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ABSTRACT

We explore the assumption, widely used in many astrophysical calculations, that the stellar initial mass function (IMF) is
universal across all galaxies. By considering both a canonical broken-power-law IMF and a non-universal IMF, we are able to
compare the effect of different IMFs on multiple observables and derived quantities in astrophysics. Specifically, we consider
a non-universal IMF that varies as a function of the local star formation rate, and explore the effects on the star formation rate
density (SFRD), the extragalactic background light, the supernova (both core-collapse and thermonuclear) rates, and the diffuse
supernova neutrino background. Our most interesting result is that our adopted varying IMF leads to much greater uncertainty
on the SFRD at z &~ 2 — 4 than is usually assumed. Indeed, we find an SFRD (inferred using observed galaxy luminosity
distributions) that is a factor of 2 3 lower than canonical results obtained using a universal IMF. Secondly, the non-universal
IMF we explore implies a reduction in the supernova core-collapse rate of a factor of ~ 2, compared against a universal IMF.
The other potential tracers are only slightly affected by changes to the properties of the IMF. We find that currently available
data do not provide a clear preference for universal or non-universal IMF. However, improvements to measurements of the star
formation rate and core-collapse supernova rate at redshifts z = 2 may offer the best prospects for discernment.

Key words: stars: formation —stars: luminosity function, mass function —supernovae: general — galaxies: luminosity function,
mass function — neutrinos — methods: data analysis.

The concept of an IMF was introduced by Salpeter (1955), who
proposed a single power law % o« M*, where N is the number of
stars formed with mass M; in what is now known as the Salpeter
IME, he took o = —2.35. With the assumption of a single power

law, the exponent o can be measured to within approximately

1 INTRODUCTION

In order to understand the formation and evolution of stars, an
important quantity is the stellar initial mass function (IMF), the
relative numbers of stars as a function of their mass at the time of

their formation. As yet, the IMF remains only loosely constrained
observationally. A common assumption is that the IMF is universal —
the same in all environments and throughout cosmic time. In this
paper, we examine five observables that vary over cosmological
distances and which strongly depend on the high-mass region of
the IMF. One of our goals is to identify the extent to which these
observables can be used to test the assumption of a universal IMF at
the high-mass end. In particular, we study the consequences of non-
universal IMFs for various astrophysical quantities, finding larger
uncertainties in the star formation rate (SFR) and the core-collapse
supernova rate.
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10 percent (Baldry & Glazebrook 2003). Unfortunately, there are
fundamental questions about the parametrization that should be used
in describing the IMF. Perhaps most notably, it was recognized at the
end of the 20th century that low-mass stars did not tend to fall on the
power-law distribution predicted by Salpeter. This gave rise to IMF
models with low-mass suppressions, such as the broken power law
of Kroupa (2001) and the lognormal distribution of Chabrier (2003).
Recent evidence suggests that the IMF may even have an intrinsic
dependence on the local environment (Harayama, Eisenhauer &
Martins 2008; van Dokkum & Conroy 2010; Gunawardhana et al.
2011; Cappellari et al. 2012; Ferreras et al. 2012; Ferré-Mateu,
Vazdekis & de la Rosa 2013; La Barbera et al. 2019). Variations
to the low-mass end of the IMF have been studied extensively in the
literature (Chabrier 2003; van Dokkum & Conroy 2010; Geha 2013).
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Instead, following recent evidence (Gunawardhana et al. 2011), we
focus on observables sensitive to the high-mass end of the IMF
that may also be non-universal. Throughout this paper, we consider
IMFs that are universal at low masses and vary only at high masses.
The results of our analysis may therefore differ from analyses that
consider IMFs with low-mass variations.

Star-forming regions can be distinguished by a variety of prop-
erties of the collapsing gas and dust, including angular momentum,
metallicity, density, temperature, and dust content. The universality
of the IMF therefore boils down to an assumption that all of
these properties play little to no role in the masses of the formed
stars. Whether this is theoretically justified remains unclear. As
described in Offner et al. (2014, and references therein), perturbations
in the density of a star-forming gas cloud can, under reasonable
assumptions, generate a power-law spectrum of core and clump
masses, where cores and clumps refer to gravitationally collapsing
gas clouds that are likely to form at least one star. In contrast to
this power-law distribution, at low masses, turbulence in the star-
forming cloud can naturally produce a spectrum of masses that
disfavours lower mass stars relative to the power-law predictions. In
particular, Padoan, Nordlund & Jones (1997) showed that turbulence
could give rise to a lognormal mass distribution among low-mass
cores/clumps, similar to the IMF described by Chabrier (2003).
While this theoretical explanation would seem to leave very little
room for non-universality in the IMF, the mass function described
here is for cores and clumps, not stars. In relating this mass function
to the stellar IMF, numerous assumptions must be made about the
formation of protostars out of collapsing gas (Offner et al. 2014).
The validity of many of these assumptions, especially in extreme
environments, is largely an open question, suggesting that even
within this theoretical framework, there may be room to consider
non-universality without requiring a new paradigm.

The question of whether the IMF is indeed universal has been
investigated many times. For example, despite most observations
being consistent with a universal IMF, authors have regularly sug-
gested a non-universal IMF as a way to explain other astrophysical
tensions (Larson 1998). Further, over the last two decades, hints of
a tension between universal IMFs and observations have developed,
particularly in early-type elliptical galaxies (van Dokkum & Conroy
2010; Cappellari et al. 2012; Ferreras et al. 2012; Ferré-Mateu
et al. 2013; La Barbera et al. 2019) and in environments that
experience extreme properties (Harayama et al. 2008; Gunawardhana
et al. 2011). Theoretical models, such as the integrated galaxy-wide
IMF (Kroupa & Weidner 2003; Fontanot et al. 2017; Jefdbkov4 et al.
2018; Chruslifiska et al. 2020) and the cosmic ray-regulated star
formation discussed in Fontanot et al. (2018), can offer justifications
for some of these observations and pose additional predictions. On
the other hand, due to the inherent difficulty in measuring the IMF,
many authors reject these observational claims, leaving the question
of whether the IMF is indeed universal largely unanswered (see e.g.
Hopkins 2018, and references within for a recent review of the range
of perspectives).

A large part of the uncertainty in whether the IMF is universal
can be traced to the difficulty in unambiguously measuring it.
Locally, where it is possible to resolve individual stars, one can
estimate the IMF by comparing observed stellar populations to the
populations that are predicted to form if different IMF models are
assumed (Kennicutt & Evans 2012; Calzetti 2013). While accurate,
this approach can only be used in star-forming regions nearby enough
to resolve individual stars, and requires assumptions about the history
of star formation in that region. On the other hand, for more distant
galaxies, where it is impossible to see inside star-forming regions or
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where it is difficult to resolve individual stars, some proxy for the SFR
must be used. The most common approach is to use the luminosity as
a measure of the rate of star formation (e.g. Kennicutt 1998), but this
causes observations of the IMF to depend heavily on the calibration
factor between luminosity and SFR. While it is possible to calculate
this calibration factor numerically, it requires an assumption about
the IMFE. Unfortunately, this circular dependence encountered when
calculating the IMF of distant galaxies is rather ubiquitous, making
an independent measurement of the IMF challenging.

While it is difficult to directly measure the IMF, it may be possible
to find indirect ways to probe the effects of a non-universal IMF.
Previous works, such as Fontanot et al. (2017), Jefabkova et al.
(2018), Chruslinska et al. (2020), and Fontanot et al. (2018) approach
this problem as well, but use different models of varying IMF and
probe different astrophysical observables than we do here.

In this paper, we examine five observables that vary over cosmo-
logical distances and which depend on the IMF: the star formation
rate density (SFRD), the extragalactic background light (EBL), the
core-collapse supernova (CCSN) rate density, the type la supernova
(SNIa) rate, and the diffuse supernova neutrino background (DSNB).
For each, we explore how they change when using a non-universal
IMF compared to a universal one, and discuss whether they are
discriminable with current or future data. For simplicity, we focus
on the change induced by a varying IMF and ignore many other
uncertainties directly related to each observable. These additional
uncertainties will, in practice, make it more difficult to observe the
IMF induced changes. Furthermore, by focusing on an IMF that
only varies at high masses, we can explore only a subset of the
possible effects that an IMF which varies at both high and low masses
would predict. Our goal is simply to learn whether astrophysical
observations of distant objects could, in principle, provide indirect
evidence for a non-universal IMF.

