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This paper presents novel finite element solvers for Stokes flow that are pressure-robust due to the use of a lifting
operator. Specifically, weak Galerkin (WG) finite element schemes are developed for the Stokes problem on
quadrilateral and hexahedral meshes. Local Arbogast-Correa or Arbogast-Tao spaces are utilized for construction
of discrete weak gradients. The lifting operator lifts WG test functions into H(div)-subspaces and removes
pressure dependence of velocity errors. The pressure robustness of these solvers is validated theoretically and
illustrated numerically. Comparison with the non-robust classical Taylor-Hood (Q,, Q,) solver is presented.

1. Introduction

In this paper, we consider the following Stokes flow problem

—pAu+Vp =f, in Q,
V-u=0 inQ, (€9)
u=g on JdQ

where Q c RY(d = 2,3) is a bounded domain, u > 0 is the fluid kinematic
viscosity, u is the unknown fluid velocity, p is the fluid pressure, f is a
body force, and g is a boundary condition that satisfies the compatibility
condition [, g-n=0 with n being the outward unit normal vector on
the domain boundary 0Q.

Among the numerical solvers for Stokes flow, the classical mixed fi-
nite element methods are popular choices [7]. Superconvergence has
been investigated for the MINI elements [11]. In addition to the mixed
finite element methods, a hybridizable discontinuous Galerkin (HDG)
method was developed in [39]. More recent developments in HDG
based on the M-decomposition can be found in [12]. A staggered dis-
continuous Galerkin method was developed in [49]. However, some
popular classical finite element methods, e.g., Taylor-Hood elements
[9,34] and the MINI element [5], are not robust [23], in the sense that
the velocity error depends on the pressure. More specifically, when the
velocity is approximated by polynomials of order k£ and the pressure
is approximated by polynomials of order k — 1, the velocity error may
appear as

* Corresponding author.

IV —upll < C A alpy + Cop~ 15 pl,, @)

where C;,C, are positive constants (independent of x). This clearly re-
sults in large velocity errors for small values of the viscosity parameter
HU.

This issue is related to discretization of the body force term (f,v)
in the variational formulation. Consider a Helmholtz decomposition f =
w + V¢, where w is divergence-free and V¢ is irrotational. Assume the
test function v is divergence-free and has a vanishing normal component
on the domain boundary, then

EV) =W, V) +(Ve,v)=(W,V) = (¢, V- V) +(¢,v-n) = (W, V). 3

As stated in [28,29], the velocity should not be affected by the addi-
tional irrotational force V¢, which should be balanced completely by
the pressure gradient Vp. However, in most cases, the test function is
not divergence-free and a Helmholtz decomposition of f is difficult to
obtain in numerical methods. One remedy is to replace discretization
of (f,v) by that of (f,r,v), where =, is an appropriate reconstruction
operator in the H(div)-sense.

Using divergence-free elements, e.g., the popular Scott-Vogelius ele-
ments [17,33], can overcome this issue, although it may require delicate
mesh refinements or higher orders for interpolation. Another approach
involves the grad-div stabilization [1,38], which may require delicate
parameter tuning or additional equations.
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Pressure-robustness methods have also been developed to remove
pressure dependence of velocity errors. Divergence-free elements were
developed in [15,40,48]. Enriched divergence-free rational shape func-
tions were used in [21,22]. Divergence-free schemes with tangential
penalty were investigated in [13,43]. A divergence-free MAC scheme
on triangular meshes was developed in [10]. Pressure-robust schemes
using divergence-preserving velocity reconstruction were studied in
[28,29]. Pressure-robust schemes based on the Taylor-Hood and MINI
elements were developed in [25]. Continuous and discontinuous pres-
sure elements were used in [8,23-26,47]. Virtual elements [14] are
versatile and a pressure-robust virtual element method for Stokes flow
was recently designed in [41].

The weak Galerkin (WG) finite element methods were developed in
[43] for the second-order elliptic equation. Later in [36], the applica-
tion of WG methods was extended to polygonal meshes with the help of
stabilizers. One main idea of the WG methods is the usage of weak func-
tions and weak derivatives. The shape functions are defined separately
in element interiors and on inter-element boundaries. The differential
operators are approximated in the weak sense at the element level. WG
finite element methods have been developed for a wide range of prob-
lems, e.g., the elliptic problems [42,43], the Stokes problem [6,30,45],
the linear elasticity problems [19,46], the Darcy equation [31], the div-
curl systems [27], and the Cahn-Hilliard equation [44].

WG methodology was recently applied to development of pressure-
robust Stokes solvers in [35,37]. The solvers in [35] apply to 2-dim
problems and use more than necessary degrees of freedom in element
interiors. The solvers in [37] need to go through decomposition of poly-
topals into simplexes.

In this paper, as motivated by the discussion around Equation (3)
and the existing work, we develop robust Stokes solvers based on a
lifting operator that lifts WG test functions into H (div)-subspaces, e.g.,
Arbogast-Correa or Arbogast-Tao spaces. These solvers are designed for
quadrilateral and hexahedral meshes, which are equally flexible as sim-
plicial meshes in accommodation of complicated domain geometry but
use less elements, especially in 3-dim. For many applications, they align
well with certain physical features of the problems to be solved. No sta-
bilizer is needed in our schemes.

The rest of the paper is organized as follows. Section 2 develops
local bases for Arbogast-Correa/Tao spaces. Section 3 introduces WG
finite elements and a lifting operator that will play an important role
later. Section 4 presents WG finite element methods (without and with
use of the lifting operator). Section 5 presents rigorous analysis to show
the solvers with the lifting operator are pressure-robust. The robustness
is illustrated by numerical experiments in Section 6 including compari-
son with the classical Taylor-Hood solver for Stokes flow. The paper is
concluded in Section 7 with remarks.

2. Local Arbogast-Correa and Arbogast-Tao spaces

Before getting into detailed discussion, we list some usual defini-
tions and notations about function spaces and norms that are used in
development of finite element methods. Let Q be an open bounded do-
main in RY (d = 2,3) with a Lipschitz continuous boundary. We adopt
the standard definitions for Sobolev spaces H*(Q) (for s > 0) and the
associated norms/seminorms. The seminorm | - |; ¢, is defined as

/M%F
Q

with the notations for a multi-index and a partial derivative as shown
below

1=

lolo=[ Y,

|a|=s

@] a2 Ad
a=(a,0,....a), lal=a;+o+..+a;, 0%=0y 0.0,

The norm || - || o is defined as
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These definitions and notations can be extended to the closed bounded
domain Q and individual elements in a finite element mesh as well.

The space H'(Q) coincides with L?(Q), the space of Lebesgue
square-integrable functions. We denote by (-, ), the standard L?-inner
product on Q and (-,-),q the L2-inner product on the boundary 0Q.
When there is no ambiguity, we omit the subscripts.

Finite element approximations start with domain discretization.
While simplicial (triangular and tetrahedral) meshes are frequently
used, quadrilateral and hexahedral meshes are equally versatile. As
highlighted in [18], quadrilateral/hexahedral meshes are also flexible
in accommodating complicated domain geometry but usually involve
less unknowns in finite element schemes; these meshes could be set in
good alignment with the geometric and physical features of many prob-
lems in real applications. In this paper, we focus on weak Galerkin finite
element methods on quadrilateral and hexahedral meshes. Especially,
we use convex quadrilaterals, and also cuboidal hexahedra, which are
convex and have flat faces.

