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Abstract

We consider the problem of testing and learning quantum k-juntas: n-qubit unitary matrices which act
non-trivially on just k of the n qubits and as the identity on the rest. As our main algorithmic results, we give

1. A Õ(
√

k)-query quantum algorithm that can distinguish quantum k-juntas from unitary matrices that
are “far” from every quantum k-junta; and

2. A O(4k)-query algorithm to learn quantum k-juntas.

We complement our upper bounds for testing and learning quantum k-juntas with near-matching lower
bounds of Ω(

√

k) and Ω(4k/k), respectively. Our techniques are Fourier-analytic and make use of a notion of
influence of qubits on unitaries.

1 Introduction

Certifying and characterizing the dynamical behavior of quantum systems is a fundamental task in physics which
is often achieved via quantum process tomography (QPT) [CN97]. However, QPT is extremely resource-intensive.
For example, all known methods for learning a classical description of an arbitrary n-qubit unitary operator, given
black-box query access to it, require Ω(4n) queries to the unitary [GJ14]. On the other hand, this complexity
can be significantly reduced if, instead of learning the entire description of the unknown unitary, we want to test
whether the unitary satisfies a specific property. This naturally leads us to consider the well-studied property
testing framework in theoretical computer science [Gol10, BY22].

The setup of property testing (in the context of unitary dynamics, as it pertains to this paper) is as follows:
Given oracle access1 to a unitary operator U and its inverse U†, our goal is to determine whether U has a
certain property or is “far”2 from every unitary operator satisfying that property using a small number of
calls to the oracles to U and U†. We also allow for the algorithm to output an incorrect answer with some
small probability. Several natural properties of unitary dynamics have been studied in this model, such as
commutativity, diagonality, membership in the Pauli basis, etc. We refer the interested reader to Section 5.1 of
the survey by Montanaro and de Wolf on quantum property testing [MdW16] for more information.

The property we are interested in testing here is that of being a k-junta: We say that an n-qubit unitary U
is a k-junta if it acts “non-trivially” on only k of the n-qubits (see Definition 2.2 for a formal definition). Like
Montanaro and Osborne [MO10], we will refer to a unitary k-junta as a quantum k-junta, to distinguish it from a
k-junta Boolean function (or simply, Boolean k-junta). As a special case, the notion of quantum k-juntas captures
the well-studied problem of testing if a Boolean function f : {0, 1}n → {0, 1} is a k-junta (cf. Question 1.3).

Problem 1.1. (Testing quantum k-juntas) Given oracle access to a unitary U and its inverse U† acting on
n qubits and ε > 0, decide with probability at least 9/10 if U is a k-junta or if dist(U, V ) ≥ ε for all quantum
k-juntas V acting on n qubits.

Our first main result is an algorithm for testing if a unitary U is k-junta using Õ(
√
k) queries to U and U †,

where Õ(·) hides polylogarithmic factors of k. Crucially, the query complexity of the tester is independent of n,
the total number of qubits in U . We complement this with a near-matching lower bound of Ω(

√
k) for the junta

testing problem, implying that our algorithm is optimal up to a polylogarithmic factor in k.

∗The full version of the paper can be accessed at https://arxiv.org/abs/2207.05898
†Columbia University.
‡Columbia University. Supported by NSF grants IIS-1838154, CCF-2106429, CCF-2211238, CCF-1763970, and CCF-2107187.
§Columbia University. Supported by AFOSR award FA9550-21-1-0040, NSF CAREER award CCF-2144219, and the Sloan

Foundation.
1More formally, an oracle for a unitary U takes in as input a quantum state |ψ〉 and outputs U |ψ〉.
2See Definition 2.3 for a formal definition of “dist,” the distance metric.
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Classical Testing Quantum Testing Classical Learning Quantum Learning

f : {0, 1}n → {0, 1} O(k log k) [Bla09]

Ω(k log k) [Sağ18]

Õ(
√
k) [ABRdW16]

Ω(
√
k) [BKT17]

n0.6kpoly(n) [Val15]

Ω(2k + log n) (Folklore)

O(2k) [AS07]

Ω(2k) [AS07]

Unitary U ∈M2n×2n — Õ(
√
k) (Theorem 3.2)

Ω(
√
k) (Theorem 4.1)

— O(4k) (Theorem 5.1)

Ω( 4
k

k ) (Theorem 5.2)

Table 1: Our contributions and prior work on testing and learning Boolean and quantum k-juntas.

Theorem 1.1. (Informal version of Theorems 3.2 and 4.1) Quantum k-juntas can be tested with Õ(
√
k)

queries. Furthermore, testing quantum k-juntas requires Ω(
√
k) queries.

As a remark, our upper bound uses amplitude amplification on a subroutine that queries U . Because amplitude
amplification will apply our subroutine and its inverse, we need query access to U † as well in the formulation of
the quantum junta testing problem.

Another natural problem we consider is that of learning quantum k-juntas. In particular, the learning
problem asks to output an approximation to a quantum k-junta given oracle access to the latter. Unlike the
testing problem, the learning problem does not require access to U†.

Problem 1.2. (Learning Quantum k-Juntas) Given oracle access to a quantum k-junta U acting on n qubits

and an error parameter ε, output a unitary Û such that dist(U, Û) ≤ ε.

Our second main result is an algorithm to learn quantum k-juntas with significantly lower sample complexity
than the naive QPT approach; in particular there once again is no dependence on the total number of qubits, n.

Theorem 1.2. (Informal version of Theorems 5.1 and 5.2) Given oracle access to a quantum k-junta U
acting on n-qubits and ε > 0, there exists an algorithm that makes O(4k/ε2) queries to U and outputs with

probability 9/10 a unitary Û such that dist(U, Û) ≤ ε. Furthermore, Ω(4k/k) queries are necessary to learn
quantum juntas.

Our upper bounds for testing and for learning are proved via Fourier-analytic techniques and crucially make
use of the notion of influence of qubits on a unitary, first introduced by Montanaro and Osborne [MO10] in the
context of Hermitian unitary matrices. Our lower bound for testing quantum k-juntas appeals to the lower bound
for testing Boolean k-juntas obtained by Bun, Kothari, and Thaler [BKT17], as well as a new structural result for
quantum k-juntas. Our lower bound for learning quantum k-juntas arises from the communication complexity of
the Input Guessing game [Nay99].

Organization. We briefly recall related work on testing both Boolean and quantum juntas in Section 1.1,
and then give a high-level technical overview of our results in Section 1.2. We prove our Õ(

√
k) upper bound for

testing quantum k-juntas in Section 3, and prove our Ω(
√
k) lower bound for the same in Section 4. Finally, we

present our upper and lower bound on learning quantum k-juntas in Section 5.

1.1 Related Work We summarize related work as well as our contributions in Table 1.

Classical Testing of Boolean Juntas. We first note that Question 1.1 captures as a special case its Boolean
analog, which we state below as Question 1.3. Recall that a Boolean function f : {0, 1}n → {0, 1} is a k-junta if
f(x) = g(xi1 , . . . , xik) for some g : {0, 1}k → {0, 1}. We also say that for f, g : {0, 1}n → {0, 1},

dist(f, g) := Pr[f(x) 6= g(x)]

for x ∼ {0, 1}n drawn uniformly at random. (In other words, the distance metric we use for Boolean functions is
simply the normalized Hamming distance.)
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Problem 1.3. (Testing Boolean k-juntas) Given classical or quantum query access to a function f :
{0, 1}n → {0, 1} via a unitary Of , decide with constant probability if f is a k-junta or if dist(f, g) ≥ ε for
every k-junta g : {0, 1}n → {0, 1}.

This question has been extensively studied over recent decades, with the first result explicitly related to testing
juntas obtained by Parnas, Ron, and Samorodnitsky [PRS02] who gave a classical algorithm for testing 1-juntas
with O(1) queries. Soon afterwards, Fischer et al. [FKR+04] introduced classical algorithms for testing k-juntas

with Õ(k2) queries. The query complexity of classically testing juntas was later improved by Blais [Bla09] who

gave a nearly optimal tester which makes Õ(k) queries. Blais’s tester is asymptotically optimal up to a logarithmic
factor, given the Ω(k) lower bound for classically testing k-juntas by [CG04].

