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Abstract—Given the recent global development of bike-sharing
systems, numerous methods have been proposed to predict their
user demand. These methods work fine for single-step prediction
(i.e., 10 mins) but are limited to predicting in a multi-step predic-
tion (i.e., more than 60 mins), which is essential for applications
such as bike re-balancing that requires long operation time. To
address this limitation, we leverage the fact that the demand
for upstream transportation, e.g., subways, can assist the future
demand prediction of downstream transportation, e.g., bikes.
Specifically, we design a deep spatial-temporal capsule network
called BikeCAP with three components: (1) a historical capsule
that learns the demand characteristics for both the upstream (i.e.,
subways) and downstream (i.e., bikes) transportation systems,
where a pyramid convolutional layer explores the simultaneous
spatial-temporal correlations; (2) a future capsule that actively
captures the dynamic spatial-temporal propagation correlations
from the upstream to the downstream system, in which a spatial-
temporal routing technique benefits to reduce the accumulated
prediction errors; (3) a 3D-deconvolution decoder that constructs
future bike demand considering the similar downstream demand
patterns in neighboring grids and adjacent time slots. Experi-
mentally, we conduct comprehensive experiments on the data
of 30,000 bikes and 7 subway lines collected in Shenzhen City,
China, The results show that BikeCAP outperforms several state-
of-the-art methods, significantly increasing the performance by
38.6% in terms of accuracy in multi-step prediction. We also
conduct ablation studies to show the significance of BikeCAP’s
different designed components.

Index Terms—Distributed Transportation Systems, Demand
Prediction, Bike Sharing

I. INTRODUCTION

Bike-sharing systems are an emerging transportation system
in many cities such as New York City [1], [2], London [3],
and Beijing [4]. These systems complement existing public
transportation systems such as subways and buses and play an
important role in solving the last mile problem on people’s
daily commute. For such a transportation system, due to the
unbalanced demand distribution, user experience is significantly
impacted by the bike shortage issue. To solve it, operators re-
balance available bikes to improve user satisfaction [2], [5],
which requires accurate bike demand prediction ahead of time.

The research community has been working on the bike
demand prediction problem, and many works have achieved
good performance in single-step prediction [6]-[8] (i.e., the
demand in the next time slot). These works can be mainly
divided into three categories according to how they capture
spatial and temporal correlations. (1) Only temporal correlation:

The first category of works [2] regarded the bike demand
prediction problem as a time series prediction problem and
solved it by linear regression models. (2) Asynchronous spatial
and temporal correlation: The following works [5], [9] aug-
mented the existing solution with multi-source heterogeneous
data and captured the spatial and temporal correlations by
spatial and temporal components, respectively. However, the
separate spatial and temporal components cannot fully capture
the synchronous spatial-temporal characteristics of bike flow
propagation. For example, suppose a scenario that many
bikes transport from grid A at ¢ to grid B at ¢ + 1, which
indicates that the passengers’ flow propagation synchronously
requires temporal (e.g., the impacts delayed due to the traffic
propagation) and spatial (e.g., the impacts appears only between
certain regions) patterns. Thus, the improvement is limited
because the bike flows propagate along the synchronous spatial-
temporal dimensions [10]. (3) Synchronous spatial and temporal
correlation: Recent works [11], [12] addressed this limitation
by considering synchronous spatial-temporal correlations with
spatial-temporal graphs. However, those methods are only good
at single-step prediction, i.e., predicting the check-ins or check-
outs in the next time slot (i.e., 10 minutes) [12], which may
fail to meet the time requirement when operators need to re-
balance a large number of bikes far away, i.e., 60 minutes. Thus,
the question we aim to answer is how to enable multi-step
prediction with synchronous spatial-temporal correlations.
Our intuition is to leverage the fact that bike systems
are generally for short-distance trips which compensate for
other transportation systems (e.g., buses and subways) that
are generally for long-distance trips. In this sense, if we
can understand the relationship between short-distance trips
and long-distance trips (e.g., predict the number of people
who would use bike systems when they get on buses or
subways), we can potentially better predict the demand of bikes
ahead of time (i.e., multi-step bike demand prediction). For
illustration purpose, we name these long-distance transportation
systems upstream transportation and bike systems downstream
transportation. For example, Fig. 1 shows an illustrative
example with two subway stations and one bike station. During
the rush hour in the morning (from 6 to 9 AM), the number of
passengers (denoted by a blue dashed curve) entering station
A located in a residential area increases ahead of the number
of passengers exiting station B (denoted by a solid red curve)
located in the CBD areas. Meanwhile, the number of bike
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Fig. 1: The number of subway and bike passengers over one day. As depicted on the map, station A is located in a residential
area, and B is located in a CBD area. During the morning rush hours of the left figure, the number of entering passengers in
station A (blue dashed curve) increases before that of exiting passengers in station B (solid red curve). The number of bike
rentals shows a similar trend to that of outbound passengers nearby station B (yellow dotted curve). During the afternoon rush
hours in the middle figure, the number of entering passengers in station B (blue dashed curve) increases before that of exiting
passengers in station A (solid red curve). The number of bike rentals shows a similar trend to that of exiting passengers nearby

station A (yellow dotted curve).

rentals nearby station B (denoted by a yellow dotted curve),
e.g., within 200 meters, shows a similar trend to the number
of passengers exiting station B (denoted by a solid red curve).
In the middle figure, we found an opposite situation during
the rush hour in the afternoon (from 15 to 21 PM), i.e., the
number of passengers entering station B influence the number
of bike rentals nearby station A. Based on these two figures,
we argue that consolidating downstream bike data with other
upstream transportation systems, e.g., subways, provides us
a new opportunity to predict user demand ahead of time
accurately, i.e., the multi-step bike demand prediction.

