Journal of Scientific Computing (2023) 95:20
https://doi.org/10.1007/510915-023-02151-3

®

Check for
updates

Penalty-Free Any-Order Weak Galerkin FEMs for Linear
Elasticity on Quadrilateral Meshes

Ruishu Wang' - Zhuoran Wang? - Jiangguo Liu3

Received: 22 October 2022 / Revised: 27 January 2023 / Accepted: 4 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

This paper develops a family of new weak Galerkin (WG) finite element methods (FEMs) for
solving linear elasticity in the primal formulation. For a convex quadrilateral mesh, degree
k > 0 vector-valued polynomials are used independently in element interiors and on edges
for approximating the displacement. No penalty or stabilizer is needed for these new methods.
The methods are free of Poisson-locking and have optimal order (k 4 1) convergence rates
in displacement, stress, and dilation (divergence of displacement). Numerical experiments
on popular test cases are presented to illustrate the theoretical estimates and demonstrate
efficiency of these new solvers. Extension to cuboidal hexahedral meshes is briefly discussed.

Keywords Arbogast-Correa spaces - Linear elasticity - Locking-free - Quadrilaterals -
Weak Galerkin
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1 Introduction

This paper concerns finite element methods for linear elasticity formulated as

{_Vo‘:f(x), XGQ, (1)

ulpp =up, (on)|py =ty,
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where £2 € R? is a bounded open and connected domain with a Lipschitz continuous bound-
ary I' = 082, u is the solid displacement, e¢(u) = % (Vu + (Vu)T) is the strain tensor,
o = 2ue(a) + A(V - w)l is the stress tensor with I being the order-2 identity matrix, f
is a known body force, up, ty are Dirichlet and Neumann boundary data on the Dirichlet
and Neumann boundaries I"? and I'", which form a non-overlapping decomposition of I".
Furthermore, the Lamé constants

Ev E
)\,:—7 /\,(,:7
(14+v)(1—-2v) 2(14+v)

are defined by the elasticity modulus £ > 0 and the Poisson ratio v € (0, %).

Development of efficient and robust numerical solvers for linear elasticity is an important
task for scientific computing. Robustness is reflected as uniform convergence of such solvers
with respect to the Poisson ratio v when spatial meshes are refined. Some linear solvers
are subject to the so-called Poisson-locking, which often appears as loss of convergence
rates in displacement or spurious behaviors in stress or other quantities, when A — oo.
This corresponds to the case when the Poisson ratio v — % Namely, the elastic material
becomes nearly incompressible. Such phenomenon is mainly caused by the fact that the
approximation space cannot remain the optimal approximation under the incompressible
constraint V -u = 0 [17, 18]. It is well known that the classical continuous Galerkin FEMs
with linear or bilinear/trilinear shape functions on simplicial or 2d/3d-rectangular meshes
are subject to Poisson-locking [13].

The mixed finite element methods based on the Hellinger-Reissner formulation are
locking-free by design. In such formulation, the displacement vector field and the stress
tensor field are approximated simultaneously. It is nontrivial to devise stable element pairs
for displacement and symmetric stress. Some nice results can be found in [3, 26, 27]. However,
the mixed FEMs need more unknowns and result in saddle-point problems.

Nonconforming finite elements for linear elasticity have been developed. In [27], the
simplest nonconforming FEs were developed in the mixed formulation for rectangular grids of
any dimension. In [12, 21], nonconforming FEs were investigated along with the introduction
of pseudo-pressure.

Hybridizable discontinuous Galerkin (HDG) methods have been investigated for linear
elasticity. The first HDG method was presented in [35], the HDG method for elasto-dynamics
was introduced in [33], a priori error analysis was presented in [23], the HDG method for
linear elasticity with strong symmetric stress was presented in [34].

Virtual element methods (VEMs) have also been developed for linear elasticity [7-9, 24].
High order linear and nonlinear VEMs were developed in [4, 5]. A detailed account of VEMs
for linear elasticity can be found in [10].

The WG methodology was first introduced in [40]. The key characteristic of the WG
methods is the use of weak functions and weak differential operators, which make the WG
methods flexible and easy to construct. WG methodology has been applied to many problems,
for instance, the elliptic problems [19, 39, 41], the Stokes flow [22], the Darcy flow [30, 31],
the Maxwell equation [37], the div-curl systems [28], the Cahn-Hilliard equation [42], the
poroelasticity problems [44], and the linear elasticity problems [16, 43].

There have been efforts on developing WG FEMs for linear elasticity in the primal formu-
lation. In [38], WG FEMs were developed on polygonal and polyhedral meshes. Degree k > 1
polynomials were used in element interiors whereas degree kK — 1 polynomials were used on
edges/faces. Their discrete weak gradient and discrete weak divergence were constructed as
degree k — 1 matrices and scalars, respectively. This requires a penalty term to handle the
discrepancy between the shape functions in element interiors and on edges/faces. Lowest-

@ Springer



Journal of Scientific Computing (2023) 95:20 Page3of22 20

order WG FEMs have been developed for linear elasticity on simplicial meshes [46] and 2d-
or 3d- rectangular meshes [25]. These methods utilized the matrix version of the classical
Raviart-Thomas spaces for constructing discrete weak gradients needed for approximation
of strain in elasticity. The methods in [25] can be extended to quadrilateral and hexahedral
meshes that are asymptotically parallelogram or parallelopiped [20].