The rest of this paper is structured as follows. In Section 2, we
describe the two IMF models we consider throughout the paper. In
Section 3, we look at how these IMF models affect the five quantities
described in the previous paragraph: the SFRD, the EBL, the CCSN
rate density, the SNIa rate, and the DSNB. Finally, we conclude in
Section 4.

2 INITIAL MASS FUNCTION MODELS

In a star-forming region, the stellar IMF describes the distribution
of masses with which stars form. A common approach to describing
this IMF is through a probability distribution &(M). That is

dN

s §(M)Nior, ey

where N is the number of stars formed with mass M, typically
measured in units of Mg, and Ny is the total number of stars formed.
Under this convention, £ (M) is normalized such that f EM)AM =1,
when integrating over all possible stellar masses.

In Salpeter’s seminal work (Salpeter 1955), the IMF was described
as a power law of the form

§(M) ox M, @

where o = —2.35 was observed for stars in a mass range 0.4 —
1.0Mg. Since then, the range of masses over which the IMF could
be determined has vastly increased, but the practice of describing
the IMF through a power-law slope has remained. However, as IMFs
have been studied, the single straight power law of Salpeter has given
way to IMFs with more features. For example, commonly used IMFs
include the piecewise power law established by Kroupa (2001; a
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Figure 1. Initial mass functions: This figure compares the non-universal
IMFs we use in this paper (blue shaded region) to the canonical IMFs used
in the literature: Kroupa (2001; green dotted) and Chabrier (2003; red dash—
dotted). We note the similarity of the two canonical cases relative to the
wide range of non-universal IMFs we consider; we will use a proxy we
identify as the canonical IMF (purple solid line) as our benchmark for the
canonical cases. Each IMF is normalized so that the integral over mass equals
1. The Kroupa IMF follows a broken power law, with slope « = —1.3 for
M < 0.5Mganda = —2.3for M > 0.5 Mg. The Chabrier IMF also behaves
differently at low-mass versus high-mass stars, with the low-mass stars (M <
1 Mg) following a lognormal behaviour while high-mass stars follow a power
law with slope o = —2.35. In all cases, we use broken power-law IMFs,
defined piecewise with a break at 0.5 M. Non-universal IMF (blue-shaded
region): For masses M < 0.5Mg, o = —1.3 and for M > 0.5Mg, o can
take values in the range —1.8 to —2.35, shown here in the blue shaded region.
Benchmark canonical IMF (purple solid curve): consists of a shallow power
law like that in the Kroupa IMF at low masses and a Salpeter « = —2.3 IMF
at high masses. Throughout this paper, we will use this case as a benchmark
against which to test the effects of allowing the IMF to vary.

variant of which was used in for example Baldry & Glazebrook 2003)
and the Chabrier (2003) IMF which has a lognormal distribution for
stars below approximately 1 My and a power law for stars greater
than 1Mg. These two IMFs are plotted in Fig. 1. As long as a
universal IMF is assumed, the high-mass behaviour of the IMF
is approximately a power law with o« = —2.35, consistent with a
Salpeter IMF (Baldry & Glazebrook 2003).!

However, while it is broadly accepted that a power-law Salpeter
IMF does not hold true at low masses, questions regarding the range
of environments over which the Salpeter power law is valid for stars

!Note that the typical break points for Kroupa and Chabrier are 0.5 Mg, and
1 Mg, respectively. Because the lognormal mass function smoothly turns
over, they end up giving a similar distribution of stellar masses.
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with mass greater than 0.5 Mg remain significantly disputed. One of
the most well-motivated regimes in which deviations from a Salpeter
IMF at higher stellar masses could occur is the set of conditions in
which Population III stars grow. For example, a top-heavy IMF at
early times, which favours a higher average mass for Pop III stars,
seems to be preferred by observations (Sharda & Krumholz 2021).
One possible mechanism that could justify this behaviour is described
in Sharda & Krumholz (2021), where a change in metallicity can shift
the peak mass from approximately 0.5 Mg for solar metallicities to
around 50 Mg at metallicities of Pop III stars. Furthermore, Pop III
stars may exhibit energy production mechanisms inaccessible in Pop
I and Pop II stars, as would be the case for Dark Stars (stars made
of hydrogen and helium but powered by dark matter; Freese et al.
2016). In that case, it would be quite surprising if the IMF were to
be consistent across all three populations.

In addition, there has been a growing body of evidence that
seems to suggest that while the IMF behaves as a power law at
high masses, the slope may depend substantially on environmental
factors. Various authors identify multiple factors as possible sources
of these deviations away from Salpeter. In addition to metallicity,
these include: velocity dispersion (Ferreras et al. 2012; Ferré-Mateu
etal. 2013), radius and surface mass density (La Barbera et al. 2019),
and high turbulence (Chabrier, Hennebelle & Charlot 2014).

In this paper, we focus on a non-universal IMF that varies
with the SFR of a star-forming region. Specifically, we explore a
relationship that was identified in data from the spectroscopic GAMA
survey (Driver et al. 2011), as analysed in Gunawardhana et al.
(2011). The GAMA survey was undertaken by the Anglo-Australian
telescope, which had measured the spectra of 120000 galaxies at
the time Gunawardhana et al. (2011) did their analysis. It has now
taken the spectra of approximately 300 000 galaxies. The analysis in
Gunawardhana et al. (2011) used the emission strength of the H « line
as a proxy to calculate the SFR of a galaxy, and then binned galaxies
based on that SFR. Using a set of simulated galaxies, a power-law
IMF was fit to the observed galaxies in each SFR bin, with the
exponent « free to vary. Using these binned galaxies, they found a
clear preference for a non-universal IMF, and that the variation could
be described by the function, «g = 0.361og(SFR) — 2.6. Here, the
average SFR, (SFR), is measured in units of Mg yr~'.

While this expression is the basis of the varying IMF we consider
throughout the rest of this work, it is not in the most convenient
form for our purposes. In particular, the independent quantity is the
SFR, which is inferred from the luminosity of the H « emission line.
To calculate the astrophysical observables discussed below, we will
need galaxy luminosity functions up to high redshifts. Unfortunately,
the Ho emission line is not the ideal tracer of these luminosity
functions as dust reprocesses most light emitted by galaxies into the
infrared. On the other hand, galaxy surveys (and therefore galaxy
luminosity functions) are more complete and readily available in the
far-infrared (FIR) band (i.e. in the wavelength range 8—1000 ©m) up
to high redshifts. As aresult, although using infrared luminosities can
introduce significant uncertainty into the calculated SFRs (Madau &
Dickinson 2014; Wilkins, Lovell & Stanway 2019), it is essential for
our calculations below.” With this in mind, we convert (SFR) to the

Note that Wilkins et al. (2019) found that the precise stellar mass range
considered can alter the FIR and Hea calibration factors, although the
alteration is not necessarily the same between the two frequency bands.
We therefore point out that by shifting from H« to FIR, we are introducing
additional error on the overall magnitude of each of the observables discussed
below.
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FIR luminosity Lgr, using fixed conversion factors from Kennicutt
(1998).? This mimics the process used by Kennicutt (1998) in reverse,
but implicitly assumes that the SFRs predicted by both tracers (H «
luminosity and FIR luminosity) are consistent. Using this procedure,
we can rewrite the varying IMF expression from Kennicutt (1998)
as

Qyar,>0.5 ~ 0.36 log{Lpr) — 6.1. 3)

Ultimately, the IMF we consider here is empirically based, so we
choose to confine ourselves to the range of IMFs that were observed in
the corresponding data. In particular, the analysis in Gunawardhana
etal. (2011) calculated IMFs ranging from o &~ —2.35 to —1.8, with
some populations of galaxies having IMFs as steep as o« &~ —2.5. We
limit ourselves to consider only the range of o € [—2.35, —1.8],
which ensures that low luminosity galaxies have an IMF with
slope @ = —2.35. % This o range corresponds to enforcing galaxies
with a luminosity log(L/Ly) 2 12 to have o« = —1.8, and for
galaxies with luminosity log(L/Lg) < 10.4 to have o = —2.35
. Furthermore, we explore only the effect of varying the IMF above a
mass cutoff of 0.5 Mg, which gives comparable low-mass behaviour
to the Chabrier and Kroupa IMFs. Below this mass cutoff, we use a
fixed power law

Qvar,<0.5 = — 1.3, (4)

which matches the low-mass power law of the Kroupa IMF from 0.1
to 0.5 M.

