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1 Introduction

Partition functions are fundamental objects of study in physics as they provide information
about the energy spectrum of a theory and its degeneracies. Similarly, they can be
constructed to provide the spectrum of allowed scattering elements and degeneracies of the S-
matrix of a quantum Effective Field Theory (EFT). Such partition functions can be identified
as Hilbert series [1]. Because operators are related to scattering observables, with each
operator corresponding to a contact scattering interaction, Hilbert series can equivalently
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be seen as solving the operator construction problem for an EFT. The methodology has
been developed to cover a broad class of phenomenological EFTs [1–22]. Most recently, a
Hilbert series was constructed for the pion/chiral Lagrangian of QCD [16], the archetypical
example of an EFT with a non-linearly realized, spontaneously broken symmetry.

The power of chiral Lagrangians lies in their exploitation of symmetry and the Nambu-
Goldstone theorem: the low energy dynamics is described by interactions of massless bosons.
The famous exception is when the symmetry is a gauge symmetry and gauge bosons acquire
mass via the Higgs mechanism. Hilbert series for this important class of phenomenological
theory have not yet been studied. The purpose of the current paper is to fill this gap
and detail their construction. We will use the Higgs Effective Field Theory (HEFT, or
its extension with right handed neutrinos, νHEFT) that describes electroweak symmetry
breaking in the standard model as an example to which we apply the techniques and
compare with previous literature.

The broad idea of building an effective field theory is to first identify the relevant
degrees of freedom — degrees of freedom which are directly accessible, i.e. on-shell — and
then constrain the allowed interactions using principles the system adheres to, such as
locality and various possible symmetries. In many cases the relevant degrees of freedom
are massless, or nearly so, and are low-energy manifestations of heavier dynamics that has
been integrated out. However, EFTs can be equally useful to describe physics within an
energy window: the upper edge of the window signifies the breakdown of the EFT (typically
through some form of unitarity violation) and the need to include new degrees of freedom,
while the lower edge suggests — but does not mandate — integrating out now inaccessible
degrees of freedom and working with a new effective theory. In this regard, it is important
to determine how massive particles are systematically incorporated into EFTs.

An important realization of the above scenario is provided by the electroweak sector of
the Standard Model: massive electroweak gauge bosons are copiously produced at the LHC,
but only leave virtual impacts in the beta decay processes studied at KATRIN. So while
four-Fermi theory — or it’s modern incarnation LEFT [23] — is sufficient to study physics
in Karlsruhe, physics in Geneva requires an effective description incorporating the massive
gauge bosons, the so-called electroweak chiral Lagrangian (e.g. [24]), or its modern update
HEFT that includes the singlet, scalar Higgs field h.1

In this work we study how to systematically incorporate massive particles into EFTs,
specifically in regard to enumerating and constructing the operator basis at arbitrary order.
Our focus in the main text will be on the inclusion of massive vectors — showcasing the
method through a detailed treatment of HEFT — while in the appendix we extend the
Hilbert series methods to incorporate massive particles of arbitrary spin.

1The Standard Model EFT (SMEFT) provides another valid description of electroweak gauge bosons. In
this formulation electroweak symmetry is linearly realized with a Higgs doublet H which subsequently gets a
vacuum expectation value and breaks the electroweak symmetry. Therefore, formally the EFT is built with
massless vectors which then become massive due to the now specified dynamics of H. Instead, in this work
our focus is on building EFTs where the vectors are massive from the get-go, as a result of some unspecified
dynamics. The essential nature of HEFT that makes it different from SMEFT is its non-analyticity and
unitarity violation residing close to the electroweak scale [25, 26]; see refs. [27–30] for geometrized version of
these statements (see also [31, 32] for some example phenomenological studies).
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As we will see, the basic prescription of “specify the particles and their symmetries” is
precisely how the Hilbert series calculation proceeds: in particular, we need only to know
that the W and Z gauge bosons furnish a massive representation of Poincaré symmetry
together with their respective charges under electromagnetism U(1)EM.2 The structure
of massive particle representations are interesting in their own right, as they reflect well
known phenomena such as the Higgs mechanism. We will see this reflected in the single
particle partition function (the key ingredient entering the Hilbert series), where for the
case of a spin-1 boson we have

ZMassive vector = ZMassless vector + ZN-G Boson . (1.1)

The existence of such a relation is guaranteed by the Goldstone equivalence theorem [33,
34] that dictates how the high energy S-matrix has to behave. Namely, the longitudinal and
transverse components of scattering massive vector bosons decouple, and the amplitudes
approach those describing the scattering of massless vectors and N-G bosons. Its appearance
emphasizes the physical significance of the Hilbert series as enumerating the degeneracies of
the S-matrix. See also the construction of operator bases using massive on-shell techniques
that has been explored in [35–38]. The presentation in this paper encodes the all-order
structure about such constructions, and Goldstone equivalence.

As in previous incarnations of the Hilbert series in EFT applications, the identification
of the underlying representation theory affords generalizations. In particular, we detail how
the Higgs mechanism works at the level of the S-matrix in general spacetime dimensions
d, and with particles of general spin k. This can be seen as a scintilla of a general d and
k Goldstone equivalence theorem. The general expression is again found by appealing to
the mode decomposition of massive and massless spinning particles in SO(d), echoing the
analysis of conformal-helicity duality found in [12, 13]. Schematically one obtains

ZMassive spin k =
k∑
l=0

Z∂
k−l

Massless spin l , (1.2)

where the superscript ∂m indicates the particle couples through m-derivative interactions
(cf. eq. (A.16)). It would be interesting to develop these results in line with the construction
and study of EFTs for massive gravity in higher dimensions (see [14] for a Hilbert series
treatment of massless gravity).

As for other generalizations: while we do not pursue it here, techniques to implement
parity [1] and charge conjugation [16] can be readily implemented. We emphasize that the
full formalism is readily applied as a systematic way of studying operator bases for theories
with any symmetry breaking pattern and particle content.

The application of Hilbert series techniques to the HEFT requires some additional
machinery to make contact with the literature. It involves developing some tricks that

2This is directly analogous to Hilbert series calculations for Nambu-Goldstone bosons [1, 16] describing
the spontaneous breaking of a global symmetry G to a subgroup H: once we have identified the appropriate
field variable (the Cartan-Maurer form built from eiπ/f ) we need only to impose invariance under the
unbroken group H.
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utilize ‘helper’ spurions in Hilbert series, since it is common practice in the community
to 1) write HEFT operators in the form of custodial symmetry invariants, with spurions
that get a vev to break back down to electromagnetism (EM),3 and 2) treat two operators
related by a polynomial factor in the singlet Higgs field h as equivalent. Doing so touches
on deeper properties of Hilbert series, their grading, and the representation and invariant
theory, and we explore and elaborate on these issues in generality.

Regarding the comparison to the literature, we have checked our results against three
different groups, including [40, 41], [42], and [43]. We find agreement with the original listing
of all NLO operators in [40, 41], except for the four-fermion operators. The four-fermion
ones are however less of interest here in the sense that they are independent of the EW
Nambu-Goldstone sector, and are identical to those operators appearing in the Standard
Model EFT (SMEFT) or Low-energy EFT (LEFT). In particular, we find agreement with
the original listing of four fermion LEFT operators [23].

The approaches of [42] and [43] are to embed the EW symmetry breaking structure
inside the custodially symmetric breaking structure, and the operators are constructed via
the introduction of a custodial symmetry triplet spurion. This spurion then breaks the
SU(2)V custodial symmetry to its U(1)V subgroup generated by t3V . This t3V is not the
same as EM charge Q; preserving t3V is only equivalent to preserving Q for the B − L = 0
sector. Comparing within the B −L = 0 sector, we find disagreement with the quoted total
number of four fermion operators in the HEFT summary tables of [43] (we find agreement
with the corresponding number for νHEFT).4,5

This is the story of Hilbert series, Higgs, and HEFT: section 2 provides a lightening
recap of Hilbert series applied to EFT; section 3 explains how to incorporate massive vector
bosons and elucidates how the Higgs mechanism appears in the Hilbert series; section 4
outlines the new spurion techniques we introduce in the Hilbert series to mod out singlet
polynomial form factors and/or implement the effect of spurion fields getting vevs; section 5
details the application to HEFT, along with summary tables; and, section 6 gives an outlook
on possible future developments of the ideas presented here and elsewhere. An appendix
collects a number of mathematical results on the mode decomposition and characters for
massive and massless spin k particles in d spacetime dimensions, and the manifestation

3As we review in section 5 (see section 5.4 in particular), most treatments in the literature embed the
electroweak symmetry breaking structure SU(2)L × U(1)Y → U(1)EM inside the custodially symmetric
symmetry breaking pattern SU(2)L × SU(2)R → SU(2)V and use spurions to treat the explicit breaking
of the custodial SU(2)V down to its U(1)V subgroup. As elaborated below and in section 5.4, this U(1)V
is not U(1)EM, but rather a linear combination of U(1)EM and U(1)B−L, and therefore this approach has
inherent limitations and technically is not equivalent to the most general form of HEFT. For a treatment
based purely on the coset SU(2)L ×U(1)Y /U(1)EM, see [39].

4As we were finishing writing this paper, we noticed that the HEFT NNLO operator classes were worked
out by the same group of authors [44]. It would be interesting to make a detailed comparison, but it is
beyond the scope of the current paper.

5After this paper was posted to the arXiv, ref. [45] appeared where the authors also used Hilbert series
methods to study HEFT. However, same as in [43, 44], they considered the custodial upgraded version of
the electroweak symmetry breaking, and therefore can only account for the B − L preserving operators
correctly. This is our “Spurion Approach” detailed in section 5.4 below. Ref. [45] applied this approach to
the “νHEFT” case (but not the actual “HEFT” case) up to chiral dimension 10.

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
4

of the Higgs mechanism at the level of character theory. Hilbert series for (ν)HEFT are
included as supplementary material accompanying the paper.

2 Hilbert series recap

In this section, we provide a recap of how to compute the Hilbert series that encodes the
essential information of the operator basis. This also serves as an introduction of the basic
language.

Although the Hilbert series has a definition that makes it applicable to a general class
of mathematical problems, when we apply it to the case of presenting an operator basis,
its practical evaluation can be achieved following a relatively simple procedure — one first
considers all possible ways of multiplying all fields’ components (including their derivatives),
and then selects out combinations of these products that respect the given set of symmetries
of the theory, i.e. combinations that are singlet representations of the symmetry groups.
Concretely, this selection can be elegantly achieved by making use of character orthogonality
in group representation theory:

H0(Φ, q) =
∫

dµInternal(y)
∫

dµSpacetime(x) 1
P (q, x) Z(Φ, q, x, y) . (2.1)

A few remarks about this master formula are in below.

• Consider the linear space RAll of all operators (i.e. all possible ways of multiplying all
the fields’ components). It forms a representation under the symmetry groups. The
quantity Z(Φ, q, x, y) in eq. (2.1) is the (graded) character of this representation.6
Specifically in the above, spacetime symmetry group elements are parameterized
by variables collectively labeled x, and internal symmetry group elements y. The
character is then a function of (x, y). We further introduce the grading variables q
and Φ to keep track of each operator’s mass dimension and field content. So this
graded character Z(Φ, q, x, y) encodes the information about the representation of all
possible operators.

• By character orthogonality, the integral over the Haar measure of the (compactified)
Lorentz group together with the inverse of the “momentum generating function” P (q, x)
that accounts for translation invariance (see eq. (3.6) for the detailed expression)∫

dµSpacetime(x) 1
P (q, x)

selects out operators accounting for Poincaré symmetry.