Quantum Testing and Learning of Boolean Juntas. There has also been a long line of work on testing
Boolean juntas via quantum algorithms, i.e. algorithms with query access to a unitary Of representing a function
f : {0, 1}n → {0, 1}, allowing the algorithm to query superpositions of inputs. Atıcı and Servedio [AS07] gave an
elegant quantum algorithm to test k-juntas using O(k) queries.3 More recently, Ambainis et al. [ABRdW16] came

up with a quantum algorithm to test juntas that makes only Õ(
√
k) queries. This was shown to be essentially

optimal by Bun, Kothari, and Thaler [BKT17] who proved an Ω̃(
√
k) lower bound for via a reduction from the

image size testing problem. Finally, Atıcı and Servedio [AS07] also gave a O(2k)-sample quantum algorithm for
learning Boolean k-juntas in the PAC model.

Quantum Testing of Quantum Juntas. Returning to Question 1.1, Wang [Wan11] gave a tester for
testing whether a unitary operator U is a k-junta or is ε-far from a k-junta that makes O(k) queries, and their
algorithm turns out to be a direct generalization of the tester of Atıcı and Servedio [AS07].4 Finally, Montanaro
and Osborne [MO10] had previously studied a different tester for the property of being a “dictatorship,” i.e. a
1-junta, but did not prove correctness.

1.2 Our Techniques In this section, we give a high-level technical overview of our main results.

1.2.1 Testing Quantum Juntas Our Õ(
√
k)-query tester for quantum k-juntas can be viewed as direct

analog of the Õ(
√
k)-query tester for Boolean k-juntas obtained by Ambainis, et al. [ABRdW16]. Our

tester relies crucially on the notion of influence of qubits on a unitary, which was first introduced by
Montanaro and Osborne [MO10] for Hermitian unitaries. Informally, the influence of a qubit on a unitary U
captures how non-trivially U acts on that qubit; see Section 2.3 for a formal definition as well as useful properties
of this notion of influence. Our main technical contributions here are a formulation of the influence of a qubit on
an arbitrary unitary and a subroutine Influence-Estimator (cf. Section 3.1) to estimate this influence using
the Choi-Jamio lkowski (CJ) isomorphism between unitary operators on n qubits and pure states in C

2n × C
2n .

With this in hand, we closely mirror the approach of Ambainis et al. [ABRdW16] in Section 3.2. We essentially
used their algorithm as a black-box, but our analysis differs in certain parameters; for completeness, we present
the entire analysis with these modifications.

The Ω(
√
k)-query lower bound for testing quantum k-juntas relies on the Ω(

√
k)-query lower bound for testing

Boolean k-juntas obtained by Bun, Kothari, and Thaler [BKT17]. We do so via the natural encoding of a Boolean
function f : {0, 1}n → {0, 1} as a unitary Uf given by

(1.1) Uf := diag((−1)f(x)).

It is immediate from Equation (1.1) that encoding a Boolean k-junta in this way yields a quantum k-junta. Our
main structural result Proposition 4.1, shows that if a Boolean function f : {0, 1}n → {0, 1} is far from any
Boolean k-junta, then Uf is also far from any quantum k-junta. We start by first showing that Uf is far from Ug

for every Boolean k-junta g : {0, 1}n → {0, 1}, and then handling arbitrary quantum k-juntas via Lemma 4.1.

3At the time [AS07] was written, the best classical upper bound on testing juntas was Õ(k2).
4The result originally obtained by Wang had a worse bound of O(k log k), but this can be improved to O(k) by following the

analysis of [AS07] (cf. Section 5.1.6 of [MdW16]). We also note that their query complexity’s dependence on ε can be improved via
a straightforward application of amplitude amplifiaction.
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1.2.2 Learning Quantum Juntas Our learning algorithm, Figure 6, can be viewed as analogous to the
algorithm obtained by Atıcı and Servedio [AS07] for Boolean k-juntas. We again make use of the CJ isomorphism
between unitary operators on n qubits and pure states in C

2n × C
2n , allowing us to techniques used to learn

quantum states to learn the unitary U . We start by first determining the high-influence qubits of the quantum
k-junta U via “Pauli sampling,” which is analogous to the Fourier Sampling subroutine used by [AS07]. We
then take the CJ isomorphism of U and appropriately trace out the qubits with negligible influence, producing
a reduced CJ state on the high influence qubits. Finally, we use a pure state tomography procedure to learn the
reduced CJ state using O(4k/ε2) samples.

Our lower bound for learning quantum juntas is proved via a reduction to a communication complexity lower
bound, namely a quantum lower bound proved by Nayak [Nay99] on the communication required for one party
to guess the input of another party. The key idea is that an ε−covering of k-junta unitaries has size at least

Ω((1/ε)4
k

). Thus, identifying a certain party’s uniformly-selected k-junta unitary in this cover requires at least

Ω(log(1/ε)4
k

) communication rounds in a protocol where that party behaves as a membership-oracle for their
unitary.

1.3 Future Work A natural next direction is to consider the testability/learnability of quantum channels
acting non-trivially on k-qubits. Recall that a quantum channel is a completely positive, trace-preserving linear
map; see [Wat18] for a comprehensive introduction to the subject. As noted in [MdW16], there has not been
much work on testing properties of quantum channels.

We also remark that (to our knowledge) there has been no work on tolerant property testing—for both
Boolean functions as well as unitary matrices—via quantum algorithms.5 The best known classical upper bound

for tolerant testing of Boolean k-juntas is 2Õ(
√
k) due to Iyer, Tal, and Whitmeyer [ITW21]. We also note

that a Ω(2
√
k) lower-bound against classical non-adaptive algorithms for tolerant junta testing was obtained by

Pallavoor et al. [PRW19].
Finally, it is unknown whether quantum algorithms offer any advantage in terms of query complexity for

the problem of testing Boolean k-juntas in the distribution-free setting.6 In particular, Belovs [Bel19] gave a
O(k) quantum tester for Boolean k-juntas in the distribution-free model, matching the query complexity of the
best classical algorithms for testing Boolean k-juntas in the distribution-free model due to Bshouty [Bsh19] and
Zhang [Zha19].

2 Preliminaries

In this section, we introduce notation and recall useful background. We assume familiarity with elementary
quantum computing and quantum information theory, and refer the interested reader to [NC10, Wil17] for more
background. For n ≥ 1, we will write N = 2n. Given T ⊆ [n], we will write T := [n] \ T . We will write In to
denote the n× n identity matrix; when n is clear from context, we may write I instead.

2.1 Unitary Operators We will writeMN,N to denote the set of linear operators from C
N to C

N and denote
by UN the set of N -dimensional unitary operators, i.e.

UN :=
{
U ∈MN,N : UU † = U †U = I

}
.

Definition 2.1. Given a unitary U ∈ UN and S ⊆ [n], we define the operator TrS(U) obtained by tracing out S
to be

TrS(U) =
∑

k∈{0,1}S

(IS ⊗ 〈k|)U(IS ⊗ |k〉).

In the above definition, we write |k〉 for k ∈ {0, 1}S to be the |S| qubit state in the computational basis
corresponding to the bit-string k. Note that Definition 2.1 aligns with the fact that the trace of a unitary matrix
U is given by

Tr(U) =
∑

k∈{0,1}n

〈k|U |k〉 .

5Recall that in the tolerant model, the tester is asked to distinguish instances that are ε1-close to the property from instances that
are ε2-far from the property.

6In the distribution-free model, the distance between two functions is measured with respect to a fixed but unknown distribution.
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Definition 2.2. (k-Junta) We say that a unitary U ∈ UN is a quantum k-junta if there exists S ⊆ [n] with
|S| = k such that

U = VS ⊗ IS
for some VS ∈ U2k .

In contrast, classical k-juntas are Boolean functions f : {0, 1}n → {0, 1} that depend on only k of their n
input variables. More formally, a function f : {0, 1}n → {0, 1} is a k-junta if there exists g : {0, 1}k → {0, 1} such
that f(x1, . . . , xn) = g(xi1 , . . . , xik) for some fixed i1, . . . , in ∈ [n] and for all x ∈ {0, 1}n.

We will viewMN,N as an inner-product space equipped with the Hilbert–Schmidt inner product

〈A,B〉 := Tr
(
A†B

)
.

Recall that the Hilbert–Schmidt inner product induces the Hilbert–Schmidt (or Frobenius) norm, which is given
by

‖A‖2 := Tr
(
A†A

)
=

N−1∑

i,j=0

|A[i, j]|2.