For many finite element methods, penalty terms are needed to enforce weak continuity
of shape functions. Such penalty terms may not have clear physical meaning but require
additional efforts in implementation. However, for WG finite element methods, when shape
functions and spaces for gradient reconstruction are properly chosen, no penalty term is
needed [22, 32]. In this paper, we focus on development of penalty-free WG finite element
schemes.

The Arbogast-Correa (AC) spaces (to be reviewed in Sect. 2) were first constructed in [1]
and used for solving elliptic problems in the mixed finite element framework. The AC spaces
are constructed as H (div)-subspaces on quadrilaterals. They inherit the spirit of the classical
Raviart-Thomas spaces for 2d/3d-rectangles but apply to more general convex quadrilaterals.
The local AC spaces has been incorporated with the WG methodology to develop penalty-free
any order finite element methods for Darcy flow or elliptic boundary value problems that are
efficient, easy-to-use, and respect important physical properties [32]. This paper continues
the efforts in [32], aiming at development of a family of new WG finite methods for linear
elasticity on general convex quadrilateral meshes in the primal formulation. These solvers
are free of Poisson-locking and practically useful.

When a pure Dirichlet boundary condition is considered, we have I” N — . In this case,
the grad-div PDE for elasticity reads [25, 46]

{—MAU —(u+MNV(V-u)=f, xe2, )

ulr =up.

The rest of this paper is organized as follows. Section 2 discusses the local Arbogast-
Correa spaces ACy and their bases. Based on that, Sect. 3 develops WG finite elements
(Pk2, sz; AC]%, Py), which are then used for developing WG FEMs for linear elasticity in
Sect. 4. Section 5 presents a rigorous analysis for these WG FEMs. Section 6 presents numer-
ical experiments on popular test cases to demonstrate the accuracy and usefulness of these
new methods. The paper is concluded with remarks in Sect. 7.

2 Arbogast-Correa Spaces ACi (k > 0) on Quadrilaterals

The ACy(k > 0) spaces for vector-valued functions on quadrilaterals were introduced in [1].
These spaces extend the Raviart-Thomas spaces RTjy] for rectangles [14] to general convex
quadrilaterals. For a rectangle and the lowest order case, these two types of spaces agree, that
is, ACo(E) = RTjo)(E), when E is arectangle. Otherwise, they are different. For example,
when E is indeed a quadrilateral, ACx(E) contains rational vector-valued functions, but
RTj0)(E) contains only polynomial vector-valued functions.

Asdiscussed in [45], there are actually 3 types of Arbogast-Correa spaces on quadrilaterals.

(1) The local space ACk(E) on an individual quadrilateral E;
(ii) The broken space ACr(E,) on a quadrilateral mesh &, which is simply the Cartesian
product of all local AC spaces;
(iii) The global space ACk (&) is understood as ACk () N H (div, §2), which implies normal
continuity for the vector functions in AC(&p).
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This paper uses the local AC spaces and their matrix version

Let E be a convex quadrilateral and F be the bilinear mapping from the unit square
E= [0, 1]% to E. Let J be the Jacobian matrix for this bilinear mapping and J be the Jacobian
determinant. Then Pg = J/J is the Piola transformation, which maps a vector field on the
unit square E to a vector field on the quadrilateral £ via matrix—vector multiplication.

Let (£,9) € Eand (x,y) € E. Wecall X = x — xc, Y = y — y. normalized coordinates
[29], where (x., y.) is the geometric center of E.

Fork = 0,dim(ACy(E)) =4 =2+ 1+ 1 and one has

sr-s ][0 [} ]}

Similarly, for k = 1, dim(ACy) = 10 = 6 + 2 + 2, and one could use the following ten (10)
vector-valued functions as its local basis [32]:

o) [0 [o] [2- [5)- 7]
o] (] el ] e[ 2]

In general, we have
ACK(E) = Pr(E)? + Br(E)x + Sk(E), 3)

where IP; (E)? is the subspace of vector-valued polynomials with total degree at most k, Pi(E)
is the subspace of homogeneous scalar-valued polynomial with degree = k, and Si (E) is the
subspace of rational functions obtained via Piola transformation.

Roughly speaking, for a given vector field on a convex quadrilateral E,

- Pu(E )? offers an approximation based on degree k polynomials;
— Pr(E)x takes care of approximation for its divergence;
— Sk offers a divergence-free supplement.

Note that dim(IP,%) =(k+1)k+2), dim(ﬁk) =k+ 1, but

N T
dim(ACy(E)) = (k + 1)(k + 3) + 5. S

One might have also noticed that

(1) (k+ 1)(k + 3) = dim(RTy), the dimension of the Raviart-Thomas space for a triangle;
(i) whereas s represents the additional degrees of freedom needed for augmenting the
Raviart-Thomas space on a quadrilateral.

Furthermore, S = PrSk, where Sy is defined on £ = [0, 1]2.

— For k = 0, one has .
So = Span{curl(x3)}; (6)

— For k > 1, there holds
Sk = Span{eurl G*~15(1 — £2)), curlG*~'2(1 — $2))}. (7

Lemma 1 Let E be a convex quadrilateral. For any w € AC(E),
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(i) V-we P(E);
(i) (w-n)|, € Px(e) for any edge e on the boundary of E.

Proof These can be found in [1]. |

The global AC spaces were used in [ 1] within the framework of mixed finite element methods
for solving elliptic boundary value problems. This approach involves technical construction
of global basis functions on the whole mesh. However, the AC spaces can also be utilized
within the framework of WG FEMs for solving elliptic problems or Darcy flow [32]. The
latter involves only local bases of the AC spaces in a much simpler way.