• The integral over the internal symmetry Haar measure∫
dµInternal(y)

further selects out operators that are singlets under the given set of internal symmetries.
6The character is given by the trace over the representation matrix.
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We refer the reader to section 3 in [16] for a detailed explanation of the various quantities
in eq. (2.1), and [1] for a comprehensive discussion on Hilbert series method. Here, let
us just mention that the representation of all operators RAll is clearly a direct product
of the representations made out of each single field, so the character is given by their
multiplication:

RAll =
⊗
i

[⊕
n

(anti-)symn (RΦi)
]

=⇒ Z =
∏
i

PE(f)
(
Φi χΦi

)
. (2.2)

In the above PE stands for Plethystic Exponential. The (anti-) and (f) apply for the case of
fermionic fields. We call each building block RΦi a Single Particle Module (SPM). Therefore,
the key to working out the quantity Z(Φ, q, x, y) is to work out the character of each SPM:

χΦi(q, x, y) = χSpacetime
Φi (q, x)χInternalΦi (y) . (2.3)

The relevant details of SPMs RΦi and their characters χΦi for HEFT and similar types of
theories will be discussed in section 3.

Eq. (2.1) is an elegant formula for carrying out the simple spirit of selecting out
symmetry group singlets. However, a correction term is sometimes required to generate
Hilbert series that correctly capture a full finite and small set of lowest dimension operators
(∆ ≤ d, in d spacetime dimensions) of a particular form. This happens if there are operators
encoded in Z(Φ, q, x, y) that are co-closed but not co-exact forms O[µ1···µk]:

∂µ1O[µ1···µk] = 0 while O[µ1···µk] 6= ∂νO[νµ1···µk] . (2.4)

The issue is that when such “cohomology” operators exist in Z(Φ, q, x, y), dividing by the
momentum generating function P (q, x) will not correctly mod out the integration by parts
redundancy. A correction piece ∆H will be needed and the full Hilbert series will be given by

H(Φ, q) = H0(Φ, q) + ∆H(Φ, q) . (2.5)

To address this issue, we provide in table 1 our manual enumeration of a list of co-closed
but not co-exact form operators O[µ1···µk] that could exist in Z(Φ, q, x, y) for a generic class
of fields Φ including scalars, fermions, field strengths, and linearized Goldstone fields (see
section 3.2 for definition). The corresponding contributions to ∆H are also given in case of
considering no internal symmetries. When we further impose internal symmetries, the contri-
bution to ∆H from each co-closed but not co-exact k-form O[µ1···µk] should be computed as

∆H(Φ, q) ⊃ (−1)k+1q∆O+k
∫

dµInternal(y)χO(Φ, y) , (2.6)

where ∆O is the mass dimension of the k-form O[µ1···µk] and χO(Φ, y) is its field-graded
internal symmetry character. For a derivation of eq. (2.6), we refer the reader to section 7.2
in [1]. Let us mention that if all the fields in an EFT form unitary representations of the
conformal group (such as in SMEFT), then the correction piece ∆H can be systematically
computed as explained in section 4.1 (specifically, eq. (4.16b)) in [1]. On the other hand, if
there are non-unitary conformal representations involved in the EFT, such as the linearized
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O[µ1···µk] rank k dim ∆O ∆H

εµνρσ 4 0 −q4

∂µφi 1 2 q3 φi

φ[i∂
µφj] 1 3 q4 φi φj

χ†i σ̄
µχj 1 3 q4 χ†i χj

Fµνi , F̃µνi 2 2 −q4 (FiL + FiR)

uµi 1 1 q2 ui

εµνρσuiσ 3 1 q4 ui

εµνρσuiρujσ 2 2 −q4 ui uj

εµνρσuiνujρukσ 1 3 q4 ui uj uk

uiνF
µν
j , uiνF̃

µν
j 1 3 q4 ui (FjL + FjR)

Table 1. Generic co-closed but not co-exact form operators O[µ1···µk] that could be built out of
scalars φi, left-handed Weyl fermions χi, field strengths Fµνi , and linearized Goldstone fields uµi .
We give the corresponding contributions to ∆H in the case of considering no internal symmetries.
When there are internal symmetries on top of it, one follows eq. (2.6) to further select out internal
symmetry singlets. The upper section collects form operators that do not involve Goldstone fields,
whose contributions to ∆H can be actually worked out automatically using conformal representation
theory as explained in [1]. The lower section collects our manual enumeration of co-closed but not
co-exact form operators that involve Goldstone fields.

Goldstone field in HEFT, then one needs to use the manual enumeration of the “cohomology”
forms O[µ1···µk] in table 1 (lower section) together with the formula in eq. (2.6).

In summary, the full Hilbert series can be computed as in eq. (2.5), concretely through
eqs. (2.1) and (2.6). The key tasks are to work out the correct SPMs RΦi (and their
characters χΦi) for computing the H0 piece, and to find out all the co-closed but not
co-exact forms O[µ1···µk] (contained in Z(Φ, q, x, y)) for computing the ∆H piece.

3 Massive single particle modules and Higgs mechanism

In this section, we discuss the single particle modules (SPMs) and their characters. These
characters are single particle partition functions graded by mass dimension and spin, and
are the key ingredients for working out the quantity Z(Φ, q, x, y) in eq. (2.1), as explained
around eq. (2.2). We begin with a basic review in section 3.1 and move on to discuss
SPMs for Goldstones in section 3.2 and field strengths in section 3.3, which are relevant for
non-linearly realized gauge theories, such as HEFT. In section 3.4, we construct the SPM
for a massive vector boson and show that it is a direct sum of the field strength SPM and
the Goldstone SPM — the Higgs mechanism. In appendix A we give a general treatment of
massive particles in arbitrary spacetime dimension d, detailing their mode decomposition
and computing their associated characters.
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3.1 Notation and review of SPMs

Throughout this section we adopt the language and notation of ref. [1], to which we refer the
reader for further background and elaboration.7 We work in d = 4 with Euclidean Lorentz
group SO(4) ' SU(2)× SU(2). Finite dimensional, irreducible representations (irreps) of
SO(4) are labeled by partitions l = (l1, l2) with l1,2 half integers and l1 ≥ |l2|.8 For example,
the vector (defining) representation is (l1, l2) = (1, 0), the adjoint representation is the
direct sum (1, 1)⊕ (1,−1), the left-handed Weyl fermion representation is (1

2 ,
1
2), etc. We

will denote an SO(4) representation space as Vl ≡ V(l1,l2), or simply by l ≡ (l1, l2) when
there is no chance for confusion.9

The main ingredient in constructing an operator basis is the single particle module
(SPM) [1] RΦ for each particle/field Φ to be included in the EFT. The SPM contains the
fundamental building blocks used to construct composite, local operators. In essence, the
SPM consists of the modes of a field in a Taylor expansion10

Φ(x) = Φ(0) + ∂µΦ(0)xµ + 1
2!∂µ∂νΦ(0)xµxν + · · · , (3.1)

where we have highlighted in blue the modes which form the building blocks of the SPM.
The field Φ obeys equations of motion which ensure the correct transformation properties
under Poincaré symmetry, e.g. [46] (see also [47] for a treatment in general spacetime
dimension). The equations of motion are differential equations, which we can collectively
denote by {L · Φ = 0} where the L are linear differential operators. Crucially, any terms
proportional to the EOM are absent in the expansion eq. (3.1).

Let’s consider the simplest example: a massless scalar field φ(x). The equation of
motion is ∂2φ = 0, giving the expansion

φ(x) = φ(0) + ∂µφ(0)xµ + 1
2!∂{µ∂ν}φ(0)xµxν + · · · , (3.2)

where the curly brackets denote taking the derivatives in a traceless combination. Each
mode ∂{µ1 · · · ∂µn}φ transforms in the SO(4) irrep V(n,0), so that the SPM Rφ is given by

Rφ =


φ

∂µφ

∂{µ1∂µ2}φ
...

⇒ Rφ =
∞⊕
n=0

V(n,0) . (3.3)

7In particular, see section 2 of [1] for the main idea of SPMs, and section 3 for character theory.
8We could also label these representations according to SU(2)× SU(2) using the vector (j1, j2), where

j1 = (l1 + l2)/2 and j2 = (l1 − l2)/2.
9On occasion, and especially in appendix A, we also use Young diagrams to denote irreps, e.g. V(n,0) ≡

(n, 0) ≡ · · · .
10If the particle is a conformal representation, the modes in the Taylor expansion are in one-to-one

correspondence with states via the operator-state correspondence. This correspondence morally holds in
a free massive theory as well. The existence of a well-defined expansion can be made rigorous in a CFT,
where the expansion takes place on conformally compactified Minkowski space. Specifically, the conformal
representation is realized as an analytic function — guaranteeing the convergence of the Taylor expansion —
living on complexified Minkowski space, specifically the tube domain zµ = xµ + iyµ, with y time-like and
forward in time, y2 > 0 and y0 > 0. The Minkowski representation is obtained in the limit y → 0 (analogous
to an iε prescription), where the representation gets realized as a distribution.
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As reviewed in section 2, when computing the Hilbert series a major set of input
ingredients are the characters χΦi for each SPM RΦi . These characters are sums of the
SO(4) characters χ(l1,l2)(x) for each mode in the SPM, weighted by the scaling dimension
of the mode. Here x = (x1, x2) are variables parameterizing the torus U(1)2 ⊂ SO(4).
Using the variable q as the weight for scaling dimension, and recalling [φ] = 1 in d = 4, the
character for the scalar field Rφ in eq. (3.3) is given by

χφ(q, x) =
∞∑
n=0

qn+1χ(n,0)(x) . (3.4)

This can be summed directly, see e.g. [1], to give

χφ(q, x) = q (1− q2)P (q, x) , (3.5)

where the “momentum generating function” P (q, x) is given by

P (q, x) ≡ 1
det(1,0)(1− qg) = 1

(1− qx1)(1− q/x1)(1− qx2)(1− q/x2) . (3.6)

We call this a momentum generating function because it is the character function for an
infinite tower of derivatives

1
∂µ

∂µ1∂µ2
...

 =
⊕
n=0

symn(V(1,0))⇒
∑
n=0

qnsymn[χ(1,0)(x)] = P (q, x) . (3.7)

This provides a useful way of understanding eq. (3.5). In Rφ, eq. (3.3), the derivatives are
traceless because of the EOM ∂2φ = 0. One can then think of Rφ schematically as

Rφ =


φ

∂µφ

∂{µ1∂µ2}φ
...

 ∼


1
∂µ

∂µ1∂µ2
...

 (1− ∂2)φ . (3.8)

Combined with eq. (3.7), this makes the character χφ in eq. (3.5) completely manifest. This
heuristic understanding of the character will be useful for quickly deriving the character of
a massive vector.

3.2 Pion SPM in nonlinear realizations

In nonlinear realizations, the pion fields in the Goldstone matrix

ξ = eiπ
ata/v , (3.9)

transform nonlinearly under the symmetry group. We follow the CCWZ prescription [48, 49]
to use the Cartan-Maurer linearization variable11

uµ = uaµt
a ≡

[
ξ−1 (∂µξ)

]∣∣∣
coset

, (3.10)

11For a coset space G/H, the Cartan-Maurer form ξ−1dξ is valued in the Lie algebra g ' g/h ⊕ h of
G. The notation ξ−1dξ|coset means to take the piece valued in g/h, i.e. the piece proportional to the
broken generators.
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as the building block of the EFT Lagrangian, which transforms linearly under the unbroken
group.

To work out the SPM Ru, let us first consider the simplest case that the pion coset
space is U(1). In this case, we simply have

ξ = eiπ/v , uµ = i

v
∂µπ , (3.11)

and the SPM is given by

Ru = R∂π = i

v


∂µπ

∂{µ1∂µ2}π
...

⇒ R∂π =
∞⊕
n=0

V(n+1,0) . (3.12)

Comparing with Rφ in eq. (3.3), we see that the only difference is the absence of the
scalar mode π (with no derivatives). This can be understood intuitively by the softness
requirement — pion amplitudes vanish when the momentum vanishes — which leads to a
derivative expansion in the effective Lagrangian. Taking the uµ field to be mass dimension
one, [uµ] = [ iv ∂µπ] = 1, the corresponding character is given by

χu(q,x) =χ∂π(q,x) =
∞∑
n=0

qn+1χ(n+1,0)(x) = (1−q2)P (q,x)−1 = 1
q
χφ(q,x)−1 . (3.13)

In the above, we have derived the SPM Ru and its character χu by considering the
simplest coset space U(1). But the results in eqs. (3.12) and (3.13) actually hold for general
coset spaces [1]. Of course, in general cases one should make the replacement

i

v
∂µπ −→ uµ = i

v
∂µπ +O

(
π2
)
, (3.14)

in eq. (3.12), and the SPM reads

Ru =


uµ

∂{µ1uµ2}
...