Though the idea of consolidating upstream transportation
for bike prediction sounds straightforward, it is non-trivial to
design such a prediction model because of two challenges.

o Accumulated prediction errors in multi-step prediction.
A commonly used framework for multi-step prediction is
based on autoregressive models that recursively leverage
the predicted results as inputs to predict the next time
step, which leads to accumulated prediction errors easily
when the steps are long. In our scenario, the distance
between two stations can be long, which leads to large
accumulated prediction errors.

« Time-specific correlations between upstream and
downstream transportation systems. We found that the
correlations between two subway stations are temporally
varied. For example, in Fig. 1, the number of passengers
exiting station B is positively related to the number of
passengers entering station A in the morning, whereas
some are not related (i.e., at noon) or are negatively
related (i.e., in the afternoon). Traditional methods based
on Convolutional Neural Networks (CNNs) or Long-
short Term Memories (LSTMs) adopt a fixed-size kernel
with shared parameters cannot effectively explore such
temporally-varied correlations between two stations [13].
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Fig. 2: Main Differences between Capsule Network and Autore-
gressive Model. The capsule network independently predicts
each future time slot via historical time slots reconstruction. It
reduces the accumulated errors caused by the autoregressive
models, e.g., LSTM, which leverages the previously predicted
results as inputs to predict the next time slot.

Motivated by the prevalence of capsule networks [14] in
Computer Vision that effectively capture the location informa-
tion of each object within an image (regarded as a part-whole
relationship in the spatial domain, we design a novel spatial-
temporal deep capsule network, named BikeCAP, to capture
the part-and-whole relationship and reduce the accumulative
errors in a temporal domain. As illustrated in Fig. 2, the “part”
components in historical capsules (i.e., lower layers) present
both the upstream and downstream transportation demand
features in historical time slots; The “whole” component
in future capsules (i.e., higher layers) indicates the future
downstream transportation demand in each time slot. The
connection between historical and future capsules is a dynamic
routing mechanism, which leverages historical demand to
re-construct that in each future time slot independently (as
illustrated in Fig. 2). Different from autoregressive models
such as LSTM that rely on previously predicted results as
inputs to predict the next time slot, it effectively reduces the
accumulated errors in the aforementioned multi-step series
prediction. The main contributions of our work are as follows.

o To our knowledge, we make the first attempt in exploring
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the time-specific spatial correlations between upstream
transportation and downstream transportation for the multi-
step demand prediction. In contrast, most of the existing
works of demand prediction focus on single-step prediction
without the synchronization between two transportation
systems.

Technically, we design a novel spatial-temporal capsule
network that extends the previous capsule networks in
the temporal domain. In particular, we design a pyra-
mid convolutional layer in historical capsules to learn
the spatial-temporal feature representation for both the
upstream and downstream transportation demand along the
propagation direction. Moreover, we introduce a spatial-
temporal routing mechanism to actively capture the time-
specific spatial connections between historical capsules
and future capsules. Lastly, we adopt a 3D-deconvolution
decoder to construct future bike demand considering the
similar bike demand patterns in neighboring grids and
adjacent time slots.

We conduct extensive experiments on real-world datasets
of 30, 000 bikes and 7 subway lines collected in Shenzhen
City, China. The results show that BikeCAP outperforms
the other 7 baselines by increasing the accuracy by
38.6% in multi-step prediction. Moreover, we also conduct
ablation studies and parameters analysis to explain the
effectiveness of BikeCAP.

II. PRELIMINARIES

In this section, we introduce the background of the pyramid
convolutional layer and the capsule network.

A. Pyramid-shape Design

Since we leverage the demand for upstream transport to
assist the demand prediction of downstream transport, we need
to explore the spatial-temporal correlations between historical
transport (i.e., blue grid at ¢ — 1 and ¢ — 2) and the downstream
transport (i.e., red grid at t), as shown in Fig. 3. The shape of
such kind of spatial-temporal correlations motivates a pyramid-
shape design, where the top of the pyramid (i.e., red grid)
represents the demand at the target grid at the current time
slot ¢, and other parts (i.e., blue grids) indicate the spatial-
temporal correlated grids in historical time slots, i.e., t —2 and
t — 1. The more time slots we trace back, the larger areas we
should consider (i.e., the shape of the kernel at time slot ¢ — 2,
i.e., dark blue grids, is always bigger than that at ¢t — 1, i.e.,
light blue grids) because passengers can move farther distance
within more time slots. Therefore, we design the pyramid-shape
kernel to depict such spatial-temporal correlations along the
flow propagation direction, which benefits learning the spatial-
temporal correlations between proper grids with the target,
ignoring the uncorrelated grids.

B. Capsule Network

In Computer Vision, Hinton and Sabour [14] borrowed the
idea from neuroscience, where the brain is organized into
modules. Then, they introduced capsules to act like modules
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Fig. 3: The insight of Pyramid-shape Design. The top of the
pyramid (denoted in red) represents the target grid at the current
time slot ¢, and other parts (denoted in blue) indicate the related
grids in historical time slots, i.e., ¢ —2 and ¢ — 1.

(i.e., parts) to explore the features of different objects within
an image (i.e., whole), especially for rotational relationships.
i.e., position, size, orientation, deformation, and so on [14].
Based on that concept, they proposed the capsule network that
incorporates a dynamic routing mechanism, which calculates
the contribution between the part-and-whole relationships in
a bottom-up manner.

Motivated by the prevalence of capsule networks in the
spatial domain, we make an attempt to map its strength
to model the part-and-whole relationship in the remporal
domain. Specifically, as illustrated in Fig. 2, each capsule in the
lower layer, i.e., historical capsules, is regarded as one module
to capture the “part” features of traffic, including upstream and
downstream, for each historical time slot. Meanwhile, each
capsule in the higher layer, i.e., future capsules, represents
the “whole” features of downstream transportation systems
in every future time slot. The connection between historical
capsules and future capsules is the dynamic routing mechanism,
which benefits to learn the time-specific characteristics of
passenger flow propagation from historical to future time
slots in a bottom-up manner. It represents how the demand in
upstream transportation systems reflects the future demand in
the downstream transportation systems.