We plot the range of IMFs that may appear in this luminosity-
dependent varying IMF in Fig. 1 (blue band). Special attention is
given to the IMF which consists of a shallow power law like that in
the Kroupa IMF at low masses and a Salpeter IMF at high masses.
Throughout this paper, we will use this canonical IMF (blue line) as
a benchmark against which to test the effects of allowing the IMF to
vary. One important fact that is readily seen from Fig. 1, and which
has been noted by, for example Hopkins (2018), is that all of the
IMF models we consider are quite similar, with only slight variation
between them. However, despite the smallness of these variations,
when the different IMF models are used to predict the values of
observables, especially those that depend on integration of IMF-
dependent quantities, we can see substantial differences appearing
between the predictions made under those IMF models.

2.1 Luminosity to SFR calibration factor

We are interested in using observables which vary on cosmological
scales to probe the IMF, and on those scales directly measuring the
IMF is unrealistic. Instead, we will be using luminosity as a proxy for
star formation, and by extension the IMF, as described in equation (3).
Because all of the observables we consider are related to the rates at
which stars form or die, a necessary factor in their calculation is the
calibration factor, which we denote x, that relates luminosity to SFR.
In general, the calibration factor depends on the IMF, and because
we are considering a non-universal IMF, we must consider how the
x will depend on our assumed IMF.

For a Salpeter IMF, multiple calculations of the calibration factor
have been performed. In particular, Kennicutt (1998) found the

3Specifically, ~we used the relation SFR(Mgyr ') =4.5x
107* Lk (erg s~1)(Kennicutt 1998). We discuss how this value depends on
the IMF in Section 2.1.

4We note, however, that increasing the range of possible o’s does not
significantly affect our results. In particular, we verified that extending the
range to @ € [—2.5, —1.8] has no noticeable effect on all results shown below.
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Table 1. Choices of input parameters in PEGASE.3. We use the various
scenarios to estimate the impact of these parameters on the luminosity to
SER calibration factor. For all other results in the paper, we use the calibration
factors derived with the ‘low Z’ conditions.

Scenario Z Grains file
Low Z 0.013 ZDA
High Z 0.026 ZDA
Dust ZDA 0.0195 ZDA
Dust LWD 0.0195 LWD

calibration factor using three different wavelength ranges. While
modelling of factors such as dust has improved (Kennicutt & Evans
2012), the values in Kennicutt (1998) are often useful as a benchmark
for illustrative purposes. Throughout this paper, we focus on the FIR
wavelength range, 8-1000 pm, for which the value of the calibration
factor from Kennicutt (1998), assuming a Salpeter IMF, is

Xkos.pr = 4.5 x 107 Mg yr'serg™!. 3)

While the values obtained in Kennicutt (1998) are derived assum-
ing a Salpeter IMF, and are reasonably consistent with our canonical
IMF (as shown in Fig. 1), we are interested in IMFs with a range of
high-mass behaviours. In order to calculate the impact that changing
the IMF has on the calibration factor, we use the code PEGASE.3 (Fioc
& Rocca-Volmerange 2019), which simulates the radiation spectrum
of a galaxy with a set of user-defined inputs (our particular scenarios
are provided here: PEGASE inputs). In each PEGASE simulation, a
cloud of gas is converted to stars at a prescribed SFR, and with
a prescribed IMF. The stellar spectrum of each star that is formed
is computed and allowed to evolve according to stellar evolution
processes. These stellar spectra are then summed for the ensemble of
stars in the galaxy at each time-step in the simulation, resulting in a
galactic spectrum. That galactic spectrum is then adjusted to account
for the reprocessing of stellar light by dust. Through this process, we
can get a spectrum which may be integrated over various frequency
ranges and used to calculate luminosities in different frequency
bands.

In our simulations, we consider galaxies in the local universe that
have a constant rate of star formation, and with other properties
that we allow to vary. Besides allowing for different IMFs, we look
at galaxies with two different geometries: discy spiral galaxies and
spheroidal starburst galaxies, and with different metallicities and
different dust models. In particular, for metallicity we consider a
high-metallicity case with Z = 0.026 and a low-metallicity case
with Z = 0.013.° For the dust models, we consider the dust
models of Zubko, Dwek & Arendt (2004; ZWD), Li & Draine
(2001), and Weingartner & Draine (2001; LWD). We summarize
the combinations of the models we used in Table 1.

For each of the simulated galaxies, we calculate the luminosity in
an 8-1000 um wavelength band at different times from 10 Myr
to 1 Gyr after the star formation begins. Fig. 2 shows how the
calibration factor is affected considering each of these changes in
input parameters. Here, it can be clearly seen that while changing the
metallicity and dust model does lead to a distinguishable difference
in the calibration factor, those differences are small compared to the
changes induced by changing the IMF and geometry.

The convention for reporting a single calibration factor is to take
the value at 100 Myr after the start of star formation. For other tracers

SNote that some work has been done to self-consistently model metallicity
evolution together with a varying IMF (Kobayashi 2010).
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Figure 2. Calibration factor versus IMF slope: (Left-hand panel) Comparison of the calibration factor x = Rsg/L for a range of IMF slopes (o = —2.35
to —1.8) used in our PEGASE.3 simulations. We also show the impact of galaxy morphology by comparing calibration factors assuming spiral galaxies (solid
lines) and spheroidal galaxies (dashed lines). The horizontal black line is the calibration factor identified in Kennicutt 1998 (Kennicutt 1998) for an IMF slope
o = —2.35 and assuming a spheroidal galaxy. Conventionally, the calibration factor is reported at 100 Myr following an onset of star formation, indicated here
by a grey dotted vertical line. (Right-hand panel) The effect of different dust models and metallicities on the calibration factor, for both spiral and spheroidal
morphologies with an IMF slope « = —2.35. For comparison, all curves in the left-hand panel use the ‘low Z’ scenario.

of star formation, particularly ultraviolet luminosity, the calibration
factor is effectively a constant after 100 Myr (Kennicutt 1998). While
that is not the case for the FIR calibration factor, we adopt the same
convention. Under this definition, we observe that the calibration
factor we calculate for our canonical IMF and a spheroidal starburst
galaxy is within 10 percent of the calibration factor determined
by Kennicutt (Kennicutt 1998) for a Salpeter IMF in a spheroidal
galaxy. We do not account for other effects, e.g. stellar rotation on
the calibrations (Horiuchi et al. 2013). Note that for « = —2.35 we
compared PEGASE with STARBURST 99 (Leitherer et al. 1999) and
found similar calibration factors.

3 PROBES OF A NON-UNIVERSAL IMF

Now that we have established our IMF models and the associated
calibration factors, we will explore five astrophysical observables that
intrinsically depend on the IMF. For each, we present the theoretical
prediction for both IMF models and discuss whether current or future
data are able to distinguish between the two.

3.1 Star formation rate density

We first explore how the SFR of galaxies could provide constraints
on the nature of the IMF. The SFR is the rate at which gas in a star-
forming region turns into stars, typically measured in Mg, yr~'. While
an interesting quantity in its own right, we will focus on the related
SFRD, which measures the SFR per unit volume and typically has
units Mg, yr~! Mpc—3. By looking at the SFRD rather than individual
galaxies’ SFR, we can average over the variance introduced because
of different galactic properties and specifically explore how star
formation depends on redshift. As a result, while both quantities give
insight into the star formation process, the SFRD is more directly tied
to the cosmic star formation history and less dependent on conditions
within individual star-forming regions (Madau & Dickinson 2014).
While an understanding of the SFR is critical to theories of
galactic evolution, it is challenging to measure directly. In fact,
only in local systems, where stars can be resolved, can the SFR be

directly measured (Kennicutt & Evans 2012; Calzetti 2013). Where
young stars can be resolved, namely within the Milky Way and
the nearest galaxies, it is possible to count those young stars and
therefore directly estimate the SFR (Chomiuk & Povich 2011). In
systems slightly more distant, where it is possible to resolve stars but
impossible to see young stars shrouded in dust, fitting the galactic
colour-magnitude diagram to simulations can provide an accurate
measure of the SFR, among other properties. However, for more
distant systems, in which stars cannot individually be resolved,
an indirect measure of the SFR must be used, typically treating
luminosity as a tracer of the SFR.® To convert from luminosity
to SFR, one uses the calibration factor introduced in the previous
section. As mentioned before, unfortunately these calibration factors
are determined using simulations which require assumptions to be
made about the IMF. In Section 2.1, we describe the impact that
allowing the IMF to vary can have on the calibration factor.