 . (3.15)

Nevertheless, the right panel of eq. (3.12) still holds, thanks to the following properties of
the field uµ (see CCWZ [48, 49], as well as section 7 of [1] for details):

EOM : ∂µuµ = 0 , (3.16a)
Vanishing Curl : ∂[µuν] = 0 . (3.16b)

Here the square brackets refer to the anti-symmetric combination of indices. Therefore,
the character result in eq. (3.13) holds for general coset spaces G/H associated with the
breaking of internal symmetries, i.e. G and H are compact, semi-simple groups.
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3.3 Massless vector SPM

The interpolating field for a massless vector boson is the field strength Fµν(x). In d = 4, it
can be split into its chiral components FL/R. The corresponding SPMs are

RFL =
∞⊕
n=0

V(n+1,1) , (3.17a)

RFR =
∞⊕
n=0

V(n+1,−1) , (3.17b)

RF = RFL ⊕RFR , (3.17c)

with corresponding characters

χFL(q, x1, x2) =
∞∑
n=0

qn+2χ(n+1,1)(x1, x2)

= q2
(
χ(1,1)(x1, x2)− qχ(1,0)(x1, x2) + q2

)
P (q, x1, x2) , (3.18a)

χFR(q, x1, x2) =
∞∑
n=0

qn+2χ(n+1,−1)(x1, x2)

= q2
(
χ(1,−1)(x1, x2)− qχ(1,0)(x1, x2) + q2

)
P (q, x1, x2) . (3.18b)

3.4 Massive vector SPM

A massive vector Aµ is described by the Proca equations

(∂2 +m2)Aµ = 0 , (3.19a)
∂µAµ = 0 . (3.19b)

The first of these is the Klein-Gordon equation, dictating that the particle has mass m.
The second of these is a polarization condition, which in momentum space translates to
pµεσµ(p) = 0 where εσµ(p) is the polarization tensor. In analogy with the heuristic scalar
SPM in eq. (3.8), we see that the SPM for Aµ has the following heuristic form

RA ∼


1
∂µ

∂µ1∂µ2
...

 (1− ∂2)(1− ∂µ)Aµ , (3.20)

which leads us to the character

χA(q, x) = q (1− q2)
(
χ(1,0)(x)− q

)
P (q, x) . (3.21)

The (1− q2) factor is associated to the Klein-Gordon equation (3.19a), analogous to the
scalar case in eq. (3.8), while the (χ(1,0)−q) reflects eq. (3.19b): Aµ is a vector (hence χ(1,0))
while ∂µAµ is a scalar and involves a derivative (hence q χ(0,0) = q). Some insight into this
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character — and strong evidence that we have indeed constructed the right quantity — is
obtained by recognizing that it is the sum of the characters for a Goldstone, χu in eq. (3.13)
and a massless gauge field, χF ≡ χFL + χFR in eq. (3.18):

χA(q, x) = χF (q, x) + χu(q, x) . (3.22)

This decomposition reflects the Higgs mechanism: a massive vector can be thought of as
the combination of transverse modes ~p · ~εσ = 0 — interpolated by a field strength Fµν —
together with the longitudinal mode ~p · ~εσ 6= 0 — interpolated by a Goldstone field uµ.

One could also carefully derive eq. (3.22) (and then eq. (3.21) consequently) by con-
sidering the representation decomposition for each block (row) in RA, the same procedure
shown in eqs. (3.3), (3.12) and (3.17). To this end, we first note the following symmetric +
anti-symmetric tensor decomposition

∂µ1 · · · ∂µnAν = ∂µ1 · · · ∂µn−1∂{µnAν} ⊕ ∂µ1 · · · ∂µn−1∂[µnAν] , (3.23)

which is relevant for the (n+ 1)-th block (schematically A∂n) in RA. Now further taking
into account of the conditions in eq. (3.19) for RA, it is clear that the symmetric components
in RA will form Ru and the anti-symmetric ones will form RF :

RA = Ru ⊕RF , (3.24)

and therefore eq. (3.22) follows.
In fact, the “Higgs mechanism” reflected in eq. (3.24) generalizes to massive particles

of higher spins. Decomposing the polarizations of a massive particle into transverse and
longitudinal components, the various longitudinal polarizations can be thought of originating
from massless particles of lower spin that the massive particle has “eaten”. We elaborate on
this in appendix A, where we extend our treatment to massive particles of general spin. The
basic result, however, is simple to understand and can be gleaned from figure 1, which shows
how a massive spin-k SPM decomposes into massless particles of spin l = k, k − 1, . . . , 0.

Finally we comment on various grading options available when using these massive
characters inside the Hilbert series calculation. As reviewed in eq. (2.2), the character χΦ for
the SPM RΦ is typically multiplied by a grading variable Φ when inserted into the plethystic
exponential, allowing us to keep track of where the field Φ shows up. So, for example,
in including a massive vector Aµ we could take the massive vector character eq. (3.21)
and multiply it by a grading variable A: PE[AχA(q, xi)]. However, such a choice is
not mandatory, and in the case that the character entering the SPM has some nice
decomposition — e.g. like the Higgs mechanism reflected in eq. (3.24) and eq. (3.22) —
it can be very convenient to grade the pieces separately. For the case of eq. (3.22), for
example, we could include separate grading variables for the transverse and longitudinal
pieces, PE[AχA(q, xi)] → PE[F χF (q, xi) + uχu(q, xi)] = PE[F χF (q, xi)]PE[uχu(q, xi)].
In such a case, terms in the Hilbert series containing the grading variable F are built
out of the field strength Fµν while those containing u are built out of the Cartan-Maurer
linearization variable (or, in unitary gauge, built with Aµ directly). We find such a splitting
useful in our analysis of HEFT in section 5.
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massless spin-0 : 1 · · ·

massless spin-1 : · · ·

massless spin-2 : · · ·

massless spin-3 : · · ·

massless spin-4 : · · ·

massive spin-0

massive spin-1

massive spin-2

Figure 1. The mode decomposition of massive single particle modules reflects the Higgs mechanism:
a massive particle can be thought of as the combination of transverse polarizations — interpolated by
a massless particle of the same spin — together with longitudinal polarizations that are interpolated
by a series of massless particles of lower spin, e.g. eqs. (3.24) and (3.22) for a massive vector, and
eq. (A.16) for general massive spin-k particles. For the treatment of massive particles of general
spin see appendix A.

4 Form factor redundancies and spurion fields

In this section, we discuss how to mod out a new type of redundancy relation in the Hilbert
series — singlet polynomial factors of a certain field T :

O1 ∼ O2 , if O1 = f(T )O2 or O2 = f(T )O1 , (4.1)

where f(T ) is a polynomial of T that is a singlet under the EFT symmetries. This
redundancy relation is “new” in the sense that it is not in the set of redundancies that one
usually accounts for in constructing EFT operator bases — equations of motion, integration
by parts, and group identities. It is motivated by the observation that in some EFTs,
singlet polynomials of a certain field T are wrapped into form factors in the definition of the
operator basis, which amounts to imposing the above redundancy relation. For example,
this is how the physical Higgs field h is treated in HEFT. Another motivation for considering
the redundancy in eq. (4.1) is that it is also encountered when we introduce spurion fields
to classify the operators into preserving/breaking sets of a bigger symmetry group, where
singlet polynomials of the spurion fields are trivial factors yielding a redundancy relation of
the above kind in the full Hilbert series. This also finds applications in the case of HEFT.

To handle the redundancy relation in eq. (4.1), the key fact we make use of is a
factorization property of Hilbert series. Consider the polynomial space of two independent
set of variables T = {T1, T2, · · · } and φ = {φ1, φ2, · · · }. These variables form representations
of certain symmetry groups, and we are selecting out a subspace of their polynomials that
preserve the symmetries. Let us use the Hilbert series HAll(T, φ) to encode this subspace,
then it has the factorization property

HAll(T, φ) = HAll(T, φ = 0) HT -Quotient(T, φ) . (4.2)

– 13 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
4

Here HAll(T, φ) encodes all the singlet polynomials, so by definition HAll(T, φ = 0) will
encode all the singlet polynomials made of T alone. The point is that the remaining factor
HT -Quotient(T, φ) corresponds to a well-defined polynomial space {Oa(T, φ)}, where elements
are not related by a (singlet) polynomial factor of T :

Oa(T, φ) 6= f(T )Ob(T, φ) . (4.3)

Therefore, HT -Quotient(T, φ) encodes the space of operators with singlet polynomial factors
of T modded out. This is precisely what we are looking for. From eq. (4.2), we see that the
Hilbert series for the quotient space can be computed as

HT -Quotient(T, φ) = HAll(T, φ)
HAll(T, φ = 0) . (4.4)

It is not hard for one to convince themselves that eq. (4.2) is true. In terms of the
operator space, it is simply reflecting the following relation{

All singlet operators
}

=
{
singlets of T alone: f(T )

}
⊗
{
Oa(T, φ),with Oa(T, φ) 6= f(T )Ob(T, φ)

}
. (4.5)

The only nontrivial check of this relation is perhaps that there is no double counting on the
right-hand side, which is true because of the fundamental theorem of arithmetic.

4.1 Modding out form factor redundancies

In HEFT, it is customary to group powers of the physics Higgs field h into form factors and
write each independent operator as f(h)O, with f(h) an arbitrary polynomial of h. This
amounts to imposing the redundancy relation in eq. (4.1) with T = h, so we can make use
of eq. (4.4) to mod it out and obtain the Hilbert series for the quotient space. As T = h is
a singlet under the HEFT symmetries, we have

HAll(h, φ = 0) = 1
1− h , (4.6)

and therefore
Hh-Quotient(h, φ) = (1− h)HAll(h, φ) . (4.7)

Note that φ here collectively denotes all the other field components in HEFT that we are
not wrapping into form factors; in particular, it contains the derivatives of h.

One could also imagine defining a new type of operator basis for SMEFT where singlet
polynomials of the Higgs doublet H is wrapped into form factors (as what is hinted at in
e.g. [50]). In such a case, the field H is not a singlet itself, so we have a relatively nontrivial
factor

HAll(H,φ = 0) = 1
1−H†H −→ HH-Quotient(H,φ) = (1−H†H)HAll(H,φ) . (4.8)
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4.2 Hilbert series with spurion fields

Consider the situation where the field φ forms a representation of a group G, but we only
require the operators to preserve a subgroup of it H ⊂ G. In this case, we may take two
approaches to obtain the Hilbert series, which will of course give us the same result:

1. Direct Approach. We write out the (reducible) representation of φ under the subgroup
H and then compute the Hilbert series by directly requiring H invariance. This is
arguably the most direct way of attacking the problem, and let us denote the resulting
Hilbert series as HH(φ).

2. Spurion Approach. We introduce a spurion field T for assistance. Its representation
under the larger group G is chosen such that upon taking a generic vev, it breaks G
down to H . We can then compute the Hilbert series with φ and T together, requiring
G invariance. We denote the Hilbert series obtained this way as HG(T, φ). The spirit
of this approach is that although we seem to be preserving a larger symmetry group G,
eventually we will be just enumerating H-preserving operators, because we will send
the spurion to its vev value. This approach might sound like a detour, but it is useful
because it allows us to classify the H-preserving operators into G-preserving/breaking
sectors, i.e. terms in HG(T, φ) without/with T . Indeed in HEFT a spurion T is often
introduced that breaks the custodial symmetry G = SU(2)V down to H = U(1)EM
(for the Higgs sector). However, HG(T, φ) as described above actually encodes a lot
more operators out of our interests, because there are singlet factors made of the
spurion field T alone, each of which could be multiplying the informative ones that
involve φ. Clearly, this is a redundancy of the type in eq. (4.1) and we can make use
of eq. (4.4) to mod it out. So what we actually need is

HG-Classified(T, φ) = HG(T, φ)
HG(T, φ = 0) . (4.9)

Then the HH(φ) in the direct approach can be reproduced by dropping the G-
preserving/breaking classification information, i.e. by taking T → 1:

HH(φ) = lim
T→1
HG-Classified(T, φ) = lim

T→1

HG(T, φ)
HG(T, φ = 0) . (4.10)

In the rest of this subsection, we show a few simple examples to demonstrate the
equivalence between the above two approaches, in particular, the relation in eq. (4.10). For
simplicity, we only consider operators with no derivatives in these examples.

