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Uncovering the mechanism for aggregation
in repeat expanded RNA reveals a reentrant
transition

Ofer Kimchi 1 , Ella M. King 2 & Michael P. Brenner 2,3

RNAmolecules aggregate under certain conditions. The resulting condensates
are implicated in human neurological disorders, and can potentially be
designed towards specified bulk properties in vitro. However, the mechanism
for aggregation—including how aggregation properties change with sequence
and environmental conditions—remains poorly understood. To address this
challenge, we introduce an analytical framework based on multimer enu-
meration. Our approach reveals the driving force for aggregation to be the
increased configurational entropy associated with the multiplicity of ways to
form bonds in the aggregate. Our model uncovers rich phase behavior,
including a sequence-dependent reentrant phase transition, and repeat parity-
dependent aggregation. We validate our results by comparison to a complete
computational enumeration of the landscape, and to previously published
molecular dynamics simulations. Our work unifies and extends published
results, both explaining the behavior of CAG-repeat RNA aggregates impli-
cated in Huntington’s disease, and enabling the rational design of program-
mable RNA condensates.

RNA molecules form structures through base-pairing interactions
between complementary regions. Frequently, a given region of anRNA
molecule will be complementary both to another region on the same
molecule as well as to a different RNA molecule. How is the competi-
tion between forming intra- and inter-molecular contacts decided?

Predicting the outcome of this competition is a major open
question, affecting a wide swath of both in vivo and in vitro phenom-
ena. The effects of this competition are particularly stark in the context
of biological condensates, in which RNA–RNA interactions play a
major, largely understudied, role1–6. While typical condensates often
involve RNA–protein contacts, purely RNA-based aggregation phe-
nomena have been observed both in vitro and in vivo for certain
transcripts associated with repeat expansion disorders7.

The expansion of repeats in certain sections of DNA has been
implicated in a significant number of (primarily) neurodegenerative
disorders including Huntington’s disease, myotonic dystrophy, and
Fragile X syndrome8–10. While the proximate cause of many of these

disorders is the effect of the expansion on the protein sequence,
these expansions can lead to effects at the level of the RNA as
well11–17, including an aggregation transition7,18. In particular, RNA
containing CAG or CUG repeats were found by Jain & Vale to phase
separate depending on the number of repeats present in each
molecule, led by GC stickers binding to one another7. Since all GC
stickers are self-complementary, it is not immediately clear what
leads RNAmolecules in certain parameter regimes to form inter- vs.
intra-molecular contacts at different rates. Aggregation was
observed when the number of repeats per strand exceeded ~30,
roughly the same number of repeats leading to diseases in humans7.
This phenomenon was also observed and further studied in mole-
cular dynamics (MD) simulations of the system by Nguyen et al.19.
These simulations were able to explore the molecular details of the
aggregation transition, at the cost of each simulation (at a different
concentration or number of repeats per strand) requiring ~3months
of supercomputer time.
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Current models are insufficient to explore the properties of the
aggregation transition demonstrated by these studies. State-of-the-art
models of associative polymers either do not include a competition
between intra- and inter-molecular binding (as ismore natural for rigid
proteins and for heterotypic interactions) or (erroneously) assume it
has no qualitative effects on the resulting system20–22.While intra-chain
interactions are typically ignored, exceptions do exist. These include
Dobrynin’s 2004 study extending the Flory–Stockmayer approach to
include intra-chain associations23, and a recent publication by Weiner
et al. which found that self-bonds play a crucial role in determining
phase behavior in a lattice system with heterotypic binding motifs of
varying lengths24.

Here, we derive an analytical model to describe a system of
polymers with self-complementary stickers. Eschewing mean-field-
theory approaches that have dominated the field, we employ a
multimerization-based framework that predicts the entire multi-
merization landscape in addition to the phase behavior, and thus
naturally and explicitly considers the competition between intra- and
inter-molecular contacts25. Quantitative consideration of this compe-
tition reveals that configurational entropy, arising from the multi-
plicity of ways to form bonds, is the driving force for aggregation in
this system. Mapping out the complete phase diagram, we find that as
a result of the competition between intra- and inter-molecular bonds,
the system exhibits a tunable reentrant phase transition as a function
of sequence or temperature. With very strong stickers (or low tem-
peratures) the polymers fold into stable monomers and dimers, and
are more likely to form aggregates at intermediate sticker strengths.
We furthermore find that, for long enough linkers that enable adjacent
stickers to bind, the parity of the number of stickers per strand affects
not only the dimerization transition but the large-scale aggregation
behavior as well. We validate our results by comparing them to a
computational model that enumerates the complete landscape of
intra- and inter-molecular structures that the RNA can form, and by
comparing them to the results of the Jain & Vale and Nguyen et al.

studies7,19. Our work provides a unified framework to explain both
dimerization and aggregation phenomena in CAG repeat systems17,19

and extends these to arbitrary sequences, temperatures, and con-
centrations, thus setting the stage for the construction of novel
materials and new techniques based on programmable RNA
condensates.