The local AC spaces were used in [45] for development of pressure-robust Stokes solvers.
In this paper, we use them for developing locking-free solvers for elasticity problems.

3 WG(PZ, P?; ACZ, P) (k > 0) Finite Elements on Quadrilaterals

In this paper, we use the local AC spaces for developing new WG finite elements. What we
need are actually local matrix spaces based on the AC spaces.

Let E be a convex quadrilateral. We use AC,%(E )(k > 0) to denote the space of matrix-
valued functions whose row vectors are in ACy(E).

We consider WG(P?, sz)-type vector-valued discrete weak functions defined on a convex
quadrilateral E. Such a function v = {v°, v’} has two parts: v° is a vector-valued function
defined in the element interior E°, each component is a bivariate polynomial of total degree
at most k; on the other hand, v? is a vector-valued function defined piecewise on each edge of
the element boundary £? and each component is a univariate polynomial of degree at most
k.

Similar to what has been discussed in [25], we define discrete weak gradients and discrete
weak divergences for such vector-valued discrete weak functions.

Definition 1 (Discrete weak gradient). Let v = {v°, v’} be a WG(sz, sz)—type discrete
weak function. We establish its discrete weak gradient V,,v in AC,%(E ) via integration by
parts

/(va) : W=f V3~(Wn)—/ vC . (V-W), VW e ACI(E), )
E E? E°

where : is the standard colon product for matrices and n is the outward unit normal vector
on the element boundary E?.

Clearly, one can utilize the aforementioned local basis functions for ACy(E) to construct
alocal basis for AC ,% (E). Then express V,,v as a linear combination of these basis functions.
Such linear combination coefficients can be obtained by solving a small-size SPD linear
system. This solving process is parallel in nature.

Definition 2 (Discrete weak divergence). Again letv = {v°, vi}bea WG(PkZ, sz)—type dis-
crete weak function. We establish its discrete weak divergence V,, - vin Py (E) via integration
by parts

f(vw V)w =/ v . (wn) —/ v (Vw), Yw e Py(E). ©)
E E9 o
Similarly, this involves solving small-size SPD linear systems.

Now we define discrete weak strain as

ew (V) = % (va + (VwV)T> ,
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which will be used in the next section for establishing WG FEMs for linear elasticity.

4 WG FE Schemes for Linear Elasticity on Quadrilateral Meshes

Let &, be a quadrilateral partition of §2 and I, be the set of all edges in &,. Accordingly,
FhD =TIPnNry,and FhN = I'N N Ij,. For any E € &, let hg be the diameter of the
circumscribed circle of E and h = maxgcg, hg be the mesh size. For any e € I}, h, is the
length of e. Define function spaces as follows.

Vh ={V = {VO,Va} : V°|ED c Pk(EO)Z’Vii'e c Pk(e)z,VE c Eh,‘v’e c Fh},
Vg ={veV,: V3|1—}1D = 0},

Wi =lq : qlg € P(E),VE € &},

WP =W, N L3(£2).

(10)

WG finite element scheme in the strain-div formulation. The weak Galerkin (PZ, P?; AC?,
Py) scheme in the strain-div formulation for the linear elasticity problem (1) is formulated
as: Seek u;, € Vj, such that uy, |th = QZ (up) and

AP, v) = FPwv),  WveV), (11)
where
AP V) =2 Y (w@) ewMIE+2 ) (Vo Vo Ve, (g
E€&y Eeéy
and
FiPwy= Y (V) + Y (tn.v'),. (13)
Ec&y yEFhN

WG finite element scheme in the grad-div formulation. The weak Galerkin (P2, P¢; AC7,
Py) scheme in the grad-div formulation for the linear elasticity problem (2) is formulated as:
Seek u;, € Vj, such that “h|1"hD = QZ (up) and

ASP vy = FPP(v),  WveV), (14)
where
ATP vy = 10 Y (Y, VoV + (e +2) Y (Voo wi, Vi Vg, (15)
Eegy Ee&y
and
FPw) =Y (& v) e (16)
Eegy,

Remarks Now we introduce a semi-norm on the weak function space V;, by

VI = > 1Vl (17)

Ee&y

(i) No penalty term is needed for either of the above two WG FE schemes.
(ii) Both schemes can be applied to general convex quadrilateral meshes. But analysis is
performed for the grad-div scheme only.
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Lemma 2 The semi-norm || - || is a norm on space Vg.

Proof For any scalar-valued functions v° € Py(E°) and v e PL(EY) satisfying f po V0 =
fEa v, we consider q € ACy(E) satisfying
V.oq=1° (18)
q-n= . (19)
Since V-q € P(E®), q-n € Py(E?), and dim(ACy(E)) = (k+ 1)(k+3) + 1 or 2 is more
than or equal to W 443 (k+1) — 1, which is the number of the independent equations

in (18)-(19), we claim that Problem (18)-(19) has at least one solution. This implies that for
any v° € Pr(E)?, we have a1y € AC,%(E) such that

V.19 =V’ —v°, on =0,

where v° = ﬁ IE" v° is the average of function v° on E°. Assume that [|v|| = O for
v={v, vl e Vg. Then

d
0= (Vyv, ) = (V', o) ga — (v°, V - T0) o
—r 512
=—(v°, v’ = V) g = —[v° — v°|| o

This implies that v° = v°. Then we arrive at

a

0= (Va,tII)Ea —(V°, V- 1)pe = (v —=v°, ) o,

forany t € AC]%(E). By taking 7 = 7; such that 7jn = v?
obtain v?

