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Abstract—Given the recent global development of bike-sharing
systems, numerous methods have been proposed to predict their
user demand. These methods work fine for single-step prediction
(i.e., 10 mins) but are limited to predicting in a multi-step predic-
tion (i.e., more than 60 mins), which is essential for applications
such as bike re-balancing that requires long operation time. To
address this limitation, we leverage the fact that the demand
for upstream transportation, e.g., subways, can assist the future
demand prediction of downstream transportation, e.g., bikes.
Specifically, we design a deep spatial-temporal capsule network
called BikeCAP with three components: (1) a historical capsule
that learns the demand characteristics for both the upstream (i.e.,
subways) and downstream (i.e., bikes) transportation systems,
where a pyramid convolutional layer explores the simultaneous
spatial-temporal correlations; (2) a future capsule that actively
captures the dynamic spatial-temporal propagation correlations
from the upstream to the downstream system, in which a spatial-
temporal routing technique benefits to reduce the accumulated
prediction errors; (3) a 3D-deconvolution decoder that constructs
future bike demand considering the similar downstream demand
patterns in neighboring grids and adjacent time slots. Experi-
mentally, we conduct comprehensive experiments on the data
of 30, 000 bikes and 7 subway lines collected in Shenzhen City,
China, The results show that BikeCAP outperforms several state-
of-the-art methods, significantly increasing the performance by
38.6% in terms of accuracy in multi-step prediction. We also
conduct ablation studies to show the significance of BikeCAP’s
different designed components.

Index Terms—Distributed Transportation Systems, Demand
Prediction, Bike Sharing

I. INTRODUCTION

Bike-sharing systems are an emerging transportation system

in many cities such as New York City [1], [2], London [3],

and Beijing [4]. These systems complement existing public

transportation systems such as subways and buses and play an

important role in solving the last mile problem on people’s

daily commute. For such a transportation system, due to the

unbalanced demand distribution, user experience is significantly

impacted by the bike shortage issue. To solve it, operators re-

balance available bikes to improve user satisfaction [2], [5],

which requires accurate bike demand prediction ahead of time.

The research community has been working on the bike

demand prediction problem, and many works have achieved

good performance in single-step prediction [6]–[8] (i.e., the

demand in the next time slot). These works can be mainly

divided into three categories according to how they capture

spatial and temporal correlations. (1) Only temporal correlation:

The first category of works [2] regarded the bike demand

prediction problem as a time series prediction problem and

solved it by linear regression models. (2) Asynchronous spatial

and temporal correlation: The following works [5], [9] aug-

mented the existing solution with multi-source heterogeneous

data and captured the spatial and temporal correlations by

spatial and temporal components, respectively. However, the

separate spatial and temporal components cannot fully capture

the synchronous spatial-temporal characteristics of bike flow

propagation. For example, suppose a scenario that many

bikes transport from grid A at t to grid B at t + 1, which

indicates that the passengers’ flow propagation synchronously

requires temporal (e.g., the impacts delayed due to the traffic

propagation) and spatial (e.g., the impacts appears only between

certain regions) patterns. Thus, the improvement is limited

because the bike flows propagate along the synchronous spatial-

temporal dimensions [10]. (3) Synchronous spatial and temporal

correlation: Recent works [11], [12] addressed this limitation

by considering synchronous spatial-temporal correlations with

spatial-temporal graphs. However, those methods are only good

at single-step prediction, i.e., predicting the check-ins or check-

outs in the next time slot (i.e., 10 minutes) [12], which may

fail to meet the time requirement when operators need to re-

balance a large number of bikes far away, i.e., 60 minutes. Thus,

the question we aim to answer is how to enable multi-step

prediction with synchronous spatial-temporal correlations.

Our intuition is to leverage the fact that bike systems

are generally for short-distance trips which compensate for

other transportation systems (e.g., buses and subways) that

are generally for long-distance trips. In this sense, if we

can understand the relationship between short-distance trips

and long-distance trips (e.g., predict the number of people

who would use bike systems when they get on buses or

subways), we can potentially better predict the demand of bikes

ahead of time (i.e., multi-step bike demand prediction). For

illustration purpose, we name these long-distance transportation

systems upstream transportation and bike systems downstream
transportation. For example, Fig. 1 shows an illustrative

example with two subway stations and one bike station. During

the rush hour in the morning (from 6 to 9 AM), the number of

passengers (denoted by a blue dashed curve) entering station

A located in a residential area increases ahead of the number

of passengers exiting station B (denoted by a solid red curve)

located in the CBD areas. Meanwhile, the number of bike
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(a) Illustration Example

0 3 6 9 12 15 18 21 0
Time of a day

0

200

400

600

N
um

be
r 

of
 P

as
se

ng
er

s Number of passengers entering Station A
Number of passengers exiting Station B
Number of bike rents nearby Station B

(b) Correlations between demand of subway
and bike stations
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(c) Correlations between demand of subway
and bike stations

Fig. 1: The number of subway and bike passengers over one day. As depicted on the map, station A is located in a residential

area, and B is located in a CBD area. During the morning rush hours of the left figure, the number of entering passengers in

station A (blue dashed curve) increases before that of exiting passengers in station B (solid red curve). The number of bike

rentals shows a similar trend to that of outbound passengers nearby station B (yellow dotted curve). During the afternoon rush

hours in the middle figure, the number of entering passengers in station B (blue dashed curve) increases before that of exiting

passengers in station A (solid red curve). The number of bike rentals shows a similar trend to that of exiting passengers nearby

station A (yellow dotted curve).

rentals nearby station B (denoted by a yellow dotted curve),

e.g., within 200 meters, shows a similar trend to the number

of passengers exiting station B (denoted by a solid red curve).