Compared with transformer [15] which is computed in a
top-down manner and mainly focuses on the correlations within
lower layers, we argue that using capsule networks is more
suitable in our scenario where we aim to synchronously capture
the time-specific spatial correlations between upstream and
downstream transportation systems along the flow propagation
direction. Moreover, different from autoregressive models such
as LSTM, which recursively leverages the previously predicted
results to predict the next time slot, the dynamic routing in
future capsules re-constructs the demand features in future time
slots independently, as illustrated in Fig. 2. Such an architecture
is beneficial to effectively addressing the accumulated errors
which appear in autoregressive models in the aforementioned
multi-step series prediction.

III. DESIGN

In this section, we introduce the formal problem definition.
Then we briefly illustrate the overall architecture of BikeCAP,
followed by detailed technical explanations, i.e., the designs
in historical and future capsules.
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Fig. 4: The Architecture of BikeCAP. It consists of three components: Input, 3D Deep Capsule Network, and Output. The
second component can be further divided into historical capsules and future capsules. We design a pyramid convolutional
layer in historical capsules (detailed in Sec.2.3) for spatial-temporal correlations. We also design a spatial-temporal routing
mechanism connecting the future capsules and historical capsules (detailed in Sec.2.4) for spatial-temporal correlations. At last,
we adopt a spatial-temporal decoder for output (detailed in Sec.2.5).

A. Problem Definition

We target the multi-step bike demand prediction. It can be
formulated as finding a function F that maps the historical
demand series X[;_p.y, including upstream and downstream,
into the future downstream series ¢y 1:¢4p]-

X[t+1:t+p] = ]:9(X[t7h:t]) (D

where 6 denotes all the learnable parameters and X; €
RWa1*Naz) The city is divided into Ny, x Ny, number of grids.
The reason why we leverage the grid-based representation is
that it is more flexible compared to graph-based representation
and is adaptable in all scenarios [16]-[18]. For example,
without a pre-defined graph structure, such as road interactions
and road segments, constrains the deployment of graph-based
representation, while the grid-based representation can be
directly applied merely based on space partition.

Further, we use spatial-temporal network series to represent
the demand data (a sample is provided in the input and output
of Fig. 4). There are three types of correlations existing between
grid ¢ and j across different time steps: i) ¢ and j indicate
the neighboring nodes at the same time step ¢, named spatial
correlation; ii) ¢ is equal to j, which indicates the same node
between the adjacent time steps, i.e., ¢ and t41, named temporal
correlations; iii) different nodes, i.e., ¢ and j, and different
time steps represent the passengers’ flow propagation direction,
named synchronous spatial-temporal correlations. We aim to
leverage these kinds of correlations to study the passengers’
flow propagation and then predict the downstream demand in
a multi-step scenario.

B. Overall Architecture

In Fig. 4, we present the architecture of BikeCAP, which
contains three components: Input, 3D Deep Capsule Network,
and Output. The second component can be further divided into
historical capsules, future capsules, and 3D Decoder.

o The historical capsules are designed to learn the spatial-
temporal demand features representation for both the up-
stream and downstream transportation systems in historical
time slots. We implement the historical capsules as a
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pyramid convolutional layer with a 3D squash function.
The rationale behind the pyramid convolutional layer is
that the passengers’ flow propagation requires time (e.g.,
delayed impacts) and has specific patterns (e.g., only
between certain regions). This pyramid-based design is
beneficial to consider the proper grids and time along with
the space and time dimension, capturing the synchronous
spatial-temporal correlations rather than separating spatial
and temporal correlations.

The future capsules adopt a spatial-temporal routing
mechanism to learn the time-specific spatial-temporal cor-
relations from demand in both upstream and downstream
transportation systems to future demand in the downstream
transportation system. It is a different type of computation
compared to the autoregressive or one-dimension convo-
lution methods, which depend on previous continuous
time slots to predict the next time slot, i.e., it leverages
Xt~ to predict X*T!. The dependency on previous
time slots, which leverages the predicted results for the
next prediction, leads to accumulated prediction errors.
Compared with it, the spatial-temporal routing mecha-
nism models how the upstream transportation demand in
each historical time slot contributes to the downstream
transportation demand for each future slot along the flow
propagation direction independently.

The 3D Decoder consists of two 3D-deconvolution layers
that utilize the similar bike demand existing in neighboring
grids and adjacent time slots to increase the prediction
ability further.

C. Historical Capsules

Historical capsules convert the spatial-temporal network
series into the capsule domain while exploring the spatial-
temporal demand representation for both the upstream and
downstream transportation systems. The input of the historical
capsules is a spatial-temporal demand flow network, as shown
in Fig. 5. It is represented as a tensor X € R(No1:Noz:hu.f)
where f is the extracted features, and h is the number of
historical time slots. Then, we adopt a pyramid convolutional
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Fig. 5: The left part shows the propagation direction of the passengers’ flow of the red node, i.e., target, in a spatial-temporal
network. The green nodes indicate the same node in continuous time slots, representing the influence of the temporal dimension.
The grey nodes indicate neighboring nodes, representing the impact across the synchronous spatial and temporal dimensions.
These two correlations support the design of a pyramid convolutional layer.

layer to the demand features exploration for both upstream and
downstream systems from X along the synchronous spatial-
temporal dimensions. As illustrated in Fig. 5, the demand
of the target grid (denoted in red at time slot ¢) can be
influenced by the demand of itself (denoted in green) and
its neighboring grids (denoted in grey) at previous time slots,
i.e., t — 1 and ¢ — 2. In order to capture the above influences,
including spatial, temporal, and spatial-temporal correlations
(detailed in Sec. III-A), simultaneously, we adopt a pyramid-
shape kernel in convolution layers. Specifically, we use the
number of kernel layers to indicate the number of historical
time slots we traceback. The shape of the kernel in each layer
depicts the correlated grids at that time slot. Intuitively, the
longer time slots we trace back, the larger areas we should
consider. For example, the shape of the kernel at time slot
t — 2 is always bigger than that at ¢ — 1 (denoted in grey in
Fig. 5). Stacking the kernels in all the time slots constructs
a pyramid-shaped kernel, and hence we name it a pyramid
convolutional layer. Different from the standard convolutional
layer that only considers the spatial correlation, such pyramid-
shaped spatial-temporal kernels capture the synchronous spatial-
temporal correlations along flow propagation directions for
spatial-temporal network series. Moreover, the flow propagation
requires time (e.g., delayed impacts) and also has specific
patterns (e.g., only between certain regions). Such a design also
benefits the elimination of the uncorrelated grids for correlations
computation.

