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Abstract. Poly lactic-co-glycolic acid (PLGA) is a copolymer that has
demonstrated great potentials in development of novel drug delivery sys-
tems. This paper first discusses synthesis procedures and properties of
PLGA micro/nanoparticles (MPs/NPs) and then examine mechanisms
of drug release from PLGA particles. For the core-shell structure of
reservoir-type PLGA MPs/NPs, diffusion through the polymeric shell
is identified as the main mechanism of drug release. A time-dependent
diffusion equation is used to model release from homogeneous spherical
particles. Finite volume schemes are developed for the radial diffusion
model. Numerical results and in vitro experiment data are discussed.

Keywords: Core-shell structure · Diffusion · Drug release · Finite
volume schemes · Microparticles and nanoparticles · PLGA (poly
lactic-co-glycolic acid)

1 Introduction

Polymers have been used in the pharmaceutical industry for several decades due
to their biocompatible, biodegradable, and nontoxic properties [1,3,5,7,9,19,22].
A considerable amount of research has been devoted to the roles of poly-lactic-
co-glycolic-acid (PLGA), poly-ethylene-oxide (PEO), and polyethylene glycol
(PEG) in drug delivery. PLGA has shown great potentials in making drug deliv-
ery systems. It was approved by FDA as a material for therapeutic devices due
to its biocompatibility and biodegradability [2,10,15,24]. After PLGA is intro-
duced to human metabolism system, it can decompose into carbon dioxide and
water, causing no harm to human bodies.
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J. Mikyška et al. (Eds.): ICCS 2023, LNCS 14077, pp. 347–360, 2023.
https://doi.org/10.1007/978-3-031-36030-5_28



348 Y. Sun et al.

PLGA can be formed into particles at the micro- or nano-meter level and
various shapes, e.g., slabs, cylinders, or spheres with therapeutic agents (drugs)
encapsulated. The drugs will be released later in a controlled manner. Appli-
cations of PLGA MPs/NPs for control of bacterial infection and cures of
Alzheimer’s disease and breast cancer can be found in [2,10,15].

Four major mechanisms and three main release stages have been identified
for drug release from PLGA micro- or nano-particles [16–18].

– Diffusion through the polymeric shell;
– Convection through the pores in the polymeric shell;
– Osmotic pumping;
– Degradation.

Diffusion is the major mechanism observed in the early stage [14].
Development of mathematical models for drug release from porous poly-

mer systems dates back to the early 1980s, see [6] and references therein. Back
then, the focus was on finding series solutions and then approximation for short-
time behaviors, usually under the perfect sink condition, see [12] and references
therein. Effects of variable boundary conditions and distribution of particle size
on release behaviors were also investigated [12]. For diffusion-controlled release
from reservoir or matrix systems, a summary of the series solutions was given in
[14] for slabs, cylinders, and spheres. This approach is still very useful as demon-
strated in a recent work [4] using series expansion in terms of eigenfunctions
to investigate drug delivery from a multilayer spherical capsule. Finite element
methods were investigated in [20,23] for diffusional drug release from complex
matrix systems. All these demonstrate that mathematical models are helpful for
design of new drug delivery systems [11].

The rest of this paper is organized as follows. Section 2 briefly describes
a procedure for synthesis of PLGA particles and how drug, e.g., gentamicin, is
encapsulated into PLGA MPs/NPs. Section 3 discusses properties of PLGA par-
ticles and commonly observed release mechanisms of drug release from PLGA
MPs/NPs. Section 4 examines mathematical modeling for drug release from
PLGA particles. Section 5 develops a numerical method for the radial diffusion
equation that models release from spherical particles with the core-shell struc-
ture. Section 6 discusses numerical results and experimental data. The paper is
concluded with some remarks in Sect. 7.