We will use the following metric to compare the distance between unitary matrices. Note that this metric is
not the natural metric induced by the Hilbert–Schmidt norm.

Definition 2.3. (Distance between unitaries) Given A,B ∈MN,N , we define

dist(A,B) := min
θ∈[0,2π)

1√
2N
‖eiθA−B‖.

We say that A is ε-far from B if dist(A,B) ≥ ε. More generally, for any P ⊆MN,N and A ∈MN,N , we write

dist(A,P) := min
B∈P

dist(A,B)

and similarly say that A is ε-far from P if dist(A,P) ≥ ε.
It can easily be checked that dist(A,B) ≥ 0, with equality holding if and only if A = eiθB for some θ ∈ [0, 2π),

as well as other standard properties of a metric. Finally, note that dist(V1⊗U, V2⊗U) = dist(V1, V2) for unitaries
U, V1, V2.

2.2 The Pauli Decomposition In this section, we introduce a useful orthonormal basis for MN,N (viewed
as a C-vector space) which will be central to what follows. Recall that the set of Pauli operators given by

σ0 =

(
1 0
0 1

)
= I, σ1 =

(
0 1
1 0

)
= X, σ2 =

(
0 −i
i 0

)
= Y, and σ3 =

(
1 0
0 −1

)
= Z

forms an orthonormal basis forM2,2 with respect to the Hilbert–Schmidt inner product. For x ∈ {0, 1, 2, 3}n ∼= Z
n
4 ,

we define σx := σx1
⊗· · ·⊗σxn

and write supp(x) := {i ∈ [n] : xi 6= 0}. It is then easy to check that the collection
{

1√
N
σx

}

x∈Z
n
4

forms an orthonormal basis for MN,N with respect to the Hilbert–Schmidt inner product. We will frequently
refer to this basis as the Pauli basis forMN,N . It follows that we can write any A ∈MN,N as

A =
∑

x∈Z
n
4

Â(x)σx where Â(x) :=
1

N
〈A, σx〉.

We will sometimes refer to Â(x) as the Pauli coefficient of A on x and will refer to the collection {Â(x)}x as the
Pauli spectrum of A. It is easy to verify that Parseval’s and Plancharel’s formulas hold in this setting:

1

N
‖A‖2 =

∑

x∈Z
n
4

|Â(x)|2 and
1

N
〈A,B〉 =

∑

x∈Z
n
4

Â(x)
∗ · B̂(x).

In particular, for U ∈ UN , we have
∑

x∈Z
n
4
|Û(x)|2 = 1.
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2.3 Influence of Qubits on Unitaries [MO10] introduced a notion of influence of qubits on unitaries, in the
spirit of the well-studied classical notion of influence of variables on Boolean functions f : {0, 1}n → {0, 1} (cf.
Chapter 2 of [O’D14]). This notion of influence will be central to the testing algorithm presented in Section 3.
Although [MO10]’s notion of influence was developed only for Hermitian unitaries (i.e. “Quantum Boolean
Functions”), we first present their formulation as it gives good intuition for what influence captures, after which
we introduce a more general definition of influence that applies to arbitrary unitaries as well as to more than one
qubit.

Definition 2.4. (Derivative operator) The ith derivative operator Di is a superoperator on MN,N defined
through its action on the Pauli basis element σx, x ∈ Z

n
4 :

Diσx =

{
σx xi 6= 0

0 xi = 0
.

It follows immediately that for A ∈MN,N , A =
∑

x∈Z
n
4
Â(x)σx, we have

(2.2) DiA =
∑

x:xi 6=0

Â(x)σx

Informally, Di isolates the part of the Pauli spectrum that acts non-trivially on the ith qubit (i.e. the x such that
σxi
6= I). We can now introduce the notion of influence of qubits on unitaries proposed by [MO10].

Definition 2.5. (Influence of single qubit) Given a unitary U ∈ UN , the influence of the ith qubit on U ,
written Inf i[U ], is

Inf i[U ] := ‖DiU‖2.

At a high level, the influence of the ith qubit on a unitary U captures how non-trivially the unitary U acts
on the ith qubit of a quantum state. Note that it is immediate from Equation (2.2) that

Inf i[U ] =
∑

x:xi 6=0

|Û(x)|2.

This suggests a natural way to extend the Definition 2.5 to more than one qubit.

Definition 2.6. (Influence of multiple qubits) Given a unitary U ∈ UN and S ⊆ [n], the influence of S
on U , written InfS [U ], is

InfS [U ] =
∑

x:supp(x)∩S 6=∅
|Û(x)|2.(2.3)

The above definition is analogous to the “Fourier formula” for the the influence of a set of variables on a
Boolean function (cf. Section 2.4 of [ABRdW16]). Furthermore, as stated earlier, note that these definitions apply
to arbitrary unitaries (i.e. we do not require them to be Hermitian). We present an alternative characterization
of InfS [U ] (which we will not require, but may be of independent interest) in Appendix A. We have the following
lemma.

Lemma 2.1. For S, T ⊆ [n] and a unitary U ∈ UN , we have

1. Monotonicity: If S ⊆ T , InfS [U ] ≤ InfT [U ]; and

2. Subadditivity: InfS∪T [U ] ≤ InfS [U ] + InfT [U ].

Note that monotonicity is immediate from the analytic interpretation of influence (cf. Equation (2.3)), and
subadditivity follows from the fact that

{(S ∪ T ) ∩ supp(x)} = {S ∩ supp(x)} ∪ {T ∩ supp(x)}.

As mentioned before, Wang [Wan11] implicitly used this notion of influence to test quantum k-juntas. In
particular, Wang proved the following.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited1168

D
o
w

n
lo

ad
ed

 0
7
/0

7
/2

3
 t

o
 1

7
3
.2

.3
5
.8

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Lemma 2.2. ([Wan11]) Given a unitary U ∈ UN , if U is ε-far from every quantum k-junta V , then for all
T ⊆ [n] with |T | ≤ k, we have that

InfT [U ] ≥ ε2

4
.

2.4 Query Complexity of the Composition of Quantum Algorithms Our upper bound for quantum
junta testing will rely on the following lemma about the query complexity of the composition of quantum
algorithms.

Lemma 2.3. ([ABRdW16], Corollary 2.12) With D ⊂ {0, 1}n, let F : D → {0, 1} and Gj be partial Boolean
functions ∀j ∈ [n]. Let Q(F ) denote the bounded-error quantum query complexity of F . Let T equal to the objective
value of a feasible solution (Xj) to the adversarial bound in (2.3) of [ABRdW16]. We let an input variable j be
irrelevant for input z ∈ D if and only if Xj [z, z] = 0. Then, we have

Q(F ◦ (G1, ...Gn)) = O

(
T max

j∈[n]
Q(Gj)

)
.

with the function composition done as in Definition 2.10 of [ABRdW16].

Note that the notion of function composition in [ABRdW16] is more subtle than direct function composition,
as the latter would incur a logarithmic overhead in query complexity.

Our junta testing algorithms involve composing quantum algorithms, each of which have small error
probabilities. The above lemma allows us to compose them without incurring logarithmic overheads; the details
of our approach is identical to that of [ABRdW16] to which we defer the technical details.

As a rough overview, [ABRdW16] defines two key notions: First is the notion of “robust conjunctions,” which
are essentially error-resistant conjunctions, and second is the notion of “irrelevant variables for an algorithm,”
i.e. input variables which do not affect the algorithm’s output. In the context of function composition, we can
ensure that F depends only on Gj that are relevant to the tester, and in our analysis we can ignore cases where
irrelevant Gj behave unpredictably.

2.5 The Choi-Jamiolkowski Isomorphism In our algorithms, we will encode a unitary as a quantum state
using the Choi-Jamio lkowski isomorphism [Cho75, Jam72], which is a mapping between N ×N unitary operators
and pure states in C

N ⊗C
N . Concretely, this mapping associates to every unitary U ∈ UN the Choi-Jamio lkowski

state (which we abbreviate as CJ state):

|v(U)〉 := (U ⊗ I)


 1√

N

∑

0≤i<N

|i〉 |i〉


 =

1√
N

∑

0≤i,j<N

U [i, j] |i〉 |j〉 .