For a convex quadrilateral E, a bilinear mapping from the reference
unit square £ =[0,1]> to E can be uniquely determined using the co-
ordinates of the four vertices of E. Similarly, a trilinear mapping maps
the reference unit cube £ =[0,1]* to a hexahedron [20].

Approximation of a scalar field on a quadrilateral or hexahedron uti-
lizing the aforementioned bi/trilinear mapping is straightforward. But
approximation of vector fields on quadrilaterals or hexahedra usually
involves the Piola transformation.

Let E be the unit square/cube and E be a quadrilateral or hexahe-
dron. The Piola transformation maps a vector field (%) defined on £ to
a vector field u(x) defined on E via

N O
u(x) =Pe() = — a(X), @
JE
where x = Fy(X) is the previously mentioned bi/trilinear mapping, J
is its Jacobian matrix and J is the Jacobian determinant. The Piola
transformation preserves the normal fluxes and divergence [3] (p. 5
formulas (12)(13)).

The Arbogast-Correa and Arbogast-Tao mixed finite element pairs
were introduced in [2,3], respectively. These elements use rational
vector-valued shape functions due to the Piola transformation. They
have advantages over the classical Raviart-Thomas elements, but global
basis functions are hard to construct, especially for the 3-dim case
(cuboidal hexahedra).

In this paper, we use the Arbogast-Correa/Tao (ACT) spaces in the
weak Galerkin framework, but only local bases are needed.

Strictly speaking, there are three types of ACT spaces.

(i) Local space ACT(E) on an individual quadrilateral or cuboidal hex-
ahedron;
(ii) Broken space ACT (€,) on a quadrilateral or hexahedral mesh &,
which is simply the Cartesian product of all local ACT spaces;
(iii) Global space ACT (&) is understood as ACT (£,) N H(div, ), which
implies normal continuity for the vector functions in ACT(&),).

It is difficult, especially for hexahedra, to construct a global basis for
ACT (&) in the mixed finite element context [3]. However, in the weak
Galerkin framework, only the local ACT spaces are used, and certain
global properties, e.g., normal continuity, can be reinforced through
the bilinear forms used.

In this paper, we focus on the lowest-order local ACy(E) spaces in
2-dim and AT (E) spaces in 3-dim. For convenience of presentation and
also deal. II implementation, we introduce a unified notation

ACy(E), d =2,

ATy(E), d =3. ®

ACT\(E) = {
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It is known [2,32] that dim(AC\(E)) =4 and

ACy(E) = Py(E)* + XPy(E) + PLS,, 6)

where Py(E)? is the space of all constant vectors on E, Py(E) is the
space of all homogeneous polynomials of degree 0, and S, = Span(s)
with s = [ xy ] . Clearly, S is the space of divergence-free vector fields

on the reference element £ = [0,1]2. In other words, a local basis for
ACy(E) can be chosen as [32]

Lol [3]- (3] [ 5]

where X =x —x,, Y =y—y, and (x,, y.) is the element center.
Similarly, dim(AT,(E)) =6, and a local basis for AT,(E) can be cho-
sen as

)

1 0 0 X x 0
OL 1|0 | Y| Pe|=D| Pe| ¥| ()
0 0 1 V4 0 -z

where X =x —x.,Y =y—y,.,Z =z -z are the normalized coordinates
with (x,, y., z.) being the element center, (%, ), £) are the reference coor-
dinates.

Lemma 1 (ACTO div and flux). An ACT,(E) space defined in (5) has the
following properties.

+ Divergence:

V-ue PyE), Vu€ ACTy(E). 9)
» Normal flux: For any edge/face e of E,
u-ne Pye), Yue ACTy(E). (10)

See also [2,3,32]. [

Now we consider matrix-version local spaces ACT,(E)?. Specifically,
ACO(E)2 is the space of 2 x 2 matrices whose row vectors are in ACy(E).
So dim(ACy(E)?) = 8. Similarly, AT,(E)? is the space of 3 x 3 matrices
whose row vectors are in AT, (E). Thus dim(ATO(E)3) =18.

3. Weak Galerkin FE elements and a lifting operator

The weak Galerkin finite element methodology differs from other
existing finite element methods by considering shape functions sepa-
rately defined in element interiors and inter-element boundaries (edges
or faces). Discrete versions of differential operators (gradient, div, curl,
etc.) are constructed via integration by parts for these shape functions.
This brings a great deal of flexibility to approximation of the variables
and their derivatives in many variational forms derived from partial dif-
ferential equations. For convenience, we list briefly here the major WG
notations used in this paper.

» E: A quadrilateral or hexahedra element, E° denotes its interior
whereas E? denotes its boundary;

Vv, = {v;,vfl}: A weak vector function; Such a WG shape function
has two independent pieces: v, is defined in E°, but VZ is defined
on E%;

* V,,v: The weak gradient of a WG weak function v, see definition in
11y

* V,, - v: The weak divergence of a weak functions v, see definition
in (12);

* A,: The lifting operator defined in (14) that plays a critical role in
ensuring pressure robustness;

« II,: A global interpolation operator defined in (47) that facilitates
the L? error analysis.
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Now we consider WG finite elements (P¢, P(;i R ACT(;i ,Py), where d =
2,3 is the space dimension that should be clear from the context.

WG(P?, Pod ; ACT, od , Py) finite elements for quadrilateral and hexahe-
dra. We consider WG(P(;’ R Pg ) vector-valued discrete weak functions on
E. On each element E, a vector-valued weak function v = {v°,v?} is
defined in the element interior and element faces respectively.

The discrete weak gradients Vv e ACT(;‘(E) is defined via integra-
tion by parts,

/va:W:/va~(Wn)—/v°-(V~W), YW € ACTy(E), (11)
E9

E°

where : is the colon product among matrices.
The discrete weak divergence V,, - v € Py(E) is calculated via inte-
gration by parts,

/(Vw~v)w:/v"~(wn)—/v°~(Vw), Yw € Py(E).
E

E9 E°

12

Note that we may take w =1 in Py(E). But Vw =0 in E°, the above
formula is reduced to V,, - v= (v’ - n)|e|/| E|.

Remarks. Note that v° is defined in element interior E° and v? is de-
fined on element boundary E°. But for analysis later, we shall extend
v° to E° and consider the discrepancy v° — v°, when needed.

Let &, be a shape-regular convex quadrilateral or hexahedron parti-
tion of Q. For any element E € &, let E° be its interior and E? be its
boundary. Denote by 4, its diameter. The mesh size of &, is defined as
h=maxgee, hg.

We consider the following finite element spaces

Vi={u,={u,u)} : u)|z € P(E), ull, € Pyle)’,

VE €&, eC E%), 13)

W, ={pe LAQ) : plg € P(E), VE € &,).

Note that for any u, € V,, uz is single-valued on each edge/face e. Let
', be the set of all edges/faces on the domain boundary Q. Denote by
V9 the subspace of V,, with uf|r, =0.

In general, an Arbogast-Correa or Arbogast-Tao space contains ra-
tional vector functions and is larger than the constant vector space, in
which the WG shape functions reside. It will be beneficial to map or lift
discrete weak vector shape functions into the space ACT,), first elemen-
twise and then mesh-wise.