2 Synthesis of PLGA Particles and Drug Encapsulation

Various techniques have been used in preparation of PLGA MPs/NPs and encap-
sulation of drugs [3,7,10,22]. Gentamicin is a commonly used drug being encap-
sulated in PLGA particles. This is finished through a synthesis procedure based
on a double emulsion evaporation method [16]. Different solutions for emulsion
are prepared first. These include, for instance,

– 100 mg PLGA dissolved in 6 ml dichloromethane (DCM) as the oil phase;
– 20 mg gentamicin dissolved in water as the aqueous phase 1;
– 12% PVA solution as the aqueous phase 2.
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The synthesis procedure contains 4 steps.

(i) Oil phase (PLGA/DCM) was mixed with aqueous phase 1 (gentam-
icin/water), yielding a primary emulsion solution;

(ii) Sonication was applied to the mixture for 3 min with a 35% amplitude;
(iii) Double-emulsion nano-droplets were formed via mixing primary emulsion

solution with aqueous phase 2 (PVA/water);
(iv) The double-emulsion nano-droplet solution was allowed to evaporate for 6 h,

then PLGA NPs precipitated (Figs. 1 and 2).

Fig. 1. An illustration of synthesis of PLGA micro-/nano-particles and encapsulation
of drug gentamicin.

Fig. 2. An illustration of drug gentamicin being encapsulated in PLGA nanoparticles
(PU-PEO nanofiber scaffolds).

Electron-spinning is an effective way to incorporate NPs into fibers. Solutions
of 0.35 g PU dissolved in 10 ml DCM and 0.2 g PEO dissolved in 10 ml DCM
are prepared first. Then PU and PEO solution were mixed with PLGA NP
solutions for 10-min sonication to yield an emulsion solution. A scanning electron
microscopy (SEM) image of gentamicin-encapsulated PLGA NPs is shown in
Fig. 3. The core-shell structure and porous shells can be clearly observed.
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Fig. 3. Left panel : A scanning electron microscopy (SEM) image of gentamicin-
encapsulated PLGA NPs with PU-PEO fiber; Right panel : An SEM image of PLGA
NPs with porous shells.

3 Properties of PLGA Particles and Release Mechanisms

With the synthesis procedure discussed in Sect. 2, PLGA particles are mostly in
the spherical shape, as shown in Fig. 3 right panel. Shown in Fig. 4 is a distribu-
tion of the diameters of PLGA particles from a particular experiment when the
PLGA concentration was at 16.7mg/ml.

Fig. 4. Size (diameter) distribution of PLGA particles from an in vitro experiment.

A summary of PLGA particles average size, thickness, number of PLGA
MPs/NPs and estimated loading gentamicin concentration is given in Table 1.

Major mechanisms of drug release from PLGA particles, as listed in Table 2
have been identified in the literature [16–18]. An illustration of the major mech-
anisms in the process of drug release from PLGA particles is also provided in
Fig. 5.
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Table 1. Properties of PLGA particles & drug gentamicin observed in five experiments

PLGA/DCM
concentration
(mg/ml)

Yield rate (%) Average
diameter (µm)

Thickness
(µm)

PLGA NPs
(#)

Gentamicin
initial
concentration
(mg/ml)

13.3 68.34% 1.5 0.21 5.78 × 107 0.0768

15.0 58.89% 1.6 0.48 3.58 × 107 0.0621

16.7 96.33% 1.0 0.06 4.77 × 108 0.0177

18.3 32.12% 1.8 0.17 6.19 × 107 0.0297

20.0 38.16% 2.4 0.20 3.18 × 107 0.0224

Table 2. Summary of drug release mechanisms from PLGA particles

Mechanisms Description

Diffusion thru polymeric shell Early stage of release process, burst effect

Convection thru pores Through the pores in the polymeric shell

Osmotic pumping Due to concentration gradient

Degradation Degradation of NPs

Fig. 5. An illustration of major mechanisms for drug release from PLGA particles.

4 Mathematical Modeling for Drug Release from PLGA

Particles

4.1 A Model for Radial Diffusion in Polymeric Shells

We follow the approaches and major assumptions in [14]. Specifically,

(i) PLGA MPs/NPs are formed as reservoir devices for drug delivery;
(ii) The drug solution inside the core is a constant activity resource;
(iii) The PLGA MPs/NPs have a core-shell structure, in particular, the inner

and outer radii are ra, rb;
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(iv) The polymeric shell is porous and homogeneous, drug is diffused through
this shell, the diffusivity is a positive constant D;

(v) For the early stage of the diffusion process, the drug concentration at the
inner membrane (ra) is maintained as a constant.