In the middle figure, we found an opposite situation during

the rush hour in the afternoon (from 15 to 21 PM), i.e., the

number of passengers entering station B influence the number

of bike rentals nearby station A. Based on these two figures,

we argue that consolidating downstream bike data with other

upstream transportation systems, e.g., subways, provides us

a new opportunity to predict user demand ahead of time
accurately, i.e., the multi-step bike demand prediction.

Though the idea of consolidating upstream transportation

for bike prediction sounds straightforward, it is non-trivial to

design such a prediction model because of two challenges.

• Accumulated prediction errors in multi-step prediction.
A commonly used framework for multi-step prediction is

based on autoregressive models that recursively leverage

the predicted results as inputs to predict the next time

step, which leads to accumulated prediction errors easily

when the steps are long. In our scenario, the distance

between two stations can be long, which leads to large

accumulated prediction errors.

• Time-specific correlations between upstream and
downstream transportation systems. We found that the

correlations between two subway stations are temporally

varied. For example, in Fig. 1, the number of passengers

exiting station B is positively related to the number of

passengers entering station A in the morning, whereas

some are not related (i.e., at noon) or are negatively

related (i.e., in the afternoon). Traditional methods based

on Convolutional Neural Networks (CNNs) or Long-

short Term Memories (LSTMs) adopt a fixed-size kernel

with shared parameters cannot effectively explore such

temporally-varied correlations between two stations [13].

Fig. 2: Main Differences between Capsule Network and Autore-

gressive Model. The capsule network independently predicts

each future time slot via historical time slots reconstruction. It

reduces the accumulated errors caused by the autoregressive

models, e.g., LSTM, which leverages the previously predicted

results as inputs to predict the next time slot.

Motivated by the prevalence of capsule networks [14] in

Computer Vision that effectively capture the location informa-

tion of each object within an image (regarded as a part-whole
relationship in the spatial domain, we design a novel spatial-

temporal deep capsule network, named BikeCAP, to capture

the part-and-whole relationship and reduce the accumulative

errors in a temporal domain. As illustrated in Fig. 2, the “part”

components in historical capsules (i.e., lower layers) present

both the upstream and downstream transportation demand

features in historical time slots; The “whole” component

in future capsules (i.e., higher layers) indicates the future

downstream transportation demand in each time slot. The

connection between historical and future capsules is a dynamic

routing mechanism, which leverages historical demand to

re-construct that in each future time slot independently (as

illustrated in Fig. 2). Different from autoregressive models

such as LSTM that rely on previously predicted results as

inputs to predict the next time slot, it effectively reduces the

accumulated errors in the aforementioned multi-step series

prediction. The main contributions of our work are as follows.

• To our knowledge, we make the first attempt in exploring
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the time-specific spatial correlations between upstream

transportation and downstream transportation for the multi-

step demand prediction. In contrast, most of the existing

works of demand prediction focus on single-step prediction

without the synchronization between two transportation

systems.

• Technically, we design a novel spatial-temporal capsule

network that extends the previous capsule networks in

the temporal domain. In particular, we design a pyra-

mid convolutional layer in historical capsules to learn

the spatial-temporal feature representation for both the

upstream and downstream transportation demand along the

propagation direction. Moreover, we introduce a spatial-

temporal routing mechanism to actively capture the time-

specific spatial connections between historical capsules

and future capsules. Lastly, we adopt a 3D-deconvolution

decoder to construct future bike demand considering the

similar bike demand patterns in neighboring grids and

adjacent time slots.

• We conduct extensive experiments on real-world datasets

of 30, 000 bikes and 7 subway lines collected in Shenzhen

City, China. The results show that BikeCAP outperforms

the other 7 baselines by increasing the accuracy by

38.6% in multi-step prediction. Moreover, we also conduct

ablation studies and parameters analysis to explain the

effectiveness of BikeCAP.

II. PRELIMINARIES

In this section, we introduce the background of the pyramid

convolutional layer and the capsule network.

A. Pyramid-shape Design

Since we leverage the demand for upstream transport to

assist the demand prediction of downstream transport, we need

to explore the spatial-temporal correlations between historical

transport (i.e., blue grid at t−1 and t−2) and the downstream

transport (i.e., red grid at t), as shown in Fig. 3. The shape of

such kind of spatial-temporal correlations motivates a pyramid-

shape design, where the top of the pyramid (i.e., red grid)

represents the demand at the target grid at the current time

slot t, and other parts (i.e., blue grids) indicate the spatial-

temporal correlated grids in historical time slots, i.e., t− 2 and

t− 1. The more time slots we trace back, the larger areas we

should consider (i.e., the shape of the kernel at time slot t− 2,

i.e., dark blue grids, is always bigger than that at t− 1, i.e.,

light blue grids) because passengers can move farther distance

within more time slots. Therefore, we design the pyramid-shape

kernel to depict such spatial-temporal correlations along the

flow propagation direction, which benefits learning the spatial-

temporal correlations between proper grids with the target,

ignoring the uncorrelated grids.

B. Capsule Network

In Computer Vision, Hinton and Sabour [14] borrowed the

idea from neuroscience, where the brain is organized into

modules. Then, they introduced capsules to act like modules

Fig. 3: The insight of Pyramid-shape Design. The top of the

pyramid (denoted in red) represents the target grid at the current

time slot t, and other parts (denoted in blue) indicate the related

grids in historical time slots, i.e., t− 2 and t− 1.

(i.e., parts) to explore the features of different objects within

an image (i.e., whole), especially for rotational relationships.

i.e., position, size, orientation, deformation, and so on [14].

Based on that concept, they proposed the capsule network that

incorporates a dynamic routing mechanism, which calculates

the contribution between the part-and-whole relationships in

a bottom-up manner.

