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ABSTRACT

The use of shared electric micromobility vehicles, such as bikes and
scooters, has become increasingly popular. It leads to the problem of
management (i.e., rebalancing and charging). Existing approaches
typically assume that all vehicles have an equal chance of being se-
lected for a ride, which is not practical. To overcome this limitation,
we propose a reinforcement-learning-based framework incorpo-
rating human-system interaction. We first predict the likelihood
of each vehicle being selected, then integrate this prediction into
the reinforcement learning framework. The aim is to create a more
realistic simulation process to guide policy learning more effec-
tively. Our experimental results demonstrate the effectiveness of
incorporating human-system interaction.
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1 INTRODUCTION

The use of shared micromobility vehicles, such as bikes and scoot-
ers, has become increasingly popular in urban transportation [1].
These vehicles provide a convenient and eco-friendly alternative
to conventional automobiles, particularly for short-distance trips.
They also support multi-modal transportation by complementing
public transit systems. However, as the number of shared micromo-
bility vehicles continues to increase in cities, effective management
of these vehicles has become a significant challenge. One such chal-
lenge is to balance the distribution of vehicles to different regions
to meet the spatial and temporal demand [2], especially considering
the recent blooming of electric micromobility vehicles that require
charging while rebalancing [3]. Thus, this work aims to design
an efficient shared electric micomobility management framework
considering both rebalancing and charging.

A general shared electric micromobility vehicle system consists
of four key components: a system operation center, users, vehicles,
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and trucks. To start a ride, a user unlocks an available vehicle
from their smartphone and rides it to their destination. The vehicle
automatically reports its status (e.g., location and energy level) to
the system operation center. After a certain period of usage (e.g., one
day), the system operation center generates a plan for rebalancing
and charging vehicles based on the status of all vehicles in the
system. The plan specifies which vehicles need to be relocated and
which vehicles need to be charged. The center then sends the plan
to the trucks. The trucks follow the plan to perform rebalancing
and charging activities as needed.

Existing works on electric vehicle management [3, 4] focus on re-
locating vehicles to different regions to match future demand based
on a learned rebalancing and charging policy. To learn the optimal
policy, they set up a simulation environment using historical user
request data. In this environment, the demand is simulated using
historical data on user requests, such as pickup locations, drop-off
locations, and energy consumption. For each request, the simulation
environment randomly assigns a vehicle with sufficient energy lev-
els (higher than the energy consumption) near the pickup location
to the user. After multiple rounds of simulation, the rebalancing
and charging policy is learned, with a maximized reward based on
factors such as request satisfaction ratio and total revenue. How-
ever, this learning paradigm has a key limitation in that it does not
consider user preferences in selecting vehicles, i.e., human-system
interaction. It assumes that each vehicle has an equal chance of be-
ing selected [5]. Our research has found that this assumption does
not hold, as different vehicles have significantly different chances
of being selected due to factors such as remaining energy levels and
vehicle conditions (new or old) (see Section 2 for details). This issue
means that existing simulation processes cannot reflect real-world
vehicle usage patterns.

We propose a rebalancing and charging framework for shared
electric micromobility vehicles that considers human-system inter-
action. We first model human-system interaction as vehicle selec-
tion and predict the vehicle selection based on their characteristics.
Then, using this prediction, we incorporate human-system interac-
tion into a general Reinforcement Learning (RL) framework to guide
policy learning. Our preliminary data-driven analysis and experi-
mental results show that human-system interaction is an important
factor to be considered in micromobility vehicle management and
can be used to learn a better scheduling policy.

2 MOTIVATION

We define a matrix called the selection probability matrix to repre-
sent the probability that a vehicle is selected in past trips, showing
how likely a vehicle is to be selected by a user. Figure 1 presents
the distribution of vehicle selection probabilities based on the data
from our collaborated micromobility service platform, revealing
that different vehicles have different probabilities of being selected.
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Thus, the assumption that each vehicle has an equal chance of being
selected is not practical.

We compare the distribution of vehicles in different regions
(divided into equal-sized grids) when considering human-system
interaction (i.e., user preference-based vehicle assignment) versus
random vehicle assignment. We divide vehicle energy into 10 levels
and count the number of vehicles in each level. We then calculate the
difference between the two assignment methods for each level and
aggregate the results in a box plot, shown in Fig. 2. The plot clearly
illustrates a significant difference in the number of vehicles with
different energy levels when considering human-system interaction,
which indicates that ignoring human-system interaction results
in a simulation process that cannot accurately reflect real-world
vehicle usage patterns.
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Figure 1: The distribution Figure 2: The impact of inter-
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abilities distributions in all regions

3 PROPOSED FRAMEWORK

We formulate the vehicle scheduling problem as a cooperative
Markov game G for N agents (i.e., each region as an agent) fol-
lowing [6], which is defined by a tuple G = {S, AR, P,y}. S
represents the set of states of region agents (e.g., the number of
vehicles and their energy levels). A denotes the action space of
agents (i.e., where a vehicle should be relocated to and which ve-
hicles should be charged). R is the reward function, calculating
the net revenue based on the trip revenue and cost. # denotes
the transition probability function. y is the discounted factor. To
achieve efficient scheduling, a multi-agent reinforcement learning
(MARL) method is used to learn the policy, as shown in Figure 3.
At each time slot, each agent gives an action based on its own state
and policy. Then the users request vehicles at different locations
and time slots. After a certain time period (e.g., a day), the agent
receives the reward, updates its policy, and gives the next action.

For vehicle selection prediction, we design an XGBoost-based
model [7], considering five significant characteristics of the vehicle
itself (selection probability, remaining energy levels, nearby vehi-
cles, historical trips, and rank of energy in the nearby vehicles).
The output is which vehicle is selected for each request. Table 1
shows the prediction results. The prediction model is used in the
simulation process to assign vehicles for each user request.

Table 1: Performance of vehicle selection prediction
AUC (%) ACC (%) Recall (%) F1 (%) Precision (%)
79.49% 82.05% 72.46% 71.96% 71.47%

4 EXPERIMENTS & FUTURE WORK

We conducted comparison experiments using different approaches
to demonstrate the effectiveness of considering human-system in-
teraction, including MARL with interaction, MARL without inter-
action, NB (no rebalancing), and SoTP (the practical scheduling
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Figure 3: RL-based scheduling framework

used by our collaborative platform). Figure 4 shows their perfor-
mance in terms of net revenue. Compared to MARL without inter-
action, MARL with interaction can achieve a better net revenue.
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work for rebalancing and charging by adding more agent infor-
mation and constraints to achieve better net revenue. Additionally,
we will explore how to incorporate human-system interaction into
the MARL framework to guide policy learning.
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