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A B S T R A C T 

We explore the assumption, widely used in many astrophysical calculations, that the stellar initial mass function (IMF) is 

universal across all galaxies. By considering both a canonical broken-power-law IMF and a non-universal IMF, we are able to 

compare the effect of different IMFs on multiple observables and derived quantities in astrophysics. Specifically, we consider 

a non-universal IMF that varies as a function of the local star formation rate, and explore the effects on the star formation rate 

density (SFRD), the extragalactic background light, the supernova (both core-collapse and thermonuclear) rates, and the diffuse 

supernova neutrino background. Our most interesting result is that our adopted varying IMF leads to much greater uncertainty 

on the SFRD at z ≈ 2 − 4 than is usually assumed. Indeed, we find an SFRD (inferred using observed galaxy luminosity 

distributions) that is a factor of � 3 lower than canonical results obtained using a universal IMF. Secondly, the non-universal 

IMF we explore implies a reduction in the supernova core-collapse rate of a factor of ∼ 2, compared against a universal IMF. 

The other potential tracers are only slightly affected by changes to the properties of the IMF. We find that currently available 

data do not provide a clear preference for universal or non-universal IMF. Ho we v er, impro v ements to measurements of the star 

formation rate and core-collapse supernova rate at redshifts z � 2 may offer the best prospects for discernment. 

Key words: stars: formation – stars: luminosity function, mass function – supernovae: general – galaxies: luminosity function, 

mass function – neutrinos – methods: data analysis. 

1  I N T RO D U C T I O N  

In order to understand the formation and evolution of stars, an 

important quantity is the stellar initial mass function (IMF), the 

relative numbers of stars as a function of their mass at the time of 

their formation. As yet, the IMF remains only loosely constrained 

observationally. A common assumption is that the IMF is universal –

the same in all environments and throughout cosmic time. In this 

paper, we examine five observables that vary o v er cosmological 

distances and which strongly depend on the high-mass region of 

the IMF. One of our goals is to identify the extent to which these 

observables can be used to test the assumption of a universal IMF at 

the high-mass end. In particular, we study the consequences of non- 

universal IMFs for various astrophysical quantities, finding larger 

uncertainties in the star formation rate (SFR) and the core-collapse 

supernova rate. 

� E-mail: jjzie gler@ute xas.edu 

The concept of an IMF was introduced by Salpeter ( 1955 ), who 

proposed a single power law 
d N 
d M ∝ M 

α , where N is the number of 

stars formed with mass M ; in what is no w kno wn as the Salpeter 

IMF, he took α = −2 . 35. With the assumption of a single power 

la w, the e xponent α can be measured to within approximately 

10 per cent (Baldry & Glazebrook 2003 ). Unfortunately, there are 

fundamental questions about the parametrization that should be used 

in describing the IMF. Perhaps most notably, it was recognized at the 

end of the 20th century that low-mass stars did not tend to fall on the 

power -law distrib ution predicted by Salpeter. This gave rise to IMF 

models with low-mass suppressions, such as the broken power law 

of Kroupa ( 2001 ) and the lognormal distribution of Chabrier ( 2003 ). 

Recent evidence suggests that the IMF may even have an intrinsic 

dependence on the local environment (Harayama, Eisenhauer & 

Martins 2008 ; van Dokkum & Conroy 2010 ; Gunawardhana et al. 

2011 ; Cappellari et al. 2012 ; Ferreras et al. 2012 ; Ferr ́e-Mateu, 

Vazdekis & de la Rosa 2013 ; La Barbera et al. 2019 ). Variations 

to the low-mass end of the IMF have been studied e xtensiv ely in the 

literature (Chabrier 2003 ; van Dokkum & Conroy 2010 ; Geha 2013 ). 

© 2022 The Author(s) 
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Instead, follo wing recent e vidence (Gunawardhana et al. 2011 ), we 

focus on observ ables sensiti ve to the high-mass end of the IMF 

that may also be non-universal. Throughout this paper, we consider 

IMFs that are universal at low masses and vary only at high masses. 

The results of our analysis may therefore differ from analyses that 

consider IMFs with low-mass variations. 

Star-forming regions can be distinguished by a variety of prop- 

erties of the collapsing gas and dust, including angular momentum, 

metallicity , density , temperature, and dust content. The universality 

of the IMF therefore boils down to an assumption that all of 

these properties play little to no role in the masses of the formed 

stars. Whether this is theoretically justified remains unclear. As 

described in Offner et al. ( 2014 , and references therein), perturbations 

in the density of a star-forming gas cloud can, under reasonable 

assumptions, generate a power-law spectrum of core and clump 

masses, where cores and clumps refer to gravitationally collapsing 

gas clouds that are likely to form at least one star. In contrast to 

this power -law distrib ution, at low masses, turb ulence in the star - 

forming cloud can naturally produce a spectrum of masses that 

disfa v ours lower mass stars relative to the power-law predictions. In 

particular, Padoan, Nordlund & Jones ( 1997 ) showed that turbulence 

could give rise to a lognormal mass distribution among low-mass 

cores/clumps, similar to the IMF described by Chabrier ( 2003 ). 

While this theoretical explanation would seem to leav e v ery little 

room for non-universality in the IMF, the mass function described 

here is for cores and clumps, not stars. In relating this mass function 

to the stellar IMF, numerous assumptions must be made about the 

formation of protostars out of collapsing gas (Offner et al. 2014 ). 

The validity of many of these assumptions, especially in extreme 

environments, is largely an open question, suggesting that even 

within this theoretical framework, there may be room to consider 

non-universality without requiring a new paradigm. 

The question of whether the IMF is indeed universal has been 

inv estigated man y times. F or e xample, despite most observations 

being consistent with a universal IMF, authors have regularly sug- 

gested a non-universal IMF as a way to explain other astrophysical 

tensions (Larson 1998 ). Further, o v er the last two decades, hints of 

a tension between universal IMFs and observations have developed, 

particularly in early-type elliptical galaxies (van Dokkum & Conroy 

2010 ; Cappellari et al. 2012 ; Ferreras et al. 2012 ; Ferr ́e-Mateu 

et al. 2013 ; La Barbera et al. 2019 ) and in environments that 

e xperience e xtreme properties (Harayama et al. 2008 ; Guna wardhana 

et al. 2011 ). Theoretical models, such as the integrated galaxy-wide 

IMF (Kroupa & Weidner 2003 ; Fontanot et al. 2017 ; Je ̌r ́abkov ́a et al. 

2018 ; Chru ́sli ́nska et al. 2020 ) and the cosmic ray-regulated star 

formation discussed in Fontanot et al. ( 2018 ), can offer justifications 

for some of these observations and pose additional predictions. On 

the other hand, due to the inherent difficulty in measuring the IMF, 

many authors reject these observational claims, leaving the question 

of whether the IMF is indeed universal largely unanswered (see e.g. 

Hopkins 2018 , and references within for a recent re vie w of the range 

of perspectives). 

A large part of the uncertainty in whether the IMF is universal 

can be traced to the difficulty in unambiguously measuring it. 

Locally, where it is possible to resolve individual stars, one can 

estimate the IMF by comparing observed stellar populations to the 

populations that are predicted to form if different IMF models are 

assumed (Kennicutt & Evans 2012 ; Calzetti 2013 ). While accurate, 

this approach can only be used in star-forming regions nearby enough 

to resolve individual stars, and requires assumptions about the history 

of star formation in that region. On the other hand, for more distant 

galaxies, where it is impossible to see inside star-forming regions or 

where it is difficult to resolve individual stars, some proxy for the SFR 

must be used. The most common approach is to use the luminosity as 

a measure of the rate of star formation (e.g. Kennicutt 1998 ), but this 

causes observations of the IMF to depend heavily on the calibration 

factor between luminosity and SFR. While it is possible to calculate 

this calibration factor numerically, it requires an assumption about 

the IMF. Unfortunately, this circular dependence encountered when 

calculating the IMF of distant galaxies is rather ubiquitous, making 

an independent measurement of the IMF challenging. 

While it is difficult to directly measure the IMF, it may be possible 

to find indirect ways to probe the effects of a non-universal IMF. 

Previous works, such as Fontanot et al. ( 2017 ), Je ̌r ́abkov ́a et al. 

( 2018 ), Chru ́sli ́nska et al. ( 2020 ), and Fontanot et al. ( 2018 ) approach 

this problem as well, but use different models of varying IMF and 

probe different astrophysical observables than we do here. 

In this paper, we e xamine fiv e observ ables that v ary o v er cosmo- 

logical distances and which depend on the IMF: the star formation 

rate density (SFRD), the extragalactic background light (EBL), the 

core-collapse supernova (CCSN) rate density, the type Ia supernova 

(SNIa) rate, and the dif fuse supernov a neutrino background (DSNB). 

F or each, we e xplore how the y change when using a non-universal 

IMF compared to a universal one, and discuss whether they are 

discriminable with current or future data. For simplicity, we focus 

on the change induced by a varying IMF and ignore many other 

uncertainties directly related to each observable. These additional 

uncertainties will, in practice, make it more difficult to observe the 

IMF induced changes. Furthermore, by focusing on an IMF that 

only varies at high masses, we can explore only a subset of the 

possible effects that an IMF which varies at both high and low masses 

would predict. Our goal is simply to learn whether astrophysical 

observations of distant objects could, in principle, provide indirect 

evidence for a non-universal IMF. 