— v° in the above equation, we
= v°, which means that v is a constant vector. Moreover, since v? o =0, we get
h

v =0.So |- |l is anorm in VY. o

Lemma 3 (Coercivity). There exists a positive constant oy such that
2 GD 0
ar[lvil” < A7 (v, v), VveV,.

Theorem 1 The weak Galerkin finite element scheme (14) in the grad-div formulation has a
unique solution.

Proof This follows from Lemma 3 and the Lax-Milgram Theorem [13]. O

5 Analysis

For ease of presentation, we consider the finite element scheme in the grad-div formulation
with a homogeneous Dirichlet boundary condition. We use A < B to denote A < C B with
C being a generic positive constant that is independent of A and A. The L2-norms of the
errors of displacement and stress, namely, ||[u — uy|| and ||o — oy ||, are also considered in
this section.

5.1 Projection Operators and Some Preliminary Results

Definition 3 (Local projection operators). Let E € &,. We define

(i) Qy, as the L2—projecti0n from L2(E) to the space Py (E);

@ Springer



20 Page8of22 Journal of Scientific Computing (2023) 95:20

(i) Qn = {Qy, QZ}, where Qj is the local L2-projection from L?(E®°)? to the space of
Pr(E®)? and Qz is the local Lz-projection from L2(E?)? to the space of Pr(ENHZ,
(iii) Qy, as the local Lz-projection from L2(E)%*2 to the space of AC,%(E).

Lemma4 (Commuting identities). Let E € &,.

(i) Foranyu e H'(E)?, there holds Vu (Qpu) = Qp(Vu);
(ii) For any u € H'(E)2, there holds V,, - (Q,u) = 0, (V - u).

Proof Applying the definition of the discrete weak gradient, integration by parts, and the
definitions of the projection operators, we obtain, for any t € AC,?(E ),

(Vu(Quu), 1) = (Q)u, Tn) o — (Q}u, V - 7)o
=(u,tn)gy — (W, V- 1)go

= (Vu,1)g 20
= (Q(Vw), 7)E,
which implies the 1st identity (i). The 2nd identity can be proved similarly. O
From the fact that || - || defines a norm on V¥, we know that the discrepancy between the

interior and edge values of a discrete weak function is bounded by this norm. A more precise
statement is expressed in the lemma below.

Lemma 5 The following property holds true

DRIV =l SIVIP, Yy e V). @1)
Eeé'h

Proof Let E € &),. We list the degrees of freedom for space AC,?(E ) as follows.

(tn, V)., Vv € Pi(e)?, Ve C JE,
(t.VWe, Vwe P(E)?,
(t,v)g, YveBI(E),

where IBS% (E) is a space of matrix-valued functions whose row vectors are in the space By (E)
consisting of divergence-free bubble functions, see [1] for details. Denote by Dg i (e) the
subspace of AC,%(E ) such that all degrees of freedom vanish except (7n)|,. It is known that

Dg i (e) is a dual of P (e)2. Tt is also known that
d o
. v? —v°) . (tn
W o vle= sp YYD (22)
reDg i (e) e

For v € Dg (e), by the definition of discrete weak gradient, we have

/ (Vyv) i1t = /(Va —v°) - (Tn).
E e

Combining the Cauchy-Schwarz inequality and (22) with the fact that ||t ||g < h% [Tn]l. (see
[14] for the scaling argument), we have

IVuwvllelzlle o1
— o S 2 IIVuVlE.

3
v =volle S
teDg k(e) lenlle

Summing the above inequality over all edges ¢ C E? and all elements E € &),, we complete
the proof. O
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Lemma6 Let E € £, and v € V.
(i) For any matrix W € AC3(E), there holds

(W, VW) = (W, Vv go + (Wi, v7 — v°) 1. (23)
(i) For any scalar w € W, there holds

(W, Ve - Vg = (w, V- ¥°) go + (wn, v2 — v°) ga. (24)

Proof First apply the definition of discrete weak gradient or discrete weak divergence for the
discrete weak function v. Then apply integration by parts for W or w. O

Lemma 7 Assumeu € H (2)2 andv € Vy,. Let E € &,. Then
(V (Qu). VuV)E = (Vu, V) o + (Qu(Vu)n, v* = v°) o, 25)
(Va - (@), Vo - Vg = (V- 0, V- ¥ o + ((Q(V - w)n, v/ = v°) o

Proof Applying Lemma 4(i), the definition of discrete weak gradient, integration by parts,
and properties of the projection operators, we obtain

(Y (Qnw), Vi) g = (Qu(Vu), ViyV) g
= (Qu(Vwm, v*) ga — (V- Qu(Vu), v°) o
= (Qu(Vwn, v’ —v°) gy + (Qu(V), Vv°) e
= (Qn(Vu)n, vl — v o + (Vu, Vv°)go.