Definition (Lifting operator A,). This operator maps from V, to
ACTy(Ey,), which is an H(div)-subspace. For any v = {v°,v’} €V,

((Apv) -m,w), = (¥ -n,w),, Vw € Py(e),VeC E°. 14
The definition implies that a lowest order vector-valued WG shape func-

tion has the same normal flux as its lifted image in ACT,(&,).

Remarks. The lifted image A,v is solely determined by the values of v¢
on the inter-element boundaries. The interior part v° makes no contri-
bution.

We shall see later, with the help of the lifting operator A;, the weak
Galerkin finite element solvers for Stokes problems are robust. More
specifically, the numerical velocity errors are not affected by small val-
ues of the viscosity parameter .
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4. WG finite element schemes for Stokes flow

For the Stokes boundary value problem (1), based on integration
by parts, the variational formulation is established as follows. Seek u €
H'(Q)* and p € L(Q) such that u|yo =0 and

{

where Lé(Q) is the subspace of L*(Q) consisting of the functions that
have mean-value zero, i.e., /Q pdx = 0. The condition ensures unique-
ness of the pressure solution and shall be inherited by finite element
schemes.

One advantage of the weak Galerkin methodology is that the classi-
cal gradient or divergence in the variational form (15) can be replaced
by the discrete weak gradient/divergence of WG shape functions and
finite element schemes are readily established.

Hu(Vu, Vv) = (p,V -v)
-(V-u,9) =

£, v),
0,

Vv e HO1 (@),
Vg € Lj(Q),

(15)

Scheme I. For Stokes boundary value problem (1), seek u, € V,, and
py € W), such that )|, =Qfg, and there hold

Apy,v) + By(py V) = Fy(v),  Vvev),
(16)
By (uy,,q) =0, Vg eW,,
where
Ay, V) 1=, Vg, =1 Y (V0 Y, Vg
Eeg&y

By(p>V) 1= =(Pp> Vip - Vg, 1= = z @V - Vg

Eegy (17)
By q) = (Y, Wy g, .
Fp) i= ) (E.v)g,

Ee&,

where QZ is the L?-projection operator from L%(e)? to Py(e)? on any
edge/face e.

Note that our definition for 53, (-, ) may be slightly different than what is
found in the literature. A negative sign is introduced in the 2nd equation
in (16) to maintain symmetry of the discrete linear system.

Scheme II (based on the lifting operator). For Stokes boundary value
problem (1), seek u;, € V,, and p;, € W), such that uf|r,, =Q)g, and there
holds

Ap(y,v) + By(py,V) = Fv), VveV),
a8
By(uy,. q) =0, Vg e W),
where A, B;, are the same as in Scheme I. However,
Fhwm =Y €AV 19)

Eeé&y,

The change in the linear form on the right-hand side of the 1st equa-
tion in (18) seems very little. But it brings in significant benefits that
ensure robustness of the numerical scheme. We shall show theoretically
and numerically that Scheme II is robust or locking-free, i.e., the con-
vergence orders of the errors in velocity and pressure are well kept for
small values of u or large Reynolds numbers.

5. Analysis: robustness of scheme II

In this section, we show rigorously that Scheme II is robust.
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5.1. Properties of the WG finite element spaces

First, we need to understand the properties of the WG finite element
spaces.

Definition (Local L?-projections). Three versions are considered: scalar,
vector, and matrix.

* Q,, is the Lz-projection operator from L*(Q) onto space Py(&p).

+ Q,: For each element E € &, Q) is the L2-projection operator from
the space L?(E) to the space Py(E°)?, whereas QY is the previously
defined L2-projection for element boundaries. On the whole mesh
En Q= {Q°,QZ} is the L2-projection from L*(Q) onto V,,.

+ Q, is the L?>-projection from L?(Q)?*¢ onto space ACT,y(&,) .

WG commuting identities. Based on the definitions of discrete weak
gradient and discrete weak divergence, the properties of ACT;, spaces
(9)-(10), and the definitions of the above projection operators, it is clear
that, on each element E € &, for any w € H!(E)?, there hold

(Viu(QpwW), W) g =(Qu(VW), W), VW € ACTy(E)’, 20
(V- (QuwW),w)g =(Qp(V - W), w)g, Yw € Py(E). 0
These commuting identities will be frequently used later.
Definition (Semi-norm on V,). For ve V,, we define
VI = IV, VI (21)

EEE,
This is a semi-norm on V,,, but it becomes a norm on V(;l.
Lemma 2 (Trace inequalities). Consider any E € &,. There exists a con-

stant C > 0 such that for any w € H'(E) and any edge/face e C E°, we
have

lwl? < Ch~Hlwll, + Al Vewll). 22)
Moreover, for any W € ACTS’, the following property holds true
W% < ChllW|,. 23

A proof for the 2nd estimate needs the techniques used in [31] but is skipped
here. [

Lemma 3 (Bounding weak function discrepancy by its discrete weak gradi-
ent). For any v € VY, the following estimate holds

=140 2 2
> RV = VeI, < ClIvIIP,
Eeé&y,

@24
where C > 0 is a constant independent of h and p.

Proof. Letve V(;'. Consider a fixed element E € &,. There are 24 lin-
ear combination coefficients for the local space ACT,(E)?. But v? offers
2d? constant vectors on all edges/faces together. There exists a function
W € ACT,(E)? such that

Wn)|go =v7 —v°.

Together with the definition of the discrete weak gradient, this implies
(since Vv° =0)

(Vo V. W)p =(VV, W)go + (v" -V, Wn)po = IIv° —V°||ia.

Applying the Cauchy-Schwarz inequality, Young’s inequality, and the
2nd trace inequality in (23), (see [19] also), we obtain
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o
2
9
2
Rearranging terms and then taking 6 = 1/(Ch) yields

o 1
IV =¥l = (Vv W < SIW I + 5= IV,v1

1
< FCRIW R, + 551V, vl

—1p—1)y0 2 2
CTRT Ve =¥, < NVVIlE,

which completes the proof. []

Remarks. In the estimate in the above lemma, the left-hand side can be
understood as a derivative in the discrete sense (difference quotients),
whereas the right-hand side involves the discrete weak gradient.

5.2. Properties of the lifting operator

The lifting operator A, plays an important role. Replacing (f,v°) in
Scheme I by (f,A,v), we obtain Scheme II.

Lemma 4. The lifting operator A, has the following property

DAY =Vl <ChlIVIL - ¥v={v v} €V, (25)

Eeé),

Proof. Let E € &,. By the definition of A, we have

((Apv =) -0, w)go = ((v* =v°) - m, wyzo, Vw € Py(EY).
Setting w = (A,v — v°) - n € Py(E?), we obtain

(ALY —v°)- nllea =((¥ =v°)-n, (A,v—v°)- n)go

<V = vl gall(Apv = v®) -1l ga.

A cancellation of ||(A,v—v°)-n|| g yields

(ALY =v*) -nllgo <[V = v° I o

Applying the above inequality, (23), and the properties of A, we obtain

1 . _1 .
1A,Y = VoIl < CRZ||(A¥ = ¥°) - ml| g < Ch(A™2 [|V) = v°|| o).

O

A summation over the mesh yields the desired result.