4.2.1 Example: a U(1) spurion

Let us first consider an example with G = U(1) = {eiθ, θ ∈ [0, 2π]} broken down to the
cyclic subgroup H = Zn with {θ = 2π kn , k = 0, 1, · · · , n− 1}. Our field is a complex scalar
φ with charge +1 under G = U(1); its complex conjugate φ∗ of course has charge −1:

φ→ φ̃ = eiθφ , φ∗ → φ̃∗ = e−iθφ∗ . (4.11)
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We use the direct approach first. The invariants of the unbroken group H = Zn are
generated by

I1 = φ∗φ , I2 = φn , I3 = (φ∗)n . (4.12)

But these are not free generators, as there is one redundancy relation among them

In1 = I2I3 . (4.13)

Therefore, following the general understanding (e.g. [2]), we obtain the Hilbert series

HH(φ, φ∗) = 1− φn (φ∗)n

(1− φ∗φ) [1− φn] [1− (φ∗)n] . (4.14)

Now let us use the spurion approach and show that it yields the same result via
eq. (4.10). We introduce a spurion T which is also a complex scalar but with a charge
assignment qT = n under G = U(1). So it transforms as

T → T̃ = einθT . (4.15)

Note that T is unchanged under the Zn subgroup. Therefore, when it obtains a vev, the
unbroken subgroup is Zn, as we need. With our spurion T , we get the Hilbert series

HG(T, T ∗, φ, φ∗) = 1− (φ∗φ)n T ∗T
(1− φ∗φ) (1− T ∗T ) [1− φnT ∗] [1− (φ∗)n T ] . (4.16)

We see that making use of eq. (4.10) does reproduce eq. (4.14).

4.2.2 Example: an SO(N) vector representation spurion

Next we consider a real scalar field φ with N ≥ 3 real components that forms a vector
representation of the group G = SO(N), but we only impose the invariance under the
subgroup H = SO(N − 1). The case of N = 3 corresponds precisely to the case of custodial
symmetry breaking in HEFT.

Again, let us use the direct approach first. Under the unbroken group H = SO(N − 1),
the N components of field φ form a vector representation and a singlet representation.
Clearly, the Hilbert series is

HH(φ) = 1
(1− φ2)(1− φ) . (4.17)

Now let us use the spurion approach. We introduce a spurion T that forms a vector
representation of G = SO(N), which will break G down to H = SO(N − 1), as we need.
With the spurion T , we will obtain the Hilbert series12

HG(T, φ) = 1
(1− φ2) (1− T 2) (1− φT ) . (4.18)

Again, we see that making use of eq. (4.10) would then reproduce eq. (4.17).
12For N ≥ 3, (~φ · ~φ), (~T · ~T ), and (~φ · ~T ) are free generators.
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5 Hilbert series for (ν)HEFT

A suitable and phenomenologically attractive effective field theory that can benefit from
the techniques described and discussed in previous sections is the so called Higgs Effective
Field Theory (HEFT). The motivation behind HEFT stems from the fact that a variety
of BSM models with the Higgs not occupying an elementary exact SU(2)L doublet is
still experimentally allowed; therefore, it is desirable to identify observables that would
allow for distinguishing among the possible scenarios. To this end, a model independent
approach represented by HEFT provides a very convenient framework. While in the SMEFT
the physical Higgs and the three electroweak Goldstone bosons are incorporated in an
electroweak doublet, in HEFT they are independent fields with the physical Higgs field h
being a SM gauge singlet. We also supplement the SM field content with a right-handed
neutrino νR, and call this EFT as “νHEFT” (in analogy to the term “νSMEFT” [8, 51, 52]).

We begin by summarizing the various technical aspects we have detailed above, in
addition to those appearing in previous papers, that are relevant for applying Hilbert series
techniques to HEFT.

• SPMs of the Goldstone bosons Ru. In HEFT, the electroweak (EW) symmetry
breaking is realized nonlinearly by the Goldstone matrix

ξ = eiπ
ata/v .

To apply the Hilbert series method, one needs to follow the CCWZ prescription [48, 49]
to use the linearized building blocks

uµ = uaµt
a ≡

[
ξ−1 (∂µξ)

]∣∣∣
coset

,

which transform linearly under the unbroken group. We provided a brief review of
the SPM for uµ in section 3.2. Further details can be found in section 7 of [1].

• SPMs of the gauge bosons RF . In HEFT, we are spontaneously breaking a symmetry
group G that is gauged. So in addition to the linearized Goldstone boson fields
uµ, the field strengths Fµν for the symmetry G should also be included into the
particle content. These field strengths Fµν are dynamic fields of the EFT (as opposed
to background fields), so they are also subject to the EOM redundancies (i.e. the
on-shell conditions). Note that this is different from the QCD Chiral Lagrangian
case [16] where the field strength are external fields that are not subject to the EOM
redundancies. In section 3.3, we reviewed the SPM and character for dynamic field
strengths.

• Gauge choices and the Higgs mechanism. In HEFT, we are dealing with a gauged
symmetry that is spontaneously broken. In this case, there are different gauge choices
to describe the same physics. For example, one could choose the unitary gauge
to eliminate the Goldstone bosons, and the dynamic fields would be the massive
gauge bosons Aµ, leading us to use the massive vector SPMs RA given in section 3.4.
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Equivalently one could use the modules RF and Ru, the equivalence being manifested
by the Higgs mechanism relation:

RA = RF ⊕Ru , (5.1)

as explained in section 3.4.

• Non-unitary representations of the conformal group. In HEFT, the linearized Gold-
stone building blocks Ru do not form unitary representations of the conformal group.
Because of this, the correction piece ∆H in eq. (2.5) cannot be computed using
conformal representation theory (specifically, eq. (4.16b) in [1]). Instead, one needs
to follow our manual enumeration of co-closed but not co-exact forms O[µ1···µk] in
table 1, and then use eq. (2.6) to compute ∆H. We will carry this out explicitly for
HEFT in the below.

• Form factor equivalence relation. When discussing HEFT operators it is customary
to wrap powers of the singlet physical Higgs field h into form factors and view

f(h)O , with f(h) an arbitrary polynomial of h ,

as a single operator. This amounts to introducing a new type of redundancy relation

O1 ∼ O2 , if O1 = f(h)O2 or O2 = f(h)O1 . (5.2)

Therefore, after obtaining the usual Hilbert series, we need to further mod out this
additional redundancy. The technique to handle this was given in section 4.1.

• Custodial spurion. Another customary practice in HEFT is to write the operators in
the form of custodial SU(2)V invariants, despite the fact that the operators are only
required to preserve U(1)EM. Typically, a custodial symmetry breaking spurion field

T ∼ σ3

is introduced to restore the symmetry, e.g. [40–43] (see eq. (5.28) for the concrete
expression). The resulting operators are in apparent custodial preserving combinations,
but with various insertions of the spurion field T to account for custodial breaking
effects upon it taking a vev. Clearly, this is a less direct way of approaching the
operator basis, but it should yield the same result for the B − L preserving sectors.
The additional information about the division into different powers of spurion T might
also be useful in some cases. Obtaining a Hilbert series that reflects this way of
writing the operator basis is straightforward. One simply includes the spurion field T
into the particle content and imposes the larger symmetry SU(2)V instead of U(1)EM.
This technique was detailed in section 4.2.
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5.1 Nonlinear realization of the electroweak symmetry breaking

(ν)HEFT is a nonlinear realization of the electroweak symmetry breaking

SU(2)L ×U(1)Y −→ U(1)EM . (5.3)

It has an alternative name — the electroweak chiral Lagrangian (with a physical Higgs field
h). Using t1, t2, t3 and Y to denote the SU(2)L ×U(1)Y generators, we have

Broken Generators
{
t± = t1 ± it2

tz = cθW
(
cθW t

3)− sθW (sθW Y )
, (5.4a)

Unbroken Generator cθW sθW Q = sθW

(
cθW t

3
)

+ cθW (sθW Y ) , (5.4b)

where θW is the Weinberg angle. In nonlinear realization, each broken generator in eq. (5.4)
is accompanied by a Goldstone field to form the Goldstone matrix

ξ = ei(π+t++π−t−+πztz)/v , (5.5)

which transforms nonlinearly under the symmetry groups. One then follows the CCWZ
prescription [48, 49] to construct the Cartan-Maurer linearization variables

Vµ = V +
µ t+ + V −µ t− + V z

µ t
z ≡ ξ−1 (∂µξ)

∣∣∣
coset

. (5.6)

These linearized Goldstone fields are linear representations of the unbroken symmetry
U(1)EM. As suggested by the notation, V ±µ , V z

µ correspond to the longitudinal modes of
the gauge bosons W±µ , Zµ in light of the Higgs mechanism. In HEFT, other SM fields are
also organized according to representations of the unbroken symmetry U(1)EM. A summary
of the field representations is given in table 2. Note that the linearized Goldstone fields
V ±µ , V

z
µ have canonical mass dimension one, because they contain one power of derivative;

see eq. (5.6).

5.2 Compute Hh — treating powers of h as independent

Given the field content and their (canonical mass dimension) power counting in table 2,
one is ready to compute a Hilbert series

Hh (q,D, {Φ}, nu, nd, ne, nν) , (5.7)

which is an analytic function at the origin of the arguments q,D, {Φ} (and hence has a
Taylor series expansion). Once Taylor expanded at the origin, each term corresponds to an
EFT operator. The argument {Φ} collectively denotes all the fields given in table 2 (and for
complex fields, their hermitian conjugates as well). Therefore, the powers of {Φ} indicate the
field structure of the EFT operator. The power of D corresponds to the number of derivatives
in the operator, and the power of q gives the mass dimension of the operator. We are also
accommodating a generic flavor number structure, with nu species of (uL, uR), nd species of
(dL, dR), ne species of (eL, eR), and nν species of (νL, νR). When {Φ} includes all the fields
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Field Lorentz Group SU(3)C U(1)EM dim

uL , uR

(1
2 , 0) , (0, 1

2)

3 2
3

3
2

dL , dR 3 −1
3

νL , (νR) 1 0
eL , eR 1 −1

GL , GR

(1, 0) , (0, 1)

8 0

2
W±L , W±R 1 ±1
ZL , ZR 1 0
AL , AR 1 0

V ±
(1

2 ,
1
2) 1

±1
1

V z 0

h (0, 0) 1 0 1

Table 2. (ν)HEFT field representations under spacetime and internal symmetry groups. The
corresponding canonical mass dimensions are also listed. The linearized Goldstone fields V ±, V z

have mass dimension one, as they contain one power of derivative.

listed in table 2, the resulting Hilbert series is for νHEFT. One can then readily select out
the part for HEFT by sending the grading variable for right-handed neutrino to zero:

HhHEFT = HhνHEFT (νR = 0, ν†R = 0) . (5.8)

As explained in section 2, specifically eq. (2.5), the full Hilbert series consists of two
parts:

Hh = Hh0 + ∆Hh . (5.9)
The Hh0 piece can be worked out automatically following eq. (2.1). The key task in this
part is to work with the correct SPMs and their characters, as emphasized around eq. (2.2).
We have reviewed and discussed the relevant ingredients for this in section 3; see the bullet
points at the beginning of this section for a summary.