(26)

Similarly, we use Lemma 4(ii), the definition of discrete weak gradient, integration by parts,
and projection properties to obtain the 2nd equality. O

5.2 Error Equation and Error Estimates

Lemma 8 (Error equation). Let u € H*t2(2)? be the exact solution of (2) and uy, € Vj, be
the numerical solution of (14). There holds

ASP (wy, — Quu, v) = 1 G (u, v) + (1 + 1) Ga(u, v), 27)
where ‘
Gi,v) = Y ((Vu—Q,Vun, v! = v°) s (28)
Ee&y
and
Gr(u,v) = Y ((V-u—Qu(V-wn,v) —v°)pa. (29)
Ee€g&y,

Proof Letv = {v°, v’} € V,,. Testing Equation (2) with v on each E € &, we obtain

(£, v)ge = (—pdu— (u+M)V(V-w), V) e
= —p{(Vu)n, v°) pa + pn(Vu, Vv°) go (30)
—(u 42V -wn, v ps + (u+2A)(V-u, V- v°) go.
We sum the above result over the whole mesh. We also make an assumption on normal
continuity of the exact solution across edges. Then a combination with the homogeneous
Dirichlet boundary condition implies

D oVwn v =0, Y ((Vowm, v g =0. 31)

Eec&y, Ee&,
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Thus ,
D vE = Y (IVOR Y V) + (VYY) e

Eec&y Ee&y (32)
T A DY W,V — v o + (- A)(Vu, V- v°)Eo) .

Combing these together with (25), we arrive at

AFPQuu,v) = Y (0 Ve = ) (Vu—QVwm, v2 —v°) s

EES;, EES},

(33)
— (2 YV u—= Qp(V - wm, v = v o
Ee€g&,
Subtracting (33) from (14), we get
AFP @y — Quu,v) =1 Y ((Vu— Q@ Vwn, v2 = v°) s
Ee&y , i (34)
F A1) Y ((Vu— 0p(V-wim, v —vo) g,
Ee&y

which is the error equation stated in the lemma. O

Lemma9 Assume u € H**2(2)2 andv € Vy,. Then

< pk+1

Gr(w.v) S W4 a2 v, 5)

Go(u, v) S AV a1V

Proof Tt follows from the Cauchy-Schwarz inequality, an inverse estimate, a trace inequality,
a projection inequality, and (21) that

Gi(u,v) = Z (Vu — QpVu)n, v° — va>Ea

Ee&y
1 1
2 2
< > rive—q,vul3, STV = vz,
Ee&y Ee&y
%
2 2 2 (36)
S D2 Avu—@uVullg + A V(Vu — Q@ V)3
Eegy,
1
2
DR Nl
Ec&y

k+1
< E a2 vl
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Similarly, we have

Ga(u,v) = Z (V-u—Qp(V-u)n, v° —v?)

Eeé&),
2 2
< X mviu—onVwig | | D0 ATV = vl
Eeé&y, Eeé&y
3
S avou—0uv Wik + B2V u - 04V w3 37)
Eegy
1
2
DRV = vl
Eeg&y,
S ANV ull v,
which concludes the proof. O

We assume that the exact solution u € H¥*2(£2)? and satisfies the following regularity
estimate [13]
lallk2 + AV - ullerr S k. (38)

Theorem 2 Let u € H*2(§2)? be the exact solution of (2) and vy, € Vy, be the numerical
solution obtained from the finite element scheme (14). Then

Y IVe=Vowllz + e +2) D IV-u= Yy wllp SEPEVIRE (39)
Eeé&), Eec&,

Proof Apply Lemma 4 (the commuting identities), we decompose the elementwise errors
into the projection errors and the discretization errors as follows

IVu—=Vywllg < V= Qu(Vwllg + 1Qu(Va) — Vyuy| £,
IV-u=Vy-uplle SNV -u—0p(V-wle +110n(V-u) = Vy -wllg.

The projection errors are determined by the approximation capacity of the spaces AC,?
and Py, respectively. In other words, we have

D IVu—Q@u(Vw iy SV uliR .

Eegy, (40)
> IV u— 0V wi S BV ul,.

EES;,

For the discretization errors between the finite element solution and the projection, we set
v =u; — Quuin (27) and then apply (36) and (37) to obtain

1Y Qi (VW) = Vil + (e +2) D 101V -w) = Vi w3
Ee&)y Ee&
2 (41)

S il + A DIV -ulig) | D0 1Qi(V) = Vi3
Eegy,
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Under the assumption (38) and the fact that u is bounded, we obtain

> 1Qu(Va) = Vi [ S B2V IE. (42)
Ee&y

Plugging (42) into (41), we get

(w42 D 10wV -w) = Vy w1 S HEFDYEE. (43)
EES;,

With the help of the assumption (38), the desired error estimate in the theorem follows
from combining (40) and (42)-(43) through a triangle inequality

wY Ve = Yyl S R2ED e,

Ec&y
(k2 D IV u=Vy - ulp S RV,
Ecé&y
which concludes the proof. O

5.3 Error Estimates in the L2-norm

Next we establish an L2-norm estimate using a standard duality argument.

Lemma 10 Letu € Hk“(.Q)2 be the exact solution of the PDE problem (2) and uj, € Vy,
be the numerical solution obtained from the finite element scheme (14). Let e, = u, — Qpu.
Then there holds

lejllo < A k. (44)
Proof Assume that @ is the solution of the dual problem

—RAP — (u+MV(V - D) =ej, 45)
®|pp =0. (46)

The following dual solution regularity holds true
@12+ A1V -2l < llegllo- (47)

Using e; to test the dual equation, we obtain

lesl?> = > (uVve. Ve e+ Y (w+MV- .V €k

E€g), Eeg,
Z 0 Z o (48)
- (,LLVCDII, eh>E3 - ((M"‘)\.)V . <P,ehn)Ea
E€&, Eeg)