5.3. Error equations

Let u e H2(Q)?, pe H'(Q) be the solutions of Stokes problem (1).
Let u, € V,, p, € W, be the numerical solutions of Scheme II. We split
the errors as the projection errors and discrete errors as follows

{

The projection errors u — Q,u, p — Q,p are determined by the approxi-
mation capacity of the finite element spaces. We focus on the discrete
errors e, and ey,.

u-u,=u-Qu)t+e, e,:=Qu-u,

(26)

p—pp=(p—=0pp)+e, e, :=0,p—py.

Lemma 5 (Scheme II truncation errors). Let u e H*(Q)?, pe H'(Q) be the
solutions of Stokes problem (1). Let Q,u, Qj,p be the L?-projections defined
previously. Then there hold

{

ApQuu,v) + By(Qpp. V) = FMV) + uR (V) + uRy(V), VeV,

BL(Qpu, q) =0, Vqe W,
(27)
where the remainders are
Ri(v)= Z v —v°, (QpVu—Vun) o,
E€g,
(28)
Ry(v) = Z (Au, Apv—v°)p.
Ee&)y
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Proof. We perform a rigorous proof in five steps.

Step (i). To check A,(Qu,v), we consider elementwise

(Vo (Quu), V, V) =(Q,(Vu),V, V)i (WG commuting identity)

= (Va, (Q,Vwn) po — (v°,V - (Q,Vu))go (Definition of V)

= (Va, (Q,Vwn) po —(v°,(Q,Vu)n) zo  (Integration by parts) (29)

+(Vv°,Q,Vu)g (Note Vv° = 0 zero matrix)

=(v? —=v°,(Q,Vu)n) zo.

Then summation over the whole mesh yields

ApQuu) =4 Y, (Vi Quu) Vg =p Y, (v =v°.(Q; V). (30)

E€é), Eeg
Step (ii). Recall the definition of 3, to get

By(Qpp, V)== Y (4, V- V- (31

E€E,
Step (iii). To handle F,’l‘(v), we use Stokes 1st equation f = —yAu+ Vp
to get
€AV g = (—pAu,Apv)p + (Vp,Apv)g
(32)
=—p(Aw,Apv — V%) p — (A, v) g + (Vp, Apv) .

For the 3rd term in the last line, we use integration by parts and the
properties of Q, and A,, to obtain

(Vo,Apv)g =(p, (ApV) M) pa — (p, V- (ApV))g
=(p, (Apv)-n)po —(Qpp, V- (ApV))g

=(p, (Apv)-n)go —(Qpp, Vi - V).

(33)

The facts thatve V(;l and A, v has normal continuity together imply that

DV, AgWp == Y (Qpp, Vi - VIg = Bu(Qpp, V). 34

E€g, E€E,

As for (32) 2nd line 2nd term, we have, due to integration by parts and
Vve =0,

—(Aw, V%) g =—(v°, (Vwn) go + (Vv°, Vu) g = —(v°, (Vu)n) go. (35)
Applying the normal continuity of Vu yields
—u z (Au,v)p=u Z (V0 = v°, (Vu)n) ga. (36)

Eeé), Eeg,

Combining (32), (34), (36) together gives

Fro=—u D (AwAY =¥)p+p Y (V) =V, (Vwm)go + By(Qpp, V).
Eeé&), Eeg&y

37

Step (iv). Now we combine the results in Steps (i)(ii)(iii) together to get
Ap(Quu,v) + By(Qpp, V) = FH(¥)

=pu Z (v‘) - v°,(Q,Vu—Vum)ps + Z (Au, Apv—v°)p

EEE), E€éy

=uR; (V) + uRy(V),

(38)

as appeared in the 1st of equation for the truncation errors (27).
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Step (v). Since the exact velocity u satisfy V-u =0, based on the 2nd WG
commuting identity in (20), we have, for any E € &, and any g € Py(E),

V- (Qu), @) = (Qp(V - w), g)p =0.

Hence 5,(Q,u, ¢) =0 for any g € W), as expected. []

Lemma 6 (Scheme II error equations). There hold

{

where R |, R, are already defined in (28).

Ap(e,, V) + Byle,,v) = uR (V) + uRy(v), Yve VY,

(39

By,(ey, q) =0, YgeWw,,

Proof. Recall that the numerical solutions u, and p, satisfy the equa-
tions (18) in Scheme II, whereas the projections of the exact solutions
satisfy the equations (27) derived in the previous lemma. Subtractions
based on linearity of the linear and bilinear forms yield the desired
equations in (39). [

5.4. Error estimates

Lemma 7 (Inf-sup condition). There exists a constant f§ > 0 independent of
u, h so that

il pign

40
fivil “0)

Vg e W,
vevy.lIvii0

Proof. It is known that there exists a constant C > 0 so that for any
qgeEW, C L(Z)(Q), there exists V& HO1 Q)

(V-V.9
—— > Cl|q]l. (41)
Ivvli
Let v=Q,V € V,,. The 1st WG commuting identity in (20) implies
VP = ) IV VIE = Y IV, Qa5 = Y, 11, V1% < [IVVI.  (42)

Eeé&), Eeg), Eeg),

Applying the 2nd WG commuting identity in (20), we obtain

D Vuv@p= Y (Vi QD@p= D, QV-V.a)p= D) (VY.

E€g, E€g, E€g, E€g,
Therefore,
Yree, Vw VDE (V-9
! > =2 cjqll, (43)
(vl [IVvll

as expected. []

Lemma 8 (Scheme II truncation error estimates). Let u € H2(Q)4, p €
H'(Q) be the solutions of Stokes problem (1). Then for any v € Vg, the
remainders satisfy the following estimates

Ri(V) < ChllullyfivIll
(44
Ro(v) < ChllullofivIll

where C > 0 is a constant independent of h and p.
Proof. Using the Cauchy-Schwarz inequality, trace inequality (22),

(24), and approximation properties of the projection operators, we ob-
tain
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R,(V) = z (v =v°, (Q;,Vu - Vu)n) zs
E€é&),

1 1

2 2

sc( > h-'||v”—v°||2E,;> ( > hII(Vu—QhVU)nlleo>
Eeé&), Eeé&),

[STE

sCIIIVIII< > IVu-Q,Vul? +h2|Vu—QhVu|iE>
E€é&,

< Chlfull[ivill-

It follows from the Cauchy-Schwarz inequality and (25) that

RyM= Y (Au, Apv—v°)p

Eeg&y,
1 1
3 2
sc< > ||Au||2E> <Z ||Ahv—v°llé>
Ee&y Ee&y
< Chllullp[ivil,

as expected. [

Theorem 1 (Estimates for discrete errors in velocity and pressure). Let u €
H*(Q)4, pe H'(Q) be the solutions of Stokes problem (1). Let u, € V,,,
P, € W, be the numerical solution of Scheme II (lifting). Then the following
estimates hold

1Qxu — uplll < Chlull,, [1Qnp = ppll < Cuhllully, (45)

where C > 0 is a constant independent of h and p.
Proof. Taking v=e,, g =e¢, in (39) and applying (44), we obtain

Hllexlll* = Acey. e,) = u R (ey) + u Ry (ey) < Chyllulllle, I

Then a cancellation yields

1Qpu — il = llleylll < Chllull,.

A combination of the error equations, the inf-sup condition, and the
estimates for the truncation errors (44) implies that

[Bj(v,ep)l
(vl

Bllexll <

sup
veVy IVl

Ap(, V) — pR (V) — uRy(v)
livil

= sup
VeV vl

< Cuhllull,.