The rest of this paper is structured as follows. In Section 2 , we 

describe the two IMF models we consider throughout the paper. In 

Section 3 , we look at how these IMF models affect the five quantities 

described in the previous paragraph: the SFRD, the EBL, the CCSN 

rate density, the SNIa rate, and the DSNB. Finally, we conclude in 

Section 4 . 

2  I NI TI AL  MASS  F U N C T I O N  M O D E L S  

In a star-forming region, the stellar IMF describes the distribution 

of masses with which stars form. A common approach to describing 

this IMF is through a probability distribution ξ ( M). That is 

d N 

d M 
= ξ ( M) N tot , (1) 

where N is the number of stars formed with mass M , typically 

measured in units of M �, and N tot is the total number of stars formed. 

Under this convention, ξ ( M) is normalized such that 
∫ 

ξ ( M)d M = 1, 

when integrating over all possible stellar masses. 

In Salpeter’s seminal work (Salpeter 1955 ), the IMF was described 

as a power law of the form 

ξ ( M) ∝ M 
α, (2) 

where α = −2 . 35 was observed for stars in a mass range 0 . 4 −

1 . 0 M �. Since then, the range of masses o v er which the IMF could 

be determined has vastly increased, but the practice of describing 

the IMF through a power-law slope has remained. Ho we ver, as IMFs 

have been studied, the single straight power law of Salpeter has given 

way to IMFs with more features. For example, commonly used IMFs 

include the piecewise power law established by Kroupa ( 2001 ; a 
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Figure 1. Initial mass functions: This figure compares the non-universal 

IMFs we use in this paper (blue shaded region) to the canonical IMFs used 

in the literature: Kroupa ( 2001 ; green dotted) and Chabrier ( 2003 ; red dash–

dotted). We note the similarity of the two canonical cases relative to the 

wide range of non-universal IMFs we consider; we will use a proxy we 

identify as the canonical IMF (purple solid line) as our benchmark for the 

canonical cases. Each IMF is normalized so that the integral over mass equals 

1. The Kroupa IMF follows a broken power law, with slope α = −1 . 3 for 

M < 0 . 5 M � and α = −2 . 3 for M > 0 . 5 M �. The Chabrier IMF also behaves 

dif ferently at lo w-mass versus high-mass stars, with the lo w-mass stars ( M < 

1 M �) following a lognormal behaviour while high-mass stars follow a power 

law with slope α = −2 . 35. In all cases, we use broken power-law IMFs, 

defined piecewise with a break at 0 . 5 M �. Non-universal IMF (blue-shaded 

re gion): F or masses M < 0 . 5 M �, α = −1 . 3 and for M > 0 . 5 M �, α can 

take values in the range −1 . 8 to −2 . 35, shown here in the blue shaded region. 

Benchmark canonical IMF (purple solid curve): consists of a shallow power 

law like that in the Kroupa IMF at low masses and a Salpeter α = −2 . 3 IMF 

at high masses. Throughout this paper, we will use this case as a benchmark 

against which to test the effects of allowing the IMF to vary. 

variant of which was used in for example Baldry & Glazebrook 2003 ) 

and the Chabrier ( 2003 ) IMF which has a lognormal distribution for 

stars below approximately 1 M � and a power law for stars greater 

than 1 M �. These two IMFs are plotted in Fig. 1 . As long as a 

universal IMF is assumed, the high-mass behaviour of the IMF 

is approximately a power law with α = −2 . 35, consistent with a 

Salpeter IMF (Baldry & Glazebrook 2003 ). 1 

Ho we ver, while it is broadly accepted that a power-law Salpeter 

IMF does not hold true at low masses, questions regarding the range 

of environments o v er which the Salpeter power law is valid for stars 

1 Note that the typical break points for Kroupa and Chabrier are 0 . 5 M � and 

1 M �, respectively. Because the lognormal mass function smoothly turns 

o v er, the y end up giving a similar distribution of stellar masses. 

with mass greater than 0 . 5 M � remain significantly disputed. One of 

the most well-moti v ated regimes in which de viations from a Salpeter 

IMF at higher stellar masses could occur is the set of conditions in 

which Population III stars grow. For example, a top-heavy IMF at 

early times, which fa v ours a higher average mass for Pop III stars, 

seems to be preferred by observations (Sharda & Krumholz 2021 ). 

One possible mechanism that could justify this behaviour is described 

in Sharda & Krumholz ( 2021 ), where a change in metallicity can shift 

the peak mass from approximately 0 . 5 M � for solar metallicities to 

around 50 M � at metallicities of Pop III stars. Furthermore, Pop III 

stars may exhibit energy production mechanisms inaccessible in Pop 

I and Pop II stars, as would be the case for Dark Stars (stars made 

of hydrogen and helium but powered by dark matter; Freese et al. 

2016 ). In that case, it would be quite surprising if the IMF were to 

be consistent across all three populations. 

In addition, there has been a growing body of evidence that 

seems to suggest that while the IMF behaves as a power law at 

high masses, the slope may depend substantially on environmental 

factors. Various authors identify multiple factors as possible sources 

of these deviations away from Salpeter. In addition to metallicity, 

these include: velocity dispersion (Ferreras et al. 2012 ; Ferr ́e-Mateu 

et al. 2013 ), radius and surface mass density (La Barbera et al. 2019 ), 

and high turbulence (Chabrier, Hennebelle & Charlot 2014 ). 

In this paper, we focus on a non-universal IMF that varies 

with the SFR of a star-forming region. Specifically, we explore a 

relationship that was identified in data from the spectroscopic GAMA 

surv e y (Driv er et al. 2011 ), as analysed in Gunawardhana et al. 

( 2011 ). The GAMA surv e y w as undertak en by the Anglo-Australian 

telescope, which had measured the spectra of 120 000 galaxies at 

the time Gunawardhana et al. ( 2011 ) did their analysis. It has now 

taken the spectra of approximately 300 000 galaxies. The analysis in 

Gunawardhana et al. ( 2011 ) used the emission strength of the H α line 

as a proxy to calculate the SFR of a galaxy, and then binned galaxies 

based on that SFR. Using a set of simulated galaxies, a power-law 

IMF was fit to the observed galaxies in each SFR bin, with the 

exponent α free to vary. Using these binned galaxies, they found a 

clear preference for a non-universal IMF, and that the variation could 

be described by the function, αG ≈ 0 . 36 log 〈 SFR 〉 − 2 . 6. Here, the 

average SFR, 〈 SFR 〉 , is measured in units of M � yr −1 . 

While this expression is the basis of the varying IMF we consider 

throughout the rest of this work, it is not in the most convenient 

form for our purposes. In particular, the independent quantity is the 

SFR, which is inferred from the luminosity of the H α emission line. 

To calculate the astrophysical observables discussed below, we will 

need galaxy luminosity functions up to high redshifts. Unfortunately, 

the H α emission line is not the ideal tracer of these luminosity 

functions as dust reprocesses most light emitted by galaxies into the 

infrared. On the other hand, galaxy surv e ys (and therefore galaxy 

luminosity functions) are more complete and readily available in the 

far-infrared (FIR) band (i.e. in the wavelength range 8–1000 μm) up 

to high redshifts. As a result, although using infrared luminosities can 

introduce significant uncertainty into the calculated SFRs (Madau & 

Dickinson 2014 ; Wilkins, Lo v ell & Stanway 2019 ), it is essential for 

our calculations below. 2 With this in mind, we convert 〈 SFR 〉 to the 

2 Note that Wilkins et al. ( 2019 ) found that the precise stellar mass range 

considered can alter the FIR and H α calibration factors, although the 

alteration is not necessarily the same between the two frequency bands. 

We therefore point out that by shifting from H α to FIR, we are introducing 

additional error on the o v erall magnitude of each of the observables discussed 

below. 
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FIR luminosity L FIR , using fix ed conv ersion factors from Kennicutt 

( 1998 ). 3 This mimics the process used by Kennicutt ( 1998 ) in reverse, 

but implicitly assumes that the SFRs predicted by both tracers (H α

luminosity and FIR luminosity) are consistent. Using this procedure, 

we can rewrite the varying IMF expression from Kennicutt ( 1998 ) 

as 

αvar ,> 0 . 5 ≈ 0 . 36 log 〈 L FIR 〉 − 6 . 1 . (3) 

Ultimately, the IMF we consider here is empirically based, so we 

choose to confine ourselves to the range of IMFs that were observed in 

the corresponding data. In particular, the analysis in Gunawardhana 

et al. ( 2011 ) calculated IMFs ranging from α ≈ −2 . 35 to −1 . 8, with 

some populations of galaxies having IMFs as steep as α ≈ −2 . 5. We 

limit ourselves to consider only the range of α ∈ [ −2 . 35 , −1 . 8], 

which ensures that low luminosity galaxies have an IMF with 

slope α = −2 . 35. 4 This α range corresponds to enforcing galaxies 

with a luminosity log 〈 L/L �〉 � 12 to have α = −1 . 8, and for 

galaxies with luminosity log 〈 L/L �〉 � 10 . 4 to have α = −2 . 35 

. Furthermore, we explore only the effect of varying the IMF abo v e a 

mass cutoff of 0 . 5 M �, which gives comparable low-mass behaviour 

to the Chabrier and Kroupa IMFs. Below this mass cutoff, we use a 

fixed power law 

αvar ,< 0 . 5 = −1 . 3 , (4) 

which matches the low-mass power law of the Kroupa IMF from 0 . 1 

to 0 . 5 M �. 