Results
Equilibrium behavior is predicted by an analytical model
We consider a nucleic acid sequence comprised of n identical stickers
(Fig. 1a). The stickers are separated by n−1 equally spaced linkers that
do not interact with the stickers. Each linker consists of l nucleotides.
Stickers are self-complementary and bind through base pairing inter-
actions, such that each sticker can be bound to atmost one other. Each
bonded sticker has a free energy contribution of Fb; however, bonds
that create closed loops also have an entropic costΔSloop that depends
on the loop length lloop. This is because nucleotides comprising a
closed loop (such as a hairpin, internal, or multi-loop) are constrained
in the conformations they can adopt. A simple model treating
unbound nucleotides as a polymer random walk estimates that the
entropic cost of forming loops scales logarithmically with the loop
length (see the “Methods” section)26,27. Assuming a characteristic loop
length leff, the effective strength of the sticker interactions is
F ≡ Fb−TΔSloop(leff) (see the “Methods” section).

In this work, we are concerned with the behavior resulting from
such sequences interactingwith one another. Two stickers that bind to
one another may be on the same strand or on two different strands.
Moreover, many strands can be connected to one another through a
chain of suchbonds.We call a group ofm strands connected through a
series of intermolecular bonds a multimer of size m, or an m-mer.
There are many ways a multimer of sizem can form: any combination
of bonds that occur either intra- or inter-molecularly within a group of
m strands, such that each strand is reachable from every other by
following a series of intermolecular bonds, is anm-mer.

Fig. 1 | Model overview. a Model procedure: A repeat RNA or DNA sequence is
converted to a sticker-spacer model, with stickers comprised of self-
complementary regions. Possible structures, including multimers, are then enum-
erated by either computational or analytical methods. Partition functions are then
calculated, leading to a complete description of the equilibrium behavior of the
system, including the equilibriumconcentrations ofmultimers. The system is in the
aggregation regime when concentrations remain constant or increase with multi-
mer size. b Regimes of linker length: The system can exhibit qualitatively different

behavior depending on the length of the inert linkers. For long enough linkers,
adjacent stickers can bind; for short linkers, they cannot because of hairpin size
constraints. Structures visualized using forna37. c Regimes of sticker strength: For
strong stickers, (almost) all of the sticker bonds are typically satisfied; for weak
stickers almost none are; for intermediate strengths, the number of sticker bonds
typically satisfied depends on a combination of the sticker strength and the mul-
tiplicity of structures in which a given number of stickers is bound.
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We consider a system of M strands present in a container of
volume V, such that their concentration is ctot =M/V. We take the
thermodynamic limit ofM and V going towards infinity with their ratio
staying constant. We seek to predict how frequently multimers com-
prised of m strands form in this system, and how this frequency
changeswithm.We define cm as the concentration ofmultimers of size
m, such that

ctot =
X1
m= 1

mcm: ð1Þ

There are two possible regimes for the system: For large m, cm
either decreases or increases with m (Fig. 1a). In the former case, the
system is in the dilute phase, with only small multimers typically
forming. In contrast, if cm increases with m, large aggregates of the
order of the system size dominate the landscape. The aggregation
transition is defined as the crossover point between the regime in
which very large multimers are suppressed, to that in which they are
dominant.

In equilibrium, cm is proportional to the ratio of the partition
functionofm-mers,Zm, to thepartition functionofmmonomers, ðZ 1Þm
(see the “Methods” section). The partition functions are comprised of
three terms:

Zm = e�βðm�1ÞΔF X
Nb

gðn,m,NbÞe�βFNb : ð2Þ

Here, the multiplicity factor g(n,m,Nb) represents the number of dis-
tinct ways tomakeNb bonds connectingm identical strands, each with
n stickers. ΔF is the effective free energy cost of multimerization (see
below) and β = 1/kBT is the inverse thermal energy, where T is tem-
perature. g can be calculated exactly (see the “Methods” section and
Supplementary Note 1) and is qualitatively different depending on
whether the linkers are long enough to allow adjacent stickers to bind
to one another or not (Fig. 1b).

In order to fit experimental data on the prevalence of multiple
nucleic acid strands binding to one another in vitro, nucleic acid
models include a free energy penalty formultimerization. This leads to
the term (m−1)ΔF in Eq. 2. This penalty is motivated by the enthalpic
and entropic costs of nucleic acids binding, including ion effects and
the translational and orientational entropies lost upon association28–30.
This penalty scales linearly with the number of strands in a multimer,
such that each additional strand added to a multimer carries the same
penalty31. See the “Methods” section and Supplementary Note 2 for
further discussion.