Motivated by the prevalence of capsule networks in the

spatial domain, we make an attempt to map its strength

to model the part-and-whole relationship in the temporal
domain. Specifically, as illustrated in Fig. 2, each capsule in the

lower layer, i.e., historical capsules, is regarded as one module

to capture the “part” features of traffic, including upstream and

downstream, for each historical time slot. Meanwhile, each

capsule in the higher layer, i.e., future capsules, represents

the “whole” features of downstream transportation systems

in every future time slot. The connection between historical

capsules and future capsules is the dynamic routing mechanism,

which benefits to learn the time-specific characteristics of

passenger flow propagation from historical to future time

slots in a bottom-up manner. It represents how the demand in

upstream transportation systems reflects the future demand in

the downstream transportation systems.

Compared with transformer [15] which is computed in a

top-down manner and mainly focuses on the correlations within

lower layers, we argue that using capsule networks is more

suitable in our scenario where we aim to synchronously capture

the time-specific spatial correlations between upstream and

downstream transportation systems along the flow propagation

direction. Moreover, different from autoregressive models such

as LSTM, which recursively leverages the previously predicted

results to predict the next time slot, the dynamic routing in

future capsules re-constructs the demand features in future time

slots independently, as illustrated in Fig. 2. Such an architecture

is beneficial to effectively addressing the accumulated errors

which appear in autoregressive models in the aforementioned

multi-step series prediction.

III. DESIGN

In this section, we introduce the formal problem definition.

Then we briefly illustrate the overall architecture of BikeCAP,
followed by detailed technical explanations, i.e., the designs

in historical and future capsules.
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Fig. 4: The Architecture of BikeCAP. It consists of three components: Input, 3D Deep Capsule Network, and Output. The

second component can be further divided into historical capsules and future capsules. We design a pyramid convolutional

layer in historical capsules (detailed in Sec.2.3) for spatial-temporal correlations. We also design a spatial-temporal routing

mechanism connecting the future capsules and historical capsules (detailed in Sec.2.4) for spatial-temporal correlations. At last,

we adopt a spatial-temporal decoder for output (detailed in Sec.2.5).

A. Problem Definition

We target the multi-step bike demand prediction. It can be

formulated as finding a function F that maps the historical

demand series X[t−h:t], including upstream and downstream,

into the future downstream series X[t+1:t+p].

X[t+1:t+p] = Fθ(X[t−h:t]) (1)

where θ denotes all the learnable parameters and Xt ∈
R(Ng1

×Ng2
). The city is divided into Ng1×Ng2 number of grids.

The reason why we leverage the grid-based representation is

that it is more flexible compared to graph-based representation

and is adaptable in all scenarios [16]–[18]. For example,

without a pre-defined graph structure, such as road interactions

and road segments, constrains the deployment of graph-based

representation, while the grid-based representation can be

directly applied merely based on space partition.

Further, we use spatial-temporal network series to represent

the demand data (a sample is provided in the input and output

of Fig. 4). There are three types of correlations existing between

grid i and j across different time steps: i) i and j indicate

the neighboring nodes at the same time step t, named spatial

correlation; ii) i is equal to j, which indicates the same node

between the adjacent time steps, i.e., t and t+1, named temporal

correlations; iii) different nodes, i.e., i and j, and different

time steps represent the passengers’ flow propagation direction,

named synchronous spatial-temporal correlations. We aim to

leverage these kinds of correlations to study the passengers’

flow propagation and then predict the downstream demand in

a multi-step scenario.

B. Overall Architecture

In Fig. 4, we present the architecture of BikeCAP, which

contains three components: Input, 3D Deep Capsule Network,

and Output. The second component can be further divided into

historical capsules, future capsules, and 3D Decoder.

• The historical capsules are designed to learn the spatial-

temporal demand features representation for both the up-

stream and downstream transportation systems in historical

time slots. We implement the historical capsules as a

pyramid convolutional layer with a 3D squash function.

The rationale behind the pyramid convolutional layer is

that the passengers’ flow propagation requires time (e.g.,

delayed impacts) and has specific patterns (e.g., only

between certain regions). This pyramid-based design is

beneficial to consider the proper grids and time along with

the space and time dimension, capturing the synchronous

spatial-temporal correlations rather than separating spatial

and temporal correlations.

• The future capsules adopt a spatial-temporal routing
mechanism to learn the time-specific spatial-temporal cor-

relations from demand in both upstream and downstream

transportation systems to future demand in the downstream

transportation system. It is a different type of computation

compared to the autoregressive or one-dimension convo-

lution methods, which depend on previous continuous

time slots to predict the next time slot, i.e., it leverages

Xt−h:t to predict Xt+1. The dependency on previous

time slots, which leverages the predicted results for the

next prediction, leads to accumulated prediction errors.

Compared with it, the spatial-temporal routing mecha-

nism models how the upstream transportation demand in

each historical time slot contributes to the downstream

transportation demand for each future slot along the flow

propagation direction independently.

• The 3D Decoder consists of two 3D-deconvolution layers

that utilize the similar bike demand existing in neighboring

grids and adjacent time slots to increase the prediction

ability further.

C. Historical Capsules

Historical capsules convert the spatial-temporal network

series into the capsule domain while exploring the spatial-

temporal demand representation for both the upstream and

downstream transportation systems. The input of the historical

capsules is a spatial-temporal demand flow network, as shown

in Fig. 5. It is represented as a tensor X ∈ R
(Ng1 ,Ng2 ,h,f)

where f is the extracted features, and h is the number of

historical time slots. Then, we adopt a pyramid convolutional

834

Authorized licensed use limited to: Rutgers University. Downloaded on July 07,2023 at 15:29:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: The left part shows the propagation direction of the passengers’ flow of the red node, i.e., target, in a spatial-temporal

network. The green nodes indicate the same node in continuous time slots, representing the influence of the temporal dimension.

The grey nodes indicate neighboring nodes, representing the impact across the synchronous spatial and temporal dimensions.