Shown in Fig. 6 is an illustration of the spherical core-shell structure of a typical
PLGA particle.

Fig. 6. An illustration of the spherical core-shell structure of typical PLGA particles.

Based on Fick’s 2nd law [13,14], we write down a time-dependent diffusion
equation in the radial direction with a constant diffusivity as below.






∂c
∂t

= D
r2

∂
∂r

(
r2 ∂c

∂r

)
, r ∈ [ra, rb], t ∈ (0, T ]

Boundary conditions
Initial condition

(1)

For the above simple model, the early work focused on finding series solutions.
For a special case with a constant initial condition and a constant Dirichlet
boundary condition, see [12] for a series solution. [14] summarized the classical
work up to Year 2012 and provided a nice overview of various models of dosage
forms and their series solutions.

As in vitro experiments for investigation of drug-release from PLGA particles
are expensive and vary with lab conditions, the in silico approach with numerical
simulations will offer meaningful alternative/supplementary data to experiment
results. This relies on accurate and efficient numerical methods for solving the
differential equation boundary initial value problems.

4.2 Other Existing Mathematical Models

There exist a good number of mathematical models for drug release from PLGA
or more generally polymeric devices, depending on what mechanisms are being
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considered, e.g., diffusion, convection, swelling, and degradation. The popu-
lar ones are the 0th order, 1st order, Higuchi, and Korsmeyer-Peppas models,
according to ChatGPT.

The Peppas equation shown below applies to non-swellable matrix systems
in the early stage [11,12]:

Mt

M∞

= Atβ , (2)

where Mt is the accumulative mass of the drug released up to time t, M∞ is the
total mass released up to time infinity, A,β are positive constants. In particular,
β = 0.50 for slabs, β = 0.45 for cylindrical particles, β = 0.43 for spherical
particles. It is also mentioned that, if 0.50/0.45/0.43 < β < 1.00, the diffusion
is anomalous, i.e., non-Fickian. This simple exponential relation was elaborated
in [12] and further justified in [11].

For drug release from non-swellable polymeric devices (reservoir or matrix),
a summary of mathematical models can be found in [14]. In particular, for a
spherical particle of the reservoir type with a core-shell structure under the
assumption of constant activity source, there holds

Mt = 4πDKcs

rbra

rb − ra

t, (3)

where D is the drug diffusivity, K is a drug partition parameter, cs is the sol-
ubility concentration, ra, rb are the inner and outer radii, respectively, and t is
time. See [14, p. 355]. We will fit our experimental data with this model later.

5 Numerical Methods for Radial Diffusion

In this section, we develop efficient numerical schemes for solving the radial
diffusion equation that models drug diffusion through the polymeric shell of
sphere-shaped PLGA particles.

5.1 Node-Oriented Finite Volume Schemes for Spherical Diffusion

In this subsection, we develop numerical schemes for the spherical diffusion prob-
lem, which shares some features with the control volume method in [21]. We
consider a constant radial diffusion equation with a source term

∂u

∂t
=

D

r2

∂

∂r

(
r2 ∂u

∂r

)
+ f(r, t), (4)

which can be rewritten as

r2 ∂u

∂t
+

∂

∂r

(
− D

∂u

∂r
r2

)
= r2f(r, t). (5)

Let 0 < ra < rb be the inner and outer radii of a spherical shell. Consider a
uniform partition ra = r1 < · · · < rn = rb with h = (rb − ra)/(n − 1) being the
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mesh size. For node ri, we consider the control volume [ri −
h
2 , ri + h

2 ]. This will
be a half volume when i = 1 or i = n.