The propagation rule is given by ® = f(X K)
S(KXW?), where ® € RWor:Nog:hn') Ji/l s the weight
tensor in layer /, and § is an activation function. K is the
pyramid kernel defined by:

>

(T4,Y:) EXp X Xy

K: XxX—>R,K(z,y) = 2)

TilYi

Specifically, a k-sized kernel K is set to be K
[at—g+1,---,a1—1,a], with the size of a; is 1 X 1, the size of
a;—1 18 3% 3, ..., and the size of a;_j41 is (2k+1) x (2k+1).
Intuitively, a larger k£ contains more spatial-temporal informa-
tion and then improves the performance, but it may also cause
higher computation cost (detailed in Sec. IV). Then, ® will be
passed through a 3D squash function defined as Eq. 3 to limit
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the length of the tensor, which represents the transportation
demand in each historical time slot. For example, a longer
tensor indicating closer demand correlations was shrunk to
a length slightly below one, and a short tensor indicating
uncorrelated relationships was shrunk to almost zero [14].

ISijell* Sij
L+ [[Siwll* - [1Siw]]
where i € Ng,, j € Ng,, and k € h. The shape of outputs is

[Ng,, Ng,, h, n '1, where n' is the dimension of each capsule
in layer [.

Sijk = 3

D. Future Capsules

Future Capsules learn the spatial-temporal connections
between historical demand features, including upstream and
downstream, and demand in downstream systems. We design a
spatial-temporal routing mechanism to model how the upstream
and downstream transportation demand in each historical time
slot contributes to the downstream transportation demand for
each future slot independently, illustrated in Fig. 6. The main
idea is to transform the demand for upstream and downstream
transportation services in each historical capsule inside the
historical capsules into one block to independently contribute
to the downstream transportation demand in each future time
slot. It benefits to explore the time-specific spatial correlations
between upstream and downstream systems.

The key difference between attention-based methods and
spatial-temporal routing is that the routing mechanism in the
capsule network calculates the contribution from lower to
higher layers, i.e., historical and future capsules, independently.
It helps to model the passengers’ flow propagation along
the synchronous space and time dimensions in a bottom-up
manner. Instead, attention is computed top-down, focusing on
the relationships in the same layer, which cannot fully explore
the flow propagation characteristics. Moreover, this approach
breaks the dependencies between the previous continuous
time slots and the following time slot and then reduces the
accumulated multi-step prediction errors. In particular, we have
three detailed steps as follows.

First, we reshape @ into &' = (Ny,, N,,,h x n',1) and
convolve it with (¢! x n!*1) number of 3D convolutional
kernels, whose strides are (1, 1,n'). The purpose of keeping the
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Fig. 6: Spatial-temporal Routing using 3D convolutions. From the high-level perspective, each capsule in historical capsules [
predicts for ¢!T! capsules in future capsules independently. In the first routing iteration, all the intermediate predictions V are
equally weighted and summed for the final prediction S. Then, in the following iterations, coupling coefficients K (i.e., the
degrees of contribution) are updated according to the agreement with S and V.

size of stride as n! along the temporal dimension is to obtain
the contribution of each historical capsule. The intermediate
output, denoted as V, has the shape of (N, , Ng,, h,n'T! x p),
which are reshaped to (Ny,, Ng,,n'*1, p, h) for the routing
algorithm, where p is the length of predicted time slots.

Then, we initialize the logits B, € R(No1:No2:P) a5 0, where
s € [h]. The corresponding coupling coefficients K, are
calculated by a 3D version of the existing softmax function
Eq. 4 [19].

K, = softmax_3D(B;)
exp(bijks)

> Zg >, exp(boyzs)

where i,z € Ny, j,y € Ng,, and k,z € p. Here, the
logits are normalized among all predicted capsules from each
capsule s in historical capsules [. It is because each predicted
capsule in future capsules [ + 1 will receive IV}, corresponding
contributions from /. Each contribution is weighted with k;
to obtain the prediction outcome for one future time slot S,
ie, Sy = 3.V, - K,. Thus, the K, € RWor:NoxP) s the
multi-step spatial-temporal connections between historical and
future capsules. At last, we pass the S through a 3D squash
function (Eq. 3) to limit the length of the capsule tensor as
it represents the transportation demand, i.e., a longer tensor
indicates huger demand.

“4)

kijks =

E. 3D Decoder

The input of decoder is the tensors &1 € R(No1:Nozpm
from future capsules. It is reshaped to il ¢
R®Nor:No2n'™™) " and fed into the 3D deconvolutional
layers that leverage the spatia-temporal correlations residing
in downstream demand patterns between the target grid and
its neighbors in continuous time slots, i.e., spatial, temporal,
and spatial-temporal correlations, for the future bike demand.
Finally, we minimize the sum of squared differences between
the predicted values and ground truth as the loss function.

z+1)

IV. EXPERIMENTS

In this section, we first introduce the datasets, followed
by evaluation metrics and baselines. Then we represent the
implementation details and experiment settings. At last, we
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evaluate the performance of BikeCAP compared with the latest
SoAs, including ablation study and parameters analysis.