These two correlations support the design of a pyramid convolutional layer.

layer to the demand features exploration for both upstream and

downstream systems from X along the synchronous spatial-

temporal dimensions. As illustrated in Fig. 5, the demand

of the target grid (denoted in red at time slot t) can be

influenced by the demand of itself (denoted in green) and

its neighboring grids (denoted in grey) at previous time slots,

i.e., t− 1 and t− 2. In order to capture the above influences,

including spatial, temporal, and spatial-temporal correlations

(detailed in Sec. III-A), simultaneously, we adopt a pyramid-

shape kernel in convolution layers. Specifically, we use the

number of kernel layers to indicate the number of historical

time slots we traceback. The shape of the kernel in each layer

depicts the correlated grids at that time slot. Intuitively, the

longer time slots we trace back, the larger areas we should

consider. For example, the shape of the kernel at time slot

t− 2 is always bigger than that at t− 1 (denoted in grey in

Fig. 5). Stacking the kernels in all the time slots constructs

a pyramid-shaped kernel, and hence we name it a pyramid

convolutional layer. Different from the standard convolutional

layer that only considers the spatial correlation, such pyramid-

shaped spatial-temporal kernels capture the synchronous spatial-

temporal correlations along flow propagation directions for

spatial-temporal network series. Moreover, the flow propagation

requires time (e.g., delayed impacts) and also has specific

patterns (e.g., only between certain regions). Such a design also

benefits the elimination of the uncorrelated grids for correlations

computation.

The propagation rule is given by Φl = f(X,K) =

δ(KXW l), where Φl ∈ R
(Ng1 ,Ng2 ,h,n

l), W l is the weight

tensor in layer l, and δ is an activation function. K is the

pyramid kernel defined by:

K : X × X → R,K(x, y) =
∑

(xi,yi)∈Xx×Xy

xiyi (2)

Specifically, a k-sized kernel K is set to be K =
[at−k+1, . . . , at−1, at], with the size of at is 1× 1, the size of

at−1 is 3×3, . . ., and the size of at−k+1 is (2k+1)×(2k+1).
Intuitively, a larger k contains more spatial-temporal informa-

tion and then improves the performance, but it may also cause

higher computation cost (detailed in Sec. IV). Then, Φl will be

passed through a 3D squash function defined as Eq. 3 to limit

the length of the tensor, which represents the transportation

demand in each historical time slot. For example, a longer

tensor indicating closer demand correlations was shrunk to

a length slightly below one, and a short tensor indicating

uncorrelated relationships was shrunk to almost zero [14].

Ŝijk =
||Sijk||2

1 + ||Sijk||2 · Sijk

||Sijk|| , (3)

where i ∈ Ng1 , j ∈ Ng2 , and k ∈ h. The shape of outputs is

[Ng1 , Ng2 , h, nl], where nl is the dimension of each capsule

in layer l.

D. Future Capsules

Future Capsules learn the spatial-temporal connections

between historical demand features, including upstream and

downstream, and demand in downstream systems. We design a

spatial-temporal routing mechanism to model how the upstream

and downstream transportation demand in each historical time

slot contributes to the downstream transportation demand for

each future slot independently, illustrated in Fig. 6. The main

idea is to transform the demand for upstream and downstream

transportation services in each historical capsule inside the

historical capsules into one block to independently contribute

to the downstream transportation demand in each future time

slot. It benefits to explore the time-specific spatial correlations

between upstream and downstream systems.

The key difference between attention-based methods and

spatial-temporal routing is that the routing mechanism in the

capsule network calculates the contribution from lower to

higher layers, i.e., historical and future capsules, independently.

It helps to model the passengers’ flow propagation along

the synchronous space and time dimensions in a bottom-up

manner. Instead, attention is computed top-down, focusing on

the relationships in the same layer, which cannot fully explore

the flow propagation characteristics. Moreover, this approach

breaks the dependencies between the previous continuous

time slots and the following time slot and then reduces the

accumulated multi-step prediction errors. In particular, we have

three detailed steps as follows.

First, we reshape Φl into Φ̂l = (Ng1 , Ng2 , h × nl, 1) and

convolve it with (cl+1 × nl+1) number of 3D convolutional

kernels, whose strides are (1, 1, nl). The purpose of keeping the
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Fig. 6: Spatial-temporal Routing using 3D convolutions. From the high-level perspective, each capsule in historical capsules l
predicts for cl+1 capsules in future capsules independently. In the first routing iteration, all the intermediate predictions V are

equally weighted and summed for the final prediction S. Then, in the following iterations, coupling coefficients K (i.e., the

degrees of contribution) are updated according to the agreement with S and V.

size of stride as nl along the temporal dimension is to obtain

the contribution of each historical capsule. The intermediate

output, denoted as V, has the shape of (Ng1 , Ng2 , h, n
l+1×p),

which are reshaped to (Ng1 , Ng2 , n
l+1, p, h) for the routing

algorithm, where p is the length of predicted time slots.

Then, we initialize the logits Bs ∈ R
(Ng1

,Ng2
,p) as 0, where

s ∈ [h]. The corresponding coupling coefficients Ks are

calculated by a 3D version of the existing softmax function

Eq. 4 [19].

Ks = softmax_3D(Bs)

kijks =
exp(bijks)∑

x

∑
y

∑
z exp(bxyzs)

(4)

where i, x ∈ Ng1 , j, y ∈ Ng2 , and k, z ∈ p. Here, the

logits are normalized among all predicted capsules from each

capsule s in historical capsules l. It is because each predicted

capsule in future capsules l+1 will receive Nh corresponding

contributions from l. Each contribution is weighted with kijks
to obtain the prediction outcome for one future time slot Ss,

i.e., Ss =
∑

s Vs · Ks. Thus, the Ks ∈ R
(Ng1 ,Ng2 ,p) is the

multi-step spatial-temporal connections between historical and

future capsules. At last, we pass the Ss through a 3D squash
function (Eq. 3) to limit the length of the capsule tensor as

it represents the transportation demand, i.e., a longer tensor

indicates huger demand.