We plot the range of IMFs that may appear in this luminosity- 

dependent varying IMF in Fig. 1 (blue band). Special attention is 

given to the IMF which consists of a shallow power law like that in 

the Kroupa IMF at low masses and a Salpeter IMF at high masses. 

Throughout this paper, we will use this canonical IMF (blue line) as 

a benchmark against which to test the effects of allowing the IMF to 

vary. One important fact that is readily seen from Fig. 1 , and which 

has been noted by, for example Hopkins ( 2018 ), is that all of the 

IMF models we consider are quite similar, with only slight variation 

between them. Ho we ver, despite the smallness of these variations, 

when the different IMF models are used to predict the values of 

observables, especially those that depend on integration of IMF- 

dependent quantities, we can see substantial differences appearing 

between the predictions made under those IMF models. 

2.1 Luminosity to SFR calibration factor 

We are interested in using observables which vary on cosmological 

scales to probe the IMF, and on those scales directly measuring the 

IMF is unrealistic. Instead, we will be using luminosity as a proxy for 

star formation, and by extension the IMF, as described in equation ( 3 ). 

Because all of the observables we consider are related to the rates at 

which stars form or die, a necessary factor in their calculation is the 

calibration factor, which we denote χ , that relates luminosity to SFR. 

In general, the calibration factor depends on the IMF, and because 

we are considering a non-universal IMF, we must consider how the 

χ will depend on our assumed IMF. 

For a Salpeter IMF, multiple calculations of the calibration factor 

have been performed. In particular, Kennicutt ( 1998 ) found the 

3 Specifically, we used the relation SFR (M � yr −1 ) = 4 . 5 ×

10 −44 L FIR ( erg s −1 )(Kennicutt 1998 ). We discuss how this value depends on 

the IMF in Section 2.1 . 
4 We note, ho we ver, that increasing the range of possible α’s does not 

significantly affect our results. In particular, we verified that extending the 

range to α ∈ [ −2.5, −1.8] has no noticeable effect on all results shown below. 

Table 1. Choices of input parameters in P ́EGASE.3 . We use the various 

scenarios to estimate the impact of these parameters on the luminosity to 

SFR calibration factor. For all other results in the paper, we use the calibration 

factors derived with the ‘low Z’ conditions. 

Scenario Z Grains file 

Low Z 0 .013 ZDA 

High Z 0 .026 ZDA 

Dust ZDA 0 .0195 ZDA 

Dust LWD 0 .0195 LWD 

calibration factor using three different wavelength ranges. While 

modelling of factors such as dust has impro v ed (Kennicutt & Evans 

2012 ), the values in Kennicutt ( 1998 ) are often useful as a benchmark 

for illustrative purposes. Throughout this paper, we focus on the FIR 

wavelength range, 8–1000 μm, for which the value of the calibration 

factor from Kennicutt ( 1998 ), assuming a Salpeter IMF, is 

χK98 , FIR = 4 . 5 × 10 −44 M � yr −1 s erg −1 . (5) 

While the values obtained in Kennicutt ( 1998 ) are derived assum- 

ing a Salpeter IMF, and are reasonably consistent with our canonical 

IMF (as shown in Fig. 1 ), we are interested in IMFs with a range of 

high-mass behaviours. In order to calculate the impact that changing 

the IMF has on the calibration factor, we use the code P ́EGASE.3 (Fioc 

& Rocca-Volmerange 2019 ), which simulates the radiation spectrum 

of a galaxy with a set of user-defined inputs (our particular scenarios 

are provided here: P ́EGASE inputs). In each P ́EGASE simulation, a 

cloud of gas is converted to stars at a prescribed SFR, and with 

a prescribed IMF. The stellar spectrum of each star that is formed 

is computed and allowed to evolve according to stellar evolution 

processes. These stellar spectra are then summed for the ensemble of 

stars in the galaxy at each time-step in the simulation, resulting in a 

galactic spectrum. That galactic spectrum is then adjusted to account 

for the reprocessing of stellar light by dust. Through this process, we 

can get a spectrum which may be integrated over various frequency 

ranges and used to calculate luminosities in different frequency 

bands. 

In our simulations, we consider galaxies in the local universe that 

have a constant rate of star formation, and with other properties 

that we allow to vary. Besides allowing for different IMFs, we look 

at galaxies with two different geometries: discy spiral galaxies and 

spheroidal starburst galaxies, and with different metallicities and 

different dust models. In particular, for metallicity we consider a 

high-metallicity case with Z = 0.026 and a low-metallicity case 

with Z = 0.013. 5 For the dust models, we consider the dust 

models of Zubko, Dwek & Arendt ( 2004 ; ZWD), Li & Draine 

( 2001 ), and Weingartner & Draine ( 2001 ; LWD). We summarize 

the combinations of the models we used in Table 1 . 

For each of the simulated galaxies, we calculate the luminosity in 

an 8–1000 μm wavelength band at different times from 10 Myr 

to 1 Gyr after the star formation begins. Fig. 2 shows how the 

calibration factor is affected considering each of these changes in 

input parameters. Here, it can be clearly seen that while changing the 

metallicity and dust model does lead to a distinguishable difference 

in the calibration factor, those differences are small compared to the 

changes induced by changing the IMF and geometry. 

The convention for reporting a single calibration factor is to take 

the value at 100 Myr after the start of star formation. For other tracers 

5 Note that some work has been done to self-consistently model metallicity 

evolution together with a varying IMF (Kobayashi 2010 ). 
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Figure 2. Calibration factor versus IMF slope: (Left-hand panel) Comparison of the calibration factor χ = R SF /L for a range of IMF slopes ( α = −2 . 35 

to −1 . 8) used in our P ́EGASE.3 simulations. We also show the impact of galaxy morphology by comparing calibration factors assuming spiral galaxies (solid 

lines) and spheroidal galaxies (dashed lines). The horizontal black line is the calibration factor identified in Kennicutt 1998 (Kennicutt 1998 ) for an IMF slope 

α = −2 . 35 and assuming a spheroidal galaxy . Conventionally , the calibration factor is reported at 100 Myr following an onset of star formation, indicated here 

by a grey dotted vertical line. (Right-hand panel) The effect of different dust models and metallicities on the calibration factor, for both spiral and spheroidal 

morphologies with an IMF slope α = −2 . 35. For comparison, all curves in the left-hand panel use the ‘low Z’ scenario. 

of star formation, particularly ultraviolet luminosity, the calibration 

factor is ef fecti vely a constant after 100 Myr (Kennicutt 1998 ). While 

that is not the case for the FIR calibration factor, we adopt the same 

convention. Under this definition, we observe that the calibration 

factor we calculate for our canonical IMF and a spheroidal starburst 

galaxy is within 10 per cent of the calibration factor determined 

by K ennicutt (K ennicutt 1998 ) for a Salpeter IMF in a spheroidal 

galaxy. We do not account for other effects, e.g. stellar rotation on 

the calibrations (Horiuchi et al. 2013 ). Note that for α = −2 . 35 we 

compared P ́EGASE with STARBURST 99 (Leitherer et al. 1999 ) and 

found similar calibration factors. 

3  PROBES  O F  A  N O N - U N I V E R S A L  IMF  

Now that we have established our IMF models and the associated 

calibration factors, we will explore five astrophysical observables that 

intrinsically depend on the IMF. For each, we present the theoretical 

prediction for both IMF models and discuss whether current or future 

data are able to distinguish between the two. 

3.1 Star formation rate density 

We first explore how the SFR of galaxies could provide constraints 

on the nature of the IMF. The SFR is the rate at which gas in a star- 

forming region turns into stars, typically measured in M � yr −1 . While 

an interesting quantity in its own right, we will focus on the related 

SFRD, which measures the SFR per unit volume and typically has 

units M � yr −1 Mpc −3 . By looking at the SFRD rather than individual 

galaxies’ SFR, we can average over the variance introduced because 

of different galactic properties and specifically explore how star 

formation depends on redshift. As a result, while both quantities give 

insight into the star formation process, the SFRD is more directly tied 

to the cosmic star formation history and less dependent on conditions 

within individual star-forming regions (Madau & Dickinson 2014 ). 