The sum in Eq. 2 can be approximated by its dominant term (a
saddlepoint approximation). There are three regimes to consider,
corresponding to strong, intermediate, and weak binding, in which
the sum in Eq. 2 is dominated by large, intermediate, and small
values of Nb, respectively (Fig. 1c). The value of Nb =N

?
b that dom-

inates the sum is that which maximizes a combination of the bond
energy F and configurational entropy g. For example, the strong
binding regime is characterized by bond energy considerations
overwhelming configurational entropy effects, while the inter-
mediate binding regime is characterized by a degree of balance
between the two.

The model is validated by comparing to exact computational
enumeration and previously published results
To validate the analytical model, we constructed a dynamic
programming-based computationalmodel that exactly enumerates Zm
in polynomial time (Supplementary Note 5.2). The analytical model
described above makes three primary approximations compared to
the computational model: (1) it assumes a constant entropy for all
loops; (2) it considers only structures with a given number of bondsNb

(with a single next-order correction term); (3) it uses an approximate
form for g(n,m,Nb) (see the “Methods” section). The computational
model makes none of these approximations, considering all (non-
pseudoknotted; see Supplementary Note 5.1) structures that can form
and including a loop-length-dependent loop entropy term.

Nevertheless, the analytical model closely approximates the exact
computational model, as demonstrated in Fig. 2. The analytical model
requires only one fitting parameter: the normalized effective loop
length lfiteff (see the “Methods” section). That parameter is fit separately
to the regimes allowing and disallowing neighbor binding. Impor-
tantly, it is fit only once for each regime—to the monomer partition
function with strong binding—and not separately for different values
of n, m, or Fb. We demonstrate quantitative agreement between the
analytical and computational models in Fig. 2, and in Supplementary
Fig. 5.

We further sought to compare the model’s predictions to pre-
viously published results, namely the MD simulations performed by
Nguyen et al.19. Those simulations examined 64 CAG-repeat RNA
strands with varying numbers of repeats per strand and of RNA con-
centrations. We considered the same system of CAG sequences, using
the value Fb = −10 employed in the MD simulations and no fitting
parameters beyond the aforementioned single parameter fit to the
computational model. We enumerated the monomer and dimer

a

b

Fig. 2 | Analytical model demonstrates good agreement with computational
results. a As a function of number of stickers per strand: Partition functions and
partition function ratios are plotted with respect to n using the exact computa-
tional (solid) and simplified analytical (dotted) models. A single fitting parameter
was used for the analytical models, fit to themonomer partition function (top row,
blue). The slight discrepancy in the analytical prediction for large m and n dis-
allowing neighbor bonds is primarily due to the heuristic approximation of
g(n,m,Nb) from g(nm, 1,Nb) used. b As a function of binding strength: The ratio of
the pentamer partition function to that of five monomers is plotted; similar results
hold for any othermultimer chosen. The analyticalmodelpredictions are separated
into three regimes: strong (green), intermediate (yellow), and weak (red) binding.
Vertical dashed lines separate where different regimes are expected to provide the
best agreement and are calculated as the values of Fb such that N?

b =N
max
b � 1 and

N?
b =N

min
b + 3. A single fitting parameter—the same one from panel (a)—is used.

Article https://doi.org/10.1038/s41467-023-35803-x

Nature Communications |          (2023) 14:332 3



partition functions computationally, and used the analytical model to
extrapolate up to m = 64, the number of strands used in the MD
simulations. The extrapolation was performed by fitting the single
parameter to our computational results for m = 1, and using

Supplementary Eqs. S38 and S48 to obtain the results for m > 2. The
primary difference between our model predictions and those of MD
simulations is that the former is purely equilibrium, while the latter is
decidedly not so, even after significant simulation time. (A secondary
difference is that the former considers an infinite system of given
concentration, while the latter considers a finite number of strands).

We plot the propensity of the system to form aggregates as a
function of n and ctot in Fig. 3. Following ref. 19, we define multimers of
size 2 ≤m ≤ 4 as oligomers; however, this ensemble is dominated by
dimers, with trimers and tetramers forming at very low fractions. We
find that for certain concentrations, the system forms either mono-
mers or dimers depending on the parity of n, in agreement with
experimental results17; however, this parity does not significantly affect
aggregation. We plot the results of Nguyen et al. on top of our pre-
dictions as colored points, finding excellent quantitative agreement
between the two.