A. Datasets

By collaborating with the Shenzhen Transportation Agency,
we have accessed two Shenzhen bike and subway datasets for
experiments. Those two datasets are one-month-long (from
2018-10-01 to 2018-10-31), covering around 30, 000 bikes and
7 subway lines in Shenzhen, China. Our investigation here
focuses on using subway and bike datasets as an example to
evaluate the performance of leveraging the demand of upstream
transportation systems to assist the downstream transportation
demand prediction in multi-modal scenarios. The trip records
are collected by the device when there is communication
between devices and user terminals. The data collection process
is approved by the users, and all the data is anonymous.

The subway dataset (as illustrated in Table I) can be further
classified into boarding records and disembarking records. They
both contain detailed spatial and temporal information, i.e.,
check-in or check-out time and corresponding stations.

The bike dataset (as illustrated in Table II) contains two
types of records, i.e., pick-up and drop-off. It also contains the
corresponding time, location (GPS points), and bike ID.

B. Evaluation Metrics and Baselines

To evaluate the performance of our model and the following
baselines, two metrics Mean Absolute Errors (MAE) and
Root Mean Squared Errors (RMSE) are adopted.

(&)

1 n
=~ Iy =3

i=1

(6)

where n is the number of instances, y; indicates the ground
truth of pick-up demands, and g; denotes the predicted results.
o XGBoost [20]: It is a boosting-tree-based method that is
widely used in data mining. For single-step prediction, we
concatenate the historical records from the timeslot ¢t — h

to t for each grid, respectively, to predict the number of
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TABLE I: Subway-trip Record Format and Example

#Record SZT ID  Time Transportation Status Stations
0001 00001 2018-10-01 21:32:12  Subway Line No.1 ~ Boarding Guomao Station
0002 00001 2018-10-01 22:14:34  Subway Line No.1 ~ Disembarking ~ Window of the World
TABLE II: Bike-trip Record Format and Example
#Record User ID  Time Location Status Bike ID
0011 00011 2018-10-01 01:24:38 ~ GPS Point  Pick-up 00000
0012 00111 2018-10-02 11:13:43  GPS Point  Drop-oft 00011

vehicles at timeslot ¢ + 1. For multi-step prediction such
as two-step prediction, we first predict the outcome at
timeslot ¢ + 1. Then we use it to construct the input data
fromt —h 41 to t + 1 to predict the outcome at ¢ + 2.
This process is conducted recursively for three or more
steps prediction.

LSTM [21]: Long Short-Term Memory Network is for
time series prediction. The input of LSTM is the same
as that of XGBoost, which comprises a single series of
demands in historical time steps, and LSTM is required
to learn from the series of historical observations to
predict the next value in the sequence. Similar to that for
XGBoost, we recursively conduct the process of single-
step prediction for two or more steps prediction.
convLSTM [22]: Before LSTM, it augments with con-
volutional layers for spatial correlations exploration. The
size of the kernel in CNN decides the spatial range. A
larger size contains more spatial information but induces
higher computation costs. In the experiments, the size is
5 considering the balance between performance and cost.
PredRNN [23]: A Predictive Recurrent Neural Network
that memorizes both spatial appearances and temporal
variations in a unified spatiotemporal memory pool. The
input of PredRNN is the same as that of convLSTM.
PredRNN++ [24]: It improves PredRNN with cascaded
dual memories for the exploration of single-step dynamics.
STGCN [25]: A Spatial-Temporal Graph Convolutional
Network uses ChebNet and 2D convolutional networks to
capture spatial and temporal correlations. We transfer each
grid as a node, and use h-hop neighbor grids to construct
the relation matrix, i.e., adjacency matrix. The grids within
h-hop are considered as connected nodes. Then the grid
partition is converted into a graph representation.
STSGCN [10]: A Spatial-Temporal Synchronous Graph
Convolutional Network combines graph convolutional
layers with aggregating and cropping operations for the
localized spatial-temporal correlations.

C. Implementation Details

We implement BikeCAP with Keras 2.4 [26] and test it on
a server with NVIDIA A4000 GPU with Intel(R) Xeon(R)
CPU ES5-2650 v4 @ 2.20GHz, 256GB memory. For the hyper-
parameters, we set the batch size as 32, and the learning rate is
set to 0.001. We set the number of capsules as 10 for historical
inputs and the number of capsules as 1 for future output
in a one-step prediction. It varies from 2 to 8 in multi-step
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prediction. The pyramid size is set to 5, and the dimension
of the capsule is set to 4. Besides, we choose L1 Loss as the
loss function. We optimize it with the Adam optimizer for
100 epochs and do not apply any non-mentioned optimization
techniques, e.g., learning rate decay or weights decay.

D. Experiment Settings

For the data pre-processing, we follow the method in [27]
to aggregate 15-minute traffic data (e.g., the number of bike
rentals or returns and the number of passengers entering or
exiting each subway station) into one time slot, i.e., four time
slots for each hour. Because the contribution of one input
heavily relies on its relativity to other inputs, re-scaling is
required to fix such a problem. In this paper, we adopt the min-
max normalization strategy [28], and the values of all features
are mapped to the range between 0 and 1. After prediction,
we denormalize the prediction value for evaluation.

For the experiments, we split all datasets into training,
validation, and testing sets with a 6 : 2 : 2 ratio. We utilize
two-hour, i.e., 8 time slots, continuous historical data to predict
the future bike demand. In order to verify BikeCAP for a multi-
step prediction, the length of future time slots ranges from 2
to 8, i.e., from 30 minutes to 2 hours. All the experiments are
repeated 5 times, and the performances are presented using
the "mean=standard deviation” format.