While an understanding of the SFR is critical to theories of 

galactic evolution, it is challenging to measure directly. In fact, 

only in local systems, where stars can be resolved, can the SFR be 

directly measured (Kennicutt & Evans 2012 ; Calzetti 2013 ). Where 

young stars can be resolved, namely within the Milky Way and 

the nearest galaxies, it is possible to count those young stars and 

therefore directly estimate the SFR (Chomiuk & Povich 2011 ). In 

systems slightly more distant, where it is possible to resolve stars but 

impossible to see young stars shrouded in dust, fitting the galactic 

colour–magnitude diagram to simulations can provide an accurate 

measure of the SFR, among other properties. Ho we ver, for more 

distant systems, in which stars cannot individually be resolved, 

an indirect measure of the SFR must be used, typically treating 

luminosity as a tracer of the SFR. 6 To convert from luminosity 

to SFR, one uses the calibration factor introduced in the previous 

section. As mentioned before, unfortunately these calibration factors 

are determined using simulations which require assumptions to be 

made about the IMF. In Section 2.1 , we describe the impact that 

allowing the IMF to vary can have on the calibration factor. 

To calculate the SFRD, we need the calibration factor as well 

as the luminosity distribution of galaxies. This distribution can be 

described through the luminosity function d N/ d log L , 7 which 

will generically be a function of redshift z. In all of our calcula- 

tions, we use the set of luminosity functions calculated from data 

collected by the Herschel observatory in multiple complementary 

surv e ys including the PACS Evolutionary Probe (PEP), Herschel 

Multi-Tiered Extragalactic Surv e y (HerMES), and Herschel Great 

Observatories Origin Deep Surv e y (GOODS; Gruppioni et al. 2013 ). 

By including deep, pencil beam surv e ys like GOODS, these data 

include galaxies out to a redshift of z ∼ 4. Meanwhile, broad, shallow 

surv e ys, like those in PEP and HerMES, can help provide more 

6 While the methods described here are among the most direct ways to estimate 

the SFR, work has been done to impro v e these estimates by combining these 

methods with observations that depend indirectly on the SFR. For example, 

see Wilkins, Trentham & Hopkins ( 2008a ) and Wilkins et al. ( 2008b ) 
7 Note that all equations below are written for a generic luminosity L . For 

notational simplicity, we therefore drop the subscript FIR on all luminosities. 

Ho we ver, all calculations are performed within the FIR luminosity range 

(8–1000 µm). 
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Figure 3. Luminosity density: We sho w ho w the luminosity functions 

d N g / d log L from Gruppioni et al. ( 2013 ) depend on redshift. These lu- 

minosity functions give the density of galaxies as a function of luminosity 

and redshift. Here, we present the integral 
∫ 

d L d N g / d log L for spiral 

and starburst galaxies. We also show the contribution to these integrals for 

the luminosity ranges: 10 8 − 10 10 L �, 10 10 − 10 12 L �, and 10 12 − 10 14 L �. 

The luminosity functions in Gruppioni et al. ( 2013 ) are defined by fitting to 

modified Schecter functions, with parameters that are defined piecewise on 

z. These piecewise fits have breaks at the redshifts z = 0 . 5 and z = 1 . 1, so it 

is at these redshifts that we see peaks in observables like the SFRD. 

accurate identification of galaxies’ morphologies. Therefore, from 

this combined data set, Gruppioni et al. ( 2013 ) were able to develop 

accurate, galaxy-morphology specific luminosity functions, labelled 

as ‘spiral’, ‘starburst’, and ‘AGN-SF’ for redshifts z ≈ 0 − 4. 8 

Respectiv ely, these describe: spiral, disc y galaxies without e xtreme 

star formation; spheroidal galaxies with intense star formation; and 

galaxies with a bright active galactic nucleus (AGN). We further 

distinguish the AGN category into spiral galaxies with an AGN and 

starburst galaxies with an AGN, based on the fraction of each type 

presented in Gruppioni et al. ( 2013 ). For both spiral galaxies with 

or without an AGN, we use the spiral calibration factors from the 

previous section. Similarly, for starburst galaxies with or without an 

AGN, we use the spheroidal calbiration factors. 

In Fig. 3 , we show the luminosity density as functions of redshift. 

In particular, we show the quantity 
∫ 

d L d N/ d log L for both spiral 

and spheroidal galaxies, as well as their sum. Assuming a canonical 

IMF, the calibration factor is constant, so this quantity is proportional 

to the SFRD, as can be seen clearly in equation ( 6 ). We additionally 

show the luminosity dependence of this integrated quantity by 

presenting contributions from three luminosity ranges. Comparing 

these contributions, we see that at low redshift the luminosity 

function is dominated by medium luminosity spiral galaxies while 

at higher redshifts, high luminosity spheroidal galaxies dominate. 

This shift in dominant contributors to the o v erall luminosity function 

causes distinct differences in observables, arising from the varying 

calibration factor. These differences appear in two ways. First, in our 

varying IMF model, the calibration factor is different for galaxies 

8 Note that care must be taken in how AGNs are considered. The luminosity 

functions we consider are derived from the total luminosity of the galaxies, 

which includes both AGN and stellar sources. Ho we ver, when calculating 

calibration factors, it is conventional to include only luminosity from stellar 

sources, not including AGN. As a result, introducing AGNs may decrease the 

calibration factors from what we derive in the previous section, but we do not 

consider the effects of such a decrease in this work. 

Figure 4. Star formation rate density: We compare the SFRD assuming 

a canonical IMF (green dashed curve) and a varying IMF (blue solid curve) 

to observational data as a function of redshift. The data were chosen to 

match with the FIR band we explore in this work. To limit clutter in the 

plot, we chose a representative subset from the catalogue of data (Madau 

& Dickinson 2014 ). Features in the prediction curves at z = 0 . 5 , z = 1 . 1 

arise from non-smooth features in the luminosity functions we consider, and 

features at z = 1 . 0, z = 1 . 2 , and z = 2 . 0 arise from a non-smooth division 

of galaxies with an AGN into spiral and spheroidal sub-categories. While 

the observed data (red coloured points) agree quite well with the SFRD 

predicted from the canonical IMF, the data themselves are derived quantities 

which assume a Salpeter, Kroupa, or Chabrier IMF. For this reason, it is 

unsurprising that the observed data do not match the SFRD predicted using 

the varying IMF, particularly at high redshift. If a varying IMF is assumed 

when calculating the SFRD from observations, the results are expected to 

closely follow the predictions we make for a varying IMF. For illustration, 

we perform a preliminary reanalysis of the Magnelli et al. ( 2013 ) data using 

the luminosity functions described therein and the varying IMF we use in this 

work, depicted as blue points. This illustration is meant only to show proof 

of concept, and a more careful reanalysis should be performed, particularly 

in order to estimate uncertainties. 

with different luminosities. Second, the calibration factor from 

spheroidal and spiral galaxies, even at the same luminosity, is slightly 

different. From the contributions in Fig. 3 , we can therefore expect 

differences in any quantity derived from the calibration factor and 

luminosity functions at high and low redshift. In particular, based on 

where this turno v er from spiral-dominated to spheroidal-dominated 

galaxies occurs, we should expect to see notable differences between 

the varying and canonical IMFs at redshifts of z � 0 . 5 − 1 . 5. 

From the calibration factor and luminosity function, we can 

calculate the SFRD for a given galaxy morphology g by integrating 

o v er the luminosity L : 

R SF , g = 

∫ 

χ ( L ) L 
d N g 

d log L 
d log L. (6) 

The total observed SFRD is then given by the sum over galaxy types 
∑ 

g R SF , g , where R SF , g is the SFRD contribution from galaxies of 

type g. 9 In Fig. 4 , we compare the SFRD calculated using the varying 

IMF and canonical IMF. We also plot existing estimates of the SFRD, 

with data drawn from Magnelli et al. ( 2011 , 2013 ) and Gruppioni 

et al. ( 2013 ). Note that we only show data that explicitly use the same 

FIR range as we consider for our luminosity functions. In principle, 

there is a wealth of other data from different wavelengths to compare 

9 For simplicity, for the rest of this paper we drop the subscript g notation. All 

observable quantities defined below implicitly sum o v er galaxy type. 
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to e.g. Abdollahi et al. ( 2018 ), Madau & Dickinson ( 2014 ), Driver 

et al. ( 2018 ), Hopkins & Beacom ( 2006 ), and Fardal et al. ( 2007 ). 

We leave a more careful comparison to these data sets to future work. 

At low redshift ( z � 0 . 15), the SFRD calculated using a varying 

IMF is slightly lower than (within about 20 per cent of) the SFRD 

calculated using a canonical IMF and is consistent with observations. 

The primary reason for this behaviour is that at low redshifts, the 

dominant contribution to the luminosity functions comes from spiral 

galaxies with intrinsically lower galactic luminosity, which fa v our 

an IMF power law of α ≈ −2 . 35. At higher redshifts, the luminosity 

is dominated by a smaller density of intrinsically more luminous 

starburst galaxies, which favour a shallower IMF. Accordingly, we 

see that at redshifts z � 2 , the SFRD calculated using a varying IMF 

is up to a factor of three lower than the SFRD calculated from the 

canonical IMF and the reported observ ational data. Ho we ver, all of 

the data plotted in Fig. 4 , which is illustrative of much of the data 

in the literature (e.g. Hopkins & Beacom 2006 ; Fardal et al. 2007 ; 

Madau & Dickinson 2014 ; Abdollahi et al. 2018 ; Driver et al. 2018 ), 

assume an IMF with Salpeter -like beha viour at high stellar mass. 