This, in turn, yields

1Qkp — ppll = lleyll < Cuhllully,

as expected. [

Theorem 2 (L2-norm error estimates for pressure). Under the same condi-
tions for Theorem 1, there holds

llp = pull < ChIIEIl, (46)

with C > 0 being a constant that is independent of h and p.

Proof. We have, by a triangle inequality,

lp = pull < llp = Qupll + 1Q4p = pull < Chlllplly + pllully) < Chilf]],

where the condition for solution regularity u|lull, + ||pll; < C|/f]| has
been used. []
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To derive L’-norm error estimates for velocity, we shall need a
global interpolation operator.

Definition (Global interpolation operator IT;,). This operator from H'(Q)?
to ACT, (&) is defined as

Iyw|g =11, g(ulg),

(47)
(I pu-n,v),=(u-n,v),, VYve& Fy(e),VeCIE.
It has the following properties:
(V-wo)p=(V-I, pu,v)p, YvePy(E),VEEE),
ML, pu —u|| < Chllull;, (48)

(-, pu,v)p =0, VveEP(E), VE €&,

Now we introduce I'IZ as a matrix interpolation operator, which acts
on each row of the matrix, as defined by II,,. Then we have

(-V-W.,v)=(-V- HZW, v°) (Applying (48) 1st eqn. on each row)

= Z I W, V,V)p (Definition of V,,)
Eeg&y, (49)
- Z (V’),(HZ WMo (I, ;V¥)n continuity)
EcE), ’
=AW, V,,v).

Remarks. The definitions of the operators Q,, IT,, and A, together im-
ply that for any ¥ € H'(Q)?, there holds

<Ah(Qh\P) I, w)e = <(Qz‘l‘) -, w>e = <\I’ -, w)e = (Hh\Il’ w)e’ (50)
for any w € Py(e) and any e C E°. Therefore,
ALQ,¥) =1, (5D

Theorem 3 (L?-norm error estimates for velocity). Let u € H*(Q) be the
exact solution of Stokes problem (1). Let u,, € V,, be the numerical solution
of Scheme II (lifting). Assume f € H*(Q)? with 0 < s < 1. Then

IQsu—wu || < CA™*(Ifll, + llully), (52)

lu® —w |l < Chllull,, (53)

where u° refers to the exact solution restricted to element interiors. For both
cases, C > 0 is a constant independent of h and p.

Proof. We make a duality argument to estimate e} = Qju—u;. Assume
that ¥ € H2(Q)¢ and w € H'(Q) n L%(Q) are the solutions of the dual
problem

—uAY + Vy
V-¥ =
¥

e;, in Q,
in Q,

0,
0, on 0Q.

(54)

Step (i). We test the 1st dual equation by e} = Qu—u; to get

lesl> = D (—uA¥, ep)p+ D (Vw, e))p (55)

Eeé&), Eeg&y

Step (ii). Now we consider Z (Vy.e;) . Here are some facts:
E€E,
(56)

WELYQ), O eW, Y (O, Vy-e,)p =Byey Qpw) =0.

E€é,

Applying integration by parts, the definitions of 0, and V-, we obtain
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(Vy.e))p=(wn, e} )po—(w.V-e€;)p
=(yn, e;)Ea (VAR e;)E
=(wn,e;)ps — ((Qpym,€;) po + (V(Qpy), €

=(yn,e))po — (Qpwn,€}) o + ((QryIn, €)Y o — (O, V,, - €4
Summing over the mesh with application of the fact Z (wn, eZ) po =0

E€E),
yields

2 (Vwiep= Y (@ —yn € —€)po. (57)

Ee&)y Eeé&),

Applying the Cauchy-Schwarz inequality, the trace inequality (22),
(24), the projection properties, and Theorem 1 leads to

> (V€)=Y (Quw —wn, € —€)p

E€E), E€E,

1 1

2 2

s< > thhw—wn;) ( > e —e;;ana)
Eeg, Eeé&),

1

2
< < Y IO —wiik + R IVQuw - w)llf;)) llel
E€é),
<chlyl;lle,ll < CR?lwll llull,.

Step (iii). Applying (49) and the 1st WG commuting identity (20), we
have

D (—uAY.e)p =y Y (V) V,(Quu—uy),

Ee&), Eeg)y
=u Z (I (V) = V¥, Vu -V, u,) (58)
E€é)
+ ) u(V,Vu-V,u,)g.
Eeé&),
Re-organizing the last term leads
u Y (VEVu-V,u)p=p Y (V¥ Vo),
E€é&, E€é&),
H Z (Vth\I”unh)E —H Z (V¥ - Vth\ll’ VwUn)E
E€&y E€Ey
=u Y (VEVWE—u Y (V¥-Q,V¥.V,u, - Vu),
E€é&, Eeé&,
—1 ) (VQu¥. YV, u)p — i Y (V¥ —Q, VW, Vu—Q,Vu),.
Eeé&), Ee&)y

Applying the Cauchy-Schwarz inequality, the projection properties, and
Theorem 1, we obtain

uY (V¥=-Q, V¥,V u, - V),

Eeé&y,
=u Y (V¥-Q,V¥,V,u;, -V, (Quu)g
E€é&),
+u Y (VW= Q,VW,Q,(Vu,) - Vu),

Ee&,
< Cunl| ¥l llelll + hllully) < CR> ull ¥y llull,.

Applying the properties of matrix L?>-norm and the 2nd property of
(48), we obtain

pY (V) = V¥, Vu—V,u,)p < Ch ¥l ull,.
Ee&),

(59
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Step (iv). It is easy to see that B,(Q,¥, p,) = 0. Combining the 1st equa-
tion of Scheme II, (51), and the 3rd property of operator II, (48), we
obtain

poY (VYW —p Y (V,Qu%,V,u,)p

Eeé&), Eeé&y,
=(£,%) - (F,A,(Q,¥) = (£, ¥ — 11, ¥) (60)
= - Qpf, ¥ — W) < CA™|If ||, 1]l
Step (v). Combining the results in Steps (i)-(iv), we obtain
llepl> = 3 (Quw —win. &) —€)) o
E€é),
+u Y, (V) = V¥, Vu =V, u,)p
Eeg&y
+(E - Qf, ¥ —11,'%)
(61)
—u Y (V¥ =Q, V¥V, u, - Vu)g
E€&)
—u Y (V¥=Q,V¥,Vu-0Q,Vu),
E€é,

< CR™ eI + Hhall) ML + )
Step (vi). Combining the estimates above and the dual solution regular-
ity condition
HlI¥lo + Nyl <Cllegll (62)

gives

lley Il < CR'* (It |l + [lull,),
as desired. Then, by the projection properties and a triangle inequality,
[[0® —up |l < [lu® = Qpull + [|Qpu—up ||
(63)
< Chllully + Ch™(lIEll5 + llully) < ChIE |l + llull,),

as claimed in the Theorem. []

5.5. Reasons why Scheme II works but Scheme I does not

Now we examine why Scheme I does not work. Notice that we have
the same projections Q,u, Q,p from the exact solutions. Plugging them
into Scheme I, we obtain truncation errors as below

{ Ap(Quu,v) + BL(Qpp,V) =

B(Quu,q) =

where the bilinear forms A, B, are the same for Schemes I & II, the
linear form F), = ), Ee¢, (f,v°) g (with no lifting) is defined in (17). More-
over, the truncation error R, is the same as that in Lemma 5 Equation
(28). But the other truncation error term takes the following form.