E. Experiment Results

1) Comparison to the State-of-the-art Methods: In Table III,
we compare the performance of BikeCAP with different
approaches. We found that BikeCAP outperforms other models
in most cases, especially when the length of predicted time slots
is larger than 5 where BikeCAP achieves better performance
compared to others whose MAE or RMSE increases dramati-
cally. This suggests that BikeCAP is applicable in multi-step
prediction.

Generally, spatial-temporal models (e.g., convLSTM, Pre-
dRNN++, and STGCN) that take advantage of spatial-temporal
correlations achieve better performance compared to those
only for time series prediction, e.g., XGBoost and LSTM.
Moreover, the graph-based models provide outstanding results
compared with grid-based models (i.e., CNN-based models)
that include some grids without useful data. This explains that
the performance of STGCN and STSGCN are slightly better
compared to BikeCAP at the beginning.

In particular, convLSTM and STGCN use two modules to
model the spatial-temporal correlations, respectively. STGCN
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TABLE III: Performance Comparison of the State-of-the-art Approaches

Baselines XGBoost LSTM convLSTM predrnn predrnn++ STGCN STSGCN BikeCAP
PTS=2 8.27 5.924+1.75 5.77£1.61 5.3741.30 4.60+1.59 1.484+0.14 | 1.3740.12 | 1.66+0.31
PTS=3 10.56 7.184+1.94 6.9342.15 6.96+2.64 5.3542.08 1.60+0.16 | 1.434+0.11 1.7940.34
PTS=4 11.34 10.0642.37 9.2842.30 8.33£1.38 7.78+1.81 1.824+0.14 | 1.814+0.09 | 1.82+0.33
MAE PTS=5 14.08 11.594+2.08 10.374+2.51 9.64+1.84 8.02+1.53 2.1340.15 | 2.06+0.17 | 1.86+0.41
PTS=6 17.96 13.4442.48 | 12.60+2.16 | 10.84+2.23 | 10.81+1.72 | 2.704+0.10 | 2.614+0.12 | 1.8940.37
PTS=7 21.20 16.13+3.53 14.65+3.18 12.414+3.17 12.7442.87 | 3.1340.14 | 3.10+0.10 | 1.984+0.32
PTS=8 28.35 18.694£3.20 | 17.344+3.24 | 15.96+3.30 | 15.2242.52 | 3.3240.17 | 3.3240.17 | 2.0440.33
PTS=2 14.91 13.484+2.19 | 12.934£2.43 | 10.35+2.11 9.794+1.47 2.5540.65 | 2.3840.58 | 3.41+0.67
PTS=3 17.38 12.934+2.76 11.644+2.16 | 11.07£2.02 | 10.94+1.73 | 3.06+0.81 | 2.73+0.76 | 3.5640.89
PTS=4 21.46 14.79+2.41 14.364+2.52 | 13.75£2.27 | 13.384+2.19 | 4.83+£0.96 | 3.77£1.12 | 3.704+1.31
RMSE | PTS=5 28.77 18.144+2.87 16.814+2.63 15.71+£2.97 14.67+3.45 | 5444127 | 4.01£1.18 | 3.79+1.56
PTS=6 35.16 19.73£2.69 | 18.27+3.06 | 16.42+3.29 | 15.4643.67 | 6.694+1.83 | 5234+1.46 | 4.19+1.42
PTS=7 39.72 21.88+3.48 | 20.164+2.97 17.3842.83 16.77+2.71 | 7.96+1.57 | 6.81+1.39 | 4.54+1.81
PTS=8 50.64 24.4543.04 | 23.61£3.51 19.6543.72 | 17.34+395 | 8.18%1.16 | 7.55+£1.20 | 4.94+1.75
PTS: Predicted Time Slots
— BikeCap-3D-Pyra— BikeCap-3D — BikeCap-3D-Pyra— BikeCap-3D
. . . - ]g%lﬁgggg?yra BikeCap-Sub - g%lﬁggggfyra BikeCap-Sub
shares one module for all different periods, which can hardly 10 i — 20 P ———
capture the dynamics that existed in the multi-step prediction; - z S e a}g =
whereas convLSTM predicts the future time slots in a recursive S S8
manner, i.e., utilizes consecutive previous ¢ — 1 time slots for S = g i —
the prediction of the t*" time slot, which leads to accumulated 2 3 4 5 6 7 8 2 3 4 5 6 7 8

prediction errors. Because of these reasons, their models suffer
a decreasing performance as the length of future time slots
increases. In contrast, PredRNN and PredRNN++ intend to
model the spatial-temporal correlations simultaneously. The
limitation is that they concatenate the features of the nodes
over neighboring periods directly instead of distinguishing
their characteristic features at different time slots. To address
this issue, STSGCN differentiates the individual nodes at
different time slots and explores the complex spatial-temporal
correlations at the same time, but they focus on single-step
dynamics and localized areas.

Compared with the aforementioned works, our BikeCAP
reconstructs the bike demand in each future time slot using the
characteristic features of each grid from all historical time slots.
The results show we accurately predict the bike demand for at
least 8 time slots, i.e., two hours, which is early enough for
resultant applications such as a large-scale bike re-rebalancing.

2) Ablation Study for Component Importance: To demon-
strate the effectiveness of each component of our BikeCAP,
we compare four variants with BikeCAP as follows.

o BikeCap-Sub: To justify the effectiveness of the consoli-
dation with subway data, we train a variation of BikeCAP
called BikeCap-Sub only with bike data.
BikeCap-Pyra: To justify our consideration for spatial-
temporal correlation along traffic propagation directions,
we train a variation of BikeCAP called BikeCap-Pyra
that replaced pyramid-based convolutional layers with the
traditional ones in historical capsules.

BikeCap-3D: To justify our consideration of spatial-
temporal correlations in traffic patterns, we train a varia-
tion of BikeCAP called BikeCap-3D that implemented a
reshape-based decoder rather than a 3D one.
BikeCap-3D-Pyra: It can be regarded as a simple version
of the 3D capsule network architecture proposed in
Deepcaps [19], which applies a 2D convolutional layer, a
3D routing, and a reshape-based decoder.
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Predicted Time Slots Predicted Time Slots

Fig. 7: Performance compared with Different Components.