Integrating Eq. (5) LHS 1st term over the control volume, we obtain

∫ r
i+ 1

2

r
i−

1
2

∂u

∂t
r2dr =

∂

∂t

(∫ ri

r
i−

1
2

u r2dr +

∫ r
i+ 1

2

ri

u r2dr
)
. (6)

Consider the integrand w(r) = r2 u(r, t) in the above integrals. We approximate
its derivatives in the half volumes [ri− 1

2
, ri] and [ri, ri+ 1

2
], respectively, to obtain

w′(ri) ≈
r2
i ui − r2

i−1ui−1

h
, w′(ri) ≈

r2
i+1ui+1 − r2

i ui

h
. (7)

The Taylor expansion in these two half volumes takes the forms shown below.

w(r) = r2 u = r2
i ui + (r − ri)

r2
i ui−r2

i−1ui−1

h
+ O(h2),

w(r) = r2 u = r2
i ui + (r − ri)

r2
i+1ui+1−r2

i ui

h
+ O(h2).

(8)

Plugging these back into Eq. (6) yields

∫ r
i+ 1

2

r
i−

1
2

∂u

∂t
r2dr = h

∂

∂t

(1

8
r2
i−1ui−1 +

6

8
r2
i ui +

1

8
r2
i+1ui+1 + O(h2)

)
. (9)

Similar formulas can be established for the half volumes related to i = 1, n.
Now we check the diffusion term on the LHS of Eq. (5). The integral is treated

by the Fundamental Theorem of Calculus and cancellation.

∫ r
i+ 1

2
r

i−

1
2

D ∂
∂r

(
r2 ∂u

∂r

)
dr = D

∫ ri

r
i−

1
2

∂
∂r

(
r2 ∂u

∂r

)
dr + D

∫ r
i+ 1

2
ri

∂
∂r

(
r2 ∂u

∂r

)
dr

= D r2
i+ 1

2

∂u
∂r

∣∣∣
r

i+ 1
2

− D r2
i− 1

2

∂u
∂r

∣∣∣
r

i−

1
2

= D
h

(
r2
i− 1

2

ui−1 −

(
r2
i− 1

2

+ r2
i+ 1

2

)
ui + r2

i+ 1
2

ui+1

)
+ O(h2).

(10)

As for the two special cases i = 1, n, one has, respectively,

∫ r 3
2

r1
D ∂

∂r

(
r2 ∂u

∂r

)
≈

D
h

(
−(r2

3
2

− r2
1)u1 + (r2

3
2

− r2
1)u2

)

∫ rn

r
n−

1
2

D ∂
∂r

(
r2 ∂u

∂r

)
≈

D
h

(
−(r2

n − r2
n− 1

2

)un−1 + (r2
n − r2

n− 1
2

)un

)
.

(11)

For the RHS of Eq. (5), we use the midpoint quadrature to obtain

∫ r
i+ 1

2

r
i−

1
2

fr2dr = hr2
i fi + O(h3), 2 ≤ i ≤ (n − 1). (12)

For the special cases i = 1 and i = n, we have
∫ r 3

2

r1

fr2dr ≈
h

2
r2
1f1,

∫ rn

r
n−

1
2

fr2dr ≈
h

2
r2
nfn. (13)
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Let v(t) =
[
v1(t), v2(t), · · · , vn(t)

]T
be the dim-n column vector consisting

of the numerical solution nodal values. We obtain an ODE system

M
dv

dt
+ Sv = g, (14)

where S and M are the stiffness and mass matrices, respectively.

S =
D

h















r2
3
2

− r2
1 −(r2

3
2

− r2
1) · · · · · · · · ·

· · · · · · · · · · · · · · ·

· · · −r2

i−
1
2

r2

i−
1
2

+ r2

i+ 1
2

−r2

i+ 1
2

· · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · r2
n − r2

n−

1
2

−(r2
n − r2

n−

1
2
)















, (15)

M =
h

8





3r2
1 r2

2 0 0 · · · 0 0 0
r2
1 6r2

2 r2
3 0 · · · 0 0 0

0 r2
2 6r2

3 r2
4 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · r2
n−2 6r2

n−1 r2
n

0 0 0 0 · · · 0 r2
n−1 3r2

n




. (16)