The CJ state |v(U)〉 can be prepared by first creating the maximally entangled state of dimension N , and then
querying U on half of the maximally entangled state. Since N = 2n, this is equivalent to preparing n EPR pairs
(which altogether forms 2n qubits) and applying the unitary U to the n qubits coming from the first half of each
of the EPR pairs. As such, each qubit of the unitary U corresponds to two qubits of the state |v(U)〉. We will
refer to qubits in {1, . . . , n} as the ones acted on by the unitary U , and qubits in {n + 1, . . . , 2n} as the ones
acted on by I. We introduce the following notation for convenience.

Notation 2.1. For each qubit ` ∈ [n] acted on by the unitary U , there is a pair of corresponding qubits

(`, ˜̀) ∈ [n] × {n + 1, . . . , 2n} in the state |v(U)〉. In particular, ˜̀ and ` are related as they formed an EPR
pair at the synthesis of the CJ state.

3 Testing Quantum k-Juntas with Õ(
√
k) Queries

As suggested by Lemma 2.1, the notion of influence for unitaries behaves analogously to the “usual” notion
of influence for Boolean functions, which was crucial to the Õ(

√
k)-query k-junta tester for Boolean functions

obtained by Ambainis et al. [ABRdW16]. This motivates an analog of the algorithm obtained by Ambainis et al.

for quantum juntas, and this is indeed how we obtain a Õ(
√
k)-tester for quantum k-juntas. In Section 3.1, we

present an unbiased estimator for the influence of qubits on a unitary, which we then combine with Ambainis et
al.’s tester in Section 3.2 to obtain our quantum k-junta tester.
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Input: Oracle access to U ∈ UN , S ⊂ [n]

Output: X ∈ {0, 1}

Raw-Influence-Estimator(U, S):

1. Prepare the Choi-Jamiolkowski state |v(U)〉 given by

|v(U)〉 = 1√
N

∑

0≤i,j<N

U [i, j] |i〉 |j〉 .

This is prepared by querying U once on the maximally entangled state.

2. Measure the 2|S| qubits in the registers S ∪ {˜̀ : ` ∈ S} in the Bell basis and let |ϕ〉
denote the post-measurement state.

(a) Test if |ϕ〉 is equal to |EPR〉⊗|S|
, return 0.

(b) Otherwise, return 1.

Figure 1: Influence Estimator for Quantum Unitaries

3.1 An Influence Tester for Unitaries We start by describing a subroutine Raw-Influence-
Estimator(cf. Figure 1) that allows us to estimate the influence of a set of variables S ⊆ [n] on a unitary
U .

Lemma 3.1. Let X denote the output of Raw-Influence-Estimator(U, S) for U ∈ UN and S ⊆ [n] as described
in Figure 1. Then

E[X] = InfS [U ].

Proof. Recall that U can be written in the Pauli basis as U =
∑

x∈Z
n
4
Û(x)σx. Thus, |v(U)〉 can be written as

|v(U)〉 =
∑

x∈Z
n
4

Û(x) |v(σx)〉

=
∑

x:supp(x)∩S=∅
Û(x) |v(σx)〉+

∑

x:supp(x)∩S 6=∅
Û(x) |v(σx)〉

=
∑

x:supp(x)∩S=∅
Û(x) |v(σxS

)〉 |v(I⊗|S|)〉+
∑

x:supp(x)∩S 6=∅
Û(x) |v(σxS

)〉 |v(σxS
)〉 .

Where xS ∈ Z
S
4 is notation for the restriction of x onto the qubits in S. Similarly, σxS

is the Pauli basis vector
given by the tensor product of |S| Pauli matrices according to xS . Thus, for any x ∈ Z

n
4 such that supp(x)∩S 6= ∅,

the state |v(σxS
)〉 is orthogonal to the state |v(I⊗|S|)〉 = |EPR〉⊗|S|

. Because {|Û(x)|2}x∈Z
n
4
forms a probability

distribution, when Figure 1 measures the qubits in S ∪ {˜̀ : ` ∈ S}, it will return 1 with the following probability.

E[X] = Pr[X = 1]

=
∑

x:supp(x)∩S 6=∅
|Û(x)|2

= InfS [U ]

This completes the proof.

Note that we can boost the probability that Raw-Influence-Estimator outputs 1 via amplitude
amplification (see, for example, Section 2.2 of [MO10]). In particular, we can amplify the probability of Raw-
Influence-Estimator outputting 1 from δ to an arbitrary constant (say 0.9) via O(1/

√
δ) calls to the oracles

for the unitary U . Thus, we have the following lemma.
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Input: Oracle access to U,U † ∈ UN , S ⊆ [n], δ ∈ (0, 1]

Output: X ∈ {0, 1}

Influence-Estimator(U, S, δ):

1. Use amplitude amplification with O(1/
√
δ) calls to Raw-Influence-Estimator(U, S).

2. Return the same value as Raw-Influence-Estimator(U, S).

Figure 2: Influence Estimator via Amplitude Amplification

Lemma 3.2. Let U ∈ UN and S ⊆ [n]. If InfS [U ] ≥ δ, then Influence-Estimator(U, S, δ) as described
in Figure 2 outputs 1 with probability at least 9/10, and if InfS [U ] = 0, then Influence-Estimator(U, S, δ)
always outputs 0. Furthermore, the number of queries made to U is O(1/

√
δ).

3.2 Reducing to Gapped Group Testing Using our influence estimator Influence-Estimator, we can
now reduce the problem of testing quantum juntas to that of Gapped Group Testing (GGT), which we define
below. Our approach closely follows that of Ambainis et al. [ABRdW16], who reduce the problem of testing
k-juntas to GGT. We remark that certain parameters in our adaptation of Ambainis et al.’s algorithm will be
worse by a square-root factor, resulting in an overall query complexity of Õ(

√
k/ε) for testing quantum k-juntas

as opposed to Õ(
√
k/ε) as obtained by Ambainis et al. for testing classical juntas.

We first define the exact version of Group Testing.

Definition 3.1. (EGGT) Let k and d be positive integers, X consist of all subsets of [n] with size k, and Y
consist of all subsets of [n] of size k + d. In the Exact Gapped Group Testing (EGGT) problem, we are given
oracle access to the function IntersectsA, A ∈ X ∪ Y and must decide whether A ∈ X or if A ∈ Y

The exact GGT will be referenced in the analysis. However, the actual algorithm we will use in our algorithm
solves a more general version of EGGT.

Definition 3.2. (GGT) Let k and d be positive integers. Define two families of functions

X̃ = {f : {0, 1}n → {0, 1} | ∃A ∈ X ∀S ⊂ [n] : S ∩A = ∅ =⇒ f(S) = 0}

Ỹ = {f : {0, 1}n → {0, 1} | ∃B ∈ Y ∀S ⊂ [n] : S ∩B 6= ∅ =⇒ f(S) = 1}
In an instance of GGT(k, d), given oracle access to some function f ∈ X̃ ∪ Ỹ, decide whether f ∈ X̃ or f ∈ Ỹ.

Note that if the function f is in X̃ , then sets S such that S ∩A 6= ∅ do not restrict f . They are “irrelevant.”
Similarly, if f is in Ỹ, sets S such that S ∩ B = ∅ are “irrelevant” (cf. Section 2.4). More precisely, the sets
that are deemed irrelevant follow from the adversary bound and is explained in more detail in Observation 3.9
of [ABRdW16]. Also, note that if we replace implication symbols in Definition 3.2 with equivalence symbols, we
recover the EGGT problem. Thus, EGGT is a special case of GGT.

To get some intuition for Definition 3.2, consider the following scenario: Given n soldiers, some of which are
sick, you would like to determine whether there are at most k sick soldiers, or if there are at least k + d sick
soldiers. You are allowed to test this by pooling blood samples from subsets of the n soldiers, where the pooled
test returns positive if the group contains at least one sick soldier.

More precisely, for an unknown A ⊆ [n], we would like to decide if |A| ≤ k or |A| ≥ k + d given access to the
following oracle

IntersectsA(S) :=

{
1 A ∩ S 6= ∅
0 otherwise

.