E. 3D Decoder

The input of decoder is the tensors Φl+1 ∈ R
(Ng1 ,Ng2 ,p,n

l+1)

from future capsules. It is reshaped to Φ̂l+1 ∈
R

(p,Ng1 ,Ng2 ,n
l+1), and fed into the 3D deconvolutional

layers that leverage the spatia-temporal correlations residing

in downstream demand patterns between the target grid and

its neighbors in continuous time slots, i.e., spatial, temporal,

and spatial-temporal correlations, for the future bike demand.

Finally, we minimize the sum of squared differences between

the predicted values and ground truth as the loss function.

IV. EXPERIMENTS

In this section, we first introduce the datasets, followed

by evaluation metrics and baselines. Then we represent the

implementation details and experiment settings. At last, we

evaluate the performance of BikeCAP compared with the latest

SoAs, including ablation study and parameters analysis.

A. Datasets

By collaborating with the Shenzhen Transportation Agency,

we have accessed two Shenzhen bike and subway datasets for

experiments. Those two datasets are one-month-long (from

2018-10-01 to 2018-10-31), covering around 30, 000 bikes and

7 subway lines in Shenzhen, China. Our investigation here

focuses on using subway and bike datasets as an example to

evaluate the performance of leveraging the demand of upstream

transportation systems to assist the downstream transportation

demand prediction in multi-modal scenarios. The trip records

are collected by the device when there is communication

between devices and user terminals. The data collection process

is approved by the users, and all the data is anonymous.

The subway dataset (as illustrated in Table I) can be further

classified into boarding records and disembarking records. They

both contain detailed spatial and temporal information, i.e.,

check-in or check-out time and corresponding stations.

The bike dataset (as illustrated in Table II) contains two

types of records, i.e., pick-up and drop-off. It also contains the

corresponding time, location (GPS points), and bike ID.

B. Evaluation Metrics and Baselines

To evaluate the performance of our model and the following

baselines, two metrics Mean Absolute Errors (MAE) and

Root Mean Squared Errors (RMSE) are adopted.

MAE =
1

n

n∑
i=1

|yi − ŷi| (5)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

where n is the number of instances, yi indicates the ground

truth of pick-up demands, and ŷi denotes the predicted results.

• XGBoost [20]: It is a boosting-tree-based method that is

widely used in data mining. For single-step prediction, we

concatenate the historical records from the timeslot t− h
to t for each grid, respectively, to predict the number of
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TABLE I: Subway-trip Record Format and Example

#Record SZT ID Time Transportation Status Stations

0001 00001 2018-10-01 21:32:12 Subway Line No.1 Boarding Guomao Station
0002 00001 2018-10-01 22:14:34 Subway Line No.1 Disembarking Window of the World

TABLE II: Bike-trip Record Format and Example

#Record User ID Time Location Status Bike ID

0011 00011 2018-10-01 01:24:38 GPS Point Pick-up 00000
0012 00111 2018-10-02 11:13:43 GPS Point Drop-off 00011

vehicles at timeslot t+ 1. For multi-step prediction such

as two-step prediction, we first predict the outcome at

timeslot t+ 1. Then we use it to construct the input data

from t− h+ 1 to t+ 1 to predict the outcome at t+ 2.

This process is conducted recursively for three or more

steps prediction.

• LSTM [21]: Long Short-Term Memory Network is for

time series prediction. The input of LSTM is the same

as that of XGBoost, which comprises a single series of

demands in historical time steps, and LSTM is required

to learn from the series of historical observations to

predict the next value in the sequence. Similar to that for

XGBoost, we recursively conduct the process of single-

step prediction for two or more steps prediction.

• convLSTM [22]: Before LSTM, it augments with con-

volutional layers for spatial correlations exploration. The

size of the kernel in CNN decides the spatial range. A

larger size contains more spatial information but induces

higher computation costs. In the experiments, the size is

5 considering the balance between performance and cost.

• PredRNN [23]: A Predictive Recurrent Neural Network

that memorizes both spatial appearances and temporal

variations in a unified spatiotemporal memory pool. The

input of PredRNN is the same as that of convLSTM.

• PredRNN++ [24]: It improves PredRNN with cascaded

dual memories for the exploration of single-step dynamics.

• STGCN [25]: A Spatial-Temporal Graph Convolutional

Network uses ChebNet and 2D convolutional networks to

capture spatial and temporal correlations. We transfer each

grid as a node, and use h-hop neighbor grids to construct

the relation matrix, i.e., adjacency matrix. The grids within

h-hop are considered as connected nodes. Then the grid

partition is converted into a graph representation.

• STSGCN [10]: A Spatial-Temporal Synchronous Graph

Convolutional Network combines graph convolutional

layers with aggregating and cropping operations for the

localized spatial-temporal correlations.

C. Implementation Details

We implement BikeCAP with Keras 2.4 [26] and test it on

a server with NVIDIA A4000 GPU with Intel(R) Xeon(R)

CPU E5-2650 v4 @ 2.20GHz, 256GB memory. For the hyper-

parameters, we set the batch size as 32, and the learning rate is

set to 0.001. We set the number of capsules as 10 for historical

inputs and the number of capsules as 1 for future output

in a one-step prediction. It varies from 2 to 8 in multi-step

prediction. The pyramid size is set to 5, and the dimension

of the capsule is set to 4. Besides, we choose L1 Loss as the

loss function. We optimize it with the Adam optimizer for

100 epochs and do not apply any non-mentioned optimization

techniques, e.g., learning rate decay or weights decay.

D. Experiment Settings

For the data pre-processing, we follow the method in [27]

to aggregate 15-minute traffic data (e.g., the number of bike

rentals or returns and the number of passengers entering or

exiting each subway station) into one time slot, i.e., four time

slots for each hour. Because the contribution of one input

heavily relies on its relativity to other inputs, re-scaling is

required to fix such a problem. In this paper, we adopt the min-

max normalization strategy [28], and the values of all features

are mapped to the range between 0 and 1. After prediction,

we denormalize the prediction value for evaluation.