A reentrant phase transition governs aggregation as a function
of sticker strength
For very low temperatures or strong stickers, the ensemble of multi-
mers is dominated by small structures such as dimers, in which all
bonds can be satisfied. However, for intermediate sticker strengths,
the configurational entropy gain of having a few unsatisfied bonds
exceeds the energetic cost. This configurational entropy grows with
multimer size, driving the system to aggregate. Finally, for very weak
stickers or high temperatures, the structures melt. This phenomenon
corresponds to a reentrant phase transition. We demonstrate this
transition in our computational model in Fig. 4, enumerating up to
m = 15. As shown in the figure, the twodilute phases at strong andweak

Fig. 3 | Landscape of CAG repeats. The equilibrium fraction of strands folded into
monomers, oligomers (2–4-mers; primarily dimers), and aggregates are shown and
compared to Nguyen et al.’s molecular dynamics (MD) simulation results. As the
Nguyen et al. simulations used a sticker strength of Fb = −10 kcal/mol19, we used the
same sticker strength, with no fitting parameters to the simulations whatsoever.
The MD simulation results are plotted as points in the aggregates panel, with blue
points representing conditions forwhich aggregationwas found, and redpoints for
those in which it was not. We note that each of these points is a separate simulation
taking 3 months of supercomputer time19, in comparison to our analytical model
for the entire landscape. In this system, neighbor binding is disallowed, monomers
and dimers are in the strong binding regime, and multimers of m ≥ 3 are in the
intermediate regime. Aggregation is predicted for large concentrations and num-
bers of stickers per strand. Dimerization is less common as n increases, while
dominant for small values of n, especially odd values.

Fig. 4 | A reentrant transition as a function of sticker strength. Enumerating the
exact partition functions up to m = 15 with the computational model, we find a
reentrant transitionwith respect to Fb inboth the regime allowingneighborbinding
(panel a; n = 8, l = 4, ctot = 8mM is shown) and the regime disallowing neighbor
binding (panel b; n = 8, l = 1, ctot = 4mM is shown). The high concentration used is a
result of the lack of Mg2+ considered explicitly in the model; see the “Discussion”
section. Aggregates (defined asm ≥ 5-mers in accordancewith ref. 19) aremost likely
to form for intermediate sticker strengths, since very strong stickers lead to stable
monomers (red) or dimers (dimers, trimers, and tetramers comprise the orange
curve). Although aggregates are suppressed in both strong (green background;
left) and weak (gray background; right) binding regimes, the molecular structures

of monomers and dimers in these regimes are quite different: in the former, all or
nearly all bonds are satisfied in a typical molecule, while very few bonds are typi-
cally satisfied in the latter regime. For this reason, the strong binding regime of the
short linker case (i.e. disallowing neighbor binding) is predicted to contain a large
concentration of dimers (which can satisfy all sticker bonds), and few monomers
(which cannot). In the long linker case (i.e. allowing neighbor binding), for even
values of n, monomers are also able to satisfy all bonds and are thus present at high
concentrations in the strong binding regime. Top axis shows example sequences
for RNA (r) and DNA (d), and their sticker strengths as calculated by the nearest-
neighbor model, enabling a direct match from sequence to model predictions29,30.
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binding regimes are quite different from one another. In the strong
binding regime, (almost) all bonds are satisfied in a typical structure,
mainly through intramolecular interactions or dimerization. In the
weak binding regime, (almost) no bonds are typically satisfied.

We next explored whether this reentrant transition was merely a
small m effect. We employed the analytical model, for which we can
consider arbitrarily large values ofm. Evenwhen consideringm→∞, we
find a reentrant transition in the threshold concentration above which
the system is expected to form aggregates, ctotthresh (see Supplementary
Note 4), as shown in Fig. 5a. This transition is especially prominent for
short linkers that disallow neighbor binding since the configurational
entropy of dimers in this regime is quite limited (regardless of n, only
one dimer configuration can satisfy all stickers). For longer lin-
kers (allowing neighbor binding), this transition is most pronounced
for even values of n for which monomers can satisfy all their own
bonds, although it is apparent also for odd n, for which dimers can
satisfy all bonds.

The behavior shown in Fig. 5 is in agreement with what we would
expect from configurational entropy concerns alone (Supplementary
Fig. 6). That the propensity of the system to aggregate occurs at more
negative values of βF, and is more pronounced, for the case of dis-
allowing neighbor binding than for the case of allowing neighbor
binding, is predicted by the different forms of the configurational
entropy in these two regimes. Similarly, larger values of n increase the
propensity of the system to aggregate because of their effect on
configurational entropy, rather than any enthalpic considerations
(Supplementary Fig. 6).

Discussion
In this work, we have considered a simple model of competition
between intra- and inter-molecular binding: a polymer with n identical
evenly spaced self-complementary stickers. We have shown that the

system is characterized by three parameters: n, the number of repeats
per strand; βF, the effective strength of each bond accounting for the
loop entropy cost; and ctote−βΔF, a dimensionless concentration that
accounts for multimerization cost.

Our model computes the prevalence of all possible multimers that
can form, considering both intra-strand and inter-strand contacts. Our
framework quantitatively recapitulates previously published MD simu-
lation results, each data point of which required 3 months of super-
computer simulation time19. We substantially extend these results to
arbitrary sequences, temperatures, and concentrations, and to arbi-
trarily large multimers (i.e. aggregates) in an analytical framework.