The ∆Hh piece needs to be determined by finding all the co-closed but not co-exact
form operators as described around eqs. (2.4) to (2.6). This process requires some manual
enumeration. Because the contributions to ∆H from the form operators that do not involve
Goldstone fields (the upper section in table 1) can be automatically worked out using
conformal representation theory (see section 4.1 in [1]), we split ∆Hh as

∆Hh = ∆HhnonGoldstone + ∆HhGoldstone . (5.10)

We compute the non-Goldstone piece using conformal representation theory and obtain

∆HhnonGoldstone = q3hD2 + q4
[
−D4 − (ZL + ZR +AL +AR)D2 + n2

u

(
uLu

†
L + uRu

†
R

)
D

+ n2
d

(
dLd

†
L + dRd

†
R

)
D + n2

e

(
eLe
†
L + eRe

†
R

)
D

+ n2
ν

(
νLν

†
L + νRν

†
R + νLνR + ν†Lν

†
R

)
D
]
, (5.11)
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which clearly agrees with table 1 (upon suppressing the derivative power grading variable
D). For the Goldstone piece, we use table 1 and eq. (2.6) together and get

∆HhGoldstone = q2V zD+q4
[
V zD3−V +V −D2 +V +V −V zD+V z (ZL+ZR+AL+AR)D

+V +
(
W−L +W−R

)
D+V −

(
W+
L +W+

R

)
D
]
. (5.12)

Now putting everything together according to eqs. (5.9) and (5.10), we obtain the full
Hilbert series Hh, which we organize according to the canonical mass dimensions

Hh =
∞∑

dim=0
qdimHhdim . (5.13)

The Hhdim at each mass dimension order is typically lengthy due to having a variety of fields,
as well as a generic flavor number structure (nu, nd, ne, nν). The full result with all of these
information up to dim = 7 is contained in our supplementary material.

In order to make a tractable presentation, we merge grading variables of the Hilbert
series as following

uL , uR , dL , dR −→ Q , (5.14a)
u†L , u

†
R , d

†
L , d

†
R −→ Q̄ , (5.14b)

eL , eR , νL , νR −→ L , (5.14c)
e†L , e

†
R , ν

†
L , ν

†
R −→ L̄ , (5.14d)

GL , GR , W
±
L , W±R , ZL , ZR , AL , AR −→ X , (5.14e)

V± , Vz −→ V , (5.14f)

and also take universal flavor numbers

nu = nd = ne = nν = nf . (5.15)

With these merged grading schemes, we could list the first few orders of Hh in eq. (5.13):

Hh0 = 1 , (5.16a)
Hh1 = h , (5.16b)
Hh2 = h2 + 2V 2 , (5.16c)
Hh3 = h3 + 2hV 2 + 4n2

f (LL̄+QQ̄) + (n2
f + nf ) (L2 + L̄2) , (5.16d)

Hh4 = h4 + 2h2V 2 + 4n2
f h(LL̄+QQ̄) + (n2

f + nf )h(L2 + L̄2)
+ 5V 4 + 8V 2X + 10X2 + 8n2

f (LL̄+QQ̄)V + 3n2
f (L2 + L̄2)V , (5.16e)

Hh5 = h5 + 2h3V 2 + 4n2
f h

2(LL̄+QQ̄) + (n2
f + nf )h2(L2 + L̄2)

+ 5hV 4 + 8hV 2X + 10hX2 + 8n2
f h(LL̄+QQ̄)V + 3n2

f h(L2 + L̄2)V
+ 4hV 3D + 20n2

f (LL̄+QQ̄)V 2 + 12n2
f LL̄X + 16n2

f QQ̄X

+ (8n2
f + 2nf ) (L2 + L̄2)V 2 + (4n2

f − 2nf ) (L2 + L̄2)X . (5.16f)

Higher order results Hhdim≥6 are still lengthy even with the above merged grading, so we
will not show them here.
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5.3 Compute HFF — wrapping powers of h into form factors

As HEFT was historically introduced as an electroweak chiral Lagrangian without a physical
Higgs field h, it is nowadays customary to wrap powers of the field h into form factors,
as opposed to counting them as independent operators. For example, this is saying that
for vector bosons and fermions, we will view their mass terms V 2, LL̄,QQ̄ (contained in
Hh2 and Hh3 in eq. (5.16)) and their various interactions with the physical Higgs field h

(contained in higher Hhdim in eq. (5.16)) as one effective operator:

V 2 , hV 2 , h2V 2 , · · · −→ F(h)V 2 , (5.17a)

LL̄ , hLL̄ , h2LL̄ , · · · −→ YL(h)LL̄ , (5.17b)

QQ̄ , hQQ̄ , h2QQ̄ , · · · −→ YQ(h)QQ̄ . (5.17c)

In each line above, the various operators certainly all have distinct phenomenological
consequences, and hence are not the “same” operator in the usual sense of an EFT.
However, if one insists on the wrapping in eq. (5.17) and treating them as a single operator
(for whatever reason), one is then introducing a new equivalence (redundancy) relation
among the operators in Hh:

O1 ∼ O2 , if O1 = f(h)O2 or O2 = f(h)O1 . (5.18)

In section 4, we explained how to systematically handle this new type of redundancy relation.
Let HFF denote the new Hilbert series after wrapping into Form Factors; it can be simply
obtained from Hh as

HFF = (1− qh)Hh . (5.19)

Again, we organize HFF according to the canonical mass dimension

HFF =
∞∑

dim=0
qdimHFF

dim . (5.20)

Using the same merged grading variables in eq. (5.14) and the universal flavor number nf
in eq. (5.15), its first few orders are

HFF
0 = 1 , (5.21a)
HFF

1 = 0 , (5.21b)
HFF

2 = 2V 2 , (5.21c)
HFF

3 = 4n2
f (LL̄+QQ̄) + (n2

f + nf ) (L2 + L̄2) , (5.21d)
HFF

4 = 5V 4 + 8V 2X + 10X2 + 8n2
f (LL̄+QQ̄)V + 3n2

f (L2 + L̄2)V , (5.21e)
HFF

5 = 4hV 3D + 20n2
f (LL̄+QQ̄)V 2 + 12n2

f LL̄X + 16n2
f QQ̄X

+ (8n2
f + 2nf ) (L2 + L̄2)V 2 + (4n2

f − 2nf ) (L2 + L̄2)X . (5.21f)

which we can readily obtain from eq. (5.16) using eq. (5.19). Similar with Hh, higher
dimension results of HFF get lengthy even with the above merged grading scheme. These
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Operator Class Restrictions HEFT νHEFT

D4 15 15
D2X 8 8
X2 10 10
X3 6 6

ψ2D2 76n2
f + 4nf 110n2

f + 6nf
ψ2D 15n2

f 22n2
f

ψ2X 26n2
f − 2nf 36n2

f − 4nf
ψ4 1

4n
2
f (445n2

f − 6nf + 25) 1
2n

2
f (385n2

f + 6nf + 13)

ψ2D2

B − L

60n2
f 80n2

f

ψ2D 13n2
f 16n2

f

ψ2X 22n2
f 28n2

f

ψ4 1
4n

2
f (335n2

f − 6nf + 31) n2
f (125n2

f − 2nf + 9)

ψ2D2

B and L

60n2
f 80n2

f

ψ2D 13n2
f 16n2

f

ψ2X 22n2
f 28n2

f

ψ4 1
4n

2
f (275n2

f + 6nf + 31) n2
f (105n2

f + 2nf + 9)

Table 3. Eight classes of operators that are relevant for “NLO” (ν)HEFT. For the fermionic classes,
we are presenting three different scenarios — (1) no additional Baryon number B or Lepton number
L restrictions, (2) requiring B − L conservation, and (3) requiring both B and L conservation.

results are available in our supplementary material, but are not very enlightening to present
here. Instead, let us focus on the following eight classes of operators

D4 , D2X , X2 , X3 , ψ2D2 , ψ2D , ψ2X , ψ4 , (5.22)

which are typically discussed in the context of the “NLO operators” for (ν)HEFT in the
literature. Here notation is further condensed. Each “D” represents a derivative acting on
the scalar field, which could be either the linearized Goldstone field V or the combination
hD; each fermion “ψ” can be either a lepton or quark or their conjugate, namely

D ∈ {V , hD} , (5.23a)
ψ ∈ {L , L̄ , Q , Q̄} . (5.23b)

We see that each “D” could have canonical dimension one or two, so for finding these eight
classes of operators, it is sufficient to compute HFF up to canonical mass dimension eight.
In table 3, we summarize the counting results of these eight classes of operators. For the
fermionic classes, we have included three different scenarios — (1) no additional Baryon
number B or Lepton number L restrictions, (2) requiring B − L conservation, and (3)
requiring both B and L conservation. A more detailed breakdown of the counting of these
eight classes of operators is provided in table 4. Our results agree with the available ones in
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Class Detailed Class dim HEFT νHEFT

D4

V 4 4 5
hDV 3 5 4
h2D2V 2 6 4
h3D3V 7 1
h4D4 8 1

D2X V 2X 4 8

X2 4 10

X3 6 6

ψ2D2
LL̄V 2 , QQ̄V 2 5 10n2

f , 20n2
f 20n2

f , 20n2
f

LL̄hDV , QQ̄hDV 6 8n2
f , 16n2

f 16n2
f , 16n2

f

LL̄h2D2 , QQ̄h2D2 7 2n2
f , 4n2

f 4n2
f , 4n2

f

ψ2D LL̄V , QQ̄V 4 5n2
f , 8n2

f 8n2
f , 8n2

f

ψ2X LL̄X , QQ̄X 5 6n2
f , 16n2

f 12n2
f , 16n2

f

ψ4
(LL̄)2 6 1

4n
2
f (19n2

f + 6nf + 7) n2
f (15n2

f + 2nf + 3)
(LL̄)(QQ̄) 6 34n4

f 60n4
f

(QQ̄)2 6 n2
f (30n2

f + 6) n2
f (30n2

f + 6)

ψ2D2
L2V 2 + h.c. 5 1

2 (9n2
f + 3nf ) 8n2

f + 2nf
L2hDV + h.c. 6 3n2

f 6n2
f

L2h2D2 + h.c. 7 1
2 (n2

f + nf ) n2
f + nf

ψ2D L2V + h.c. 4 n2
f 3n2

f

ψ2X L2X + h.c. 5 2n2
f − nf 4n2

f − 2nf

ψ4

L4 + h.c. 6 1
12n

2
f (n2

f − 1) 1
12n

2
f (5n2

f + 6nf + 1)
L3L̄+ h.c. 6 1

2n
2
f (3n2

f + nf ) 1
3n

2
f (20n2

f + 6nf − 2)
L2QQ̄+ h.c. 6 n2

f (8n2
f + nf ) n2

f (20n2
f + 2nf )

LQ̄3 + h.c. 6 1
6n

2
f (25n2

f − 9nf − 4) 1
3n

2
f (20n2

f − 6nf − 2)
LQ3 + h.c. 6 1

2n
2
f (15n2

f − 3nf ) n2
f (10n2

f − 2nf )

Table 4. Detailed breakdown of the eight classes of operators that are relevant for “NLO” (ν)HEFT.
The upper section contains operators preserving both the Baryon number B and the Lepton number
L, while the lower section contains operators breaking B and/or L.

refs. [40–42], up to the errors that are already pointed out by ref. [43]. However, we note
that the “all operators” result claimed in [43] actually agree with our scenario of imposing
B − L symmetry in the νHEFT case. We still disagree with this reference on the result for
the four-fermion class in the HEFT case, even with the B − L conservation imposed.
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5.4 (ν)HEFT Hilbert series by spurion approach

We know that the electroweak symmetry breaking structure is SU(2)L × U(1)Y → U(1)EM.
However, when it comes to a nonlinear realization, it is often preferred to consider a
“custodial upgrade” of it, which is

SU(2)L × SU(2)R −→ SU(2)V , (5.24)

where SU(2)V denotes the diagonal subgroup of the two SU(2)’s on the left-hand side. This
upgraded version also has three broken generators and yields three Goldstones that would
generate masses for the electroweak gauge bosons via Higgs mechanism.