We briefly explain the connection to junta testing: Given a unitary U and a fixed threshold δ > 0, let Sδ ⊆ [n]
be the set of qubits whose influence is at least δ. Note then that Influence-Estimator(U, T, δ) will will return
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Input: Oracle access to U,U †, parameter k

Output: “Yes” or “No”

Unitary-Junta-Tester(U, k)

1. Run Tester-I(U, k, l) for l ∈ {0, . . . , blog(200k)c}.

2. Run Tester-II(U, k).

3. Output “Yes” if all blog(200k)c+ 2 testers above accept, and output “No” otherwise.

Figure 3: Quantum k-Junta Tester

Input: Oracle access to U,U †, parameter k, parameter l

Output: “Yes” or “No”

Tester-I(U, k, l):

1. Let dl = 2l and δl =
ε2

2l+5 log(400k)
.

2. Run Quantum-GGT with parameters k and d = dl, and query access to the following oracle:

Given S ⊆ [n], output Influence-Estimator(U, S, δl)

3. Output “Yes” if GGT accepts, and “No” otherwise.

Figure 4: Tester of the First Kind

1 with high probability if at least one variable in S is in Sδ. In this sense, we have that

Influence-Estimator(U, T, δ) ≈ IntersectsSδ
(T )

By examining various settings of δ, we can use GGT to infer the “distribution” of influence of a unitary U among
its qubits. We will make use of the following quantum algorithm obtained by Ambainis et al. for GGT.

Theorem 3.1. (Theorem 3.6 of [ABRdW16]) There exists a quantum algorithm Quantum-GGT that
solves GGT(k, d) using O(

√
1 + k/d) queries.

Our algorithm for quantum junta testing and analysis thereof closely follow the structure of Ambainis et al.’s
algorithm for junta testing and its analysis; we include complete details below for completeness but refer the
interested reader to Section 4 of [ABRdW16] for the original algorithm.

Note that because our Influence-Estimator serves as a subroutine to the GGT algorithm, there is a need
for a careful analysis of the properties of their composition. This is addressed in Section 2.4 at a high level and
addressed in more detail in [ABRdW16].

Theorem 3.2. Given U ∈ UN , with high probability 9/10, the algorithm Unitary-Junta-Tester(U) outputs
“Yes” if U is a k-junta, and outputs “No” if U is ε-far from every quantum k-junta. Furthermore, Unitary-

Junta-Tester(U) makes O
(√

k log k
ε log k

)
calls to the unitary U and has two-sided error.

Proof. The setup and analysis of the algorithm (Lemmas 3.3 and 3.4, 3.5) is almost the same as in [ABRdW16],
with a few constants changed.

Without loss of generality, we assume that the first K qubits are the most influential ones and are ordered in
decreasing amount of influence.

Inf1[U ] ≥ Inf2[U ] ≥ . . . ≥ InfK [U ] > 0 = InfK+1[U ] = . . . = Infn[U ].
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Input: Oracle access to U,U †, parameter k

Output: “Yes” or “No”

Tester-II(U, k):

1. Estimate acceptance probability of following subroutine up to additive error 0.05:

• Generate S ⊂ [n] by adding i ∈ [n] to S with probability 1/k independently.

• Run Influence-Estimator(U,S, δ) where δ := ε2

16k .

2. Output “Yes” if estimated acceptance probability is at most 0.8, and “No” otherwise.

Figure 5: Tester of the Second Kind

Of course, the tester does not know this order. The primary challenge is in showing that if U is ε-far from
every quantum k-junta, then at least one of the two subroutines Tester-I and Tester-II will output “No” with
significant probability. The blog(200k)c+2 tests in the main Figure 3 are tailored for this purpose; in particular,
we have the two following cases when U is ε-far from every quantum k-junta:

1. Case 1:
∑200k

j=k+1 Inf j [U ] ≥ ε2/8. This case is further split into blog 200kc+ 1 subcases:

∣∣∣∣
{
j ∈ [n] : Inf j [U ] ≥ ε2

2l+5 log(400k)

}∣∣∣∣ ≥ k + 2l

for l ∈ {0, ..., blog(200k)c}. We say that a unitary U is a non-junta of the first kind if this is the case for
some l ∈ {0, ..., blog(200k)c}.

2. Case 2:
∑200k

j=k+1 Inf j [U ] ≤ ε2/8. We say U is a non-junta of the second kind if this is the case.

Lemma 3.3 says that any unitary U that is ε-far from every quantum k-junta satisfies at least one of the two
cases above. The correctness and query complexity of Figure 3 now follows from Lemmas 3.3, 3.4 and 3.5.

Finally, we prove the auxiliary lemmas used in the proof of the above theorem. Lemmas 3.3, 3.4 and 3.5 are
analogous to Lemmas 4.3 to 4.5 of [ABRdW16].

Lemma 3.3. Every U that is ε-far from being a quantum k-junta satisfies one of the two cases above.

Proof. It suffices to show that if U is a non-junta of the first kind, then at least one of the blog 200kc+1 sub-cases
holds. By definition, we have

200k∑

j=k+1

Inf j [U ] ≥ ε2/8.

Define

ε′ =
ε2

32 log(400k)

and consider the partition of [0, 1] given by

A∞ =

[
0,

ε′

2blog 200kc

)
, A0 = [ε′, 1], Al =

[
ε′

2l
,
ε′

2l−1

)

where l ∈ {blog 200kc, . . . , 1}. Define Bl := {j ∈ {k + 1, ..., 200k} : Inf j [U ] ∈ Al}, and note that each j ∈ [n] is
included in exactly one of the Bl. Writing

Wl =
∑

j∈Bl

Inf j [U ] we have
∑

l

Wl ≥ ε2/8
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as U is a non-junta of the first kind. We also have that

W∞ < 200k

(
ε2

32 · 2blog 200kc

)
<
ε2

16
.

Since the maximum of the Wl’s is at least their average, there exists l∗ ∈ {0, 1, ...blog 200kc} such that

Wl∗ ≥
ε2

16 log 400k
,

which in turn implies

|Bl| ≥
ε2

16 log 400k

ε2·21−l

32 log 400k

= 2l.

Every variable j ∈ Bl has influence at least
ε′

2l
=: δl. Furthermore, since the influence of variables are ordered

in decreasing order, each variable j ∈ [k] also has at least δl influence. Thus, there are at least k + 2l indices j
such that Inf j [U ] ≥ δl, and U satisfies the first case for this particular l.

Lemma 3.4. If U is a k-junta, then all calls to Tester-I will accept with high probability. If U is a non-junta
of the first kind, then one of the calls to Tester-I will reject with high probability. Finally, the overall query
complexity of all blog 200kc+ 1 testers of the first kind is

O

(√
k log k

ε
log k

)
.

Proof. The composition in Tester-I is done as described in Definition 2.10 of [ABRdW16] which allows for a
tight query-complexity. Towards this definition, F and (Gj) are defined as follows: The partial function F is the
EGGT function from Definition 3.1. F takes in a function h and outputs 0 if h = IntersectsA, |A| = k and 1 if
h = IntersectsA, |A| = k + d. In other cases, F is undefined. For each S ⊂ [n], the partial function GS is our
Influence-Estimator on set S. GS is partial in that it equals 1 if InfS [U ] ≥ δ, equals 0 if InfS [U ] = 0, but is
undefined for anything in between. Thus, Tester-I is equivalent to the following composition:

U → (G∅(U), G{1}(U), G{2}(U), ...G[n](U))(3.4)

The irrelevant variables to the function F correspond to the sets S that do not impact its output; that is, whatever
Influence-Estimator outputs on these sets do not matter to F . Because we use the same GGT algorithm,
derived from the same solution to the adversary bound as [ABRdW16], we have the same irrelevant variables.

1. If the input A is in X (|A| = k), a set S ⊂ [n] is irrelevant if S ∩A 6= ∅. That is, if U is a k-Junta, Tester-I
only looks at sets such that S ∩A = ∅.

2. If the input A is in Y(|A| = k + d), a set S ⊂ [n] is irrelevant if |S ∩ A| 6= 1. In particular, if U is ε−far
from a k-Junta, Tester-I ignores sets such that S ∩A = ∅

Suppose U is a non-junta of the first kind, satisfying case l, in the sense of Lemma 3.3. By definition, there
is an A ⊂ [n], |A| = k + 2l such that for all j ∈ A, Inf j [U ] ≥ δl. By the monotonicity of influence, InfS [U ] ≥ δ
for all S that intersect A. Finally, because the sets that are disjoint from A are irrelevant in the non-junta case,
Tester-I’s oracle behaves like an IntersectA oracle that depends on at least k+2l indices. Thus, this instantiation
of Figure 4’s GGT will reject with high probability.