In this system, aggregation is not necessarily predicted as the
regime where the most possible bonds are satisfied, as bonds can be
satisfied by intramolecular as well as by intermolecular contacts.
Instead, aggregation is predicted by the relative stability of the
aggregate compared to smaller multimers. The stability of each
structure is a function of three terms, as seen in Eq. 2: (1) the number of
stickers bound (each contributes F to the free energy); (2) the number
of strands in the structure (each contributes μ +ΔF, where μ is the
chemical potential); and (3) the configurational entropy of the struc-
ture. This last term contributes � logðgÞ=β to the free energy, where g
is the number of ways to satisfy the given number of bonds with the
given number of strands in the structure.

This last term is the driving force for aggregation in this system.
Aggregates are no more stable than dimers in terms of the first term,
the possible number of stickers bound (both are able to satisfy all
stickers). Aggregates are further penalized by the second term, the
multimerization cost. If these two termswere the only terms in the free
energy, we would not see any aggregates. It is the third term, the
configurational entropy, that drives aggregation. Larger multimers are
able to satisfy their bonds in many more configurations than a corre-
sponding collection of smaller multimers, leading to an enormous

Fig. 5 | Phase diagram. a Reentrant transition in the analyticalmodel: The analytical
model enables enumeration up to arbitrarily large m, and reveals a reentrant
transition. With high enough concentrations of RNA, aggregation is always possi-
ble; however, for certain concentrations, the analytical model predicts the system
will undergo a reentrant phase transition in agreement with computational results
(Fig. 4). Panel a shows slices for certain values of n through the complete phase
diagram shown in panel (b). Parity of n affects aggregation phenomena for the
system allowing neighbor binding (LHS). b Complete phase diagram: The complete
phase diagram as predicted by enumeration up to arbitrarily large m with the

analytical model is displayed. The normalized concentration needed to achieve
aggregation is displayed as a function of n and βF. The reentrant transition is
especially apparent for short linkers (RHS) as well as for long linkers with even
values of n (LHS). Systems with long linkers typically require higher concentrations
to aggregate than those with short linkers, since monomers are typically more
stable in the former case. Discontinuities are due to the model’s approximation of
an abrupt transition from the strong to intermediate binding regimes for mono-
mers. ctotthresh ismade dimensionless by dividing by themultimerization cost eβΔF (see
Supplementary Note 2).
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entropic benefit in forming aggregates. This has been described as a
competition between configurational and translational entropies in
other contexts24,32. In our system, the benefit due to g peaks when
most, but not all, stickers are satisfied (Supplementary Fig. 6).

This behavior leads to a reentrant phase transition. For −βF≫ 1,
the number of bonds satisfied is the primary consideration. Dimers are
able to satisfy all their bonds, and themultiplicity benefit of aggregates
is not sufficiently large when all bonds are satisfied, suppressing
aggregation in this regime. Aggregation is also suppressed for very
positive values of βF, which as a result of loop entropy costs can occur
evenwhen the sticker binding itself is favored (i.e. Fb < 0). However, for
intermediate values of βF—when dimers prefer having some bonds left
unsatisfied—the configurational entropy benefit of forming aggregates
is overwhelming. Aggregates form at 1–2 orders of magnitude lower
concentrations in this regime than in the strong binding regime.

The predicted aggregation transition of the system is completely
described in Fig. 5b. We plot the (dimensionless) threshold con-
centration ctotthresh as a function of n and βF. Aggregation is more pre-
valent for short linkers (disallowing neighbor binding) than for longer
linkers (allowing neighbor binding). For short linkers, small structures
are quite constrained in the number of ways they can satisfy all of their
bonds, leading the differential configurational entropy benefit of
aggregates to grow quite large. For longer linkers, smaller structures
are more stable since the corresponding multiplicity is much larger.
For similar reasons, the reentrant phase transition ismost pronounced
with short linkers. For long linkers, even values of n demonstrate a
more pronounced reentrant transition than odd values, since their
competition is betweenmonomers—with nomultimerization penalties
—and aggregates. In all other cases, the reentrant transition is primarily
due to competition between dimers and aggregates. For short linkers,
the parity of n is found in our model to affect monomerization vs.
dimerization in agreement with previously published results17, but has
almost no effect on aggregationproperties. The reason is that for short
linkers and strong stickers, dimers behave similarly regardless of the
parity of n: both odd and even n can form a dimer satisfying all bonds
with only one configuration.