Although one could argue for phenomenological incentives, the main motivation for
considering the upgrade in eq. (5.24) is a technical one. The symmetry breaking structure
in eq. (5.24) is a symmetric one (i.e. G/H is a symmetric space), same as the two-flavor
version of the QCD chiral Lagrangian. In this case, it is well known [48] that one could
save the effort of using the Cartan-Maurer linearization variable and instead directly use
the squared Goldstone matrix U ≡ ξ2 as the linearly transforming building block. This
is because under the symmetry breaking structure in eq. (5.24), the Goldstone matrix ξ
transforms as

ξ −→ ξ̃ = gL ξ h
−1 = h ξ g†R , (5.25)

where h is a nonlinear compensating matrix (not to be confused with the physical Higgs
field). We see that one could square the Goldstone matrix ξ to cancel the nonlinear
transforming factor h:

U ≡ ξ2 =⇒ U −→ Ũ = gL U g
†
R . (5.26)

Therefore, a linearly transforming building block U is readily obtained.
Saving the CCWZ linearization effort is great. However, it does not come for free.

After all, the SM does not preserve the custodial symmetry SU(2)V ; only U(1)EM is the
true symmetry. In particular, there are two sources of SU(2)V breaking that need to be
allowed in SM (and hence (ν)HEFT). One is hidden in the covariant derivative Dµ — the
lack of gauge field components to form a full SU(2)R adjoint representation. To handle this
issue, one typically chooses to work with the matrix field

Vµ ≡ (DµU)U † , (5.27)

as opposed to using the matrix U itself. Vµ forms an SU(2)L adjoint, and hence an SU(2)V
adjoint. The other source of SU(2)V breaking allowed in (ν)HEFT is that only its U(1)V
subgroup generated by the t3V generator is required to be preserved. This source can be
handled by introducing a spurion field

T ≡ Uσ3U † , (5.28)

which transforms as an SU(2)L adjoint, and hence an SU(2)V adjoint. In such a spurion
approach, other SM fields are also organized into custodial SU(2)V representations. A
summary of the field representations is given in table 5.
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Field Lorentz Group SU(3)C SU(2)V dim

QL , QR (1
2 , 0) , (0, 1

2)
3 2 3

2
LL , LR 1 2

GL , GR

(1, 0) , (0, 1)
8 1

2WL , WR 1 3
BL , BR 1 1

V (1
2 ,

1
2) 1 3 1

h (0, 0) 1 1 1

T (0, 0) 1 3 0

Table 5. (ν)HEFT field representations under spacetime and internal symmetry groups when the
U(1)EM is promoted to the custodial symmetry SU(2)V . We have included a spurion field T , which
is an SU(2)V adjoint that would break it down to its Cartan subgroup U(1)V .

With the field content and their power counting in table 5, we are now ready to compute
the Hilbert series

HhC (q,D, {ΦC}, T, nQ, nL) , (5.29)

where we are using a subscript “C” to denote the custodial upgrade. The argument {ΦC}
collectively denotes all the dynamic fields given in table 5, with the spurion field T separated
out. A generic flavor number structure is now described by nQ, nL.

One might wonder how to select out the HEFT part of the νHEFT Hilbert series, given
that in this custodial upgrade, νR and eR are now grouped into the SU(2)V doublet LR.
This can be achieved by taking a finer grading of the LR character. Specifically, one alters
the internal symmetry parts of the LR, L†R SPM characters as

LR χLR ∝ LR χ
SU(2)
2 (w) = LR

(
w + w−1

)
−→ νR w + eR w

−1 , (5.30a)

L†R χL†R
∝ L†R χ

SU(2)
2 (w) = L†R

(
w + w−1

)
−→ e†R w + ν†R w

−1 . (5.30b)

With the above finer grading, one could select out the HEFT part by taking νR = ν†R = 0
just as before (cf. eq. (5.8))

HhC,HEFT = HhC, νHEFT (νR = 0, ν†R = 0) . (5.31)

As explained earlier, HhC has two pieces according to eq. (2.5). Among these, only the
part of ∆HhC that involves the Goldstone fields cannot be computed automatically. For this
part, we use table 1 and eq. (2.6) to compute it manually. Applied to the field content in
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table 5, it leads us to

∆HhC,Goldstone = q2 V T + q4
{
V 3 + V (WL +WR) + V (WL +WR)T 2

+
[
V − V 2 + V (BL +BR) + V (WL +WR)

]
T

}
. (5.32)

Note that as an SU(2)V adjoint representation, the spurion field T generates a trivial set of
SU(2)V singlets

HhC(T, {ΦC} = 0) = 1
1− T 2 = 1 + T 2 + T 4 + T 6 + · · · . (5.33)

In eq. (5.32), we are only keeping the nontrivial terms. For the other parts of HhC that can
be computed automatically using conformal representation theory, we also need to mod out
the trivial set given in eq. (5.33). As explained in section 4, this can be done by simply
multiplying the factor

1
HhC(T, {ΦC} = 0)

= 1− T 2 . (5.34)

Taking the above treatment to remove the trivial singlet factors from the spurion T ,
and putting all parts together, we obtain the full HhC organized in canonical mass dimension

HhC =
∞∑

dim=0
qdimHhC, dim . (5.35)

The detailed expression of HhC up to dim = 7 is in our supplementary material. Here we
emphasize that with the spurion introduced in eq. (5.28), one breaks the custodial symmetry
SU(2)V to its Cartan U(1)V subgroup generated by the t3V generator. However, note that
this U(1)V is not the same as U(1)EM, because

t3V = t3L + t3R = t3L + Y − 1
2(B − L) = Q− 1

2(B − L) . (5.36)

We see that t3V 6= Q, and preserving t3V is only equivalent to preserving Q for the B − L
preserving sector, such as the Higgs sector. Therefore, the Hilbert series HhC is not supposed
to fully reproduce Hh upon taking the T → 1 limit (as well as unifying field grading
variables). They are only supposed to agree for the B − L preserving part. We have
explicitly verified this:

lim
T→1
HhC 6= Hh , (5.37a)

lim
T→1
HhC

∣∣∣
B−L=0

= Hh
∣∣∣
B−L=0

. (5.37b)
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The next step is to wrap powers of the physical Higgs field h into form factors (similar
to eq. (5.19))

HFF
C = (1− qh)HhC =

∞∑
dim=0

qdimHFF
C, dim . (5.38)

In order to present some example expressions of HFF
C, dim, we adopt a merged grading scheme

that is similar to eq. (5.14), but now for custodial upgraded version of the field variables:

QL , QR −→ Q , (5.39a)
Q†L , Q

†
R −→ Q̄ , (5.39b)

LL , νR , eR −→ L , (5.39c)
L†L , ν

†
R , e

†
R −→ L̄ , (5.39d)

GL , GR , WL , WR , BL , BR −→ X . (5.39e)

We recall from eq. (5.30) that before performing the above grading merge, we actually had
the finer grading νR, eR, ν†R, e

†
R, instead of LR, L†R, such that one could readily select out

the HEFT part of the Hilbert series. Let us also merge the flavor number structure into the
universal one

nQ = nL = nf . (5.40)

With this grading merge, the first few orders of HFF
C reads

HFF
C, 0 = 1 , (5.41a)

HFF
C, 1 = 0 , (5.41b)

HFF
C, 2 = V 2 (1 + T 2) , (5.41c)

HFF
C, 3 = (2 + 2T )n2

f (LL̄+QQ̄) +
[
n2
f − nf + (n2

f + nf )T
]
(L2 + L̄2) , (5.41d)

HFF
C, 4 = (2 + 2T 2 + T 4)V 4 + (2 + 4T + 2T 2)V 2X + (6 + 2T + 2T 2)X2

+ (2 + 4T + 2T 2)n2
f (LL̄+QQ̄)V + (1 + 2T + T 2)n2

f (L2 + L̄2)V , (5.41e)

HFF
C, 5 = (2T + T 2 + T 3)hV 3D + (4 + 8T + 6T 2 + 2T 3)n2

f (LL̄+QQ̄)V 2

+ (4 + 6T + 2T 2)n2
f LL̄X + (6 + 8T + 2T 2)n2

f QQ̄X

+
[
(2 + 4T + 3T 2 + T 3)n2

f − (2− 2T + T 2 − T 3)nf
]

(L2 + L̄2)V 2

+
[
(2 + 3T + T 2)n2

f − (T + T 2)nf
]

(L2 + L̄2)X . (5.41f)

We see explicitly here that taking T → 1 reproduces eq. (5.21) only for the B − L

preserving sectors. Higher order results, which are too lengthy to be enlightening, are in
our supplementary material. Instead, we focus again on the eight classes of operators in
eq. (5.22), and summarize their results in tables 6 to 8. Comparing with table 4, we see
clearly the agreement/disagreement for the B − L preserving/violating sectors.
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Class Detailed Class dim (ν)HEFT

D4

V 4 4 2 + 2T 2 + T 4

hDV 3 5 2T + T 2 + T 3

h2D2V 2 6 2 + 2T 2

h3D3V 7 T

h4D4 8 1

D2X V 2X 4 2 + 4T + 2T 2

X2 4 6 + 2T + 2T 2

X3 6 4 + 2T

Table 6. Spurion structure of the detailed breakdown of the eight classes of operators that are
relevant for “NLO” (ν)HEFT, bosonic sector.

Class dim HEFT νHEFT

ψ2D2

LL̄V 2 5 (2 + 4T + 3T 2 + T 3)n2
f (4 + 8T + 6T 2 + 2T 3)n2

f

LL̄hDV 6 (2 + 4T + 2T 2)n2
f (4 + 8T + 4T 2)n2

f

LL̄h2D2 7 (1 + T )n2
f (2 + 2T )n2

f

QQ̄V 2 5 (4 + 8T + 6T 2 + 2T 3)n2
f (4 + 8T + 6T 2 + 2T 3)n2

f

QQ̄hDV 6 (4 + 8T + 4T 2)n2
f (4 + 8T + 4T 2)n2

f

QQ̄h2D2 7 (2 + 2T )n2
f (2 + 2T )n2

f

ψ2D
LL̄V 4 (1 + 3T + T 2)n2

f (2 + 4T + 2T 2)n2
f

QQ̄V 4 (2 + 4T + 2T 2)n2
f (2 + 4T + 2T 2)n2

f

ψ2X
LL̄X 5 (2 + 3T + T 2)n2

f (4 + 6T + 2T 2)n2
f

QQ̄X 5 (6 + 8T + 2T 2)n2
f (6 + 8T + 2T 2)n2

f

(LL̄)2 6

1
4n

2
f (7n2

f + 2nf + 7) n2
f (5n2

f + 3)

+ 1
4n

2
f (9n2

f + 2nf − 3)T + 1
2n

2
f (15n2

f + 2nf − 3)T

+ 1
4n

2
f (3n2

f + 2nf + 3)T 2 + 1
2n

2
f (5n2

f + 2nf + 3)T 2

ψ4 (LL̄)(QQ̄) 6 (12 + 17T + 5T 2)n4
f (20 + 30T + 10T 2)n4

f

(QQ̄)2 6
n2
f (10n2

f + 6) n2
f (10n2

f + 6)

+n2
f (15n2

f − 3)T +n2
f (15n2

f − 3)T

+n2
f (5n2

f + 3)T 2 +n2
f (5n2

f + 3)T 2

Table 7. Spurion structure of the detailed breakdown of the eight classes of operators that are
relevant for “NLO” (ν)HEFT, fermionic sector conserving B and L.
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Class dim “HEFT” “νHEFT”

ψ2D2

L2V 2+h.c. 5
2n2

f −3nf

2 + 5n2
f +3nf

2 T 2n2
f−2nf+(4n2

f+2nf )T

+ 7n2
f −3nf

4 T 2+ 3n2
f +3nf

4 T 3 +(3n2
f−nf )T 2+(n2

f+nf )T 3

L2hDV +h.c. 6 1
2 (3+4T+3T 2)n2

f (2+4T+2T 2)n2
f

L2h2D2+h.c. 7 n2
f −3nf

4 + 3n2
f +3nf

4 T n2
f−nf+(n2

f+nf )T

ψ2D L2V +h.c. 4 1
2 (1+2T+T 2)n2

f (1+2T+T 2)n2
f

ψ2X L2X+h.c. 5
n2
f+ 1

4 (7n2
f−3nf )T 2n2

f+(3n2
f−nf )T

+ 1
4 (3n2

f−3nf )T 2 +(n2
f−nf )T 2

L4+h.c. 6

1
12n

2
f (2n2

f+3nf+13) 1
6n

2
f (5n2

f+13)