To calculate the SFRD, we need the calibration factor as well
as the luminosity distribution of galaxies. This distribution can be
described through the luminosity function dN/dlogL,” which
will generically be a function of redshift z. In all of our calcula-
tions, we use the set of luminosity functions calculated from data
collected by the Herschel observatory in multiple complementary
surveys including the PACS Evolutionary Probe (PEP), Herschel
Multi-Tiered Extragalactic Survey (HerMES), and Herschel Great
Observatories Origin Deep Survey (GOODS; Gruppioni et al. 2013).
By including deep, pencil beam surveys like GOODS, these data
include galaxies out to aredshift of z ~ 4. Meanwhile, broad, shallow
surveys, like those in PEP and HerMES, can help provide more

SWhile the methods described here are among the most direct ways to estimate
the SFR, work has been done to improve these estimates by combining these
methods with observations that depend indirectly on the SFR. For example,
see Wilkins, Trentham & Hopkins (2008a) and Wilkins et al. (2008b)

"Note that all equations below are written for a generic luminosity L. For

notational simplicity, we therefore drop the subscript FIR on all luminosities.
However, all calculations are performed within the FIR luminosity range
(8-1000 pm).
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Figure 3. Luminosity density: We show how the luminosity functions
dNg/dlog L from Gruppioni et al. (2013) depend on redshift. These lu-
minosity functions give the density of galaxies as a function of luminosity
and redshift. Here, we present the integral [ dL dN,/dlogL for spiral
and starburst galaxies. We also show the contribution to these integrals for
the luminosity ranges: 108 — 10'°L, 10" — 10'?L, and 10'2 — 10 L.
The luminosity functions in Gruppioni et al. (2013) are defined by fitting to
modified Schecter functions, with parameters that are defined piecewise on
z. These piecewise fits have breaks at the redshifts z = 0.5 and z = 1.1, so it
is at these redshifts that we see peaks in observables like the SFRD.

accurate identification of galaxies’ morphologies. Therefore, from
this combined data set, Gruppioni et al. (2013) were able to develop
accurate, galaxy-morphology specific luminosity functions, labelled
as ‘spiral’, ‘starburst’, and ‘AGN-SF’ for redshifts z ~ 0 — 4.8
Respectively, these describe: spiral, discy galaxies without extreme
star formation; spheroidal galaxies with intense star formation; and
galaxies with a bright active galactic nucleus (AGN). We further
distinguish the AGN category into spiral galaxies with an AGN and
starburst galaxies with an AGN, based on the fraction of each type
presented in Gruppioni et al. (2013). For both spiral galaxies with
or without an AGN, we use the spiral calibration factors from the
previous section. Similarly, for starburst galaxies with or without an
AGN, we use the spheroidal calbiration factors.

In Fig. 3, we show the luminosity density as functions of redshift.
In particular, we show the quantity [ dL dN/dlog Lfor both spiral
and spheroidal galaxies, as well as their sum. Assuming a canonical
IME, the calibration factor is constant, so this quantity is proportional
to the SFRD, as can be seen clearly in equation (6). We additionally
show the luminosity dependence of this integrated quantity by
presenting contributions from three luminosity ranges. Comparing
these contributions, we see that at low redshift the luminosity
function is dominated by medium luminosity spiral galaxies while
at higher redshifts, high luminosity spheroidal galaxies dominate.
This shift in dominant contributors to the overall luminosity function
causes distinct differences in observables, arising from the varying
calibration factor. These differences appear in two ways. First, in our
varying IMF model, the calibration factor is different for galaxies

8Note that care must be taken in how AGNs are considered. The luminosity
functions we consider are derived from the total luminosity of the galaxies,
which includes both AGN and stellar sources. However, when calculating
calibration factors, it is conventional to include only luminosity from stellar
sources, not including AGN. As a result, introducing AGNs may decrease the
calibration factors from what we derive in the previous section, but we do not
consider the effects of such a decrease in this work.
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Figure 4. Star formation rate density: We compare the SFRD assuming
a canonical IMF (green dashed curve) and a varying IMF (blue solid curve)
to observational data as a function of redshift. The data were chosen to
match with the FIR band we explore in this work. To limit clutter in the
plot, we chose a representative subset from the catalogue of data (Madau
& Dickinson 2014). Features in the prediction curves at z =0.5, z = 1.1
arise from non-smooth features in the luminosity functions we consider, and
features at z = 1.0, z = 1.2, and z = 2.0 arise from a non-smooth division
of galaxies with an AGN into spiral and spheroidal sub-categories. While
the observed data (red coloured points) agree quite well with the SFRD
predicted from the canonical IMF, the data themselves are derived quantities
which assume a Salpeter, Kroupa, or Chabrier IMF. For this reason, it is
unsurprising that the observed data do not match the SFRD predicted using
the varying IMF, particularly at high redshift. If a varying IMF is assumed
when calculating the SFRD from observations, the results are expected to
closely follow the predictions we make for a varying IMF. For illustration,
we perform a preliminary reanalysis of the Magnelli et al. (2013) data using
the luminosity functions described therein and the varying IMF we use in this
work, depicted as blue points. This illustration is meant only to show proof
of concept, and a more careful reanalysis should be performed, particularly
in order to estimate uncertainties.

with different luminosities. Second, the calibration factor from
spheroidal and spiral galaxies, even at the same luminosity, is slightly
different. From the contributions in Fig. 3, we can therefore expect
differences in any quantity derived from the calibration factor and
luminosity functions at high and low redshift. In particular, based on
where this turnover from spiral-dominated to spheroidal-dominated
galaxies occurs, we should expect to see notable differences between
the varying and canonical IMFs at redshifts of z 2> 0.5 — 1.5.

From the calibration factor and luminosity function, we can
calculate the SFRD for a given galaxy morphology g by integrating
over the luminosity L:

Rsp,y = / x(L)L dif;*’Ldlog L. (6)
The total observed SFRD is then given by the sum over galaxy types
> ¢ RsF, g, where Rgp o is the SFRD contribution from galaxies of
type g.° In Fig. 4, we compare the SFRD calculated using the varying
IMF and canonical IMF. We also plot existing estimates of the SFRD,
with data drawn from Magnelli et al. (2011, 2013) and Gruppioni
etal. (2013). Note that we only show data that explicitly use the same
FIR range as we consider for our luminosity functions. In principle,
there is a wealth of other data from different wavelengths to compare

9For simplicity, for the rest of this paper we drop the subscript g notation. All
observable quantities defined below implicitly sum over galaxy type.
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to e.g. Abdollahi et al. (2018), Madau & Dickinson (2014), Driver
et al. (2018), Hopkins & Beacom (2006), and Fardal et al. (2007).
We leave a more careful comparison to these data sets to future work.