For the experiments, we split all datasets into training,

validation, and testing sets with a 6 : 2 : 2 ratio. We utilize

two-hour, i.e., 8 time slots, continuous historical data to predict

the future bike demand. In order to verify BikeCAP for a multi-

step prediction, the length of future time slots ranges from 2
to 8, i.e., from 30 minutes to 2 hours. All the experiments are

repeated 5 times, and the performances are presented using

the "mean±standard deviation" format.

E. Experiment Results

1) Comparison to the State-of-the-art Methods: In Table III,

we compare the performance of BikeCAP with different

approaches. We found that BikeCAP outperforms other models

in most cases, especially when the length of predicted time slots

is larger than 5 where BikeCAP achieves better performance

compared to others whose MAE or RMSE increases dramati-

cally. This suggests that BikeCAP is applicable in multi-step

prediction.

Generally, spatial-temporal models (e.g., convLSTM, Pre-

dRNN++, and STGCN) that take advantage of spatial-temporal

correlations achieve better performance compared to those

only for time series prediction, e.g., XGBoost and LSTM.

Moreover, the graph-based models provide outstanding results

compared with grid-based models (i.e., CNN-based models)

that include some grids without useful data. This explains that

the performance of STGCN and STSGCN are slightly better

compared to BikeCAP at the beginning.

In particular, convLSTM and STGCN use two modules to

model the spatial-temporal correlations, respectively. STGCN
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TABLE III: Performance Comparison of the State-of-the-art Approaches

Baselines XGBoost LSTM convLSTM predrnn predrnn++ STGCN STSGCN BikeCAP

MAE

PTS=2 8.27 5.92±1.75 5.77±1.61 5.37±1.30 4.60±1.59 1.48±0.14 1.37±0.12 1.66±0.31
PTS=3 10.56 7.18±1.94 6.93±2.15 6.96±2.64 5.35±2.08 1.60±0.16 1.43±0.11 1.79±0.34
PTS=4 11.34 10.06±2.37 9.28±2.30 8.33±1.38 7.78±1.81 1.82±0.14 1.81±0.09 1.82±0.33
PTS=5 14.08 11.59±2.08 10.37±2.51 9.64±1.84 8.02±1.53 2.13±0.15 2.06±0.17 1.86±0.41
PTS=6 17.96 13.44±2.48 12.60±2.16 10.84±2.23 10.81±1.72 2.70±0.10 2.61±0.12 1.89±0.37
PTS=7 21.20 16.13±3.53 14.65±3.18 12.41±3.17 12.74±2.87 3.13±0.14 3.10±0.10 1.98±0.32
PTS=8 28.35 18.69±3.20 17.34±3.24 15.96±3.30 15.22±2.52 3.32±0.17 3.32±0.17 2.04±0.33

RMSE

PTS=2 14.91 13.48±2.19 12.93±2.43 10.35±2.11 9.79±1.47 2.55±0.65 2.38±0.58 3.41±0.67
PTS=3 17.38 12.93±2.76 11.64±2.16 11.07±2.02 10.94±1.73 3.06±0.81 2.73±0.76 3.56±0.89
PTS=4 21.46 14.79±2.41 14.36±2.52 13.75±2.27 13.38±2.19 4.83±0.96 3.77±1.12 3.70±1.31
PTS=5 28.77 18.14±2.87 16.81±2.63 15.71±2.97 14.67±3.45 5.44±1.27 4.01±1.18 3.79±1.56
PTS=6 35.16 19.73±2.69 18.27±3.06 16.42±3.29 15.46±3.67 6.69±1.83 5.23±1.46 4.19±1.42
PTS=7 39.72 21.88±3.48 20.16±2.97 17.38±2.83 16.77±2.71 7.96±1.57 6.81±1.39 4.54±1.81
PTS=8 50.64 24.45±3.04 23.61±3.51 19.65±3.72 17.34±3.95 8.18±1.16 7.55±1.20 4.94±1.75

PTS: Predicted Time Slots

shares one module for all different periods, which can hardly

capture the dynamics that existed in the multi-step prediction;

whereas convLSTM predicts the future time slots in a recursive

manner, i.e., utilizes consecutive previous t− 1 time slots for

the prediction of the tth time slot, which leads to accumulated

prediction errors. Because of these reasons, their models suffer

a decreasing performance as the length of future time slots

increases. In contrast, PredRNN and PredRNN++ intend to

model the spatial-temporal correlations simultaneously. The

limitation is that they concatenate the features of the nodes

over neighboring periods directly instead of distinguishing

their characteristic features at different time slots. To address

this issue, STSGCN differentiates the individual nodes at

different time slots and explores the complex spatial-temporal

correlations at the same time, but they focus on single-step

dynamics and localized areas.

Compared with the aforementioned works, our BikeCAP
reconstructs the bike demand in each future time slot using the

characteristic features of each grid from all historical time slots.

The results show we accurately predict the bike demand for at

least 8 time slots, i.e., two hours, which is early enough for

resultant applications such as a large-scale bike re-rebalancing.

2) Ablation Study for Component Importance: To demon-

strate the effectiveness of each component of our BikeCAP,
we compare four variants with BikeCAP as follows.

• BikeCap-Sub: To justify the effectiveness of the consoli-

dation with subway data, we train a variation of BikeCAP
called BikeCap-Sub only with bike data.

• BikeCap-Pyra: To justify our consideration for spatial-

temporal correlation along traffic propagation directions,

we train a variation of BikeCAP called BikeCap-Pyra
that replaced pyramid-based convolutional layers with the

traditional ones in historical capsules.

• BikeCap-3D: To justify our consideration of spatial-

temporal correlations in traffic patterns, we train a varia-

tion of BikeCAP called BikeCap-3D that implemented a

reshape-based decoder rather than a 3D one.