In particular, in each of the three observed data sets shown here, 

the SFRD was calculated while assuming either a Chabrier IMF, a 

Kroupa IMF, or a pure Salpeter IMF. It is unsurprising then that 

the data so closely match the canonical IMF, while disagreeing with 

results obtained using univeral IMFs. 10 We therefore expect that 

reanalysing the SFR observations with a varying IMF would result 

in an SFRD that is lower than the existing data and that matches our 

predictions. We leave this analysis to future work. Since the effect 

of a varying IMF is significant, we also note that if the high-redshift 

SFR can be observed directly without relying on assumptions about 

the IMF, those observations could provide a useful probe of the IMF 

variability as a function of galaxy type. 

3.2 Extragalactic background light 

In addition to measuring the SFRD directly, we can also look at the 

EBL to potentially probe the IMF. The EBL is the integrated light 

from all sources in a particular direction. In particular, it includes 

light from all galaxies, even those too faint to resolve, and therefore 

provides an accurate measure of the luminosity function. In fact, the 

total EBL can be calculated as 

L EBL , total = 

∫ 

L 
d n g 

d L 
d L = 

∫ 
d n g 

d log L 
d L. (7) 

That is, the total EBL is simply an integral of the luminosity function 

o v er galaxy luminosities. Starting from the luminosity functions then, 

we can calculate the total EBL without introducing a dependence on 

the IMF, and so it is impossible to probe the IMF from the total EBL. 

Ho we ver, while the total EBL may be independent of IMF, the IMF 

affects the distribution of stellar masses. Because stars of different 

masses have different temperatures, and therefore different spectra, 

it is possible that the EBL spectrum may provide a way to probe 

the IMF. With this in mind, we followed the procedure outlined in 

Razzaque, Dermer & Finke ( 2009 ) to calculate an estimate of the EBL 

flux in the wavelength range 0.1–100 μm. Specifically, we calculate 

the spectrum of a star of given mass M with the corresponding 

ef fecti ve temperature T ( M) as a blackbody spectrum I ν,BB ( T ( M) ) . 

We additionally denote the number of stars of a given mass inside of 

10 Work using different non-universal IMFs, like (Chru ́sli ́nska et al. 2020 ), 

shows a similar trend toward reduced SFRD at high redshifts, but by a different 

factor. 

Figure 5. Extragalactic background light spectrum: Estimates of the 

EBL spectra assuming a varying IMF (blue solid curve), and a canonical 

universal IMF (green dashed curve). These are compared to data from Biteau 

& Williams ( 2015 ), showing the best-fitting values of the EBL calculated 

from various observed measurements of upper and lower bounds on the 

EBL spectrum. The estimates we show do not include processing from 

dust, so we generally expect the estimates to o v erpredict the intensity at 

short wa velengths, b ut begin to match at longer wa velengths. At the longest 

wavelengths, radiation from dust, rather than from stellar sources, will 

dominate the observed spectrum, and our estimates will underpredict the 

data. This behaviour is seen in our predictions which, in the wavelength 

range 3–7 µm which is least affected by dust, agrees quite well with data, 

regardless of IMF considered. 

a galaxy as N ( M, L ). This number therefore intrinsically depends 

on the IMF. The EBL at a given frequency can then be calculated as 

I EBL ,ν = 

∫ ∫ 

I ν,BB ( T ( M )) N ( M , L )d M 
d N 

d log L 
d L. (8) 

Although this technique can give an estimate of the EBL 

emitted from galaxies, it does not take into account dust, and 

because of this offers only limited insight into the observed EBL. 

Absorption of starlight by dust causes the short-wavelength end of 

the spectrum to be reduced, while re-emission by that dust causes 

the long-wavelength end to be increased. While this generic picture 

is true in all dust models, exactly how dust affects the shape of 

the spectrum depends heavily on the dust model. We leave careful 

accounting of these dust effects to future work. Instead, we can look 

at the narrow range of frequencies where the effects from both dust 

absorption and emission on the EBL are minimized. In particular, 

we consider the range approximately 4–7 µm (Cardelli, Clayton 

& Mathis 1989 ; Kennedy et al. 2013 ). As can be seen in Fig. 5 , in 

this wavelength range, the EBL predicted from both the canonical 

and varying IMF are quite similar, with the varying IMF prediction 

being very slightly bluer than the canonical prediction, and both 

visually fit existing data equally well. 

3.3 Core-collapse superno v a rate 

Along with the SFRD and EBL, we can look at the rate at which 

stars collapse into supernovae as a way to constrain the IMF. Stars 

which begin their life with a mass between 8 and approximately 

125 M � are expected to end their life as a CCSN (Heger et al. 

2003 ). Standard CCSNe occur when their iron or oxygen-neon- 

magnesium core, produced through nuclear fusion, exceeds the 

Chandresekhar mass limit and rapidly collapses (Couch 2017 ; Janka 

2017 ; Burrows & Vartanyan 2021 ). This facilitates electron capture 
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Figur e 6. Cor e collapse superno v a rate density: (Left-hand panel) Comparison of the predictions of the rate density of CCSNe assuming either a canonical IMF 

(green dashed curve) or a varying IMF (blue solid curve) with observational data as a function of redshift. See Fig. 4 for discussion of features at z = 0 . 5 , z = 1 . 0 , 

z = 1 . 1 , z = 1 . 2 , and z = 2 . 0 . (Right-hand panel) Rate of supernovae in each of the galaxy morphologies we consider. Here, blue corresponds to spiral galaxies, 

while green corresponds to spheroidal starburst g alaxies. Ag ain, dashed lines correspond to the canonical IMF, while solid lines correspond to the varying IMF. 

on nuclei and free protons in the centre of the collapsing core, 

which makes matter more neutron rich and produces a copious 

number of electron neutrinos (Bethe et al. 1979a ; Fuller 1982 ). Once 

the density reaches the nuclear saturation density (approximately 

2.6 × 10 14 g cm 
−3 ; Bethe et al. 1979a ), the strong nuclear force 

stops the collapse of the inner core (Bethe et al. 1979a ; Couch 

2017 ; Branch & Wheeler 2017 ). The sudden halt causes the core 

to bounce and launches a shock wave, which carries stellar material 

away from the core. The shock stalls after losing energy through the 

dissociation of heavy nuclei but can be re-energized by neutrinos, 

which re vi ve the shock leading to a successful explosion. This is the 

so-called neutrino-driven delayed explosion mechanism (Colgate & 

White 1966 ; Bethe & Wilson 1985 ). 

Eventually, the electromagnetic radiation emitted by the material 

ejected in a successful explosion is observed as a supernova. Depend- 

ing on the chemical makeup of the ejected material, CCSNe are clas- 

sified as Type Ib, Ic, or II supernovae (Turatto 2003 ; Smith 2014 ). The 

supernova can leave behind either a neutron star or black hole depend- 

ing on how much energy is imparted to the shock wave by neutrinos, 

compared to the gravitational binding energy of the outer layers of 

the star. Because some of these types of supernovae will be more de- 

tectable than others and any stars that collapse directly to a black hole 

do not produce a supernova, the fraction of core collapses that can be 

observed through electromagnetic signatures will depend on the fate 

of the collapsing massive star, and that in turn may depend on the IMF. 

As with the SFR, we will again focus on the core-collapse 

supernova rate density (CCSNRD), which allows us to focus on 

only the redshift dependence. On time-scales that are long compared 

to the lifetime of a star massive enough to undergo core collapse 

( � 10 Myr ), we can assume that when one star goes supernova 

another star of equal mass is formed. As a result, we can calculate 

the CCSNRD directly from the SFRD of stars with mass greater than 

approximately 8 M �. In particular, 

R CCSN ( z) = 

∫ 

χ ( L ) L 
d N 

d log L 

∫ M max 
8 M �

ξ ( M)d M 

∫ M max 
M min 

M ξ ( M )d M 

d log L. (9) 

Here, M min and M max refer to the minimum and maximum masses 

stars can take in the IMF we consider. In all of our calculations, we use 

M min = 0 . 1 M � and M max = 125 M �, respectively, the approximate 

lowest mass at which stars can fuse hydrogen and a somewhat 

arbitrary high-mass cutoff that does not significantly affect our 

results. The factor of M in the denominator is necessary because 

SFRs measure the total mass of stars that form, whereas the core- 

collapse rate measures the number of supernova events. 

In Fig. 6 , we compare the CCSNRD we predict from a varying IMF 

to that predicted from a canonical IMF and to observed CCSNRD 

data from Petrushevska et al. ( 2016 ), Strolger et al. ( 2015 ), Dahlen 

et al. ( 2012 ), and Mattila et al. ( 2012 ). As in the case of SFRs, at 

low redshift, all three CCSNRD are consistent. At high redshift, the 

CCSNRD predicted using the varying IMF is slightly lower than that 

predicted using the canonical IMF, but the discrepancy between the 

CCSNRD is significantly smaller than the related difference between 

SFRs. This impro v ed agreement is to be e xpected because the SFR’s 

dependence on the IMF partially cancels against the explicit IMF 

dependence in equation ( 9 ), as discussed in Madau & Dickinson 

( 2014 ). Ultimately, the existing CCSNe data appear to agree with 

either IMF model equally well. Ho we ver, as ne w observ atories 

including, the James Webb Space Telescope (Reg ̋os & Vink ́o 2019 ), 

the Vera Rubin Observatory (through the LSST surv e y; Iv ezi ́c et al. 