At low redshift (z < 0.15), the SFRD calculated using a varying
IMF is slightly lower than (within about 20 per cent of) the SFRD
calculated using a canonical IMF and is consistent with observations.
The primary reason for this behaviour is that at low redshifts, the
dominant contribution to the luminosity functions comes from spiral
galaxies with intrinsically lower galactic luminosity, which favour
an IMF power law of « ~ —2.35. At higher redshifts, the luminosity
is dominated by a smaller density of intrinsically more luminous
starburst galaxies, which favour a shallower IMF. Accordingly, we
see that at redshifts z 2 2, the SFRD calculated using a varying IMF
is up to a factor of three lower than the SFRD calculated from the
canonical IMF and the reported observational data. However, all of
the data plotted in Fig. 4, which is illustrative of much of the data
in the literature (e.g. Hopkins & Beacom 2006; Fardal et al. 2007;
Madau & Dickinson 2014; Abdollahi et al. 2018; Driver et al. 2018),
assume an IMF with Salpeter-like behaviour at high stellar mass.
In particular, in each of the three observed data sets shown here,
the SFRD was calculated while assuming either a Chabrier IMF, a
Kroupa IMF, or a pure Salpeter IMF. It is unsurprising then that
the data so closely match the canonical IMF, while disagreeing with
results obtained using univeral IMFs. '© We therefore expect that
reanalysing the SFR observations with a varying IMF would result
in an SFRD that is lower than the existing data and that matches our
predictions. We leave this analysis to future work. Since the effect
of a varying IMF is significant, we also note that if the high-redshift
SFR can be observed directly without relying on assumptions about
the IMF, those observations could provide a useful probe of the IMF
variability as a function of galaxy type.

3.2 Extragalactic background light

In addition to measuring the SFRD directly, we can also look at the
EBL to potentially probe the IMF. The EBL is the integrated light
from all sources in a particular direction. In particular, it includes
light from all galaxies, even those too faint to resolve, and therefore
provides an accurate measure of the luminosity function. In fact, the
total EBL can be calculated as

dn dn
Leptom = | L—2dL = & _dL. 7
—_— /dL /legL ™

That is, the total EBL is simply an integral of the luminosity function
over galaxy luminosities. Starting from the luminosity functions then,
we can calculate the total EBL without introducing a dependence on
the IMF, and so it is impossible to probe the IMF from the total EBL.

However, while the total EBL may be independent of IMF, the IMF
affects the distribution of stellar masses. Because stars of different
masses have different temperatures, and therefore different spectra,
it is possible that the EBL spectrum may provide a way to probe
the IMF. With this in mind, we followed the procedure outlined in
Razzaque, Dermer & Finke (2009) to calculate an estimate of the EBL
flux in the wavelength range 0.1-100 pm. Specifically, we calculate
the spectrum of a star of given mass M with the corresponding
effective temperature 7 (M) as a blackbody spectrum 1, g (7' (M)).
We additionally denote the number of stars of a given mass inside of

10Work using different non-universal IMFs, like (Chruslifiska et al. 2020),
shows a similar trend toward reduced SFRD at high redshifts, but by a different
factor.
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Figure 5. Extragalactic background light spectrum: Estimates of the
EBL spectra assuming a varying IMF (blue solid curve), and a canonical
universal IMF (green dashed curve). These are compared to data from Biteau
& Williams (2015), showing the best-fitting values of the EBL calculated
from various observed measurements of upper and lower bounds on the
EBL spectrum. The estimates we show do not include processing from
dust, so we generally expect the estimates to overpredict the intensity at
short wavelengths, but begin to match at longer wavelengths. At the longest
wavelengths, radiation from dust, rather than from stellar sources, will
dominate the observed spectrum, and our estimates will underpredict the
data. This behaviour is seen in our predictions which, in the wavelength
range 3—7 pum which is least affected by dust, agrees quite well with data,
regardless of IMF considered.

a galaxy as N'(M, L). This number therefore intrinsically depends
on the IMFE. The EBL at a given frequency can then be calculated as

IepL = / / 1 su(TOYN (M. LydM L. ®)

dlog L

Although this technique can give an estimate of the EBL
emitted from galaxies, it does not take into account dust, and
because of this offers only limited insight into the observed EBL.
Absorption of starlight by dust causes the short-wavelength end of
the spectrum to be reduced, while re-emission by that dust causes
the long-wavelength end to be increased. While this generic picture
is true in all dust models, exactly how dust affects the shape of
the spectrum depends heavily on the dust model. We leave careful
accounting of these dust effects to future work. Instead, we can look
at the narrow range of frequencies where the effects from both dust
absorption and emission on the EBL are minimized. In particular,
we consider the range approximately 4-7 pm (Cardelli, Clayton
& Mathis 1989; Kennedy et al. 2013). As can be seen in Fig. 5, in
this wavelength range, the EBL predicted from both the canonical
and varying IMF are quite similar, with the varying IMF prediction
being very slightly bluer than the canonical prediction, and both
visually fit existing data equally well.

3.3 Core-collapse supernova rate

Along with the SFRD and EBL, we can look at the rate at which
stars collapse into supernovae as a way to constrain the IMF. Stars
which begin their life with a mass between 8 and approximately
125 Mg are expected to end their life as a CCSN (Heger et al.
2003). Standard CCSNe occur when their iron or oxygen-neon-
magnesium core, produced through nuclear fusion, exceeds the
Chandresekhar mass limit and rapidly collapses (Couch 2017; Janka
2017; Burrows & Vartanyan 2021). This facilitates electron capture
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Figure 6. Core collapse supernova rate density: (Left-hand panel) Comparison of the predictions of the rate density of CCSNe assuming either a canonical IMF
(green dashed curve) or a varying IMF (blue solid curve) with observational data as a function of redshift. See Fig. 4 for discussion of featuresatz = 0.5,z = 1.0,
z=1.1,z=1.2,and z = 2.0. (Right-hand panel) Rate of supernovae in each of the galaxy morphologies we consider. Here, blue corresponds to spiral galaxies,
while green corresponds to spheroidal starburst galaxies. Again, dashed lines correspond to the canonical IMF, while solid lines correspond to the varying IMF.

on nuclei and free protons in the centre of the collapsing core,
which makes matter more neutron rich and produces a copious
number of electron neutrinos (Bethe et al. 1979a; Fuller 1982). Once
the density reaches the nuclear saturation density (approximately
2.6 x 10" g cm™3; Bethe et al. 1979a), the strong nuclear force
stops the collapse of the inner core (Bethe et al. 1979a; Couch
2017; Branch & Wheeler 2017). The sudden halt causes the core
to bounce and launches a shock wave, which carries stellar material
away from the core. The shock stalls after losing energy through the
dissociation of heavy nuclei but can be re-energized by neutrinos,
which revive the shock leading to a successful explosion. This is the
so-called neutrino-driven delayed explosion mechanism (Colgate &
White 1966; Bethe & Wilson 1985).

Eventually, the electromagnetic radiation emitted by the material
ejected in a successful explosion is observed as a supernova. Depend-
ing on the chemical makeup of the ejected material, CCSNe are clas-
sified as Type Ib, Ic, or Il supernovae (Turatto 2003; Smith 2014). The
supernova can leave behind either a neutron star or black hole depend-
ing on how much energy is imparted to the shock wave by neutrinos,
compared to the gravitational binding energy of the outer layers of
the star. Because some of these types of supernovae will be more de-
tectable than others and any stars that collapse directly to a black hole
do not produce a supernova, the fraction of core collapses that can be
observed through electromagnetic signatures will depend on the fate
of the collapsing massive star, and that in turn may depend on the IMF.

As with the SFR, we will again focus on the core-collapse
supernova rate density (CCSNRD), which allows us to focus on
only the redshift dependence. On time-scales that are long compared
to the lifetime of a star massive enough to undergo core collapse
(< 10Myr), we can assume that when one star goes supernova
another star of equal mass is formed. As a result, we can calculate
the CCSNRD directly from the SFRD of stars with mass greater than
approximately 8 M. In particular,

AN far E(M)AM

dlog L [ pg(M)dM

Reesn(z) = /X(L)L log L. )
Here, M ,;, and M, refer to the minimum and maximum masses
stars can take in the IMF we consider. In all of our calculations, we use
M pin = 0.1 Mg and M.« = 125 Mg, respectively, the approximate
lowest mass at which stars can fuse hydrogen and a somewhat
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arbitrary high-mass cutoff that does not significantly affect our
results. The factor of M in the denominator is necessary because
SFRs measure the total mass of stars that form, whereas the core-
collapse rate measures the number of supernova events.