Although there is a qualitative difference between short linkers of
l< 3 and long linkers of l≥ 3, within each regime, increasing the linker
length leads to larger values of ΔS and weaker binding. Decreasing the
persistence length, for example by changing ionic conditions, would be
expected to lead to a similar result. These effects and the predicted
phase diagram as a whole (Fig. 5b) could be at least qualitatively tested
experimentally by replicating the Jain & Vale experiments for multiple
sequences with different sticker strengths and linker lengths and mea-
suring the change in the concentration needed to form aggregates for
the different conditions. The available published data is in good agree-
ment with our predictions, in that larger values of n show a greater
propensity for aggregation in both experiments and our model
predictions7.

Our results bear similarities to the so-called “magic number effect"
whereby for heterotypicmixtures, aggregation is suppressedwhen the
number of binding sites in one species is a small integermultiple of the
other’s32,33. In such systems, small stable clusters can form with all
bonds satisfied. In our homotypic system, dimers can always exhibit a
magic number-like effect for strong stickers, and in the regime in
which neighbor binding is allowed, for even n, monomers can as well.
In fact, a weak reentrant transition has been observed in some simu-
lations of the magic number effect in heterotypic systems (see Fig. 3A
of ref. 34). Our results suggest that a reentrant transition may be a
generic feature of themagic number effect and that the strength of the
reentrant behavior may decay the more molecules are involved.

Our model has several limitations. To make the expression ana-
lytically tractable, our formalism makes a heuristic approximation for
the multimer multiplicity factor g in the regime disallowing neighbor

bonds. For similar reasons, we were unable to analytically explore the
weak binding regime, applicable for systems where the loop entropy
cost of forming stickers outweighs their energetic benefit. A limitation
of our model’s physiological applicability is that we did not explicitly
consider magnesium. Magnesium can act as a bridge between nega-
tively charged RNA molecules such that even in the absence of base
pairing, Mg–RNA mixtures can form aggregates18,35. Experimental
results thus rely on magnesium aiding the aggregation process7.
However, the MD simulations to which we compare here do not
explicitly consider magnesium19 and the high concentrations required
for the system to aggregate (e.g. Fig. 3) are the result. Tofirst-order, the
effects of magnesium could be accounted for in our model as mod-
ifying ΔF (along with Fb), which effectively modifies the concentra-
tions, as concentrations only enter themodel as ctote−βΔF. For clarity, we
opted to leave ΔF unmodified; therefore, the high concentrations we
consider should be significantly decreased for a system including
magnesium.

While non-equilibrium effects are relevant in these systems, our
analysis is entirely an equilibrium prediction. Indeed, kinetic trapping
appears to be the biggest experimental hurdle to testing our reentrant
phase predictions. At the same time, the results of decidedly out-of-
equilibrium MD simulations19 show excellent quantitative agreement
with our equilibrium predictions (Fig. 3). For this reason, it is likely that
out-of-equilibrium effects are not the dominant factor in repeat RNA
aggregation behavior. In vivo RNA aggregates are even more fluid-like
and dynamic than in vitro aggregates, for reasons that remain largely
unclear but appear to be the result of active enzymes in the cell7. Future
work may consider how such active processes affect the aggregation
properties, and the connection between in vivo non-equilibrium steady
states and the equilibrium steady state discussed here.

Given the radical simplicity of themodel used here, there is a host
of extensions to consider. For example: How does this model interact
with complex coacervation, as when including polycations in the
solution? How does a polymer pattern with multiple orthogonal
stickers behave?Howdomultiple different polymers,with both cis and
trans binding, interact with one another? And how do physiological
RNA molecules use the principles explored here to control their
aggregation properties?

Our work demonstrates that the competition between intra- and
inter-molecular binding can lead to remarkable and (perhaps) unin-
tuitive behavior. Our results mapping the control knobs for this phase
behavior create a framework for the study of RNA–RNA interactions in
in vivo biological condensates and set the stage for the construction of
novel materials and new techniques based on programmable RNA
condensates.

Methods
Partition functions determine equilibrium behavior
Weconsider a nucleic acid sequence comprised ofn stickers separated
by n−1 linkers (Fig. 1a). Stickers are self-complementary and bind
through base pairing interactions, such that each sticker can be bound
to at most one other sticker. The strength of the sticker interactions,
Fb, is determined by the sequence of the stickers; for example, an RNA
GC sticker with A nucleotide linkers in standard conditions has
Fb = −6.4 kcal/mol (or, for DNA, −1.4), while a GCGC sticker has
Fb = −12.2 kcal/mol (−5.8 for DNA). These are calculated using the
classic nearest-neighbor model for RNA or DNA base-pairing
interactions29,30. The linkers, each of which is of length l, are inert.