TABLE IV: The Performance with Varying Size.

Size of Pyramid [ RMSE | MAE
2 1.58+£0.43 | 3.61£1.03
4 1.38+£0.32 | 3.15%1.11
6 1.37£0.31 | 3.18%£1.24
8 1.44£0.28 | 3.27£1.15
Fig. 7 provides the comparison in terms of MAE

and RMSE. We notice that BikeCap-Pyra outperforms
BikeCap-3D-Pyra by a large margin, which shows the
necessity of exploring spatial-temporal correlations along the
propagation direction of traffic flow. Besides, BikeCap-3D
also peforms better compared to BikeCap-3D-Pyra. This is
because the 3D deconvolutional layer can leverage the multi-
dimensional correlated traffic patterns existing in neighboring
grids better, compared with a reshape-based decoder that
considers individual isolated grids. Moreover, the difference
between BikeCap-Sub and BikeCAP verifies the effectiveness
of leveraging upstream traffic sources, i.e., subways. The results
suggest that it is feasible to utilize the subway data to benefit
bike demand prediction.

FE. Parameters Analysis

The Size of Pyramid Kernel. One key parameter in
BikeCAP is the size of the pyramid kernel, which influences
the range of spatial-temporal correlations. Fig. IV shows
the performance with varying sizes. We can observe the
performance increases as the size increases from 3 to 7.
It is because a larger size considers more spatial-temporal
information. However, once the size exceeds the threshold, i.e.,
7 in the experiments, it leads to low performance, including
some irrelevant information. Intuitively, larger size also causes
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TABLE V: The Performance with Varying Dimension.

Dimension of Capsule [  MAE [ RMSE
2 1.984+0.37 | 4.234+1.13
4 1.834+0.34 | 4.114+1.23
8 1.384+0.32 | 3.15£1.15
16 1.63+0.35 | 3.94+1.24
32 1.81+0.28 | 4.37£1.22

a higher computation cost. Therefore, we set the size it to 5,
considering the balance between the performance and the cost.

The Dimension of Capsule. Another critical parameter in
BikeCAP is the dimensions of each capsule, which decides the
information diversity (n! in the model). Table. V shows the
performance affected by the capsule’s dimension. We observe
that, on the one hand, the capsule with a larger dimension
contains more information and is beneficial to more accurate
spatial-temporal correlations; on the other hand, a too-large
dimension significantly increases parameter numbers, leading
to over-fitting and decreasing performance.

V. DISCUSSION
A. Lessons Learned

Learned Lesson 1: The capsule network benefits the
multi-step prediction. Our experiments confirm the feasibility
of deploying the capsule network in a temporal domain, signif-
icantly increasing the performance of state-of-the-art methods
in multi-step settings (supported by Table III). It is because
traditional models such as autoregressive models [23], [24]
or one-dimension convolutional layers [10] utilize previously
predicted results to predict the following time step in multi-
step prediction, while BikeCAP constructs the transportation
demand at each future time step independently and then reduces
the accumulated errors effectively.

Learned Lesson 2: The upstream transportation demand
improves the performance of downstream transportation
demand prediction. Our experiments prove the effective-
ness of the consolidation designs that leverage the upstream
transportation demand to assist in predicting the downstream
transportation demand (supported by Fig. 7). The performance
of BikeCAP is better than that of BikeCap-Sub to some extent.

Learned Lesson 3: Uncorrelated grids harm the perfor-
mance. Our experiments prove that a larger range of considered
neighbors benefit the accurate transportation demand prediction
(supported by Table. IV). When the size of the pyramid
increases from 3 to 7, the MSE and RMSE decrease gradually.
However, when the size exceeds 7, the MSE and RMSE
increase suddenly, because a larger pyramid size includes some
unrelated grids, which harms the performance of the BikeCAP.

B. Limitations

Although the overall performance shows the effectiveness of
BikeCAP, there are some obstacles to its real-world adoption.

« Stability. From Table III, we can observe that the overall
performance of model BikeCAP is better than other SoAs,
but the variances are relatively bigger than other models,
i.e., STSGCN [10]. The high variance is mainly because
capsule networks learn the representation of a specific
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time slot based on the inputs from all the nearby time slots,
which may lead to a biased or inaccurate representation
if the data in nearby time slots have a large variance. In
our recent study, we found we can actually reduce this
effect by introducing separated capsules for different time
slots. We will do more research in our future work.
Computation Cost. The vector representation and spatial-
temporal routing mechanism cause many parameters,
i.e., 646,395, and training time, i.e., 90.40s for each
epoch, for the synchronous spatial-temporal correlations
with upstream and downstream transportation correlation.
Considering the significant performance improvement
shown in Table. III, the computation cost is moderate.
And we can adopt parallel computing for acceleration.
Scalability. In this project, we focus on predicting the
downstream transportation demand with the aid of the
upstream transportation demand. Thus for some positions
far away from the upstream transportation stations, the
performance is limited when considering the upstream
transportation demand. In order to solve this limitation, we
will add more transportation systems to realize scalability
to improve the performance further.

C. Ethics and Privacy

During the data analysis and data mining of the transportation
records, we took careful steps to address the privacy issues.
First, all the users who use smart transportation cards are
required to digest the Terms of Services, where consent the
services companies can collect their trips records for studies.
Second, during the data collection process, all the raw data has
been preprocessed into aggregated anonymous statistics based
on the privacy protection requirements. All the user identifiers
are removed, and all the auxiliary information is strictly limited
to public available station information (station name, station
location, time, etc.). Even though we learn individual behavior
in our aggregated analyses, we just analyze the encrypted ID
and reduce the concern of privacy leakage of personal data.
Third, only the authorized members of the research team who
are assigned the strict non-disclosure agreements can access
the shared data stored in a well-protected offline server.