• BikeCap-3D-Pyra: It can be regarded as a simple version

of the 3D capsule network architecture proposed in

Deepcaps [19], which applies a 2D convolutional layer, a

3D routing, and a reshape-based decoder.
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BikeCap
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BikeCap-Sub
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Fig. 7: Performance compared with Different Components.

TABLE IV: The Performance with Varying Size.

Size of Pyramid RMSE MAE

2 1.58±0.43 3.61±1.03
4 1.38±0.32 3.15±1.11
6 1.37±0.31 3.18±1.24
8 1.44±0.28 3.27±1.15

Fig. 7 provides the comparison in terms of MAE

and RMSE. We notice that BikeCap-Pyra outperforms

BikeCap-3D-Pyra by a large margin, which shows the

necessity of exploring spatial-temporal correlations along the

propagation direction of traffic flow. Besides, BikeCap-3D
also peforms better compared to BikeCap-3D-Pyra. This is

because the 3D deconvolutional layer can leverage the multi-

dimensional correlated traffic patterns existing in neighboring

grids better, compared with a reshape-based decoder that

considers individual isolated grids. Moreover, the difference

between BikeCap-Sub and BikeCAP verifies the effectiveness

of leveraging upstream traffic sources, i.e., subways. The results

suggest that it is feasible to utilize the subway data to benefit

bike demand prediction.

F. Parameters Analysis

The Size of Pyramid Kernel. One key parameter in

BikeCAP is the size of the pyramid kernel, which influences

the range of spatial-temporal correlations. Fig. IV shows

the performance with varying sizes. We can observe the

performance increases as the size increases from 3 to 7.

It is because a larger size considers more spatial-temporal

information. However, once the size exceeds the threshold, i.e.,

7 in the experiments, it leads to low performance, including

some irrelevant information. Intuitively, larger size also causes
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TABLE V: The Performance with Varying Dimension.

Dimension of Capsule MAE RMSE

2 1.98±0.37 4.23±1.13
4 1.83±0.34 4.11±1.23
8 1.38±0.32 3.15±1.15

16 1.63±0.35 3.94±1.24
32 1.81±0.28 4.37±1.22

a higher computation cost. Therefore, we set the size it to 5,

considering the balance between the performance and the cost.

The Dimension of Capsule. Another critical parameter in

BikeCAP is the dimensions of each capsule, which decides the

information diversity (nl in the model). Table. V shows the

performance affected by the capsule’s dimension. We observe

that, on the one hand, the capsule with a larger dimension

contains more information and is beneficial to more accurate

spatial-temporal correlations; on the other hand, a too-large

dimension significantly increases parameter numbers, leading

to over-fitting and decreasing performance.

V. DISCUSSION

A. Lessons Learned

Learned Lesson 1: The capsule network benefits the
multi-step prediction. Our experiments confirm the feasibility

of deploying the capsule network in a temporal domain, signif-

icantly increasing the performance of state-of-the-art methods

in multi-step settings (supported by Table III). It is because

traditional models such as autoregressive models [23], [24]

or one-dimension convolutional layers [10] utilize previously

predicted results to predict the following time step in multi-

step prediction, while BikeCAP constructs the transportation

demand at each future time step independently and then reduces

the accumulated errors effectively.

Learned Lesson 2: The upstream transportation demand
improves the performance of downstream transportation
demand prediction. Our experiments prove the effective-

ness of the consolidation designs that leverage the upstream

transportation demand to assist in predicting the downstream

transportation demand (supported by Fig. 7). The performance

of BikeCAP is better than that of BikeCap-Sub to some extent.

Learned Lesson 3: Uncorrelated grids harm the perfor-
mance. Our experiments prove that a larger range of considered

neighbors benefit the accurate transportation demand prediction

(supported by Table. IV). When the size of the pyramid

increases from 3 to 7, the MSE and RMSE decrease gradually.

However, when the size exceeds 7, the MSE and RMSE

increase suddenly, because a larger pyramid size includes some

unrelated grids, which harms the performance of the BikeCAP.

B. Limitations

Although the overall performance shows the effectiveness of

BikeCAP, there are some obstacles to its real-world adoption.

• Stability. From Table III, we can observe that the overall

performance of model BikeCAP is better than other SoAs,

but the variances are relatively bigger than other models,

i.e., STSGCN [10]. The high variance is mainly because

capsule networks learn the representation of a specific

time slot based on the inputs from all the nearby time slots,

which may lead to a biased or inaccurate representation

if the data in nearby time slots have a large variance. In

our recent study, we found we can actually reduce this

effect by introducing separated capsules for different time

slots. We will do more research in our future work.

• Computation Cost. The vector representation and spatial-

temporal routing mechanism cause many parameters,

i.e., 646, 395, and training time, i.e., 90.40s for each

epoch, for the synchronous spatial-temporal correlations

with upstream and downstream transportation correlation.

Considering the significant performance improvement

shown in Table. III, the computation cost is moderate.

And we can adopt parallel computing for acceleration.

• Scalability. In this project, we focus on predicting the

downstream transportation demand with the aid of the

upstream transportation demand. Thus for some positions

far away from the upstream transportation stations, the

performance is limited when considering the upstream

transportation demand. In order to solve this limitation, we

will add more transportation systems to realize scalability

to improve the performance further.

C. Ethics and Privacy

During the data analysis and data mining of the transportation

records, we took careful steps to address the privacy issues.

First, all the users who use smart transportation cards are

required to digest the Terms of Services, where consent the

services companies can collect their trips records for studies.

Second, during the data collection process, all the raw data has

been preprocessed into aggregated anonymous statistics based

on the privacy protection requirements. All the user identifiers

are removed, and all the auxiliary information is strictly limited

to public available station information (station name, station

location, time, etc.). Even though we learn individual behavior

in our aggregated analyses, we just analyze the encrypted ID

and reduce the concern of privacy leakage of personal data.

