodology employed here can be extended to development of 
robust higher order solvers. For 2-dim cases, one would readily re-
place WG(𝑃 2

0
, 𝑃 2

0
; 𝐴𝐶2

0
, 𝑃0) by WG(𝑃 2

𝑘
, 𝑃 2
𝑘
; 𝐴𝐶2

𝑘
, 𝑃𝑘) for 𝑘 ≥ 1. As for 3-dim 

problems, the only remaining issue is the construction of local bases for 
𝐴𝑇𝑘 spaces for 𝑘 ≥ 1.

Data availability

Data will be made available on request.
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