It follows from the commuting identities that

AP (en, Qu®) = Y (uVep, V) + Y e — €, QuVPn)
Ec& Ee&,
D ANV V- D)+ Y (u+A)(e) — €. On(V - D)n) g
Ecé&y Ee&y
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Together with Lemma 8, this implies that

lef 1> = > u((Vu—QyVun, Q)@ — Q&) s
Ee€&),
d o .
+ ) (DY = Q(V - w)n, QP — Q&) s
Ee&y
— > nlel — € (QuVP — VoI o
EES},
=Y (At 1(e) — €. (Qu(V - ) = V- D)) ga.
Eegy
It follows from the Cauchy-Schwarz inequality, a trace inequality, and a projection inequality
that
D (Vu—QVun, Q4o — Q; @)
Eec&y
1 1
P 2
<[ > rive—Quvul3, Yo rQre — @i,
E€& Ee&

k k+1
S Wl ikl @2 S A allrille] llo-
Similarly, we have

Y ((Vu—Qu(V-win, Q)& — Q;®) i

Eeé&y
1

2

< D rvou-ov-wig | | DD rTlIQe - @I,

Eec&, Ee&y
k k+1
SAEAIV - uligh|| @2 S AV -l llo-

=

Using the Cauchy-Schwarz inequality, a trace inequality, a projection inequality, and (47),
we obtain

Y (€ — €. (QuVe — Vo))
Ecé&),

1 1
2 2

Y hl e — el > hlQuVe - VoL,
Ee&), E€&,
lenliall® 2 S A (ullesz + (e + DIV - ulles ) e lo-

IA

N

Similarly, we have

Dt 2)(e; — €, (Qn(V- @) =V - D)) o

Ee&y
1 1
2 2

<D g el | w+n| D rInV-2) -V 2|3,
Ee&y Ee&y
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< lenlli(e + MV - ull;
SEN a2 + e+ DIV - ulleg) e llo-

Then we have
leilo S 4 (lulles + (e + DIV - wlls ). (49)
Combined with assumption (38), this finishes the proof. O

Theorem 3 (L2-norm estimates for displacement and stress). Let u be the exact solution
of the PDE problem (2) and wy, be the numerical solution obtained from the finite element
scheme (14). Then

lu—wll20) S R, 50)
lo — onll < BHEFIE,

where the numerical stress is computed as o, = 2juey, () + A(Vy - up)lL
Proof Applying the projection property and (44) with a triangle inequality, we arrive at
lu—uill o) < o= QRullaig) + 1QFu — ujll 20y S A IIE k.

From the definition of discrete weak divergence, we know that V,, - (u, — Quu) € L%(.Q).
There is a function ¢ € H}(£2) such that

ISl < [IVy - (up — Qpu)l.
Then from Lemma 8 and Lemma 9, we derive

MV - (= Quu)|?
=% Y (Vo (= Quu), Vy - (wy — Quu))g

Ee&y
= ) (V- (up = Quu), (V- Ok
Eegy,
=\ Z (Vy - (up — Qpu), Vy - (Qré))E
Eec&y
< AFP(en, Que) — 1 Y (Vu(wp — Quu), Vi (i) e
Eeé&y,
S PN

Combining Theorem 2 with (40)(ii) and (38), we obtain

o — onll S IVa— Vyupll + A (IV-u— 0V -ull + |Vy - (uy — Quu)l})
< IR,

which finishes the proof. O

6 Numerical Experiments

This section presents numerical experiments on three widely tested examples to demonstrate
the convergence rates and usefulness of the WG finite element solvers developed in this paper.
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Table 1 Example 1: Results of WG (P2, POZ; AC(z), Pp) solver on uniform rectangular meshes

r=1
1/h lu—wp|l Rate llo —opll Rate IV-u—Vy -uy Rate
8 3.2581E-01 - 2.1477E+0 - 1.7761E-01 -
16 1.6288E-01 1.00 1.0393E+0 1.04 8.8978E-02 0.99
32 8.1414E-02 1.00 5.1499E-01 1.01 4.4511E-02 0.99
64 4.0703E-02 1.00 2.5690E-01 1.00 2.2258E-02 0.99
128 2.0351E-02 1.00 1.2837E-01 1.00 1.1129E-02 1.00
2= 10°
8 3.2095E-01 - 2.1426E+0 - 3.6035E-07 -
16 1.6041E-01 1.00 1.0359E+0 1.04 1.7889E-07 1.01
32 8.0173E-02 1.00 5.1313E-01 1.01 8.9176E-08 1.00
64 4.0081E-02 1.00 2.5594E-01 1.00 4.4540E-08 1.00
128 2.0040E-02 1.00 1.2789E-01 1.00 2.2262E-08 1.00

Example 1 (Locking-free). This example is adopted from [12]. Similar problems have been
tested in [15, 25]. Here £2 = (0, 1)2, A= 1orir=10° and u = 1. A Dirichlet boundary
condition is specified on the whole boundary using a known exact solution for the displace-
ment
o . 1 . .
u— [ (1 — cos(2x)) sm(271y)j| [sm(m) s1n(ny)] . 51)

(1 — cos(2my)) sin(2w x) 1+ A | sin(orx) sin(ry)

We solve the linear elasticity problem using the WG(P?, sz; AC,%, Pr) methods with
k = 0,1 on a sequence of uniform rectangular meshes. The numerical results shown in
Tables 1 and 2 clearly exhibit optimal order (k + 1) convergence rates in the L2-norms of
the errors in displacement, dilation, and stress. The convergence rates do not deteriorate for
large X values.