+ 1
3n

2
f (n2

f−1)T + 1
4n

2
f (5n2

f+2nf−3)T

+ 1
4n

2
f (n2

f+nf )T 2 + 1
12n

2
f (5n2

f+6nf+1)T 2

L3L̄+h.c. 6

1
12n

2
f (11n2

f+3nf+4) 1
3n

2
f (10n2

f+2)

+ 1
2n

2
f (3n2

f+nf )T +n2
f (5n2

f+nf )T

+ 1
12n

2
f (7n2

f+3nf−4)T 2 + 1
3n

2
f (5n2

f+3nf−2)T 2

ψ4 L2QQ̄+h.c. 6
5n4

f+ 1
4n

2
f (33n2

f+3nf )T 10n4
f+n2

f (15n2
f+nf )T

+ 1
4n

2
f (13n2

f+3nf )T 2 + 1
3n

2
f (5n2

f−3nf−2)T 2

LQ̄3+h.c. 6

1
2n

2
f (5n2

f+1) 1
3n

2
f (10n2

f+2)

+ 1
4n

2
f (15n2

f−3nf )T +n2
f (5n2

f−nf )T

+ 1
4n

2
f (5n2

f−3nf−2)T 2 + 1
3n

2
f (5n2

f−3nf−2)T 2

LQ3+h.c. 6

1
2n

2
f (5n2

f+1) 1
3n

2
f (10n2

f+2)

+ 1
4n

2
f (15n2

f−3nf )T +n2
f (5n2

f−nf )T

+ 1
4n

2
f (5n2

f−3nf−2)T 2 + 1
3n

2
f (5n2

f−3nf−2)T 2

Table 8. Spurion structure of the detailed breakdown of the eight classes of operators that are
relevant for “NLO” (ν)HEFT, fermionic sector violating B and/or L. We emphasize that apart
from the last row, LQ3 + h.c., which preserves B − L, this table is not providing the correct result
for the actual (ν)HEFT, because for B − L violating sectors, the custodial upgrade approach is not
equivalent to the SM symmetry breaking structure; see text for detailed discussion. We include this
table exactly for the purpose of comparing with the correct results in table 4 and demonstrating
this disagreement.
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6 Outlook

We expanded Hilbert series EFT methodologies to include massive particles in the spectrum
of the theory. A number of interesting technical and conceptual results were obtained, in
particular the manifestation of the Higgs mechanism in the Hilbert series and the analysis
of spurion fields that take vevs. The application to HEFT was presented. We found
agreement at NLO with original operator listings, and clarified issues of custodial symmetry
spurion-based approaches, wherein the final operator basis obtained is inequivalent to a
direct approach outside of the B−L conserving sector. We conclude with some observations
and avenues of potential interest for further study.

The way in which Hilbert series articulate the Higgs mechanism is expected from
their interpretation as S-matrix partition functions. The elements and degeneracies of
the S-matrix are the same viewed as either a massive vector or a massless vector plus a
Nambu-Goldstone boson. The precise statement is that of the mode decomposition of the
massive single particle character; the generalization to d spacetime dimensions and arbitrary
spin k particles points to applications of Hilbert series in massive gravity.

Having showed that Hilbert series can easily accommodate the effects of spurion fields
that take vevs, it is easy to envisage they could find additional useful application in
phenomenological EFT (model) building, and analysis of symmetry breaking patterns.

We look forward to investigations of the above, and to further understanding the
structure of EFT through the lens of a Hilbert series.
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A General massive single particle modules and the Higgs mechanism

Let RΦ be the single particle module (SPM) for a particle/field Φ, which lives in spacetime
dimension d with Euclidean Lorentz group SO(d). In this appendix we provide the mode
decompositions for RΦ,

RΦ =
⊕
l∈ΛΦ

Vl , (A.1)

where Vl is a finite-dimensional irreducible representation (irrep) of SO(d) labeled by its
highest weight vector l = (l1, . . . , lb d2 c) and ΛΦ = {l} is the set of SO(d) irreps appearing in
the decomposition. We are searching to determine ΛΦ.

Once we have the mode decomposition (A.1), together with an understanding of the
scaling dimension ∆(l) of each Vl (this is easy — it’s just counting derivatives on top of the
field Φ), the associated character χΦ is given by

χΦ(q, x) =
∑
l∈ΛΦ

q∆(l)χl(x) , (A.2)

where χl(x) ≡ χ(l1,...,lr)(x1, . . . , xr), r = bd2c, is the SO(d) character for the representation
Vl. In many instances this sum can be performed directly, giving useful analytic expressions
of the SPM character (e.g. eq. (3.21) for the character χA of a massive vector boson).

A.1 Mode decomposition of massive SPMs from Frobenius reciprocity

For a massive particle, p2 = m2, the little group is SO(d − 1), and the representation is
built as an induced representation, i.e. as a Vl̄-valued function on the hyperboloid p2 = m2,
where Vl̄ is a finite-dimensional irrep of SO(d−1).13 The choice of Vl̄ physically corresponds
to the spin of the particle. In summary, we are building

RΦ = IndSO(d)
SO(d−1)(Vl̄Φ) . (A.3)

One way to determine the mode decomposition of RΦ is via Frobenius reciprocity,
which gives an intuitive relation between induction and restriction. Let G be a compact,
semi-simple Lie group, and H ⊂ G a subgroup. Let us denote irreps of G by Vl and those
of H by Vl̄, where l = (l1, . . . , lrank(G)) and l̄ = (l̄1, . . . , l̄rank(H)) respectively denote the
highest weight vectors of Vl and Vl̄. There are two basic operations we wish to consider —
induction and restriction — which are dual to each other in a certain sense.

13The Euclidean version changes the hyperboloid to a sphere, i.e. SO(d)/SO(d − 1) ' Sd−1 while
SO(d − 1, 1)/SO(d − 1) ' Hd−1. The two are related by analytic continuation. These differences don’t
matter for the computations in this appendix, so we loosely use Lorentzian and Euclidean language
interchangeably.

– 32 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
4

For induction, we ask: given Vl̄, what irreps of G show up in the induced representation?
For restriction, we ask: given Vl, how does this decompose into irreps of H? In other words,
we want to determine the right hand side of the following equations:14

IndGH(Vl̄) =
⊕

Vl ,

ResGH(Vl) =
⊕

Vl̄ .

Intuitively, if the restriction of the representation Vl contains Vl̄, ResGH(Vl) ⊃ Vl̄, then
we might expect Vl to show up when we induce Vl̄. For example, the antisymmetric tensor
of SO(n) contains the vector representation of SO(n− 1), so we likely anticipate that

IndSO(n)
SO(n−1)( ) ⊃ . Frobenius reciprocity makes this intuition precise: it says that the

multiplicity for which the representation Vl shows up when inducing Vl̄ is equal to the
multiplicity for which Vl̄ shows up when restricting Vl,15

mult
(
IndGH(Vl̄), Vl

)
= mult

(
Vl̄,Res

G
H(Vl)

)
. (A.4)

As an example to mull over, one can look over the spherical harmonics example given in
footnote 14.

The application is hopefully obvious: if we know the restriction formulas for SO(d)→
SO(d−1), then we can reverse engineer them to determine the decomposition of the induced
representation. Fortunately, these formulas are well known, e.g. section 25.3 of [53]. For
the restriction of SO(2n+ 1)→ SO(2n) we have

ResSO(2n+1)
SO(2n) (Vl) =

⊕
Vl̄ ,

14Let’s give examples of each, to make sure everyone is on the same page. Consider a function on the
sphere Sn−1 = SO(n)/SO(n− 1). Such a function can be expanded in spherical harmonics, which transform
irreducibly in the traceless symmetric representations of SO(n):

IndSO(n)
SO(n−1)(1) =

∞⊕
k=0

V(k,0,...,0) .

Here, (k, 0, . . . , 0) is the highest-weight vector for the rank-k traceless symmetric representation, which are
often referred to as the “spin-k” representations of SO(n) in the physics literature. For restriction, consider
the decomposition of the antisymmetric tensor of SO(n) into SO(n− 1) irreps,

0 A12 A13 · · · A1n

−A12 0 A23 · · · A2n

−A13 −A23
. . . · · ·

...
... 0 An−1,n

−A1n −A2n · · · −An−1,n 0

→


0 A12 A13 · · · A1n

−A12 0 A23 · · · A2n

−A13 −A23
. . . · · ·

...
... 0 An−1,n

−A1n −A2n · · · −An−1,n 0

 ,

which obviously decomposes into a vector and anti-symmetric tensor of SO(n− 1), as highlighted in blue
and pink, respectively,

ResSO(n)
SO(n−1)(V(1,1,0,...,0)) = V(1,0,...,0) ⊕ V(1,1,0,...,0) .

15Or, letting 〈·, ·〉G denote the G-invariant inner product,

〈IndGH(Vl̄), Vl〉G = 〈Vl̄,Res
G
H(Vl)〉H .
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where the sum is over all l̄ = (l̄1, . . . , l̄n) such that

l1 ≥ l̄1 ≥ l2 ≥ l̄2 ≥ · · · ≥ l̄n−1 ≥ ln ≥
∣∣∣l̄n∣∣∣ , (A.5)

with li − l̄i ∈ Z, i.e. the li and l̄i are simultaneously either all integers or all half integers.
For the restriction SO(2n)→ SO(2n− 1) we have

ResSO(2n)
SO(2n−1)(Vl) =

⊕
Vl̄,

where the sum is over all l̄ = (l̄1, . . . , l̄n−1) with

l1 ≥ l̄1 ≥ l2 ≥ l̄2 ≥ · · · ≥ l̄n−1 ≥ |ln| , (A.6)

with li − l̄i ∈ Z. As an illustration, consider the antisymmetric tensor from Footnote 14: we
have l = (1, 1, 0, . . . , 0), so that the restriction formula reads 1 ≥ l̄1 ≥ 1 ≥ l̄2 ≥ 0, which is
solved by l̄ = (1, 1, 0, . . . , 0) and l̄ = (1, 0, . . . , 0), i.e. ResSO(n)

SO(n−1)
( )

= ⊕ .
Note that in the above restriction formulas for SO(n)→ SO(n−1) each Vl̄ shows up with

unit multiplicity. Restricting SO(n) to SO(k) with k < n−1 will generically lead to increased
multiplicities, as can be determined by applying eqs. (A.5) and (A.6) recursively, e.g. for
k = n−2, ResSO(n)

SO(n−2)
( )

= ResSO(n−1)
SO(n−2)

[
ResSO(n)

SO(n−1)
( )]

= ResSO(n−1)
SO(n−2)

(
⊕

)
= ⊕ ⊕ ⊕1.

We note that this sort of analysis, together with the reverse engineering to determine the
decomposition of the induced representation (see the examples below in section A.2),
explains the central result of [12].16

A.2 Examples

A.2.1 Massive spin-k

As a first example consider massive spin-k particles, i.e. those induced from Vl̄ = V(k,0,...,0).
The spin-0 (scalar) case corresponds to the spherical harmonics example in Footnote 14,
which we leave to the reader to convince themselves (cf. eq. (3.3)). For a massive spin-1
(vector) we have (l̄1, . . . , l̄b(d−1)/2c) = (1, 0, . . . , 0) and the restriction formula reads

l1 ≥ 1 ≥ l2 ≥ 0 ,

which is solved by (l1, l2) = (n+ 1, 0) and (n+ 1, 1) for n = 0, 1, 2, . . .,

Spin-1: IndSO(d)
SO(d−1)( ) = ⊕ ⊕ ⊕ ⊕ · · ·

⊕ ⊕ ⊕ ⊕ ⊕ · · · ,

⇒ IndSO(d)
SO(d−1)

(
V(1,0,...,0)

)
=
∞⊕
n=0

(
V(n+1,0,...,0) ⊕ V(n+1,1,0,...,0)

)
. (A.7)

16In particular, compare to eq. (30) in [12]. Although unrelated to the present discussion, reference [12]
also highlights an interesting example where Frobenius reciprocity implies the conservation of higher spin
currents in free theories.
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As another example, a massive graviton obeys the restriction formula l1 ≥ 2 ≥ l2 ≥ 0:

Spin-2: IndSO(d)
SO(d−1)( ) = ⊕ ⊕ ⊕ ⊕ · · ·

⊕ ⊕ ⊕ ⊕ ⊕ · · · ,
⊕ ⊕ ⊕ ⊕ ⊕ · · · ,

⇒ IndSO(d)
SO(d−1)

(
V(2,0,...,0)

)
=
∞⊕
n=0

(
V(n+2,0,...,0) ⊕ V(n+2,1,0,...,0) ⊕ V(n+2,2,0,...,0)

)
. (A.8)

It is evident what the answer is for general spin-k:

Spin-k : IndSO(d)
SO(d−1)

(
V(k,0,...,0)

)
=
∞⊕
n=0

k⊕
m=0

V(n+k,m,0,...,0) (A.9)

A.2.2 Fermions
Recall the rule for labeling SO(d) representations:

l = (l1, . . . , lr) with li ∈ Z/2, li − li+1 ∈ Z, and l1 ≥ l2 ≥ · · · ≥ lr−1 ≥ |lr| , (A.10)

where r = bd/2c and the absolute value is only for SO(2r).