FpM) + uR (V) + Ry (v),
(64)
0,

Rim= Y (v =¥, (Qpp—p)) o (65)
Eeg&y

Setting v=Q,u—u,,, we obtain an error estimate for Scheme I:

HlIV,(Qpu—up)|l < Cuhllully + Chllpl|; - (66)

For Scheme II (with lifting), there holds

HIV(Quu—wy)|| < Cuhllull,.

So Scheme II velocity error does NOT depend on pressure but Scheme I
does. The lifting operator plays a critical role for pressure robustness of
Scheme II.

97

Computers and Mathematics with Applications 125 (2022) 90-100

6. Numerical experiments

This section presents numerical experiments on the new solvers
in this paper and also existing solvers, e.g., the classical Taylor-Hood
methods. It will be demonstrated that the Taylor-Hood solvers are not
robust but the new WG solvers (in Scheme II) are indeed robust. The
numerical procedures for these two schemes are similar to many other
continuous or weak Galerkin finite element methods: from mesh gener-
ation to computation of element stiffness matrices, and their assembly.
However, it is interesting to notice the difference between the sparsity
patterns of Scheme I and Scheme II as follows

[ A ApC,e) el [@v)
Scheme I: | Au(-) Au() BuC.) || wd |=| 0 |,
By, [ pn| | O
67)
[ AnC) AR (w] [ o
Scheme II: | A,(.2) A,(9) By, || wd |=| . A,v?)
By(.-) | | O

Scheme II shows a better matching of sparsity of the stiffness matrix
and RHS.

Example 1 (A 2-dim example with known analytical solutions). Here we
consider the domain Q = (0, 1)?, the exact solutions are

sin(zx)
u= s
—nycos(zx)

p = sin(zx) cos(zy). (68)

Nonhomogeneous Dirichlet boundary conditions are posed on the do-
main boundary using the values of the exact solution for velocity.
Clearly, the velocity and pressure solutions are infinitely smooth and the
pressure has mean value zero. The problem is solved by WG Schemes I
& Il with different u values on trapezoidal meshes (with slant parameter
0.25) that have been used in [4,32].

Shown in Table 1 are the results of Scheme I. For x =1, the er-
rors in velocity and pressure exhibit 1st order convergence. But for
u =107, the errors in velocity are simply too large, although there
may be some kind of convergence (even super-convergence). Scheme [
is not robust.

Shown in Table 2 are the results of Scheme II. For u=1,10"° or
other small values (not tabulated here), the errors in velocity and pres-
sure exhibit always 1st order convergence. It is also observed that the
divergence residual } .., (V,, - wy)|E| are fluctuating at the level of
machine zero. Scheme II is indeed robust.

Example 2 (Flow through a bent duct). This example is adopted from
[16]. The duct itself has diameter a. The bent part has a semi-circle
shape with an inner diameter 5. The duct has a straight piece of length
! in both upper and lower parts. When Cartesian coordinates are used
for domain geometry, the entry is described as {(x,y) : x=0,a+ b <
y <2a+ b}, the exit is described as {(x,y) : x=0,0 <y < a}. Gravity f =
[0,—pg]” is considered, where p is fluid density and g is the gravitational
constant. A Poiseuille profile of inflow is prescribed at the entry as

y—(@+b)((2a+b)—y)
uD(va)= 0 5

forx=0,y € [a+ b,2a+ b].

(69)

Dirichlet u;, = 0 (no-slip) boundary condition is specified on the periph-
eral.

Naturally, quadrilateral meshes are used for domain discretization.
Schemes I and II (with lifting) are applied. Various values of y have
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Table 1

Example 1: Results by (non-robust) Scheme I on trapezoidal meshes.
I/ lu—ujll Rate  |[lp—p,ll Rate  Jlu—ul Rate Ilp = pall Rate

u=1 u=10"°

8 1.8439E-1 - 1.2769E-1 - 3.2736E+3 - 8.4716E-2 -
16 9.2409E-2 0.99 6.2157E-2 1.03 8.6406E +2 Errors 4.1713E-2 1.02
32 4.6231E-2 0.99 3.0957E-2 1.00 2.1989E +2 are 2.0690E-2 1.01
64 2.3119E-2 0.99 1.5490E-2 0.99 5.5291E+1 too 1.0310E-2 1.00

128 1.1559E-2 0.99 7.7537E-3 0.99 1.3848E+1 large 5.1488E-3 1.00

WGACO numerical velocity & pressure Numerical pressure WGACO numerical velocity & pressure Numerical pressure

4 18.9048 4 19.1095
16.3842 16.5616

3.5 13.8635 35 14.0137
11.3429 11.4657

. 8.8223 B 89178

6.3016 6.3698

2.5 2.5
3.7810 3.8219
; 1.2603 o | {12140
> 2 : > 2

X -1.2603 : -1.2740

15 -3.7810 - -3.8219
-6.3016 -6.3698

1 -8.8223 1l -8.9178
-11.3429 -11.4657
0.5 -13.8635 055 -14.0137
-16.3842 -16.5616
0 M 139048 0 -19.1095

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 15 2 25 3 35 4
X X
(a) (b)

Fig. 1. Example 2: Stokes flow (gravity considered) in a bent duct (u = 107). (a) Spurious velocity produced by Scheme I; (b) Numerical velocity and pressure
produced by Scheme II (with lifting).

0.0

Pseudocolor pPseudocolor  °
Var: irection, Var: irection
- 1.541 - 1.822
- 1.092 - 0.5885
- 0.6434 —0.6452
-
Max: O1 1%(35 Max: 13%&
Min: 0.1945 Min: -1.879
V4 V4
X/——< X__’/\
Y Y
(a) (b)

Fig. 2. Example 3 (u = 107% h = 1/16): Comparison of numerical velocity 1st component. (a) WG Scheme II; (b) Taylor-Hood (Q,, Q). The results by the latter are
un-reliable.

been tested in numerical experiments. While results look good for both Example 3 (A 3-dim problem). This example is taken from deal.II
schemes when y =1 (not reported though), the results of Scheme I be- tutorial step-56. The exact solutions for velocity and pressure are
come spurious when u gets smaller.

Shown in Fig. 1 are numerical results with a=1,b=2,/1=2, p= 2 sin(zx)
1, and u = 107*. Clearly, the velocity results in Panel (a) by Scheme . .
I are non-physical, whereas the results in Panel (b) by Scheme II are u=| —zycos(zx) |, p =sin(zx)cos(zy)sin(z2). 70)
reasonable. —rzcos(x)
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Table 2
Example 1: Results by (robust) Scheme II on trapezoidal meshes.