Example 2 (Low regularity). This example is similar to [25] Example 2. Specifically, we
have an L-shaped domain with vertices at (0, 0), (1, 1), (0, 2), (-2, 0), (0, =2), (1, —1). A
Dirichlet boundary condition is posed on the boundary of the whole domain using a known
exact solution for displacement as shown below

T
u:[AcosO—Bsin@, Asin9+Bcos0] , (52)

where (r, 6) are the polar coordinates and

o

A= r—( — (1 + @) cos((1 + @)8) + C1(Ca — (1 + ) cos((1 — 05)9)),
2y (53)

B = r—((l +a)sin((1 + @)8) — C;(Ca — (1 — o)) sin((1 — a)e)),
2p

with «, C1, C being some constants. The most important constant is the critical exponent
o ~ 0.544483. More details about the analytical expressions for the dilation and stress can
be found in [25]. It is known from [6, 46] that the exact solution has low regularity

ue (H (@)% o e (H*5(2)>2
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Table 2 Example 1: Results of WG (P2, Plz; AC%, Py) solver on uniform rectangular meshes

r=1
1/h lu—wp|l Rate llo —opll Rate IV-u—Vy -uy Rate
8 4.8140E-02 - 2.1941E-01 - 2.0838E-02 -
16 1.2206E-02 1.97 5.2258E-02 2.06 4.5199E-03 2.20
32 3.0626E-03 1.99 1.2889E-02 2.01 1.0753E-03 2.07
64 7.6636E-04 1.99 3.2111E-03 2.00 2.6516E-04 2.01
128 1.9163E-04 1.99 8.0206E-04 2.00 6.6054E-05 2.00
2= 10°
8 4.7823E-02 - 2.2031E-01 - 4.3895E-08 -
16 1.2131E-02 1.97 5.2311E-02 2.07 9.2414E-09 2.24
32 3.0440E-03 1.99 1.2886E-02 2.02 2.1676E-09 2.09
64 7.6173E-04 1.99 3.2090E-03 2.00 5.3181E-10 2.02
128 1.9048E-04 1.99 8.0148E-04 2.00 1.3248E-10 2.00

Table 3 Example 2 (v = 0.3): Results of WG(Pg, Pg; AC%, Pp) solver on quadrilateral meshes

1/h lu—wpl Rate lo —opll Rate IV-u—Vy -uy Rate
8 6.5249E-06 - 9.5987E-01 - 4.6790E-06 -

16 3.2721E-06 0.99 6.6324E-01 0.53 3.2194E-06 0.53
32 1.6371E-06 0.99 4.5648E-01 0.53 2.2117E-06 0.54
64 8.1824E-07 1.00 3.1358E-01 0.54 1.5182E-06 0.54
128 4.0883E-07 1.00 2.1522E-01 0.54 1.0416E-06 0.54

for any small ¢ > 0. Furthermore, we have (for the same small ¢ > 0)
up € (H*F275(382))2.
Other physical parameters take values £ = 10° and v = 0.3.

The low regularity implies that, from an approximation theory viewpoint, there is really
no need to use higher order finite elements. For numerical solutions, we use quadrilateral
meshes that align with the domain boundary. So we are utilizing the AC spaces that are indeed
different than the Raviart-Thomas spaces used in [25].

The numerical errors reported in Table 3 from applying the lowest-order WG(PO2 , PO2 D ACZ,
Po) solver clearly demonstrate the 1st order convergence in displacement, since constant vec-
tors are used in the WG scheme for approximating the displacement. The convergence rate
for the errors in stress or dilation each approaches 0.544, which reflects the critical exponent
or the regularity order of the exact solution. The corner singularity in stress is also faithfully
captured by our new WG method, as demonstrated in Fig. 1. Since the exact solution has low
regularity, there is no need for applying the higher order method WG(P12, P12; AC?, Py).

Example 3 (A square plate with a circular hole). Ideally, we should consider an infinite
isotropic elastic plate with a circular hole at the center that has radius a. Assume a horizontal
traction with magnitude S is posed on the far-left and far-right sides, whereas the top and

@ Springer



Journal of Scientific Computing (2023) 95:20 Page170f22 20

WG numerical stress a:y

WG numerical stress o"

yy
2 0
1.5 8
-1
6
1
4
0.5 -2
2
0
0 -3
-0.5 | »
-4
-1 -4
-1.5 -6 -5
) -8
-2 -1 0 1 -2 -1 0 1
Fig. 1 Example 2 with v = 0.3: Profiles of numerical stress obtained from applying the
WG(PO2 , Pg; AC%, Pyp) solver with h = 1/32. Left: Numerical normal stress O’;ly; Right: Numerical shear
stress or;'y
A
Y A
1
] - )
a %
(a) (b)

Fig.2 Example 3 illustration: a A plate with a circular hole; b The first quadrant of the plate

bottom sides are traction-free. Due to symmetry, we consider only the first quadrant of this
plate. See Fig. 2 for an illustration of the problem.

The exact solution for the displacement in the Cartesian coordinates is known as [47]

a r a a3
ur = < (D + 1) cos 6 + 27<(K +1)cosb + cos(39)) —2% cos39) ).