2019 ), Euclid (Laureijs et al. 2011 ), and the Nancy Grace Roman 

Telescope (Koekemoer et al. 2019 ) begin to take data, estimates of 

the high redshift CCSNRD will become more precise, potentially 

fa v ouring one model o v er the other. Likewise, gravitational wave 

detectors may offer another avenue to probe the supernova rate, and 

consequently the SFR, by measuring the binary black hole (BBH) 

merger rate (Vitale et al. 2019 ). Ho we ver, it should be noted that 

the binary merger rate would preferentially reflect the supernova 

rate in low-metallicity environments and would be subject to the 

same sorts of uncertainties as SNeIa (see below), which could make 

distinguishing between the two IMF models more challenging. 

We find that the two IMF models produce an O(2) difference 

in the total CCSN rate at redshifts greater than approximately 1.5. 

Therefore, at least a 100 per cent determination of the SN rate for 

z > 1 . 5 will be required to distinguish these two scenarios. Based 

on projections of the rates of supernovae expected to be observed 

by the Roman Telescope (Rose et al. 2021 ), it is not unreasonable 

to expect observational uncertainties at that level. Furthermore, a 

greater difference in the predicted supernova rates under our two 

models may appear if changing the IMF changes the fraction of stars 

that collapse into black holes versus those that collapse to neutron 
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Figure 7. Fraction of black hole forming collapses: The fraction of 

supernovae that result in black holes, rather than neutron stars. For the 

canonical IMF, approximately 21 per cent of stellar collapses lead to black 

hole formation (this fraction is assumed to be constant as a function of the 

redshift for simplicity), while for the varying IMF, this fraction depends on 

redshift, reaching approximately 35 per cent at z = 3. 

stars. All else held equal, a shallower IMF would increase the fraction 

of stars that evolve to black holes and decrease the fraction that evolve 

to neutron stars, relative to a steeper IMF. As shown in Fig. 7 , this is 

precisely the situation we expect from the varying versus canonical 

IMF. As a result, we can expect that a varying IMF would lead to 

fe wer oberv able CCSNe than the canonical IMF, particularly at high 

redshifts, all other factors held equal. 

3.4 Type Ia superno v a rate 

As with CCSNe, we can hope to probe properties of the IMF by 

looking at SNeIa. Type Ia supernovae occur when mass accretes 

on to white dwarfs from a giant star, typically when the two 

form a binary (Mazzali et al. 2007 ). As the mass of the white 

dwarf approaches the Chandrasekhar mass (Chandrasekhar 1931 ), 

temperatures and densities within the core of the star become high 

enough to initiate nuclear reactions from the abundant carbon and 

oxygen. These nuclear reactions produce so much energy that the 

entire star becomes unbound. Nuclear decays within the ejected 

material can then be observed as a SNeIa. 

For our purposes, SNeIa can be seen as a tracer of SFR like the 

CCSN rate. In addition, measurements of the SNIa rate do not require 

one to use a calibration factor and are therefore relatively independent 

of the IMF. Ho we ver, since SNeIa are sourced by white dwarfs, which 

form from stars whose lifetimes are of the order of 1–10 Gyr, they 

can only occur after enough time has passed for the white dwarf to 

accrete sufficient mass. Both the lifetime of the progenitor star and the 

period between the formation of a white dwarf and the occurrence of 

an SNIa must be accounted for when calculating the SNIa rate. This 

accounting is done through a delay-time distribution (DTD) F ( τ ), 

which measures the probability that a star formed at some time t − τ

will undergo SNIa at time t . Note that by defining the DTD in this 

way, we implicitly incorporate the fraction of white dwarfs that exist 

in binaries and can undergo SNIa into the DTD. In our calculations, 

we use the simple approximation that F ( τ ) ∝ τ−1 , justified in Maoz, 

Mannucci & Nelemans ( 2014 ). The SNIa rate density can therefore 

Figure 8. Type Ia superno v a rate density: We compare the rate density 

of SNeIa, assuming either a canonical IMF (green dashed) or varying IMF 

as described in the text (blue), to a selection of observed data. See Fig. 4 

for discussion of features at z = 0 . 5, z = 1 . 0, z = 1 . 1, z = 1 . 2, and z = 2 . 0. 

Predictions of the supernova rate depend on a poorly constrained delay time 

distribution, and by increasing the o v erall normalization of this DTD by a 

factor of 2 (still within 1 σ uncertainties), we can increase the varying IMF 

result from the blue solid curve to the blue dot–dashed curve. 

be calculated from the convolution 

R SNIa = 

∫ t 

0 

R SF ( t − τ ) F ( τ )d τ. (10) 

Here, we convert between redshift and time assuming a flat 	 CDM 

Universe that is dominated by 	 and matter, and where 
m, 0 = 

0 . 308 (Ade et al. 2016 ). 

In Fig. 8 , we compare observed SNIa rates, using data from 

Strolger et al. ( 2020 ), Perrett et al. ( 2012 ), and Cappellaro et al. 

( 2015 ), with predictions of the supernova rate assuming a canonical 

IMF and a varying IMF . T o make this comparison, we fixed the 

normalization of the DTD to 10 −3 M 
−1 
� in order to match the DTD 

presented in Maoz et al. ( 2014 ). 11 Using this normalization, the 

canonical IMF is largely consistent with the data, while the varying 

IMF leads to an SNIa rate that is consistently smaller than the 

observed SNIa rate. Ho we ver, if we allow the normalization of the 

DTD to vary, then increasing it by a factor of two produces much 

closer agreement between the varying IMF and observed SNIa rates. 

This change to the normalization is still within the 1 σ confidence 

range for the DTD. In other words, based on current observations 

and their uncertainties, the varying IMF cannot be ruled out, and 

more precise measurements of the DTD would be necessary to place 

meaningful constraints on either IMF model. 

3.5 Diffuse superno v a neutrino background 

Finally, in addition to directly observing of supernova rates, we 

can look to the neutrino supernovae produce in order to estimate 

their rate, and therefore potentially probe the IMF. Despite being 

relatively rare in any individual galaxy, supernovae are quite common 

throughout the Universe. Combining this with the fact that a single 

CCSN produces an immense number of neutrinos (approximately 

11 Ho we ver, as noted in Maoz et al. ( 2014 ), measurements of the DTD in 

different environments (e.g. dwarf g alaxies, g alaxies, and g alaxy clusters) 

can vary by an order of magnitude. 
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10 58 ; Mirizzi et al. 2016 ; Burrows & Vartanyan 2021 ) leads to 

the emergence of a background of neutrinos that is isotropic and 

nearly constant in time. This neutrino flux is commonly named 

the DSNB (Bisnovatyi-Kogan & Seidov 1984 ; Krauss, Glashow & 

Schramm 1984 ; Wilson et al. 1986 ; Beacom 2010 ; Lunardini 2016 ; 

Mirizzi et al. 2016 ). 

Only in recent years have experiments begun to approach the 

sensitivity necessary to directly observe the DSNB (Malek et al. 

2003 ; Bays et al. 2012 ; Zhang et al. 2015 ; Abe et al. 2022 , 2021 ; Li, 

Vagins & Wurm 2022 ). While no signal has yet been detected, the 

enrichment of Super-Kamiokande (SK) with gadolinium (Beacom 

& Vagins 2004 ; Horiuchi, Beacom & Dwek 2009 ) and the future 

proposed and planned experiments such as Hyper-Kamiokande 

(HK), JUNO, Jinping, and THEIA (An et al. 2016 ; Beacom et al. 

2017 ; Abe et al. 2018 ; Sawatzki, Wurm & Kresse 2021 ; Li et al. 2022 ) 

are expected to have enough sensitivity to make a first detection in 

the coming years. Once observed, the DSNB will provide a test 

of astrophysical observables (Lunardini 2009 ; Keehn & Lunardini 

2012 ; Nakazato 2013 ; Nakazato et al. 2015 ; Priya & Lunardini 2017 ; 

Møller et al. 2018 ; Horiuchi et al. 2021 ; Kresse, Ertl & Janka 2021 ; 

Singh & Rentala 2021 ; Libanov & Sharofeev 2022 ), neutrino fla v or 

physics (Lunardini & Tamborra 2012 ; Tabrizi & Horiuchi 2021 ; 

Suliga, Beacom & Tamborra 2022 ), and physics beyond the Standard 

Model (Ando 2003 ; Fogli et al. 2004 ; Goldberg, Perez & Sarcevic 

2006 ; Baker et al. 2007 ; Farzan & Palomares-Ruiz 2014 ; Jeong et al. 

2018 ; de Gouv ̂ ea et al. 2020 , 2022 ; Creque-Sarbinowski, Hyde & 

Kamionkowski 2021 ; Das & Sen 2021 ; Suliga et al. 2022 ). 

3.5.1 Theoretical models 

The calculation of the DSNB flux requires two components: the rate 

of supernovae as a function of their progenitor masses and the time- 

integrated neutrino energy spectra associated with each supernova. 