Note that vector g corresponds to the source term.
The linear ODE system in (14) can be solved using the implicit Euler or

Crank-Nicolson methods. Let ∆t = T/m and 0 = t0 < · · · < tj−1 < tj <
· · · < tm = T be a uniform temporal partition. Let v(j) be the fully discretized
numerical solution at time tj . Then the implicit Euler discretization yields

M
v(j+1) − v(j)

∆t
+ Sv(j+1) = g(j+1), (17)

and hence

(M + ∆tS)v(j+1) = Mv(j) + ∆tg, j = 0, 1, · · · , (m − 1). (18)

After modification by boundary conditions, the above linear system can be solved
by a standard linear solver. This offers a well-defined time-marching scheme.

For better approximation accuracy of the numerical solution, we could also
use the Crank-Nicolson discretization

M
v(j+1) − v(j)

∆t
+ S

1

2

(
v(j+1) + v(j)

)
=

1

2

(
g(j+1) + g(j)

)
, (19)

which leads to another time-marching scheme,

(
M +

∆t

2
S

)
v(j+1) =

(
M −

∆t

2
S

)
v(j) +

∆t

2

(
g(j+1) + g(j)

)
, (20)

for j = 0, 1, · · · , (m − 1).
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5.2 Computation of Mass and Fluxes

For the above numerical schemes, we can compute (mass) fluxes at the two
radial ends ra and rb, which correspond to the interior and exterior shells for
the core-shell structure of spherical PLGA MPs/NPs.

At a typical time moment tj(j = 0, 1, · · · ,m), the numerical solution v(j)(r)
is a continuous piecewise linear polynomial determined by its nodal values. The
numerical total mass in the radial interval [ra, rb] is, by direct calculations,

Mj =
∑n−1

i=1

∫ ri+1

ri
v(j)(r)r2dr =

∫ ri+1

ri

(
v
(j)
i

ri+1−r

h
+ v

(j)
i+1

r−ri

h

)
r2dr

=
∑n−1

i=1

(
v
(j)
i ri+1 − v

(j)
i+1ri

)
1
3h

(r3
i+1 − r3

i )

+
∑n−1

i=1

(
v
(j)
i+1 − v

(j)
i

)
1
4h

(r4
i+1 − r4

i ), j = 0, 1, · · · ,m.

(21)

The outflow fluxes at rb and ra, (for j = 1, 2, · · · ,m) are respectively,

F b
j = −

D
2

(
v
(j)
Nr

−v
(j)
Nr−1

h
+

v
(j−1)
Nr

−v
(j−1)
Nr−1

h

)
r2
b ∆t,

F a
j = D

2

(
v
(j)
2 −v

(j)
1

h
+

v
(j−1)
2 −v

(j−1)
1

h

)
r2
a ∆t.

(22)

Since there is no source in this case, mass conservation for the numerical solution
takes the following form

Mj − Mj−1 = F a
j + F b

j , j = 1, · · · ,m. (23)

5.3 Nondimensionalization

The numerical solvers discussed in the previous subsection could produce simu-
lation results for release from single PLGA particle once the model parameters,
e.g., diffusivity D, the inner and outer radii ra, rb, are provided. For units of
parameters or variables, we follow [4]. See Table 3.

Table 3. Units of parameters/variables for spherical diffusion

Variables Units Meaning

D cm2 s−1 Diffusion coefficient

c mg/ml Concentration

ra, rb, r cm Radial positions

t s Time

For better performance of numerical simulations, we introduce new dimen-
sionless parameters and variables D̂, r̂, t̂, ĉ so that

D̂ =
D

D0
, t̂ =

t

T0
, r̂ =

r

rb

, ĉ =
c

C0
, (24)
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where D0, T0, C0 are chosen according to experiment data. Let H0 = (rb −ra)/rb

be the thickness of the polymeric shell. Then the nondimensionalized diffusion
problem takes the form






∂ĉ

∂t̂
= T0D0

r2
b

D̂
r̂2

∂
∂r̂

(
r̂2 ∂ĉ

∂r̂

)
, r̂ ∈ [1 − H0, 1], t̂ ∈ (0, 1],

Boundary conditions,
Initial condition.