D. Future Work

In this work, we focus on leveraging the upstream trans-
portation demand to provide a more accurate prediction
about the downstream transportation demand in multi-modal
transportation modes. More important future works are worth
exploring. First, we are limited on the upstream and downstream
transportation datasets collected in Shenzhen. Although it is
a good example of a metropolitan city in China with 17.56
million citizens, evaluations on other cities can help generate a
thorough understanding of demand prediction in multi-modal
transportation modes in large, medium, and small cities.

Second, although we propose an analytical framework for
the station-level demand prediction, models that can provide
more accurate transfer time prediction results at a station level
are still lacking. For example, in future work, we can design
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a self-supervised online framework that leverages passengers
check-ins in upstream transportation modes to estimate average
transfer time to different downstream transportation modes.
Third, leveraging previously mentioned station-level transfer
time analyses, we can propose scheduling models to generate
guidance to reschedule the transportation operation timetables
to improve passengers’ satisfaction. For example, we observe
that there are a large number of passenger check-ins in
upstream transportation and then predict the transfer time at
different downstream transportation stations. If the transfer
time at downstream transportation stations exceeds a pre-
defined threshold, the operators can reschedule the downstream
transportation timetables to reduce the transfer time.

VI. RELATED WORK

Prediction for Bike-Sharing Systems. Many researchers [2],
[5], [9] study the traffic prediction problem as a time series
prediction problem augmented with multi-source and heteroge-
neous data. For example, Li et al. [2] designed a hierarchical
prediction model to predict the number of rented and returned
bikes to each station. Liu et al. [5] utilized the multi-source
data, e.g., trip and station status records and weather reports,
to predict the bike usage phenomena and then re-balance them
accordingly. Hulot et al. [9] focused on predicting the hourly
rental and return phenomena at each station augmented with
weather reports. However, since the traffic flows along both the
spatial and temporal dimensions, the improvement is limited
if we only focus on the temporal representation.

To address this issue, some works added the geographical fea-
tures into account to build up a spatial-temporal framework [6],
[7], [11], [12], [29], such as the neighborhood traffic or the
functions of regions. Typically, Liu et al. [11] developed a
hierarchical bike demand predictor for expanding bike systems.
Li et al. [12] learned the representation from heterogeneous
spatial-temporal graphs together with multi-source information.
However, when dealing with the unexpected surging bike
demand caused by some special situations, e.g., festivals or
events, these prediction methods may not reflect the increasing
demand in time due to the data scarcity, which is inefficient
when a large number of bikes are required to be re-balanced.

Spatial-Temporal Architectures. Because we model the
bike and subway traffic as spatial-temporal network series,
we describe it as the spatial-temporal network data prediction
problem with many existing works [30]. The simplest way
is to use separate modules to model the spatial and temporal
correlations separately [31], [32]. For example, convLSTM [22]
integrated the convolutional layers with an LSTM to process
the spatiotemporal sequences; STGCN [25] formulated the
traffic forecast problem on graphs and built the model with
complete convolutional structures; TrajGRU [13] actively
learned a location-variant structure for recurrent connections;
SA-ConvLSTM [33] introduced a self-attention mechanism
(SAM) into convLSTM to memorize features with long-range
dependencies in terms of spatial and temporal domains.

To fully capture the simultaneous spatial-temporal correla-
tions, some integrated spatial-temporal models have also been
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proposed [34]-[36]. For instance, Wang et al. [23] designed the
PredRNN that contains a unified memory pool to memorize
both spatial appearances and temporal variations simultaneously.
Further, Wang improved it to PredRNN++ [24] for exploring
single-step dynamics. MIM [37] turned time-variant polyno-
mials into a constant for making the deterministic component
predictable in order to learn complicated variations in space and
time domains. E3D-LSTM [38] integrated 3D convolutions into
RNNs for video prediction tasks. CubicLSTM [39] consists of
three branches, i.e., spatial, temporal, and output, for capturing
objects and predicting future motion. However, the limitation
of these approaches is that they merely concatenate the nodes’
features over neighboring periods rather than distinguishing
their characteristic influences to individual future time slots. In
contrast, STSGCN [10] effectively differentiated the individual
nodes at different time slots and then captured the complex
localized spatial-temporal correlations. However, this cannot
differentiate characteristic influences from each historical time
slot to each future time slot.

Capsule Network. Furthermore, with the advance in the
capsule network, the idea of grouping the neurons to present
more features has gained great attention. For instance, Sabour
et al. [14] proposed a dynamic routing algorithm in cap-
sule networks to estimate features of objects such as pose.
Rajasegaran et al. [19] designed a deep capsule network
architecture using a novel 3D convolution-based dynamic
routing algorithm. However, the capsule network made a great
process on Computer Vision and has not been applied in traffic
prediction broadly. Therefore, the key novelty of BikeCAP is
its first attempt to study the capsule network in the temporal
domain, which benefits a multi-step bike demand prediction.

VII. CONCLUSION

In this work, we designed a deep spatial-temporal capsule
network for multi-step bike demand prediction by assisting the
correlations between upstream traffic and downstream traffic.
The key novelty is its first attempt to study the capsule network
in the temporal domain. Technically, we first introduced a
pyramid convolutional layer in the historical layers to learn the
spatial-temporal feature representation for both the upstream
and downstream transportation demand. Then, we adopted
a spatial-temporal routing mechanism to capture the time-
specific spatial correlations from upstream transportation in
historical capsules and downstream transportation in future
capsules. Finally, we leveraged a 3D deconvolutional decoder
to construct the future bike demand considering the similar bike
demand patterns in neighboring grids and adjacent time slots.
We evaluated BikeCAP based on real-world data collected in
Shenzhen, China, to show that BikeCAP outperforms state-of-
the-art methods in most of the cases.
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