The former can be calculated as described in Section 3.3 , while a 

calculation of the latter is sketched here. Following Møller et al. 

( 2018 ) and Ashida & Nakazato ( 2022 ), we consider three possible 

outcomes of supernovae, depending on the mass of their stellar 

progenitor. Stars can either evolve into black holes or low/high-mass 

neutron stars. A characteristic neutrino spectrum is then associated 

with each type of explosion. More details on these spectra can be 

found in Appendix A . 

As discussed in Appendix A , the characteristic neutrino spectra as- 

sociated with the different supernovae outcomes can be significantly 

different. The DSNB signal is therefore also affected by the fraction 

of black hole forming collapses (Lunardini 2009 ). Unfortunately, 

the fraction of stellar collapses leading to black hole formation 

is unknown. Recent theoretical work and observational surv e ys 

indicate that this fraction could be approximately 10–40 per cent 

of all CCSNe (Kochanek et al. 2008 ; Lien, Fields & Beacom 2010 ; 

Horiuchi et al. 2014 ; Gerke, Kochanek & Stanek 2015 ; Ertl et al. 

2016 ; Sukhbold et al. 2016 ; Adams et al. 2017a , b ; Davies & Beasor 

2020 ; Neustadt et al. 2021 ; Byrne & Fraser 2022 ). For the canonical 

IMF, our DSNB modelling follows one of the scenarios considered 

in Møller et al. ( 2018 ) where the fraction of progenitors evolving into 

black holes is set to 21 per cent and for simplicity it is assumed to be 

constant as a function of redshift out to at least z = 5 . To make this 

assumption, we implicitly assume that both the stellar masses that 

evolve to black holes and the IMF do not change o v er cosmological 

history. Ho we ver, when we consider the varying IMF, we cannot 

assume that the IMF is constant as a function of redshift; in fact, 

because it depends explicitly on the SFR, which evolves over cosmic 

history, the varying IMF cannot remain constant. As a result, we 

expect to see a substantially larger fraction of stars evolve to black 

holes at high redshifts in the non-universal case than in the canonical 

case, as seen in Fig. 7 . 12 In addition, because our main goal is to 

investigate the impact of the variable IMF on the DSNB, we do not 

include neutrino oscillations in our modelling, as they would change 

the DSNB in the same way in both cases, i.e. canonical and variable 

IMF. 

Making use of the supernova rate and the neutrino spectrum, we 

can calculate the DSNB flux � as a function of neutrino energy E . 

Specifically, 

� ( E) = c 

∫ z max 

0 

d z 

H ( z) 

×

∫ 

χ ( L ) L 
d N 

d log L 

[
∫ M max 

8 M �

d n 

d E ′ 

ξ ( M)d M 

M 

]

d log L, (11) 

where d n 
d E 

13 is the neutrino spectrum, E 
′ = E(1 + z) is the source 

energy necessary at a redshift of z to be observed with energy E, and 

M = 
∫ M max 

M min 
M ξ ( M )d M is the average mass of newly formed stars. 

The integral 
∫ 

χ ( L ) L 
d N 

d log L d log L is equi v alent to R SF if the term 

in brackets does not depend on luminosity. While this condition is 

met for the canonical IMF, when we consider a varying IMF, the 

IMF depends on luminosity, so the factor in brackets picks up a 

dependence on luminosity. In addition, H ( z) = H 0 [ 
m, 0 (1 + z) 3 + 

(1 − 
m, 0 )] 
1 / 2 is the Hubble expansion parameter at z, where we 

assume a flat 	 CDM universe dominated by matter and 	 , with 


m, 0 = 0 . 308 and H 0 = 67 . 8 km s −1 Mpc −1 (Ade et al. 2016 ). 

Using the CCSNRD calculated from both a canonical and varying 

IMF we find the DSNB fluxes shown in Fig. 9 . We emphasize 

here that we have only considered a single benchmark for each 

IMF model, but in reality there are a number of other uncertainties 

which would create a band of possible DSNB realizations. We 

do not directly consider these uncertainties in the modelling of 

the DSNB (i.e. in Fig. 10 ), although below we account for a 

systematic uncertainty when e v aluating the discriminability of the 

two IMF models. For reference, we also show a hatched region 

which shows the approximate parameter space currently ruled out 

by SK observations, as well as the primary signal region for SK and 

future detectors (El Hedri, Ashida & Giampaolo 2021 ). Perhaps the 

most notable result is the similarity between the predictions from 

using the canonical and varying IMFs, especially at energies greater 

than approximately 20 MeV. While this will likely make it difficult to 

distinguish between the two scenarios once the DSNB is detected, it 

clearly demonstrates that the DSNB is robust to significant changes 

to the IMF. 

At lower energies (below approximately 20 MeV), we predict 

the DSNB flux to be slightly lower when assuming a varying 

IMF than when assuming a canonical IMF. While the IMFs we 

consider give similar predictions for the CCSNRD at low redshift, 

the y be gin to disagree at higher redshifts. The difference in the 

DSNB flux that we see here ultimately arises from this difference 

12 It should be noted that this fraction is calculated assuming that the stellar 

mass is the only factor which controls whether a supernova leads to a black 

hole formation or not (see Appendix A .). It is therefore constant for the 

canonical universal IMF. Other stellar properties, such as metallicity, may 

lead to changes in the fraction of supernovae that lead to black hole formation. 
13 Note that although equation ( 11 ) is true for all fla v ors, as mentioned in 

Appendix A we will focus solely on electron-antineutrinos since they have 

the best detection prospects. 
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Figure 9. Diffuse superno v a neutrino background flux: (Left-hand panel) We compare the predicted DSNB ν̄e flux, assuming either a canonical (green 

dashed) or varying IMF (blue solid) with the region probed by SK (hatched) (Abe et al. 2021 ). The red shaded region indicates the range of energies that could 

be observable by SK with the addition of gadolinium. The different IMFs might have an impact on the observed DSNB flux only at low energies, and it would 

be difficult to distinguish this difference against background neutrino sources. (Right-hand panel) We show the DSNB broken down into contributions from 

different redshift bins for the varying IMF. Because the emitted neutrinos are redshifted, distant supernovae only contribute significantly at low energies. 

Figure 10. Diffuse superno v a neutrino background rate: ̄νe DSNB event 

rates in HK enriched with gadolinium detectors for 10 yr of data taking. The 

sum of the ν̄e DSNB event rate plus background rate for the varying IMF 

(canonical) is plotted with solid blue (dashed green) line. The background 

rates are depicted as gre y re gions, and the error bars reflect the ±1 σ statistic 

uncertainties. As discussed in the main text, while SK cannot distinguish the 

two investigated IMF scenarios, HK might present a low significance hint 

towards a particular scenario. Note that we do not show other astrophysical 

uncertainties (e.g. errors on the SFR and uncertainty in the neutrino flux 

modelling), but partially account for this with a systematic uncertainty (see 

main text for details). 

in supernova rates. This is only noticeable at low neutrino energies 

because distant supernovae only contribute significantly to the low- 

energy spectrum. At higher energies, because of the redshifting of 

the neutrinos as they propagate, the source energy E 
′ = E(1 + z) 

can be significantly higher for distant supernovae than for nearby 

ones. As a result, the contribution to the DSNB flux from distant 

supernovae comes from a higher energy portion of the spectrum, 

which is exponentially suppressed. This effect is illustrated in the 

right-hand panel of Fig. 9 where we show the contribution to the 

DSNB in different redshift bins. Therefore, while a varying IMF is 

likely indistinguishable from the canonical IMF at high energies, 

sufficiently precise measurements of lower energy neutrinos may 

allow some degree of distinction between the two models. 

Varying the IMF is not the only source of uncertainty expected to 

appear in the low-energy DSNB region (around 20 MeV). Variations 

to the star formation histories, for example, could yield comparable 

differences between DSNB predictions (Singh & Rentala 2021 ; 

Kresse et al. 2021 ), which will be degenerate with differences 

due to variations of the IMF. Furthermore, additional uncertainties 

in the DSNB flux which may appear, independent of the choice 

of IMF, include the unknown fraction of high-mass stars that 

evolve to black holes and the neutrino spectra emitted during this 

evolution (Lunardini 2009 ; Horiuchi et al. 2018 ; Kresse et al. 2021 ), 

the precise normalization of the CCSN rate (Horiuchi et al. 2011 ; 

Mathews et al. 2014 ), the evolution of neutrino flavours in the dense 

medium encountered during supernovae (Duan, Fuller & Qian 2010 ; 

Chakraborty et al. 2016 ; Tamborra & Shalgar 2021 ), and any possible 

stellar binary interactions (Horiuchi et al. 2021 ). To partially account 

for these uncertainties in subsection 3.5.2 , we include a systematic 

uncertainty of 50 per cent in our calculations of the discriminating 

power of the detectors to the varying IMF. 