Finally, if U is a k-junta, then there is a set A ⊂ [n], |A| ≤ k such that if S ∩ A = ∅, then InfS [U ] = 0.
Because all sets S ∩A 6= ∅ are irrelevant in the k-junta case, Tester-I’s oracle behaves like an IntersectA oracle
that depends on k indices. Thus, all the Tester-I’s will accept with high probability as there are at most k
influential variables.

Thus, the tester of the first kind, a group tester instantiated with d = 2l and δl, will be able to distinguish
between this case from case where U is a k-junta, where the set of variables of influence at least δl is size at most
k.
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Finally, for a particular value of l, the query complexity of the influence tester is O(δl
−1/2) while the query

complexity of the corresponding group tester instance is O(
√
k/dl). It then follows by Lemma 2.3 that the

complexity of any tester of the first kind is

O

(√
k

2l
·
√

2l log 400k

ε2

)
= O

(√
k log k

ε

)

giving an overall query complexity of

O

(√
k log k

ε
log k

)

for all blog(200k)c+ 1 testers of the first kind.

Lemma 3.5. Figure 5 accepts if U is a k-junta and rejects if U is a non-junta of the second kind, and its query
complexity is O(

√
k/ε)

Proof. We show that the procedure described in Item 1 of Figure 5 has acceptance probability at most 0.75 if U
is a k-junta, and has acceptance probability at least 0.85 if U is a non-junta of the second kind.

Suppose U is a k-junta. Then the probability that the set S does not intersect the set J of relevant variables
is (

1− 1

k

)|J|
≥
(
1− 1

k

)k

≥ 1

4
.

Therefore, with probability at least 0.25, we have S ∩ J = ∅ in which case InfS [U ] = 0. It follows then that the
acceptance probability above is at most 0.75.

Now suppose U is a non-junta of the second kind. For j ∈ [n], define

Inf j [U ] :=

{
0 j ≤ 200k∑

x:supp(x)∩{200k+1...j}={j} |Û(x)|2 otherwise
.

For S ⊂ [n], define InfS [U ] :=
∑

j∈S Inf j [U ]. It is easy to see that

InfS [U ] ≤ InfS [U ],

and that for S, T ⊆ [n] with S ∩ T = ∅, we have

InfS∪T [U ] = InfS [U ] + InfT [U ].

Now, because U is ε-far from every quantum k-junta, by Lemma 2.2, we have that

(3.5) Inf{k+1...K}[U ] ≥ ε2/4,

and since U is a non-junta of the second kind,

(3.6)

200k∑

j=k+1

Inf j [U ] ≤ ε2

8
.

Combining Equations (3.5) and (3.6) we get that

Inf [n][U ] = Inf{200k+1...K}[U ]

≥ Inf{k+1...K}[U ]−
200k∑

j=k+1

Inf j [U ]

≥ ε2

8
.(3.7)
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Consider now the random variable InfS [U ] where S is drawn as described in Figure 5. We have

µ := E
S

[InfS [U ]] =
1

k
· Inf [n][U ] ≥ ε2

8k
.

We also have

σ2 := Var [InfS [U ]] ≤ 1

k

∑

j

Inf j [U ]2

≤ 1

k

(
max

j
Inf j [U ]

)
· Inf [n][U ]

≤ 1

k
·
(

ε2

4 · 200k

)
Inf [n][U ]

≤ µ2

100
.

It then follows by Chebyshev’s inequality that

Pr

[
InfS [U ] <

ε2

16k

]
≤ Pr

[
|InfS [U ]− µ| > µ

2

]
(3.8)

≤ Pr [|InfS [U ]− µ| > 5σ](3.9)

≤ 1

25
.(3.10)

In other words, the probability InfS [U ] > ε2/16k is at least 0.96. So the acceptance probability of the subroutine
described in Item 1 of Figure 5 on S is at least 0.9× 0.96 > 0.85 if U is a non-junta of the second kind.

Finally, the subroutine of the tester of the second kind only makes queries to Influence-Estimator on

δ = ε2

16k , which requires complexity O(
√
k/ε2), and the outer estimation overhead is a constant.

4 An Ω(
√
k) Lower Bound for Testing Quantum k-Juntas

In this section, we obtain an Ω(
√
k) lower bound for testing quantum k-juntas, which shows that the algorithm

obtained in Section 3 is essentially optimal (up to polylogarithmic factors in k). Our lower bound follows via a
natural reduction from testing classical k-juntas to testing quantum k-juntas, combined with the Ω(

√
k) lower

bound for testing classical k-juntas obtained by Bun, Kothari, and Thaler [BKT17]. The key technical insight
here is in Lemma 4.1, which shows that every quantum k-junta is (in a certain sense) “close” to a quantum
Boolean function (i.e. a Hermitian quantum unitary).

In what follows, we say that an algorithm is a (k, ε)-classical (respectively quantum) junta tester if, given
query access to a Boolean function f : {0, 1}n → {0, 1} (respectively unitary U ∈ UN ), with probability at least
9/10 it outputs

• “Yes” if f (respectively U) is a k-junta; and

• “No” if f (respectively U) is ε-far from every k-junta.

Theorem 4.1. Every T -query (k,
√
ε/2)-quantum junta tester is also a T -query (k, ε)-classical junta tester.

Note that Theorem 4.1 together with the Ω(
√
k) lower bound for quantum testing of k-juntas by Bun,

Kothari, and Thaler [BKT17] implies the desired lower bound. Before proving Theorem 4.1, we first introduce
some notation. Given a Boolean function f : {0, 1}n → {0, 1}, we will write

(4.11) Uf := diag
(
(−1)f(x)

)

as a diagonal matrix whose diagonal entries are the 2n values of the function f . Note that Uf is unitary as its
singular values are ±1. Also, given a matrix A, we will use A[i, j] to mean the entry of A at row i and column j.
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The transformation we use to reduce Boolean functions to quantum Boolean functions (towards the goal of
proving Theorem 4.1) is the natural one given by Equation (4.11). First, if a function f : {0, 1}n → {0, 1} is a
k-junta, then Uf is also a quantum k-junta. To see this, suppose without loss of generality that the last k bits of
f are the relevant ones7, i.e. we have

f(x) = f̃(xn−k+1, . . . , xn)

for some f̃ : {0, 1}k → {0, 1}. It then follows that

Uf = I⊗(n−k) ⊗ Uf̃ .

The following lemma shows that an analogous statement holds when f is far from being a k-junta, from which
Theorem 4.1 is immediate.

Proposition 4.1. If f : {0, 1}n → {0, 1} is ε-far from every k-junta, then Uf is
√
ε/2-far from every quantum

k-junta.

Proof. We will first show if g : {0, 1}n → {0, 1} is a k-junta, then

(4.12) dist(Uf , Ug) ≥
√
2ε.

As f is ε-far from g, we have that
Pr [f 6= g] ≥ ε.

Consider Ug, the unitary whose diagonal entries are the values of g, as we did with f above. The distance between
Ug and Uf is at least

dist(Uf , Ug)
2 =

1

2N
·min

θ
‖eiθUf − Ug‖2

= min

(
1

2N
‖Uf − Ug‖2,

1

2N
‖ − Uf − Ug‖2

)
(4.13)

= min


 2

N

∑

x∈{0,1}n

(
f(x)− g(x)

2

)2

,
2

N

∑

x∈{0,1}n

(
f(x) + g(x)

2

)2



= 2min (Pr[f 6= g],Pr[f = g])

≥ 2ε.(4.14)

Equation 4.13 holds because Uf and Ug are both diagonal with real entries, so the only possible phases that
would minimize the Frobenius norm of their difference are θ = 0 or π. Equation 4.14 holds because k-juntas are
closed under negation; in more detail, if g is a k-junta, then 1− g is also a k-junta and so

Pr[f = g] = Pr[f 6= 1− g] ≥ ε.

We thus have that dist(Uf , Ug) ≥
√
2ε. In order to prove the lemma, it suffices to show that for any quantum

k-junta V , there exists a Boolean k-junta g : {0, 1}n → {0, 1} such that dist(V, Ug) ≤ dist(V, Uf ). This is proved
in Lemma 4.1.