We seek to predict how frequently multimers comprised of m
strands form, and how this frequency changes with m. Aggregation
occurs in the parameter regime where the concentration of multimers
comprised ofm strands, cm, increases withm. cm is defined as the sum
of all structures that have m strands connected by base pairing inter-
actions. In equilibrium, cm is proportional to the partition function of
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m-mers, Zm:

Zm =
X
σm

e�βFðσmÞ: ð3Þ

Here, σm is a structure comprised ofm strands linked by base pairing,
including potential intramolecular bonds; and β = 1/kBT where kB is
Boltzmann’s constant and T is the temperature measured in Kelvin.
F(σm) is the free energy of the structure, given by29

FðσmÞ= FbNbðσmÞ+ ðm� 1ÞΔGassoc � T
X
loops

ΔSloopðlloopÞ, ð4Þ

whereNb(σm) is the number ofbonds in the structure, andΔGassoc is the
hybridization penalty associated with intermolecular binding (dis-
cussed below). Each closed loop of length lloop leads to an entropic
penalty of ΔSloop(lloop), associated with the decrease in three-
dimensional configurations of the single-stranded region of the loop
compared to a free chain, given by26,27

ΔSloopðlloopÞ= kB ln vs +
3
2
ln

3
2πb lloop

 !" #
, ð5Þ

where vs is the volume within which two nucleotides can bind, and b is
the persistence length of single-stranded regions. This equation treats
the single-stranded loop as an ideal chain. An excluded volume term
vm2 can be added to Eq. 420 but we assume v is small enough that this
term is negligible except for very large m (see Supplementary Note 4
for further discussion).

Given the partition functions Zm for all m-mers, we can calculate
the equilibrium concentrations ofm-mers, cm, for allm, by solving a set
of m simultaneous equations. Zm affects physical observables such as
cm only through the ratio Zm=Z

m
1 , describing, in essence, the pro-

pensity ofm strands to form anm-mer as opposed tommonomers25,31:

cm =
Zm

Zm
1
cm1X

m

mcm = ctot
ð6Þ

where the concentrations aremade dimensionless by normalizing by a
reference concentration (see Supplementary Note 2) and ctot is the
total concentration of strands added to solution. In short, this equa-
tion arises from cm = Zmemβμ where μ is the chemical potential and the
fugacity eβμ = c1/Z1 in equilibrium25.

Solutions to Eq. 6 have two typical regimes. In one, cm decays
exponentially with m. On the other, cm grows with m (until excluded
volume effects begin to dominate). The latter regime corresponds to
aggregation (Fig. 1a).

An analytical model for the partition functions
The calculation of Zm is too computationally intensive to perform
directly, by explicitly enumerating all possible structures that can
form, as the number of possible structures grows exponentially with n
and m. In order to predict phase behavior for a wide range of
sequences and experimental conditions, we develop an analytical
framework for computing Zm. This framework enables us to search a
broad parameter space and tune phase behavior in the system. We
validate our analytical model against a computational model that
exactly calculates Zm with a dynamic programming approach (Sup-
plementary Note 5.2) thus providing an exact baseline model for
comparison.

We rely on one major assumption to enable an analytical
approach: we approximate the loop entropies as independent of loop
length; or equivalently, we assume that the model is dominated by

loops of one characteristic length, leff. This length depends on the
length of the linkers in the system, l. This approximation is reasonable
because of two factors. First, because of the logarithmic dependence
of ΔSloop on loop length (Eq. 5), moderate heterogeneities in loop
length lead to only small differences in ΔSloop. Second, because the
typical number of loops in a multimer scales linearly with the size of
the multimer (see Supplementary Note 3), we expect similar levels of
heterogeneity in loop length independent of the size of the multimer.
This approximation is expected to break down for very large n and
weak binding (Fb > 0), in which case the few loops that typically form
will likely have a broad distribution of lengths; this regime is not
considered here.

With this approximation, for monomers, each bond provides
constant free energy of F = Fb − TΔS, where ΔS =ΔSloop(leff). Since the
number of loops is given by Nb−(m−1), we also define
ΔF ≡ (ΔGassoc + TΔS). This quantity enters Eq. 6, such that it allows us to
redefine a rescaled concentration ce−βΔF (also, see Supplementary
Note 2).Without rescaling concentration, the partition function Zm can
thus be written as

Zm = e�βðm�1ÞΔF X
σm

e�βFNbðσmÞ

= e�βðm�1ÞΔF X
Nb

gðn,m,NbÞe�βFNb
ð7Þ

where the multiplicity factor g(n,m,Nb) represents the number of
distinct ways to make Nb bonds connecting m identical strands, each
with n stickers. This is identical to Eq. 2.

Thismultiplicity factor ismost straightforward to consider for the
case of monomers. We make the approximation that the contribution
of pseudoknots to the partition function is negligible due to their high
entropic cost (see Supplementary Note 5.1). Our goal is therefore to
calculate the number of ways to form non-pseudoknotted structures
containing Nb bonds given a strand of n stickers. For monomers, the
multiplicity can be calculated exactly. However, the result depends on
whether adjacent stickers are able to bind to one another or not. For a
long enough linker length (≥3 nts for the case of RNA), neighboring
stickers can bind; for shorter linker lengths (as, for example, for CAG
repeats), they cannot (see Fig. 1b). As derived in Supplementary
Note 1.1,

gðn, 1,NbÞ=
n!