3.5.2 Expected sensitivities of Super-Kamiokande and 

Hyper-Kamiokande 

Although no detection of the DSNB has yet been made, the strongest 

constraints come from the SK experiment (Bays et al. 2012 ; Abe 

et al. 2021 ). In 2019, upgrades to SK began which allowed for 

the introduction of gadolinium into the SK tank by 2021. The 

gadolinium doping will make the detection of electron antineutrinos 

significantly easier, which will subsequently impro v e our ability to 

detect neutrinos from the DSNB (Beacom & Vagins 2004 ). As a 

result, it is expected that a positive measurement of the DSNB will 

be observed in the near future (Li et al. 2022 ). 

Fig. 10 shows the predicted accumulated DSNB flux after 10 yr 

of operation of HK (3740 kton yr exposure) compared to its re- 

spective neutrino backgrounds, where we assume a concentration of 

0.1 per cent GdCl 3 in water. The blue solid (green dashed) line depicts 

the combined neutrino flux from both the DSNB and background 

sources, where we calculate the DSNB flux using a varying IMF 
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(canonical IMF). Sources of background neutrinos that we consider 

include atmospheric charged-current events, invisible muons, 9 Li 

spallation, and reactor antineutrinos (Abe et al. 2018 , 2021 ). 

We can use a simple �χ2 Pearson test to estimate the detection 

prospects of distinguishing between the varying IMF and canonical 

IMF. In both SK (225 kton yr exposure with 0.1 per cent GdCl 3 ) and 

HK, the two IMFs are not distinguishable at the 3 σ le vel, e ven after 

10 yr of data collection. Furthermore, in SK, the two models remain 

indistinguishable at the 1 σ le vel. Ho we ver, in HK, the varying and 

canonical IMFs are distinguishable at the 1.3 σ level. This marks an 

upper bound to the distinguishability, as we have not introduced other 

sources of uncertainty. Including a systematic uncertainty for the 

background of 20 per cent and for the DSNB models of 50 per cent 

reduces the difference between the two models to 1.1 σ (note that 

these additional systematics are not shown in Fig. 10 ). Once SK or 

HK detects the DSNB, it may be possible to generate an impro v ed 

statistic, using an unbinned maximum likelihood ratio test with a 

parametrized family of models that include the canonical and varying 

IMFs, which could allow for a better ability to distinguish between 

these two models, assuming all other uncertainties become negligible 

in comparison. 

4  C O N C L U S I O N  A N D  O U T L O O K  

In this paper, we explored whether one can find evidence for a 

non-universal IMF in five astrophysical observables that arise from 

inte grating o v er cosmological scales. Throughout, we hav e seen 

that these observables show small but non-zero differences when 

assuming the non-universal IMF (described in Section 2 ) versus 

a canonical universal IMF. The differences are typically too small 

to distinguish in currently existing data, but as detectors impro v e, 

there are a variety of signals which may offer practical ways to 

study the IMF. In particular, we find that studying the SFR and the 

core-collapse rate at high redshifts ( z � 0 . 5) may offer the greatest 

distinguishability between the different IMF models. 

At redshifts greater than approximately 0.5, the SFR predicted 

assuming a varying IMF is lower than the corresponding prediction 

from a canonical IMF by up to a factor of ∼ 3 (see Fig. 4 ). Because 

observing the SFR requires a calculation that depends strongly on 

the assumed IMF, the predictions, though significantly different, can 

both still be consistent with current observ ations. Ho we ver, due to 

the SFR’s prominent role in, for example, modelling star formation 

histories and cosmological simulations, it would be interesting to see 

whether an indirect test of the SFR could fa v our one IMF model 

o v er the other. For example, the BBH merger rate (Fishbach, Holz 

& Farr 2018 ; van Son et al. 2022 ) acts as an independent probe of 

the core collapse rate. LIGO and Virgo, at design sensitivity, are 

e xpected to observ e BBH mergers up to redshifts of around one. 

On the other hand, 3rd generation telescopes may reach z ∼ 15 and 

thus independently measure the SFRD to a few per cent according 

to Vitale et al. ( 2019 ). We leave a more careful examination of this 

method to future work. 

Similarly to the SFR, abo v e z � 0 . 5 the core-collapse rate can 

differ by a factor of ∼ 2 between the two IMF models (see Fig. 6 ). 

Current observations of core-collapse rates are still too poor at 

high redshifts to distinguish between these models. Ho we v er, ne xt- 

generation telescopes such as James Webb Space Telescope (Reg ̋os 

& Vink ́o 2019 ), Roman Space Telescope (Koekemoer et al. 2019 ), 

Vera Rubin Telescope (through the LSST; Ivezi ́c et al. 2019 ), and 

EUCLID (Laureijs et al. 2011 ), may provide significantly better rate 

estimates at these high redshifts. An additional subtlety here is that 

a varying IMF will produce a larger fraction of black hole collapses 

(see Fig. 7 ) which may be less luminous. A careful treatment of the 

observ ational ef ficienc y of an y core-collapse rate measurement is 

therefore required to distinguish the two IMF models. 

The stellar IMF plays a fundamental role throughout astrophysics 

and man y unsolv ed questions require an accurate model of the IMF 

to address. It is therefore vital that new methods are developed 

to decipher its dependence on the local environment. Here, we 

hav e e xamined a few indirect methods. Future work should more 

carefully examine the most promising of these scenarios with a metic- 

ulous treatment of their associated uncertainties, including studying 

whether the impact of different IMFs can be distinguished from 

potentially degenerate or partially degenerate sources of uncertainty. 

Moreo v er, combining the different probes presented here may lead to 

significantly tighter constraints on possible IMF variations. Through 

this, we hope that indirect probes may provide additional evidence 

towards distinguishing a varying IMF. 
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APPENDIX  A :  SUPERNOVA  N E U T R I N O  

SPECTRA  

In order to estimate the DSNB flux, we model the CCSN popula- 

tion by relying on the outputs of one-dimensional, hydrodynamic 

Table A1. Best-fitting parameters for the pinched Fermi–Dirac distribution 

used to describe the numerically generated time-integrated neutrino spectra. 

E tot 
ν [ MeV ] a 〈 E ν〉 [ MeV ] 

Neutron star (10 M �) 1.890 × 10 58 2.355 12.620 

Neutron star (27 M �) 3.435 × 10 58 2.307 13.856 

Black hole (40 M �) 4.426 × 10 58 2.083 17.943 

Figur e A1. Electr on antineutrino energy spectra at the sour ce: Here, 

we show the time-integrated anti-electron neutrino emission spectra of the 

three reference CCSN models that we use in this work. The blue solid and 

orange dashed curves correspond to supernovae that result in neutron stars, 

whose stellar progenitors have 9 . 7 and 27 M � masses, respectively. The green 

dotted curve represents a supernova that results in the formation of a black 

hole and whose stellar progenitor has a mass of 40 M �. Note that these are 

the spectra at the source; when observed, these spectra will be redshifted by 

a factor 1 + z, so that supernovae at high redshift only have non-negligible 

contributions to the observed spectra at low energies. 

supernova simulations with Boltzmann neutrino transport from the 

Garching group (Garching Core-Collapse Supernov a Archi ve 2022 ). 

Following Møller et al. ( 2018 ), three reference CCSN models are 

used to account for the variations in neutrino emission depending 

on the mass and fate of the progenitor star. For CCSNe leading 

to the formation of a neutron star as the compact object remnant, 

we use models with initial masses of 9.6 and 27 M �, whereas for 

stellar collapses leading to the formation of black holes, we use the 

40 M � ‘low’ mass accretion rate model (Mirizzi et al. 2016 ). In all 

three models, the nuclear equation of state is assumed to be that of 

Lattimer and Swesty, with a nuclear incompressibility modulus K = 

220 MeV (LS220 EoS; Lattimer & Swesty 1991 ). 

The related neutrino energy distributions are well described by a 

pinched Fermi–Dirac distribution (Keil 2003 ; Keil, Raffelt & Janka 

2003 ; Tamborra et al. 2012 ): 

(

d n 

d E 

)

ν̄e 

= E 
tot 
ν

( 1 + a ) 1 + a 


(1 + a) 

E 
a 

〈 E ν〉 
2 + a 

e 

[ 
−( 1 + a ) E 

〈 E ν 〉 

] 

. (A1) 

Here, the parameters E 
tot 
ν , a, and 〈 E ν〉 represent the total energy 

emitted in (anti-electron) neutrinos; a parameter that describes the 

spectral shape, related to the pinching parameter; and the average 

energy of the emitted neutrinos, respectively. 

While the mean energy, luminosity (energy emitted per time), and 

pinching parameter are time-dependent quantities, we are interested 

in the time-integrated neutrino energy distributions. Therefore, we 

report the time-integrated characteristic quantities in Table A1 for 

all three models adopted to model the DSNB and show these energy 

spectra in Fig. A1 . Note that these simulations do not include the 

effects of neutrino fla v or mixing, which we do not take into account 

throughout this work. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
7
/2

/2
4
7
1
/6

7
2
4
2
5
5
 b

y
 g

u
e
s
t o

n
 0

7
 J

u
ly

 2
0
2
3


	1 INTRODUCTION
	2 INITIAL MASS FUNCTION MODELS
	3 PROBES OF A NON-UNIVERSAL IMF
	4 CONCLUSION AND OUTLOOK
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: SUPERNOVA NEUTRINO SPECTRA