To see why this suffices, note that if this were the case, then by the triangle inequality,

dist(V, Uf ) + dist(V, Ug) ≥ dist(Uf , Ug).

However, as dist(Uf , Ug) ≥
√
2ε by Equation (4.14), and as dist(V, Ug) ≤ dist(V, Uf ) by Lemma 4.1, we have that

2 · dist(V, Uf ) ≥
√
2ε

and so the result follows.

7We will use this indexing convention for the remaining sections as well.
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Lemma 4.1. Suppose f : {0, 1}n → {0, 1} is ε-far from every k-junta. Then, for every quantum k-junta V ∈ UN ,
there exists some Boolean function g : {0, 1}n → {0, 1} that is a k-junta for which

dist(V, Ug) ≤ dist(V, Uf ).

Proof. We can assume without loss of generality that V is a quantum k-junta on the last k qubits. We define
g : {0, 1}n → {0, 1} as follows: Writing V = I⊗(n−k) ⊗ Ṽ , let

(4.15) g̃ = arg min
h∈{0,1}2k

dist
(
Ṽ , diag((−1)h(x))

)
= arg min

h∈{0,1}2k

(
min
θ
‖eiθṼ − diag((−1)h(x))‖

)

and set g := g̃ where we interpret g̃ : {0, 1}n → {0, 1} as a k-junta. We claim that dist(Uf , V ) ≥ dist(Ug, V ).
First, note that because Uf and Ug are both diagonal matrices, the off-diagonal contributions to

‖Uf − V ‖2 =
∑

0≤i,j<N

|Uf [i, j]− V [i, j]|2

is the same as that to ‖Ug − V ‖2. Moreover, if we multiply the off-diagonal terms of V by a phase eiθ, their
contribution to the sum will still be the same as Uf and Ug are zero on their off-diagonal entries. It therefore
suffices to compare the diagonal terms of these two quantities. With this in mind, we define the following quantity:
For A,B ∈ C

2n×2n , let dist(A,B) be the sum of diagonal contributions to the Frobenius norm of A− B, i.e. we
have

dist(A,B)2 :=
1

2N
min
θ

∑

0≤i<N

|eiθA[i, i]−B[i, i]|2.

We then have that

dist(Uf , V )2 =
1

2N
min
θ

2n−k−1∑

j=0

2k−1∑

l=0

∣∣eiθV [j · 2k + l, j · 2k + l]− Uf [j · 2k + l, j · 2k + l]
∣∣2(4.16)

≥ 1

2N

2n−k−1∑

j=0

min
θj

2k−1∑

l=0

∣∣eiθjV [j · 2k + l, j · 2k + l]− Uf [j · 2k + l, j · 2k + l]
∣∣2

≥ 1

2n−k

2n−k−1∑

j=0

dist(Ug̃, Ṽ )2(4.17)

= dist(Ug̃, Ṽ )2

= dist(Ug, V )2.

In particular, Equation (4.16) rewrites the sum by considering 2n−k blocks of 2k×2k matrices on the diagonal
of eiθV − Uf , and Equation (4.17) follows from the choice of g as a minimizer in Equation (4.15). Because the
off-diagonal contributions to the expressions for distance are the same for Uf and Ug, dist(Uf , V ) ≥ dist(Ug, V ),
completing the proof.

5 Learning Quantum k-Juntas

We present algorithm to learn quantum k-juntas in Section 5.1, and our lower bound for learning quantum k-juntas
in Section 5.2.

5.1 Learning Upper Bound In this section, we present our algorithm for learning quantum k-juntas. Our
algorithm can be viewed as analogous to the quantum algorithm of Atıcı and Servedio [AS07] for learning classical
k-juntas; as such, we start be briefly recalling their high-level approach.

Given query access to a function f : {0, 1}n → {0, 1}, the algorithm of [AS07] first determines the set of all
relevant variables of non-negligible influence via “Fourier sampling” from f .8 It then learns the truth table of the

8Recall that Fourier sampling from f : {0, 1}n → {0, 1} refers to drawing S ⊆ [n] (identified with its 0/1 indicator vector with
probability |f̂(S)|2.
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Input: Oracle access to quantum k-junta U , error parameter ε > 0

Output: Classical description of U (as a 2n × 2n matrix)

Quantum-Junta-Learner(U, ε):

1. Let S := Pauli-Sample
(
U, ε2

4k , k
)
.

2. Set t := O( 4
k

ε2 ). Call Quantum-State-Preparation(U, S) 10t times
to obtain at least t copies of |ψS〉.

3. Let |ψ̂〉 := Tomography
(
|ψS〉 〈ψS |⊗t

, ε
2

4

)
.

4. Return the unitary encoded by |ψ̂〉 tensored with I⊗(n−k)

Figure 6: Quantum k-Junta Learner

function f restricted to the at most k relevant variables by querying f on each of the 2k possible input strings on
the relevant variables. Given membership query access to a unitary U , our algorithm proceeds analogously by first
learning a set S of relevant qubits with non-negligible influence via “Pauli sampling”, a subroutine analogous to
Fourier Sampling.9 Then, we learn an approximation to the part of U that acts only on the subset S, the qubits
with nonnegligible influence. We do this by reducing the problem to learning a quantum state, a task known as
quantum state tomography.

The connection between learning the unknown unitary U and learning quantum states comes via the Choi-
Jamio lkowski isomorphism (described in Section 2.5). In our learning algorithm we will use the following procedure
to perform pure state tomography on (copies of) the CJ state |v(U)〉 in order to learn a description of U :

Proposition 5.1. (Pure state tomography) There exists a procedure Tomography 10 that, given O(d/ε)
samples of an unknown d-dimensional pure state |ψ〉, outputs with high probability a classical description of a

pure state |ψ̂〉 ∈ C
d such that ∣∣∣

〈
ψ
∣∣∣ ψ̂
〉 ∣∣∣

2

≥ 1− ε .

Our quantum junta learning algorithm is presented in Figure 6 and its properties are established in
Theorem 5.1.

Theorem 5.1. Given oracle access to a quantum k-junta U ∈ UN and ε > 0, Quantum-Junta-Learner(U, ε)

(cf. Figure 6) outputs, with probability 9/10, a unitary Û such that dist(U, Û) ≤ ε. Furthermore, Quantum-

Junta-Learner makes O
(

k
ε + 4k

ε2

)
queries to U .

Proof. We will analyze the closeness guarantee and the query complexity separately, starting with the former.
Consider the state |ψS〉 obtained by running Quantum-State-Preparation in Step 2 of Figure 6. |ψS〉 is

a pure state with 2k qubits; as such, it encodes k-qubit unitary matrix V acting on the qubits in the relevant set
R ⊂ [n], |R| = k. We have that

(5.18) dist
(
U, V ⊗ I⊗(n−k)

)
≤ ε

2

by Lemma 5.1.

9This subroutine is also implicit in [Wan11].
10This procedure was first devised by Derka, Bužek, and Ekert [DBE98] (and whose sample complexity was determined by Bruß

and Machiavello [BM99]).
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Input: Oracle access to unitary U , S ⊆ [n]

Output: The quantum state |ψS〉 or “error”

Quantum-State-Preparation(U, S):

1. Prepare the state |v(U)〉 =∑x∈Z
n
4
Û(x) |v(σx)〉.

2. Measure qubits in S̄ ⊆ [n] and {l̃ : l ∈ S̄} in the Pauli basis {|v(σx)〉}x∈Z
n−|S|
4

.

(a) If the measurement result is |v(I⊗(n−|S|))〉, let |ψS〉 be the the unmeasured state
on 2|S| qubits tensored with (k − |S|) EPR pairs. Return |ψS〉.

(b) Otherwise, return “error”.

Figure 7: The Quantum State Preparation Subroutine (cf. Step 2 of Figure 6)

Input: Oracle access to quantum k-junta U on n qubits, threshold γ > 0

Output: S ⊆ [n]

Pauli-Sample(U, γ, k):

1. Initialize S = ∅.

2. Repeat the following O
(

log k
γ

)
times:

(a) Prepare the |v(U)〉 and measure all qubits in the Pauli basis, {|v(σx)〉}x∈Z
n
4
.