(25)

The source term does not exist for drug release from PLGA particles.

6 Experimental and Numerical Results

Note that in vitro experiment data vary. For our experiments gentamicin encap-
sulated in PLGA particles, three sets of radii are recorded as follows.

– Case 1: ra = 0.7µm = 7.0 ∗ 10−5 cm, rb = 0.8µm = 8.0 ∗ 10−5 cm;

– Case 2: ra = 0.8µm = 8.0 ∗ 10−5 cm, rb = 1.0µm = 1.0 ∗ 10−5 cm;

– Case 3: ra = 1.8µm = 1.8 ∗ 10−4 cm, rb = 2.0µm = 2.0 ∗ 10−4 cm.

This indicates the relative thickness H0 = (rb − ra)/rb is in the range 0.10–
0.20. The observation time T0 could be chosen as 1 hr–2 hrs, namely, 3600–7200 s,
to focus on the early (burst) stage.

The diffusivity parameter D is difficult to obtain. An empirical formula was
proposed in [13] based on data fitting and knowledge from series solutions of
similar problems. For the in silico approach, one may consider a baseline value
for D0 and vary it up or down for several magnitudes in numerical simulations.

For our five in vitro experiments with gentamicin encapsulated in PLGA
particles, we record the accumulative percentage of gentamicin released versus
time. As shown in Table 4, about 20% of total gentamicin was released after
about 2 h; about 60% of total gentamicin was released after about 10 h.

Table 4. Accumulative percentage of gentamicin release in five experiments

PLGA/DCM (mg/ml)

concentration

13.30 15.0 16.7 18.3 20.0

Time (h) Accumulative % of gentamicin released

1 11.54% 12.86% 15.77% 9.92% 9.41%

2 21.71% 22.29% 22.73% 19.82% 17.92%

4 26.03% 28.15% 29.81% 24.56% 23.51%

6 31.04% 31.68% 32.25% 30.47% 30.88%

8 36.11% 37.99% 41.43% 35.09% 33.58%

10 44.34% 46.11% 50.46% 43.37% 42.97%
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The raw data suggests that we should focus on the 1st hour for a potential
stage of burst. Following the discussion in [14, Fig. 4], we fit the model “reservoir
devices with constant activity source” (Eq. (7) therein) using our experimental
data for the 1st 60 min with 2-min sampling. Linear regression yields (Fig. 7)

Mt = 4.2 ∗ 10−3 t. (26)

Fig. 7. Experimental data fitting for gentamicin release from PLGA particles. (a) Raw
data showing the accumulative concentration of released drug during the 1st 90min;
(b) The red line represents the fitting model Mt = 4.2∗10−3 t for t ∈ [0, 60] min. (Color
figure online)

7 Concluding Remarks

This paper investigates mathematical modeling and numerical simulations for
drug release from PLGA particles as our exploratory efforts in this interdisci-
plinary approach. Based on examination of data obtained from in vitro experi-
ments, our focus is placed on modeling the early stage of release with assumptions
of no swelling of the porous shell, homogeneity of the shell, and the perfect sink

condition, a radial direction diffusion equation is adopted. Finite volume schemes
have been developed for this model. Matlab code modules along with in silico

results will be incorporated in our code package DarcyLite [8].
Due to the pores on the polymeric shells of PLGA MPs/NPs, a time-

dependent convection-diffusion equation would be more suitable for modeling
the drug release process. This is currently under our investigation and will be
reported in our future work.

As drug release proceeds, the porous shell is subject to swelling and eventually
degrades. Mathematical modeling and numerical simulations for degradation are
more challenging. These are under our investigation also.

Simulations of drug release from PLGA MPs/NPs using Molecular Dynam-
ics (MD) seem too expensive and hence will not be our pursuit. Our goal is
to develop efficient simulation code modules that can run on laptop or low-
configuration desktop computers. These code modules will be based on the math-
ematical equations that characterize transport through porous media.
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