In Fig. 6, we compare the CCSNRD we predict from a varying IMF
to that predicted from a canonical IMF and to observed CCSNRD
data from Petrushevska et al. (2016), Strolger et al. (2015), Dahlen
et al. (2012), and Mattila et al. (2012). As in the case of SFRs, at
low redshift, all three CCSNRD are consistent. At high redshift, the
CCSNRD predicted using the varying IMF is slightly lower than that
predicted using the canonical IMF, but the discrepancy between the
CCSNRD is significantly smaller than the related difference between
SFRs. This improved agreement is to be expected because the SFR’s
dependence on the IMF partially cancels against the explicit IMF
dependence in equation (9), as discussed in Madau & Dickinson
(2014). Ultimately, the existing CCSNe data appear to agree with
either IMF model equally well. However, as new observatories
including, the James Webb Space Telescope (Regbs & Vinké 2019),
the Vera Rubin Observatory (through the LSST survey; Ivezié et al.
2019), Euclid (Laureijs et al. 2011), and the Nancy Grace Roman
Telescope (Koekemoer et al. 2019) begin to take data, estimates of
the high redshift CCSNRD will become more precise, potentially
favouring one model over the other. Likewise, gravitational wave
detectors may offer another avenue to probe the supernova rate, and
consequently the SFR, by measuring the binary black hole (BBH)
merger rate (Vitale et al. 2019). However, it should be noted that
the binary merger rate would preferentially reflect the supernova
rate in low-metallicity environments and would be subject to the
same sorts of uncertainties as SNela (see below), which could make
distinguishing between the two IMF models more challenging.

We find that the two IMF models produce an O(2) difference
in the total CCSN rate at redshifts greater than approximately 1.5.
Therefore, at least a 100 per cent determination of the SN rate for
z > 1.5 will be required to distinguish these two scenarios. Based
on projections of the rates of supernovae expected to be observed
by the Roman Telescope (Rose et al. 2021), it is not unreasonable
to expect observational uncertainties at that level. Furthermore, a
greater difference in the predicted supernova rates under our two
models may appear if changing the IMF changes the fraction of stars
that collapse into black holes versus those that collapse to neutron
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Figure 7. Fraction of black hole forming collapses: The fraction of
supernovae that result in black holes, rather than neutron stars. For the
canonical IMF, approximately 21 per cent of stellar collapses lead to black
hole formation (this fraction is assumed to be constant as a function of the
redshift for simplicity), while for the varying IMF, this fraction depends on
redshift, reaching approximately 35 percent at z = 3.

stars. All else held equal, a shallower IMF would increase the fraction
of stars that evolve to black holes and decrease the fraction that evolve
to neutron stars, relative to a steeper IMF. As shown in Fig. 7, this is
precisely the situation we expect from the varying versus canonical
IMFE. As a result, we can expect that a varying IMF would lead to
fewer obervable CCSNe than the canonical IMF, particularly at high
redshifts, all other factors held equal.

3.4 Type Ia supernova rate

As with CCSNe, we can hope to probe properties of the IMF by
looking at SNela. Type Ia supernovae occur when mass accretes
on to white dwarfs from a giant star, typically when the two
form a binary (Mazzali et al. 2007). As the mass of the white
dwarf approaches the Chandrasekhar mass (Chandrasekhar 1931),
temperatures and densities within the core of the star become high
enough to initiate nuclear reactions from the abundant carbon and
oxygen. These nuclear reactions produce so much energy that the
entire star becomes unbound. Nuclear decays within the ejected
material can then be observed as a SNela.

For our purposes, SNela can be seen as a tracer of SFR like the
CCSN rate. In addition, measurements of the SNIa rate do not require
one to use a calibration factor and are therefore relatively independent
of the IMF. However, since SNela are sourced by white dwarfs, which
form from stars whose lifetimes are of the order of 1-10 Gyr, they
can only occur after enough time has passed for the white dwarf to
accrete sufficient mass. Both the lifetime of the progenitor star and the
period between the formation of a white dwarf and the occurrence of
an SNla must be accounted for when calculating the SNIa rate. This
accounting is done through a delay-time distribution (DTD) F(7),
which measures the probability that a star formed at some time t — T
will undergo SNIa at time ¢. Note that by defining the DTD in this
way, we implicitly incorporate the fraction of white dwarfs that exist
in binaries and can undergo SNIa into the DTD. In our calculations,
we use the simple approximation that F(t) o !, justified in Maoz,
Mannucci & Nelemans (2014). The SNIa rate density can therefore
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Figure 8. Type Ia supernova rate density: We compare the rate density
of SNela, assuming either a canonical IMF (green dashed) or varying IMF
as described in the text (blue), to a selection of observed data. See Fig. 4
for discussion of features at z = 0.5,z = 1.0,z = 1.1,z = 1.2, and z = 2.0.
Predictions of the supernova rate depend on a poorly constrained delay time
distribution, and by increasing the overall normalization of this DTD by a
factor of 2 (still within 1o uncertainties), we can increase the varying IMF
result from the blue solid curve to the blue dot—dashed curve.

be calculated from the convolution
1
Rswis = / Rsi(t — 1) F(2)dr. (10)
0

Here, we convert between redshift and time assuming a flat ACDM
Universe that is dominated by A and matter, and where 2,0 =
0.308 (Ade et al. 2016).

In Fig. 8, we compare observed SNIla rates, using data from
Strolger et al. (2020), Perrett et al. (2012), and Cappellaro et al.
(2015), with predictions of the supernova rate assuming a canonical
IMF and a varying IMF. To make this comparison, we fixed the
normalization of the DTD to 107> Mg in order to match the DTD
presented in Maoz et al. (2014)."" Using this normalization, the
canonical IMF is largely consistent with the data, while the varying
IMF leads to an SNIa rate that is consistently smaller than the
observed SNIa rate. However, if we allow the normalization of the
DTD to vary, then increasing it by a factor of two produces much
closer agreement between the varying IMF and observed SNIa rates.
This change to the normalization is still within the 1o confidence
range for the DTD. In other words, based on current observations
and their uncertainties, the varying IMF cannot be ruled out, and
more precise measurements of the DTD would be necessary to place
meaningful constraints on either IMF model.

3.5 Diffuse supernova neutrino background

Finally, in addition to directly observing of supernova rates, we
can look to the neutrino supernovae produce in order to estimate
their rate, and therefore potentially probe the IMF. Despite being
relatively rare in any individual galaxy, supernovae are quite common
throughout the Universe. Combining this with the fact that a single
CCSN produces an immense number of neutrinos (approximately

However, as noted in Maoz et al. (2014), measurements of the DTD in
different environments (e.g. dwarf galaxies, galaxies, and galaxy clusters)
can vary by an order of magnitude.
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10°%; Mirizzi et al. 2016; Burrows & Vartanyan 2021) leads to
the emergence of a background of neutrinos that is isotropic and
nearly constant in time. This neutrino flux is commonly named
the DSNB (Bisnovatyi-Kogan & Seidov 1984; Krauss, Glashow &
Schramm 1984; Wilson et al. 1986; Beacom 2010; Lunardini 2016;
Mirizzi et al. 2016).

Only in recent years have experiments begun to approach the
sensitivity necessary to directly observe the DSNB (Malek et al.
2003; Bays et al. 2012; Zhang et al. 2015; Abe et al. 2022, 2021; Li,
Vagins & Wurm 2022). While no signal has yet been detected, the
enrichment of Super-Kamiokande (SK) with gadolinium (Beacom
& Vagins 2004; Horiuchi, Beacom & Dwek 2009) and the future
proposed and planned experiments such as Hyper-Kamiokande
(HK), JUNO, Jinping, and THEIA (An et al. 2016; Beacom et al.
2017; Abe et al. 2018; Sawatzki, Wurm & Kresse 2021; Li et al. 2022)
are expected to have enough sensitivity to make a first detection in
the coming years. Once observed, the DSNB will provide a test
of astrophysical observables (Lunardini 2009; Keehn & Lunardini
2012; Nakazato 2013; Nakazato et al. 2015; Priya & Lunardini 2017;
Mgller et al. 2018; Horiuchi et al. 2021; Kresse, Ertl & Janka 2021;
Singh & Rentala 2021; Libanov & Sharofeev 2022), neutrino flavor
physics (Lunardini & Tamborra 2012; Tabrizi & Horiuchi 2021;
Suliga, Beacom & Tamborra 2022), and physics beyond the Standard
Model (Ando 2003; Fogli et al. 2004; Goldberg, Perez & Sarcevic
2006; Baker et al. 2007; Farzan & Palomares-Ruiz 2014; Jeong et al.
2018; de Gouveéa et al. 2020, 2022; Creque-Sarbinowski, Hyde &
Kamionkowski 2021; Das & Sen 2021; Suliga et al. 2022).