1/h [l —us |l Rate [lp=pall Rate Div residual
u=1
8 1.8539E-1 - 2.3126E-1 - -2.1510E-16
16 9.2560E-2 1.00 8.8250E-2 1.38 —9.5409E-17
32 4.6251E-2 1.00 3.5782E-2 1.30 —2.0599E-16
64 2.3121E-2 1.00 1.6003E-2 1.16 -1.1709E-17
128 1.1560E-2 1.00 7.6550E-3 1.06 —9.9312E-17
u=10"°
8 1.8539E-1 - 8.1673E-2 - -1.0408E-16
16 9.2560E-2 1.00 4.1032E-2 0.99 5.3776E-17
32 4.6251E-2 1.00 2.0540E-2 0.99 —2.1076E-16
64 2.3121E-2 1.00 1.0273E-2 0.99 —1.2143E-17
128 1.1560E-2 1.00 5.1370E-3 0.99 —6.1392E-17
Table 3
Example 3: Results by WG Scheme II on cubic meshes.
1/h [loe = ugp I Rate Ilp = pall Rate Qu —upll Rate
u=1
8 2.8384E-1 - 3.2127E-1 - 7.9036E-1 -
12 1.8942E-1 0.99 1.7678E-1 1.47 5.3584E-1 0.95
16 1.4211E-1 0.99 1.1272E-1 1.51 4.0473E-1 0.96
24 9.4757E-2 0.99 5.8807E-2 1.60 2.7140E-1 0.98
32 7.1072E-2 0.99 3.7064E-2 1.60 2.0403E-1 0.98
u=10"°
8 2.8384E-1 - 6.8799E-2 - 7.9036E-1 -
12 1.8942E-1 0.99 4.6095E-2 0.98 5.3584E-1 0.95
16 1.4211E-1 0.99 3.4632E-2 0.99 4.0473E-1 0.96
24 9.4757E-2 0.99 2.3116E-2 0.99 2.7140E-1 0.98
32 7.1072E-2 0.99 1.7345E-2 0.99 2.0403E-1 0.98
Table 4
Example 3: Results by Taylor-Hood (Q,,Q,) solver on cubic meshes.
1/h ||t = w | Rate llp = pyll Rate [l = u Iy Rate
u=1
8 6.7088E-4 - 3.6533E-3 - 4.1470E-2 -
12 1.9864E-4 3.00 1.5829E-3 2.06. 1.8445E-2 1.99
16 8.3784E-5 3.00 8.8493E-4 2.04 1.0378E-2 1.99
24 2.4821E-5 3.00 3.9193E-4 2.00 4.6133E-3 1.99
32 1.0471E-5 3.00 2.2023E-4 2.00 2.5951E-3 1.99
u=10"°
8 7.2741E+3 3.5791E-3 - 4.0657E+5
12 1.4415E+3 Errors 1.5763E-3 2.02 1.2360E+5 Errors
16 4.5688E+2 are 8.8375E-4 2.01 5.2790E+4 are
24 9.0397E+1 too 3.9182E-4 2.00 1.5828E +4 too
32 2.8628E+1 large 2.2021E-4 2.00 6.7164E+3 large

WG Scheme II and the classical Taylor-Hood method (Q,,0Q,) (both im-
plemented in deal . II) are tested for various u values.

As shown in Table 3, for the numerical solutions obtained from WG
Scheme II, the convergence of the L?-norms of the velocity errors is well
kept at order 1, for y =1 and u = 10~°. The semi-norm of the discrete
errors in velocity Q7 u—wpli also maintains 1st order convergence for
small 4. However, as shown in Table 4, the classical Taylor-Hood solver
(Q,,0,) is non-robust. For x4 = 1, all errors look good. But for = 1079,
the velocity errors (in L2- or H'-norm) are too large.

As shown in Fig. 2, the numerical velocity component obtained from
the Taylor-Hood method is spurious.

7. Concluding remarks

In this paper, we investigate numerical methods for Stokes flow by
combining the weak Galerkin methodology and a lifting operator. Two
finite element schemes are developed, but Scheme II based on the lift-
ing operator is robust in the sense that the scheme maintains an optimal

99

Computers and Mathematics with Applications 125 (2022) 90-100

convergence order for errors in numerical velocity even for very small
values of viscosity or large Reynolds numbers. The robustness of the
novel Stokes solvers is theoretically validated (in Section 5) and numeri-
cally demonstrated (in Section 6). These solvers have been implemented
in Matlab and deal.II and are readily available.

Although the paper focuses on the lowest-order cases, the approach
and methodology employed here can be extended to development of
robust higher order solvers. For 2-dim cases, one would readily re-
place WG(PZ, PZ; AC2, Py) by WG(PZ, PE; ACZ, Py) for k > 1. As for 3-dim
problems, the only remaining issue is the construction of local bases for
AT, spaces for k > 1.
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Acknowledgements

Z. Wang was partially supported by the National Natural Science
Foundation of China (grant No. 12101626) and an internal grant 74120-
18841215 from Sun Yat-sen University. R. Wang was partially sup-
ported by the National Natural Science Foundation of China (grant
No. 12001230, 11971198), the National Key Research and Develop-
ment Program of China (grant no. 2020YFA0713602), and the Key
Laboratory of Symbolic Computation and Knowledge Engineering of
Ministry of Education housed at Jilin University, Changchun, 130012,
P.R. China. J. Liu was partially supported by US National Science Foun-
dation under grants DMS-1819252 and DMS-2208590.

References

[1] M. Akbas, L.G. Rebholz, Modular grad-div stabilization for the incompressible non-
isothermal fluid flows, Appl. Math. Comput. 393 (2021) 125748.
[2] T. Arbogast, M.R. Correa, Two families of H(div) mixed finite elements on quadri-
laterals of minimal dimension, SIAM J. Numer. Anal. 54 (6) (2016) 3332-3356.
[3] T. Arbogast, Z. Tao, Construction of H(div)-conforming mixed finite elements on
cuboidal hexahedra, Numer. Math. 142 (1) (2019) 1-32.
[4] D. Arnold, D. Boffi, R. Falk, Approximation by quadrilateral finite elements, Math.
Comput. 71 (2002) 909-922.
[5] D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations,
Calcolo 21 (4) (1984) 337-344.
[6] F. Bao, L. Mu, J. Wang, A fully computable a posteriori error estimate for the Stokes
equations on polytopal meshes, SIAM J. Numer. Anal. 57 (1) (2019) 458-477.
[7] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications,
Springer, 2013.
C. Brennecke, A. Linke, C. Merdon, J. Schéberl, Optimal and pressure-independent
L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with
BDM reconstructions, J. Comput. Math. 33 (2) (2015) 191-208.
F. Brezzi, R.S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer.
Anal. 28 (3) (1991) 581-590.
L. Chen, M. Wang, L. Zhong, Convergence analysis of triangular MAC schemes for
two dimensional Stokes equations, J. Sci. Comput. 63 (3) (2015) 716-744.
A. Cioncolini, D. Boffi, The MINI mixed finite element for the Stokes problem: an
experimental investigation, Comput. Math. Appl. 77 (2019) 2432-2446.
B. Cockburn, G. Fu, W. Qiu, A note on the devising of superconvergent HDG methods
for Stokes flow by M-decompositions, IMA J. Numer. Anal. 37 (2017) 730-749.
B. Cockburn, G. Kanschat, D. Schotzau, A note on discontinuous Galerkin
divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput. 31 (1)
(2007) 61-73.
[14] L.B. da Veiga, F. Brezzi, L. Marini, A. Russo, The hitchhiker’s guide to the virtual
element method, Math. Models Methods Appl. Sci. 24 (2014) 1541-1573.
[15] R.S. Falk, M. Neilan, Stokes complexes and the construction of stable finite elements
with pointwise mass conservation, SIAM J. Numer. Anal. 51 (2) (2013) 1308-1326.
[16] A. Goharzadeh, P. Rodgers, PIV-measurements of centrifugal instabilities in a rect-
angular curved duct with a small aspect ratio, Fluids 6 (5) (2021).
[17] J. Guzman, L.R. Scott, The Scott-Vogelius finite elements revisited, Math. Comput.
88 (2019) 515-529.
G. Harper, J. Liu, S. Tavener, T. Wildey, Coupling Arbogast-Correa and Bernardi-
Raugel elements to resolve coupled Stokes-Darcy flow problems, Comput. Methods
Appl. Mech. Eng. 373 (2021) 113469.
G. Harper, J. Liu, S. Tavener, B. Zheng, Lowest-order weak Galerkin finite element
methods for linear elasticity on rectangular and brick meshes, J. Sci. Comput. 78 (3)
(2019) 1917-1941.