Third, only the authorized members of the research team who

are assigned the strict non-disclosure agreements can access

the shared data stored in a well-protected offline server.

D. Future Work

In this work, we focus on leveraging the upstream trans-

portation demand to provide a more accurate prediction

about the downstream transportation demand in multi-modal

transportation modes. More important future works are worth

exploring. First, we are limited on the upstream and downstream

transportation datasets collected in Shenzhen. Although it is

a good example of a metropolitan city in China with 17.56
million citizens, evaluations on other cities can help generate a

thorough understanding of demand prediction in multi-modal

transportation modes in large, medium, and small cities.

Second, although we propose an analytical framework for

the station-level demand prediction, models that can provide

more accurate transfer time prediction results at a station level

are still lacking. For example, in future work, we can design
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a self-supervised online framework that leverages passengers

check-ins in upstream transportation modes to estimate average

transfer time to different downstream transportation modes.

Third, leveraging previously mentioned station-level transfer

time analyses, we can propose scheduling models to generate

guidance to reschedule the transportation operation timetables

to improve passengers’ satisfaction. For example, we observe

that there are a large number of passenger check-ins in

upstream transportation and then predict the transfer time at

different downstream transportation stations. If the transfer

time at downstream transportation stations exceeds a pre-

defined threshold, the operators can reschedule the downstream

transportation timetables to reduce the transfer time.

VI. RELATED WORK

Prediction for Bike-Sharing Systems. Many researchers [2],

[5], [9] study the traffic prediction problem as a time series

prediction problem augmented with multi-source and heteroge-

neous data. For example, Li et al. [2] designed a hierarchical

prediction model to predict the number of rented and returned

bikes to each station. Liu et al. [5] utilized the multi-source

data, e.g., trip and station status records and weather reports,

to predict the bike usage phenomena and then re-balance them

accordingly. Hulot et al. [9] focused on predicting the hourly

rental and return phenomena at each station augmented with

weather reports. However, since the traffic flows along both the

spatial and temporal dimensions, the improvement is limited

if we only focus on the temporal representation.

To address this issue, some works added the geographical fea-

tures into account to build up a spatial-temporal framework [6],

[7], [11], [12], [29], such as the neighborhood traffic or the

functions of regions. Typically, Liu et al. [11] developed a

hierarchical bike demand predictor for expanding bike systems.

Li et al. [12] learned the representation from heterogeneous

spatial-temporal graphs together with multi-source information.

However, when dealing with the unexpected surging bike

demand caused by some special situations, e.g., festivals or

events, these prediction methods may not reflect the increasing

demand in time due to the data scarcity, which is inefficient

when a large number of bikes are required to be re-balanced.

Spatial-Temporal Architectures. Because we model the

bike and subway traffic as spatial-temporal network series,

we describe it as the spatial-temporal network data prediction

problem with many existing works [30]. The simplest way

is to use separate modules to model the spatial and temporal

correlations separately [31], [32]. For example, convLSTM [22]

integrated the convolutional layers with an LSTM to process

the spatiotemporal sequences; STGCN [25] formulated the

traffic forecast problem on graphs and built the model with

complete convolutional structures; TrajGRU [13] actively

learned a location-variant structure for recurrent connections;

SA-ConvLSTM [33] introduced a self-attention mechanism

(SAM) into convLSTM to memorize features with long-range

dependencies in terms of spatial and temporal domains.

To fully capture the simultaneous spatial-temporal correla-

tions, some integrated spatial-temporal models have also been

proposed [34]–[36]. For instance, Wang et al. [23] designed the

PredRNN that contains a unified memory pool to memorize

both spatial appearances and temporal variations simultaneously.

Further, Wang improved it to PredRNN++ [24] for exploring

single-step dynamics. MIM [37] turned time-variant polyno-

mials into a constant for making the deterministic component

predictable in order to learn complicated variations in space and

time domains. E3D-LSTM [38] integrated 3D convolutions into

RNNs for video prediction tasks. CubicLSTM [39] consists of

three branches, i.e., spatial, temporal, and output, for capturing

objects and predicting future motion. However, the limitation

of these approaches is that they merely concatenate the nodes’

features over neighboring periods rather than distinguishing

their characteristic influences to individual future time slots. In

contrast, STSGCN [10] effectively differentiated the individual

nodes at different time slots and then captured the complex

localized spatial-temporal correlations. However, this cannot

differentiate characteristic influences from each historical time

slot to each future time slot.

Capsule Network. Furthermore, with the advance in the

capsule network, the idea of grouping the neurons to present

more features has gained great attention. For instance, Sabour

et al. [14] proposed a dynamic routing algorithm in cap-

sule networks to estimate features of objects such as pose.

Rajasegaran et al. [19] designed a deep capsule network

architecture using a novel 3D convolution-based dynamic

routing algorithm. However, the capsule network made a great

process on Computer Vision and has not been applied in traffic

prediction broadly. Therefore, the key novelty of BikeCAP is

its first attempt to study the capsule network in the temporal

domain, which benefits a multi-step bike demand prediction.

VII. CONCLUSION

In this work, we designed a deep spatial-temporal capsule

network for multi-step bike demand prediction by assisting the

correlations between upstream traffic and downstream traffic.

The key novelty is its first attempt to study the capsule network

in the temporal domain. Technically, we first introduced a

pyramid convolutional layer in the historical layers to learn the

spatial-temporal feature representation for both the upstream

and downstream transportation demand. Then, we adopted

a spatial-temporal routing mechanism to capture the time-

specific spatial correlations from upstream transportation in

historical capsules and downstream transportation in future

capsules. Finally, we leveraged a 3D deconvolutional decoder

to construct the future bike demand considering the similar bike

demand patterns in neighboring grids and adjacent time slots.

We evaluated BikeCAP based on real-world data collected in

Shenzhen, China, to show that BikeCAP outperforms state-of-

the-art methods in most of the cases.
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