8u \a r r

a r a a3 (54)
wr = 2 (L = 3)sino + 27((1 —K)sinf + sin(39)) —2% sin36) ),

8u \a r r3
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Fig.3 Example 3: Quadrilateral
meshes (numbers of partitions
Ny, Ny) are used for numerical
experiments
/

e
-

where k = 3 — 4v. The exact solution for the stress in Cartesian coordinates is [10, 11]

S a? a? a*
Trx = 5 <2 — 3— cos 26 + (—2—2 + 3—4)cos49> ,
r
S 2 a2 4
Oyy = 5 ( a2 cos 26 + (2 %) cos 49) , (55)
S 2 a2 4
o =3 ( %5 sin26 + (-2 +37) sin49> :

When expressed in the polar coordinates, the stress components are [36]

S a? S a? a*
S a? S a*
000 = 5 <1 + 72) -3 (1 + 374) cos(20), (56)
S a at\ .
o9 = —E 1+ 2r7 — 3}"7 Sln(20).

Indeed, the mechanical quantities of interest decay fast as one moves away from the center
of the hole, i.e., the origin [36, 47]. Far away from the hole (as » — 00), we have

opr = Scos’0, opg = Ssin’0, o9 = —Scosbsin. (57)
But on the rim of the circular hole, we have
o =0, opg =S —2co0s(20)), o9 =0. (58)

Clearly, as one travels on the rim from 6 = 0 via % to % the stress opg changes from —S
viaSto3S.

It is useful, especially for numerical experiments, to know the stress component conversion
formulas between the Cartesian and polar coordinates, as shown below

Orr cos2 @ sin? 6 sin(26) Oxx
o0y | = sin® 6 cos’0 —sin(26) | | ayy |- (59)
00 —cos@sind cosfsinb cos(20) Oxy

To apply FEMs, we restrict this quadrant to a square with side-length A. Furthermore,
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WG numer. displacement & dilation %1073
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Fig.4 Example 3 (circular hole radius a = 1, Poisson ratio v = 0.499). Results by WGAC( with N, = Ng =
32: a Numerical displacement and dilation; b Exact stress ogg and numerical stress 09"9 on the rim

WG numer. stress 020 WG numer. stress o"
10 = =

2 4 6 8 10 2 4 6
(a) (b)

Fig.5 Example 3 (circular hole radius a = 1, Poisson ratio v = 0.499). Results by the WGAC solver with
Ny = Ny = 32: a Numerical stress "(;10 over the whole mesh; b Numerical stress a;’x over the whole mesh

(i) No body force is presented to the system, i.e., f = (0, 0).

(ii) There is a Neumann boundary condition ty = (1, 0) on the right boundary.

(iii) Due to symmetry of the problem, a partial Dirichlet boundary condition #; = 0 (for
displacement u = (u1, uy)) is posed on the left boundary x = 0; whereas a partial
Dirichlet boundary condition u, = 0 is posed on the bottom boundary y = 0.

(iv) No boundary condition is posed on the rim or the top side of the plate.

For numerical experiments, we seta = 1, A = 10, S = 1, and v = 0.499.

Figure4 shows results obtained from applying the WG(POZ, Po2 ; AC%, Pp) solver on a
mesh with N, = Ny = 32. Panel (a) shows numerical displacement and dilation; Panel (b)
shows the exact stress opg along with the numerical stress 09;'9 on the rim. From Panel (b), it
is observed that the numerical stress approximates the exact stress very well. On the rim,

— When 6 = 0, the numerical stress 09”9 approaches to —1.
— When 6 = 7, the numerical stress 0'9”9 approaches to 3.
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— In between when § = %, the numerical stress 09}'9 approaches to 1.

These numerical results capture the features of the exact stress shown in (58).

Figure 5 shows numerical stresses in polar and Cartesian (calculated at element centers),
respectively. It is clear from Panel (b) that a;‘x is very close to the value 1 along the right
side, reflecting the traction condition ty = (1, 0).

7 Concluding Remarks

In this paper, we have developed a family of penalty-free any-order weak Galerkin finite
element methods for linear elasticity on convex quadrilateral meshes. A complete account
of rigorous analysis is presented to validate the locking-free property and optimal order
convergence rates (in displacement, stress, and dilation) of the new methods. This claim is
further supported by numerical experiments on several popular test examples.

It is clear that the methods in this paper are more efficient than those based on the
WG(Q,%, Q,%; RT[%], Q) elements [25], since the new methods use less degrees of freedom
and apply to more general quadrilateral meshes.

Extension to cuboidal hexahedral meshes. The WG methods developed in this paper can
be extended to 3-dim by utilizing the Arbogast-Tao spaces ATy (k > 0) constructed in [2].
Here we use ATy to briefly explain the main ideas. Let E be a cuboidal hexahedron. It is
known that dim(ATy) = 6. Shown below is a local basis for ATj:

1 0 0 X % 0
O, | L. [Of. | Y|, Pe| =0 |, Pe| ¥ |. (60)
0 0 1 z 0 -2

where X, Y, Z are the normalized coordinates, X, y, Z are the coordinates for the reference
element unit cubic, and Pp is the Piola mapping. Based on this, we define ATO3 as the space
of all 3 x 3 matrices whose rows are in ATj.

The finite element methods developed in this paper have been implemented in Matlab
and the code modules are included in our package DarcyLite, which is publicly available
at the 3rd author’s webpage. Efficient implementation of these methods on the deal.IT
platform is currently being investigated and will be reported in our future work.

Clearly, the WG discretization for linear elasticity developed in this paper can be combined

with the WG solvers for Darcy flow investigated in [32] to develop penalty-free any order
solvers for poroelasticity problems. This is currently under our investigation and will also be
reported in our future work.
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