3.5.1 Theoretical models

The calculation of the DSNB flux requires two components: the rate
of supernovae as a function of their progenitor masses and the time-
integrated neutrino energy spectra associated with each supernova.
The former can be calculated as described in Section 3.3, while a
calculation of the latter is sketched here. Following Mgller et al.
(2018) and Ashida & Nakazato (2022), we consider three possible
outcomes of supernovae, depending on the mass of their stellar
progenitor. Stars can either evolve into black holes or low/high-mass
neutron stars. A characteristic neutrino spectrum is then associated
with each type of explosion. More details on these spectra can be
found in Appendix A.

As discussed in Appendix A, the characteristic neutrino spectra as-
sociated with the different supernovae outcomes can be significantly
different. The DSNB signal is therefore also affected by the fraction
of black hole forming collapses (Lunardini 2009). Unfortunately,
the fraction of stellar collapses leading to black hole formation
is unknown. Recent theoretical work and observational surveys
indicate that this fraction could be approximately 10—40 per cent
of all CCSNe (Kochanek et al. 2008; Lien, Fields & Beacom 2010;
Horiuchi et al. 2014; Gerke, Kochanek & Stanek 2015; Ertl et al.
2016; Sukhbold et al. 2016; Adams et al. 2017a, b; Davies & Beasor
2020; Neustadt et al. 2021; Byrne & Fraser 2022). For the canonical
IMF, our DSNB modelling follows one of the scenarios considered
in Mgller et al. (2018) where the fraction of progenitors evolving into
black holes is set to 21 per cent and for simplicity it is assumed to be
constant as a function of redshift out to at least z = 5 . To make this
assumption, we implicitly assume that both the stellar masses that
evolve to black holes and the IMF do not change over cosmological
history. However, when we consider the varying IMF, we cannot
assume that the IMF is constant as a function of redshift; in fact,
because it depends explicitly on the SFR, which evolves over cosmic
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history, the varying IMF cannot remain constant. As a result, we
expect to see a substantially larger fraction of stars evolve to black
holes at high redshifts in the non-universal case than in the canonical
case, as seen in Fig. 7.2 In addition, because our main goal is to
investigate the impact of the variable IMF on the DSNB, we do not
include neutrino oscillations in our modelling, as they would change
the DSNB in the same way in both cases, i.e. canonical and variable
IMF.

Making use of the supernova rate and the neutrino spectrum, we
can calculate the DSNB flux & as a function of neutrino energy E.
Specifically,

Zmax dZ
O(E) = c el
o H@
dN Mmax dp &(M)dM
x /X(L)Li / n SMDAM Y oo 1, (11)
legL 8Mg dE’ M
where 9213 is the neutrino spectrum, E' = E(1 + 2) is the source

energy necessary at a redshift of z to be observed with energy E, and
M= A},‘Ii‘]’l‘:x ME(M)dAM is the average mass of newly formed stars.

The integral f x(L)L dﬁg ;dlog L is equivalent to Rg if the term
in brackets does not depend on luminosity. While this condition is
met for the canonical IMF, when we consider a varying IMF, the
IMF depends on luminosity, so the factor in brackets picks up a
dependence on luminosity. In addition, H(z) = Ho[Qu.o(1 + 2)° +
(1 — ©,,.0)]'/? is the Hubble expansion parameter at z, where we
assume a flat ACDM universe dominated by matter and A, with
Q.0 =0.308 and Hy = 67.8km s~ Mpc™' (Ade et al. 2016).

Using the CCSNRD calculated from both a canonical and varying
IMF we find the DSNB fluxes shown in Fig. 9. We emphasize
here that we have only considered a single benchmark for each
IMF model, but in reality there are a number of other uncertainties
which would create a band of possible DSNB realizations. We
do not directly consider these uncertainties in the modelling of
the DSNB (i.e. in Fig. 10), although below we account for a
systematic uncertainty when evaluating the discriminability of the
two IMF models. For reference, we also show a hatched region
which shows the approximate parameter space currently ruled out
by SK observations, as well as the primary signal region for SK and
future detectors (El Hedri, Ashida & Giampaolo 2021). Perhaps the
most notable result is the similarity between the predictions from
using the canonical and varying IMFs, especially at energies greater
than approximately 20 MeV. While this will likely make it difficult to
distinguish between the two scenarios once the DSNB is detected, it
clearly demonstrates that the DSNB is robust to significant changes
to the IMF.

At lower energies (below approximately 20 MeV), we predict
the DSNB flux to be slightly lower when assuming a varying
IMF than when assuming a canonical IMF. While the IMFs we
consider give similar predictions for the CCSNRD at low redshift,
they begin to disagree at higher redshifts. The difference in the
DSNB flux that we see here ultimately arises from this difference

12]¢ should be noted that this fraction is calculated assuming that the stellar
mass is the only factor which controls whether a supernova leads to a black
hole formation or not (see Appendix A.). It is therefore constant for the
canonical universal IMF. Other stellar properties, such as metallicity, may
lead to changes in the fraction of supernovae that lead to black hole formation.
13Note that although equation (11) is true for all flavors, as mentioned in
Appendix A we will focus solely on electron-antineutrinos since they have
the best detection prospects.
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Figure 9. Diffuse supernova neutrino background flux: (Left-hand panel) We compare the predicted DSNB 7, flux, assuming either a canonical (green
dashed) or varying IMF (blue solid) with the region probed by SK (hatched) (Abe et al. 2021). The red shaded region indicates the range of energies that could
be observable by SK with the addition of gadolinium. The different IMFs might have an impact on the observed DSNB flux only at low energies, and it would
be difficult to distinguish this difference against background neutrino sources. (Right-hand panel) We show the DSNB broken down into contributions from
different redshift bins for the varying IMF. Because the emitted neutrinos are redshifted, distant supernovae only contribute significantly at low energies.
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Figure 10. Diffuse supernova neutrino background rate: 7, DSNB event
rates in HK enriched with gadolinium detectors for 10 yr of data taking. The
sum of the ¥, DSNB event rate plus background rate for the varying IMF
(canonical) is plotted with solid blue (dashed green) line. The background
rates are depicted as grey regions, and the error bars reflect the 1o statistic
uncertainties. As discussed in the main text, while SK cannot distinguish the
two investigated IMF scenarios, HK might present a low significance hint
towards a particular scenario. Note that we do not show other astrophysical
uncertainties (e.g. errors on the SFR and uncertainty in the neutrino flux
modelling), but partially account for this with a systematic uncertainty (see
main text for details).

in supernova rates. This is only noticeable at low neutrino energies
because distant supernovae only contribute significantly to the low-
energy spectrum. At higher energies, because of the redshifting of
the neutrinos as they propagate, the source energy E' = E(1 + 7)
can be significantly higher for distant supernovae than for nearby
ones. As a result, the contribution to the DSNB flux from distant
supernovae comes from a higher energy portion of the spectrum,
which is exponentially suppressed. This effect is illustrated in the
right-hand panel of Fig. 9 where we show the contribution to the
DSNB in difterent redshift bins. Therefore, while a varying IMF is
likely indistinguishable from the canonical IMF at high energies,

sufficiently precise measurements of lower energy neutrinos may
allow some degree of distinction between the two models.

Varying the IMF is not the only source of uncertainty expected to
appear in the low-energy DSNB region (around 20 MeV). Variations
to the star formation histories, for example, could yield comparable
differences between DSNB predictions (Singh & Rentala 2021;
Kresse et al. 2021), which will be degenerate with differences
due to variations of the IMF. Furthermore, additional uncertainties
in the DSNB flux which may appear, independent of the choice
of IMF, include the unknown fraction of high-mass stars that
evolve to black holes and the neutrino spectra emitted during this
evolution (Lunardini 2009; Horiuchi et al. 2018; Kresse et al. 2021),
the precise normalization of the CCSN rate (Horiuchi et al. 2011;
Mathews et al. 2014), the evolution of neutrino flavours in the dense
medium encountered during supernovae (Duan, Fuller & Qian 2010;
Chakraborty et al. 2016; Tamborra & Shalgar 2021), and any possible
stellar binary interactions (Horiuchi et al. 2021). To partially account
for these uncertainties in subsection 3.5.2, we include a systematic
uncertainty of 50 per cent in our calculations of the discriminating
power of the detectors to the varying IMF.