ðn�2NbÞ! ðNb + 1Þ!Nb !
if adjacent stickers can bind

ðn�NbÞ! ðn�Nb�1Þ!
ðn�2NbÞ! ðn�2Nb�1Þ! ðNb + 1Þ!Nb !

otherwise

8<
:

ð8Þ

The top line (allowing neighbor binding) is simply calculated as

the product of two factors: n
2Nb

� �
(the number of ways to choose

2Nb bound stickers from n possibilities); and the Catalan number
CNb

(the number of non-pseudoknotted ways to construct bonds

between the chosen stickers). The bottom line (disallowing
neighbor bonds) requires a brief additional calculation to derive
(Supplementary Note 1.1).

Calculating g(n,m,Nb) from g(n, 1,Nb) also dependsonwhether or
not adjacent stickers can bind (see Supplementary Note 1.2). While the
exact calculation requires large numbers of sums with no closed-form
solution, a close approximation is given by

gðn,m,NbÞ≈
gðnm, 1,NbÞ

m if adjacent stickers can bind
gðnm+αðm�1Þ, 1,NbÞ

m otherwise

(
ð9Þ

where α ≈0.42, representing an additional heuristic for the case of
disallowing neighbor binding compared to the case of allowing such
binding. The value of α =0.42 used is a heuristic estimate that is an
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especially good fit to the strong interaction regime, and other
approximations may improve it (see Supplementary Fig. 1). The factor
of 1/m corrects for overcounting due to symmetry (Supplementary
Note 1.2.3; see also Supplementary Fig. 2)36.

Given expressions for the multiplicity factor, the partition func-
tions (Eq. 7) are now in principle computable. However, the full sum in
that equation remains too computationally intensive to be useful. We,
therefore, turn to a saddlepoint approximation: sums of exponentials
are typically dominated by their maximum terms, and Eq. 7 is no
exception.

In order to find the maximum term, there are three cases to
consider, corresponding to physicallymeaningful distinctions (Fig. 1c).
In one regime, the “strong binding" regime, the ensemble is dominated
by structures that maximize the bond energy, and the sum is domi-
nated by the last terms (Nb =N

max
b ). In the second, the “intermediate

binding" regime, the ensemble is dominated by structures that max-
imize a combination of the bond energy and configurational entropy
measured by g, and the sum is dominated by an intermediate-term
(Nb =N

?
b). In the third, the “weak binding" regime, the ensemble is

dominated by structures that have almost no bonds, and the sum is
dominated by the first terms (Nb =N

min
b ). These three cases must be

treated separately: in the strong and weak binding regimes, the dis-
crete nature of the sum is crucial, while in the intermediate regime, the
sum can be well-approximated by an integral. The boundary between
these regimes occurs approximately when N?

b =N
max
b � 1 or

N?
b =N

min
b + 3. For Figs. 3 and 5,we set the boundarybetween the strong

and intermediate regimes atN?
b =N

max
b � 1

4 (allowing neighbor binding)
and N?

b =
n
2 � 2 (disallowing neighbor binding).

After computing the dominant term of the sum, the next-order
correction to Zm comes from either considering the next-dominant
term (strong and weak regimes) or the curvature at the maximum
(intermediate regime); see Supplementary Note 3 for more details.

When comparing between the analytical and computational mod-
els, we use a single fitting parameter lfiteff , which tunes the normalized
effective loop length. That parameter is fit separately to the monomer
partition functions allowing and disallowing neighbor binding, but is
kept constant for all values of m. For different binding strengths, a dif-
ferent fraction of stickers will be bonded, leading to a different value of
leff. Rather than having a separate fitting parameter for each parameter
set, we only fit once (to monomers) in each of the two linker length
regimes (allowing and disallowing neighbor binding). We then assume
that leff changes linearly with the fraction of stickers bonded, leading to:

leff =
nm
2N?

b
lfiteff : ð10Þ

We fit lfiteff to the strong binding regime (Fig. 2) for which leff ≈ l
fit
eff .

We find intuitively reasonable values for lfiteff . When using l = 1 (dis-
allowing neighbor binding), we find lfiteff = 4:3 nucleotides. This value is
in between the length of an internal loop formed by two individual
linkers (4 nucleotides) and the length of a hairpin loop formed by two
linkers and a sticker (5 nucleotides). When using l = 4 (allowing
neighbor binding), we find lfiteff = 7 nucleotides. This value is also in
between the lengthof an internal loop formedby two individual linkers
(10 nucleotides) and the length of a hairpin loop formed by a single
linker (5 nucleotides).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
All code used to generate the results and figures in this study can be
found at https://github.com/ofer-kimchi/RNA-aggregation.
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