Fermions in d = 4. In d = 4 the massive little group is SO(3) and representations are
labeled by a single number l̄ = (l̄1). The SO(4) representations are labeled by l = (l1, l2).
Upon specifying a l̄ the Frobenius reciprocity conditions read:

l1 ≥ l̄ ≥ |l2| (A.11)

Dirac fermion l̄ = (1
2). The Frobenius reciprocity conditions (A.11) read l1 ≥ 1

2 ≥ |l2|,
which are readily solved to give

IndSO(4)
SO(3)

(
V 1

2

)
=
∞⊕
n=0

(1
2 + n,

1
2

)
⊕
(1

2 + n,−1
2

)
. (A.12)

Massive gravitino l̄ = (3
2). We solve l1 ≥ 3

2 ≥ |l2|, giving

R3/2 = IndSO(4)
SO(3)

(3
2
)

=
∞⊕
n=0

{[(3
2 + n,

3
2

)
⊕
(3

2 + n,−3
2

)]
︸ ︷︷ ︸

massless spin 3/2

⊕
[(3

2 + n,
1
2

)
⊕
(3

2 + n,−1
2

)]
︸ ︷︷ ︸

“soft” spin 1/2

}
. (A.13)

A massive spin 3/2 particle has four polarizations; at high energies, these polarizations
can be viewed as two coming from a massless spin 3/2 with the other two coming
from “eating” a massless spin 1/2. In other words, this decomposition reflects the
Higgs mechanism — as does eq. (A.9) and the spin-k examples considered above. We
elaborate on this below in subsection A.3, where we also explain the terminology “soft”.

General half-integer spin. Taking l̄ =
(
k + 1

2
)

=
(2k+1

2
)
we find

R( 2k+1
2 ) =

∞⊕
n=0

k⊕
m=0

[(2k + 1
2 + n,

2m+ 1
2

)
⊕
(2k + 1

2 + n,−2m+ 1
2

)]
. (A.14)
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A.3 Massive SPMs and the Higgs mechanism

At high-energies, a massive particle looks massless. In this regime, the polarization states
become reducible, up to corrections of m/E. A familiar and useful example of this
phenomena is the Goldstone equivalence theorem, which allows us to replace the longitudinal
mode of a vector with the Goldstone boson giving it mass.

We therefore expect that a massive SPM can nearly be decomposed into massless
SPMs. we say “nearly” because the massless SPMs in the “decomposition” may not exactly
correspond to the usual massless particles due to soft relations. For example, the longitudinal
mode of a massive vector can be interpolated by a pion field ∂µπ: the pion field π(x) is
“nearly” the same as a normal massless scalar, except its constant mode is fixed so that
the single particle module starts at ∂µπ instead of π, R∂π = (∂µπ, ∂{µ∂ν}π, . . . ) (R∂π is
what we called Ru, eq. (3.12), in the main text). We will call this a “soft” scalar, and more
generally refer to analogous particles interpolating longitudinal modes as soft particles.

What might we guess for a massive graviton? Likely it will contain a massless spin-2,
spin-1, and spin-0. And just like the massive vector, it is reasonable to anticipate that the
massless vector and scalar are soft in a certain sense. This intuition is correct; to formalize
it, we first need to know the mode decomposition for massless particles, which we establish
with the following proposition:

Proposition 1. The mode decomposition of the SPM for a massless, spin-k particle is
given by

Rspin-k,massless =
∞⊕
n=0

V(k+n,k,0,...,0) . (A.15)

Proof. A massless spin-k interpolating field Aµ1...µk has a corresponding field strength
Fµ1...µkν1...νk , transforming in the (k, k, 0, . . . , 0) representation of SO(d). The field strength
obeys (1) a massless condition, from the Klein-Gordon equation ∂2F = 0, (2) a transverse
condition DµFµµ2...νk = 0, and (3) various Bianchi identities, which in practical terms
prevent anti-symmetrization of D on F , D[ρFµ1]µ2...νk = 0. Taken together, these imply
that we can only add traceless, symmetric derivatives on top of the field strength. The SPM
therefore takes the form (Fµ1...νk , D{ρFµ1}...νk , D{ρ1Dρ2Fµ1}...νk , . . . ), and (A.15) follows.

Comparing the massive and massless SPM decompositions, eqs. (A.9) and (A.15), we
see precisely how the Higgs mechanism shows up. It can be summarized by the figure 2.
For example, we see that the massive vector RA in eq. (A.7) decomposes into a massless
vector plus a soft scalar, while the massive graviton in eq. (A.8) decomposes into a massless
spin-2 plus a soft spin-1 plus a (super-)soft scalar mode (the Galileon mode). To associate
a formula to the figure, we need to make up some notation. Let RA(k) denote the massive
spin-k SPM, let RF (k) denote the massless spin-k SPM, and let R∂mF (k) denote the “m-soft”
massless spin-k SPM (i.e. RF (k) with the first m modes removed). For example, in this
notation the massive graviton SPM decomposes as RA(2) = RF (2) ⊕ R∂F (1) ⊕ R∂2F (0) . In
general, a massive spin-k SPM decomposes as

RA(k) =
k⊕

m=0
R∂mF (k−m) . (A.16)
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massless spin-0 : 1 · · ·

massless spin-1 : · · ·

massless spin-2 : · · ·

massless spin-3 : · · ·

massless spin-4 : · · ·

. . .

massive spin-0

massive spin-1

massive spin-2

Figure 2. Mode decomposition of massive and massless single particle modules. The combination
of massless SPMs into massive ones reflects the Higgs mechanism.

A.4 Characters

Important to the Hilbert series analysis is computation of the character χΦ corresponding
to the single particle module RΦ,

χΦ(q, x) =
∑
l∈ΛΦ

q∆(l)χl(x) , (A.17)

where χl(x) is the SO(d) character of Vl appearing in the decomposition RΦ = ⊕
l∈ΛΦ

Vl,
and ∆(l) is the scaling dimension of Vl. If the scaling dimension of the field Φ is ∆Φ, then
the scaling dimension ∆(l) is simply ∆Φ plus the number of derivatives added to reach the
representation Vl.17 The SO(d) character χl(x) can be obtained from the Weyl character
formula, e.g. [53] (this is also reviewed in appendix A of [1]).

Since the SPMs decompose into infinite sums of SO(d) modules, the characters χΦ
involve infinite sums of SO(d) characters (graded by their scaling dimension). Using the
Weyl character formula, together with the geometric series expression ∑∞k=0 x

k = 1/(1− x),
these sums can frequently be performed directly, especially with the help of a program such
as Mathematica.

As examples, let us compute the characters for massive spin-k particles. For a massive
vector Aµ we have

RA =
∞⊕
n=0

(
V(n+1,1,0,...,0) ⊕ V(n+1,0,...,0)

)
'


F

∂F

∂2F
...

⊕

∂φ

∂2φ

∂3φ
...

 = RF ⊕R∂φ . (A.18)

17While it’s often obvious what ∆(l) is in any specific example, it is possible to give a general and explicit
formula for ∆(l). Because all particles obey the Klein-Gordon equation −∂2Φ = m2Φ (a mass-shell condition)
and all polarizations are transverse ∂µΦµαβ... = 0, it implies that no derivatives are contracted in the SPM.
Thus, adding a derivative will always change the SO(d) representation in some way; said another way, it
will always add another box to the Young diagram. Therefore the number of boxes in the Young diagram
|l| ≡ l1 + l2 + · · ·+ |lr| (|l| is called the length of the partition l) essentially counts the number of derivatives.
Specifically, if we let lΦ denote the partition corresponding to the first mode in the SPM, then the scaling
dimension of Vl ⊂ RΦ is given by ∆(l) = ∆Φ + |l| − |lΦ|.
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Assigning scaling dimension [Aµ] = ∆A, the character is given by

χA(q, x) =
∞∑
n=0

q∆A+n
(
χ(n+1,0,...,0)(x) + q χ(n+1,1,0,...,0)(x)

)
= q∆A(1− q2)

(
χ(1,0,...,0)(x)− q

)
P (q, x) , (A.19)

which reproduces eq. (3.21) of the main text. For a massive graviton we have (assigning
scaling dimension [gµν ] = ∆g)

χg(q, x) =
∞∑
n=0

q∆g+n
(
χ(n+2,0,...,0)(x) + q χ(n+2,1,0,...,0)(x) + q2 χ(n+2,2,0,...,0)(x)

)
= q∆g(1− q2)

(
χ(2,0,...,0)(x)− q χ(1,0,...,0)

)
P (q, x) . (A.20)

Comparing to the schematic picture in eq. (3.20), we see a very similar picture reflected
in (A.20). In fact, this pattern holds for arbitrary massive spin-k, where we find:

χA(k)(q, x) =
∞∑
n=0

k∑
m=0

q∆0+n+mχ(n+k,m,0,...,0)(x)

= q∆0(1− q2)
(
χ(k,0,...,0)(x)− q χ(k−1,0,...,0)

)
P (q, x) . (A.21)

This equality makes sense because it reflects that the spin-k interpolating field A(k) = A
(k)
µ1...µk

(A(1)
µ ≡ Aµ for a vector, A(2)

µν ≡ gµν for a graviton) obeys the following two equations of
motion: (1) a mass condition (∂2 +m2)A(k) = 0 and (2) a transverse condition ∂µAµµ2...µk =
0. This is the spin-k generalization of equations (3.19), (3.20), and (3.21) in the main text.

Interestingly, the characters for massive spin-k particles (A.21) are easier to obtain than
their massless counterparts. At the heart of this is the fact that the equations of motion for
a massive particle are in a sense “simpler”, consisting of the Klein-Gordon equation together
with the transverse condition, while massless particles in addition have to obey Bianchi
identities (see [47] for a treatment of Poincaré representations in d spacetime dimensions).
In particular, despite knowing the mode decomposition of massless SPMs (e.g. eq. (A.15)),
we have been unable to find a general formula for massless spin-k characters in arbitrary
dimension d, although we stress that specific cases are easily found using the Weyl character
formula and Mathematica.

Above we showed how the mode decomposition of the massive SPM reflects the Higgs
mechanism, i.e. how the massive spin-k SPM decomposes into a massless spin-k SPM plus
a sequence of soft massless spin-j SPMs, j = 0, 1, . . . , k − 1. The characters χA(k)(q, x) of
course reflect this decomposition, giving analogous expressions to eq. (3.22). Similar to
the study of HEFT in the main text, it is frequently convenient to explicitly separate out
these longitudinal components by assigning them independent gradings. Unfortunately, we
cannot provide a general formula for arbitrary spin-k in general dimension d, since we have
not been able to find a general formula for the massless characters; however, in any specific
example it is straightforward and relatively simple to find the analog of eq. (3.22) for the
case at hand.
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Finally, one can also account for the effects of discrete spacetime symmetries such as
parity and charge conjugation following the procedures outlined in [1] (see appendix C)
and [16].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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