3.5.2 Expected sensitivities of Super-Kamiokande and
Hyper-Kamiokande

Although no detection of the DSNB has yet been made, the strongest
constraints come from the SK experiment (Bays et al. 2012; Abe
et al. 2021). In 2019, upgrades to SK began which allowed for
the introduction of gadolinium into the SK tank by 2021. The
gadolinium doping will make the detection of electron antineutrinos
significantly easier, which will subsequently improve our ability to
detect neutrinos from the DSNB (Beacom & Vagins 2004). As a
result, it is expected that a positive measurement of the DSNB will
be observed in the near future (Li et al. 2022).

Fig. 10 shows the predicted accumulated DSNB flux after 10 yr
of operation of HK (3740 kton yr exposure) compared to its re-
spective neutrino backgrounds, where we assume a concentration of
0.1 per cent GACl; in water. The blue solid (green dashed) line depicts
the combined neutrino flux from both the DSNB and background
sources, where we calculate the DSNB flux using a varying IMF
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(canonical IMF). Sources of background neutrinos that we consider
include atmospheric charged-current events, invisible muons, °Li
spallation, and reactor antineutrinos (Abe et al. 2018, 2021).

We can use a simple Ay? Pearson test to estimate the detection
prospects of distinguishing between the varying IMF and canonical
IMF. In both SK (225 kton yr exposure with 0.1 per cent GdCl;) and
HK, the two IMFs are not distinguishable at the 3¢ level, even after
10 yr of data collection. Furthermore, in SK, the two models remain
indistinguishable at the 1o level. However, in HK, the varying and
canonical IMFs are distinguishable at the 1.30 level. This marks an
upper bound to the distinguishability, as we have not introduced other
sources of uncertainty. Including a systematic uncertainty for the
background of 20 per cent and for the DSNB models of 50 per cent
reduces the difference between the two models to 1.10° (note that
these additional systematics are not shown in Fig. 10). Once SK or
HK detects the DSNB, it may be possible to generate an improved
statistic, using an unbinned maximum likelihood ratio test with a
parametrized family of models that include the canonical and varying
IMFs, which could allow for a better ability to distinguish between
these two models, assuming all other uncertainties become negligible
in comparison.

4 CONCLUSION AND OUTLOOK

In this paper, we explored whether one can find evidence for a
non-universal IMF in five astrophysical observables that arise from
integrating over cosmological scales. Throughout, we have seen
that these observables show small but non-zero differences when
assuming the non-universal IMF (described in Section 2) versus
a canonical universal IMF. The differences are typically too small
to distinguish in currently existing data, but as detectors improve,
there are a variety of signals which may offer practical ways to
study the IMF. In particular, we find that studying the SFR and the
core-collapse rate at high redshifts (z 2 0.5) may offer the greatest
distinguishability between the different IMF models.

At redshifts greater than approximately 0.5, the SFR predicted
assuming a varying IMF is lower than the corresponding prediction
from a canonical IMF by up to a factor of ~ 3 (see Fig. 4). Because
observing the SFR requires a calculation that depends strongly on
the assumed IMF, the predictions, though significantly different, can
both still be consistent with current observations. However, due to
the SFR’s prominent role in, for example, modelling star formation
histories and cosmological simulations, it would be interesting to see
whether an indirect test of the SFR could favour one IMF model
over the other. For example, the BBH merger rate (Fishbach, Holz
& Farr 2018; van Son et al. 2022) acts as an independent probe of
the core collapse rate. LIGO and Virgo, at design sensitivity, are
expected to observe BBH mergers up to redshifts of around one.
On the other hand, 3rd generation telescopes may reach z ~ 15 and
thus independently measure the SFRD to a few per cent according
to Vitale et al. (2019). We leave a more careful examination of this
method to future work.

Similarly to the SFR, above z 2 0.5 the core-collapse rate can
differ by a factor of ~ 2 between the two IMF models (see Fig. 6).
Current observations of core-collapse rates are still too poor at
high redshifts to distinguish between these models. However, next-
generation telescopes such as James Webb Space Telescope (Regds
& Vink6 2019), Roman Space Telescope (Koekemoer et al. 2019),
Vera Rubin Telescope (through the LSST; Ivezi¢ et al. 2019), and
EUCLID (Laureijs et al. 2011), may provide significantly better rate
estimates at these high redshifts. An additional subtlety here is that
a varying IMF will produce a larger fraction of black hole collapses
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(see Fig. 7) which may be less luminous. A careful treatment of the
observational efficiency of any core-collapse rate measurement is
therefore required to distinguish the two IMF models.

The stellar IMF plays a fundamental role throughout astrophysics
and many unsolved questions require an accurate model of the IMF
to address. It is therefore vital that new methods are developed
to decipher its dependence on the local environment. Here, we
have examined a few indirect methods. Future work should more
carefully examine the most promising of these scenarios with a metic-
ulous treatment of their associated uncertainties, including studying
whether the impact of different IMFs can be distinguished from
potentially degenerate or partially degenerate sources of uncertainty.
Moreover, combining the different probes presented here may lead to
significantly tighter constraints on possible IMF variations. Through
this, we hope that indirect probes may provide additional evidence
towards distinguishing a varying IMF.
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APPENDIX A: SUPERNOVA NEUTRINO
SPECTRA

In order to estimate the DSNB flux, we model the CCSN popula-
tion by relying on the outputs of one-dimensional, hydrodynamic

Table Al. Best-fitting parameters for the pinched Fermi—Dirac distribution
used to describe the numerically generated time-integrated neutrino spectra.

E™ [MeV] a (E,) [MeV]
Neutron star (10 M) 1.890 x 108 2.355 12.620
Neutron star (27 M) 3.435 x 1078 2.307 13.856
Black hole (40 M) 4.426 x 10°8 2.083 17.943
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Figure Al. Electron antineutrino energy spectra at the source: Here,
we show the time-integrated anti-electron neutrino emission spectra of the
three reference CCSN models that we use in this work. The blue solid and
orange dashed curves correspond to supernovae that result in neutron stars,
whose stellar progenitors have 9.7 and 27 M masses, respectively. The green
dotted curve represents a supernova that results in the formation of a black
hole and whose stellar progenitor has a mass of 40 Mg. Note that these are
the spectra at the source; when observed, these spectra will be redshifted by
a factor 1 + z, so that supernovae at high redshift only have non-negligible
contributions to the observed spectra at low energies.

supernova simulations with Boltzmann neutrino transport from the
Garching group (Garching Core-Collapse Supernova Archive 2022).
Following Mgller et al. (2018), three reference CCSN models are
used to account for the variations in neutrino emission depending
on the mass and fate of the progenitor star. For CCSNe leading
to the formation of a neutron star as the compact object remnant,
we use models with initial masses of 9.6 and 27 My, whereas for
stellar collapses leading to the formation of black holes, we use the
40 Mg ‘low’ mass accretion rate model (Mirizzi et al. 2016). In all
three models, the nuclear equation of state is assumed to be that of
Lattimer and Swesty, with a nuclear incompressibility modulus K =
220 MeV (LS220 EoS; Lattimer & Swesty 1991).

The related neutrino energy distributions are well described by a
pinched Fermi—Dirac distribution (Keil 2003; Keil, Raffelt & Janka
2003; Tamborra et al. 2012):

ot (1 +a)1+a E* {—(H—a)ﬁ]

dl) = (AL
(dE w U Ta+a) (E)He

Here, the parameters E', a, and (E,) represent the total energy

emitted in (anti-electron) neutrinos; a parameter that describes the
spectral shape, related to the pinching parameter; and the average
energy of the emitted neutrinos, respectively.

While the mean energy, luminosity (energy emitted per time), and
pinching parameter are time-dependent quantities, we are interested
in the time-integrated neutrino energy distributions. Therefore, we
report the time-integrated characteristic quantities in Table Al for
all three models adopted to model the DSNB and show these energy
spectra in Fig. Al. Note that these simulations do not include the
effects of neutrino flavor mixing, which we do not take into account
throughout this work.
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