(8]

[9]

[10]

[11]

[12]

[13]

[18]

[19]



Z. Wang, R. Wang and J. Liu

[20] G.Harper, R. Wang, J. Liu, S. Tavener, R. Zhang, A locking-free solver for linear elas-
ticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian
elements, Comput. Math. Appl. 80 (2020) 1578-1595.

[21] J. Guzman, M. Neilan, Conforming and divergence-free Stokes elements in three
dimensions, IMA J. Numer. Anal. 34 (2014) 1489-1508.

[22] J. Guzman, M. Neilan, Conforming and divergence free Stokes elements on general
triangular meshes, Math. Comput. 83 (2014) 15-36.

[23] V. John, A. Linke, C. Merdon, M. Neilan, L.G. Rebholz, On the divergence constraint
in mixed finite element methods for incompressible flows, SIAM Rev. 59 (3) (2017)
492-544.

[24] P.L. Lederer, Pressure Robust Discretizations for Navier-Stokes Equations:
Divergence-free Reconstruction for Taylor-Hood Elements and High Order Hybrid
Discontinuous Galerkin Methods, master’s thesis, 2016.

[25] P.L. Lederer, A. Linke, C. Merdon, J. Schiberl, Divergence-free reconstruction op-
erators for pressure-robust Stokes discretizations with continuous pressure finite
elements, SIAM J. Numer. Anal. 55 (3) (2017) 1291-1314.

[26] P.L. Lederer, S. Rhebergen, A pressure-robust embedded discontinuous Galerkin
method for the Stokes problem by reconstruction operators, SIAM J. Numer. Anal.
58 (5) (2020) 2915-2933.

[27] J. Li, X. Ye, S. Zhang, A weak Galerkin least-squares finite element method for div-
curl systems, J. Comput. Phys. 363 (2018) 79-86.

[28] A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R.
Acad. Sci. Paris, Ser. I 350 (2012) 837-840.

[29] A. Linke, On the role of the Helmholtz decomposition in mixed methods for incom-
pressible flows and a new variational crime, Comput. Methods Appl. Mech. Eng. 268
(2014) 782-800.

[30] J. Liu, G. Harper, N. Malluwawadu, S. Tavener, A lowest-order weak Galerkin finite
element method for Stokes flow on polygonal meshes, J. Comput. Appl. Math. 368
(2020) 112479.

[31] J. Liu, S. Tavener, Z. Wang, Lowest-order weak Galerkin finite element method
for Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput. 40 (5) (2018)
B1229-B1252.

[32] J. Liu, S. Tavener, Z. Wang, Penalty-free any-order weak Galerkin FEMs for elliptic
problems on quadrilateral meshes, J. Sci. Comput. 83 (3) (2020) 47.

[33] G. Manzini, A. Mazzia, A virtual element generalization on polygonal meshes of the
Scott-Vogelius finite element method for the 2-d Stokes problem, J. Comput. Dyn.
9 (2) (2022) 207-238.

Computers and Mathematics with Applications 125 (2022) 90-100

[34] K.-A. Mardal, J. Schober], R. Winther, A uniformly stable Fortin operator for the
Taylor-Hood element, Numer. Math. 123 (3) (2013) 537-551.

[35] L. Mu, Pressure robust weak Galerkin finite element methods for Stokes problems,
SIAM J. Sci. Comput. 42 (3) (2020) B608-B629.

[36] L. Mu, J. Wang, X. Ye, S. Zhang, A weak Galerkin finite element method for the
Maxwell equations, J. Sci. Comput. 65 (1) (2015) 363-386.

[37] L. Mu, X. Ye, S. Zhang, Development of pressure-robust discontinuous Galerkin finite
element methods for the Stokes problem, J. Sci. Comput. 89 (1) (2021) 26.

[38] M. Neda, F. Pahlevani, L.G. Rebholz, J. Waters, Sensitivity analysis of the grad-
div stabilization parameter in finite element simulations of incompressible flow, J.
Numer. Math. 24 (3) (2016) 189-206.

[39] N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinuous Galerkin method
for Stokes flow, Comput. Methods Appl. Mech. Eng. 199 (2010) 582-597.

[40] L.R. Scott, M. Vogelius, Norm estimates for a maximal right inverse of the divergence
operator in spaces of piecewise polynomials, ESAIM: M2AN 19 (1) (1985) 111-143.

[41] G. Wang, L. Mu, Y. Wang, Y. He, A pressure-robust virtual element method for the
Stokes problem, Comput. Methods Appl. Mech. Eng. 382 (2021) 113879.

[42] J. Wang, R. Wang, Q. Zhai, R. Zhang, A systematic study on weak Galerkin finite
element methods for second order elliptic problems, J. Sci. Comput. 74 (3) (2018)
1369-1396.

[43] J. Wang, X. Ye, A weak Galerkin mixed finite element method for second-order
elliptic problems, Math. Comput. 83 (2014) 2101-2126.

[44] J. Wang, Q. Zhai, R. Zhang, S. Zhang, A weak Galerkin finite element scheme for
the Cahn-Hilliard equation, Math. Comput. 88 (2019) 211-235.

[45] R. Wang, X. Wang, Q. Zhai, R. Zhang, A weak Galerkin finite element scheme
for solving the stationary Stokes equations, J. Comput. Appl. Math. 302 (2016)
171-185.

[46] R. Wang, R. Zhang, A weak Galerkin finite element method for the linear elasticity
problem in mixed form, J. Comput. Math. 36 (2018) 469-491.

[47] H. Wei, X. Huang, A. Li, Piecewise divergence-free nonconforming virtual ele-
ments for Stokes problem in any dimensions, SIAM J. Numer. Anal. 59 (3) (2021)
1835-1856.

[48] S. Zhang, Divergence-free finite elements on tetrahedral grids for k > 6, Math. Com-
put. 80 (274) (2011) 669-695.

[49] L. Zhao, E.-J. Park, D.-wook Shin, A staggered DG method of minimal dimension
for the Stokes equations on general meshes, Comput. Methods Appl. Mech. Eng. 345
(2019) 854-875.



	Robust weak Galerkin finite element solvers for Stokes flow based on a lifting operator
	1 Introduction
	2 Local Arbogast-Correa and Arbogast-Tao spaces
	3 Weak Galerkin FE elements and a lifting operator
	4 WG finite element schemes for Stokes flow
	5 Analysis: robustness of scheme II
	5.1 Properties of the WG finite element spaces
	5.2 Properties of the lifting operator
	5.3 Error equations
	5.4 Error estimates
	5.5 Reasons why Scheme II works but Scheme I does not

	6 Numerical experiments
	7 Concluding remarks
	Data availability
	Acknowledgements
	References