(b) Given the measurement outcome |σx〉, set S ← S ∪ supp(x)

3. Return S.

Figure 8: The Pauli Sampling Subroutine (cf. Step 1 of Figure 6)
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Let Û be the output of Algorithm 6, and let Û := W ⊗ I⊗(n−k), for a k-qubit unitary W on qubits in the
relevant set R. To show that Û is close to U , we will now show that with probability at least 99/100,

(5.19) dist(V,W ) ≤ ε

2
.

It would then follow from the triangle inequality and Equations (5.18) and (5.19) that

dist(Û , U) ≤ ε.
To show that V and W are close, consider the output of Tomography in Step 3 of Figure 6. By

Proposition 5.1, we have that with O
(
4k/ε2

)
copies of |ψS〉,
∣∣∣
〈
ψS

∣∣∣ ψ̂
〉 ∣∣∣

2

≥ 1− ε2/4

Note that |ψ̂〉 encodes W and that |ψS〉 encodes V . Writing K := 2k, we have that

|ψ̂〉 =
∑

0≤i,j<K

W [i, j]√
K
|i〉 |j〉 and |ψS〉 =

∑

0≤i,j<K

V [i, j]√
K
|i〉 |j〉 .

We then have that

dist(V,W )2 = min
θ

1

2K
‖eiθV −W‖2

=
1

2
min
θ

∑

0≤i,j<K

∣∣∣∣
eiθV [i, j]√

K
− W [i, j]√

K

∣∣∣∣
2

=
1

2
min
θ

∑

0≤i,j<K

(∣∣∣∣
eiθV [i, j]√

K

∣∣∣∣
2

+

∣∣∣∣
W [i, j]√

K

∣∣∣∣
2

− 2 ·Re

(
eiθ

K
V [i, j]W [i, j]∗

))

=
1

2
min
θ


2− 2 ·Re


 ∑

0≤i,j<K

eiθ

K
V [i, j]W [i, j]∗






=
1

2


2− 2

∣∣∣∣∣∣
∑

0≤i,j<K

1

K
V [i, j]W [i, j]∗

∣∣∣∣∣∣




= 1− | 〈ψS | ψ̂〉 |
≤ ε2/4,

Finally, we turn to the query complexity of Figure 6. By Lemma 5.2, the query complexity of Step 1 of
Figure 6 (Pauli-Sample) is

log k
ε2

4k

= O

(
k log k

ε2

)
.

The number of copies required for the tomography subroutine is

t := O

(
4k

ε2

)
.

As Quantum-State-Preparation has a small probability of error (O(ε2)), we can show by Markov’s inequality
that with 10t calls to Quantum-State-Preparation, we will obtain at least t copies of |ψS〉 with high
probability. In more detail, let Y be the random variable indicating the number of failed executions of Quantum-
State-Preparation. Then,

E[Y ] ≤ 10t · ε
2

4
and so Pr[Y > 9t] ≤ 5ε2

18
� 0.01.

Because each call to Quantum-State-Preparation makes one call to U , the total query complexity of Figure 6

is O
(

k log k
ε2 + 4k

ε2

)
, completing the proof.
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We now prove the following lemma that we used in the proof of Theorem 5.1.

Lemma 5.1. Let V denote the unitary whose Choi-Jamiolkowski isomorphism is given by |ψS〉, as obtained from
the call to Quantum-State-Preparation in Step 2 of Figure 6. Then

dist
(
U, V ⊗ I⊗(n−k)

)
≤ ε

2
.

Proof. Since U is a k-junta, let R ⊂ [n] be the set of k relevant variables. Let S ⊂ R be the set of qubits with
nonnegligible influence outputted by Pauli-Sample in Step 1 of Figure 6.

Let U = UR ⊗ IR̄, where UR is a k-qubit unitary acting only on the relevant qubits in R. It is sufficient to
show that dist(UR, V ) ≤ ε

2 . First, note that

|v(U)〉 = |v(UR)〉 |v(I⊗(n−k))〉

Thus, when we measure qubits in R̄ and {˜̀ : ` ∈ R̄}, we always obtain |v(I⊗(n−k))〉, as U acts trivially on
qubits outside of R.

Now we will consider what happens when we measure qubits in R−S. We will use the following decomposition
of |v(UR)〉.

|v(UR)〉 =
∑

x∈Zk
4

ÛR(x) |v(σx)〉(5.20)

=
∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉+

∑

x:supp(x)∩(R−S) 6=∅
Û(x) |v(σx)〉(5.21)

By Lemma 5.2, S will contain all the qubits with influence larger than ε2

4k with high probability. Further, each
qubit in S has nonzero influence. This implies that with high probabilty,

∑

x:supp(x)∩(R−S) 6=∅
|Û(x)|2 = Inf S̄ [U ] ≤

∑

i∈S̄

Inf i[U ] ≤ k · ε
2

4k

By the decomposition in Equation (5.21), measuring qubits in (R − S) ∪ {˜̀ : ` ∈ R − S} yields the state

|v(I⊗(|R|−|S|))〉 with probability at least 1− ε2

4 . Conditioned on this event, the 2k−qubit post measurement state
is as follows:

|ψS〉 =
1√

1− InfR−S [U ]

∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉 ⊗ |EPR〉⊗(k−|S|)

Let α := 1√
1−InfR−S [U ]

. Note that 1 ≤ α ≤ 1√
1− ε2

4

. Then,

2 dist2(V, UR) = || |ψS〉 − |v(UR)〉 ||2

= ||
∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉+

∑

x:supp(x)∩(R−S) 6=∅
Û(x) |v(σx)〉

− α
∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉 ||2

= (α− 1)2
∑

x:supp(x)∩S̄=∅
|Û(x)|2 +

∑

x:supp(x)∩(R−S) 6=∅
|Û(x)|2

≤ (
1√

1− ε2

4

− 1)2 + InfR−S [U ]

≤ 2
ε2

4
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This shows that dist(V ⊗ I⊗(n−k), U) = dist(V, UR) ≤ ε/2.

The following lemma is analogous to Lemma IV.4 in [AS07].

Lemma 5.2. Let U ∈ UN be a unitary acting non-trivially on qubits in R ⊂ [n]. Then Pauli-Sample(U, ε, |R|)
makes t = O

(
log |R|

ε

)
membership queries to U and outputs with high probability a list S ⊂ [n] that satisfies the

following properties:

1. S contains all qubits i ∈ [n] such that Inf i[U ] ≥ ε; and

2. All qubits i in S have nonzero influence, i.e. Inf i[U ] > 0.

Proof. If Inf i[U ] ≥ ε, then the probability i does not occur in S is at most (1− ε)t ≤ 1
100|R| . By the union bound,

S will contain every i such that Inf i[U ] ≥ ε with probability at least 99/100. The second item follows from the

fact that if i ∈ [n] is Pauli-sampled, there must exist x ∈ Z
n
4 , i ∈ supp(x) such that Û(x) 6= 0.

5.2 Learning Lower Bound Finally, we present a nearly-matching lower bound for the query complexity of
learning quantum juntas. Although it is commonly stated that process tomography requires Ω(4n) queries, we
have not been able to identify in the literature a formal lower bound proof. Thus, we provide the following proof
for completeness.

Theorem 5.2. Any algorithm for learning quantum k-juntas with error ε requires Ω(4k log(1/ε)/k) queries.

Proof. We prove this lower bound via a communication complexity argument. In particular, we reduce the Input
Guessing game to learning quantum juntas. The Input Guessing game with domain size K is a two-party
communication task where one party (named Alice) receives an uniformly random input x from {1, 2, . . . ,K} and
the other party (named Bob) has to output a guess for x after engaging in two-way communicating with Alice.
We consider the model of quantum communication, where Alice and Bob can exchange qubits with each other. A
classic result of Nayak [Nay99] implies the following lower bound on the communication complexity of the Input
Guessing game.

Theorem 5.3. (Lower bound for Input Guessing game [Nay99]) Any quantum communication protocol
that solves the Input Guessing game with domain size K and success probability p requires exchanging
logK − log 1

p qubits between the parties.

Let A denote an algorithm that learns quantum k-juntas, assuming it is told which k of the n qubits are
relevant. Note that the problem of learning quantum k-juntas without this additional information is at least as
hard. Without loss of generality, assume the first k qubits are relevant.

Suppose A makes q queries, achieves error ε and achieves constant success probability. Then we construct

a quantum communication protocol for the Input Guessing game with domain size K = Ω
(
(1/ε)4

k
)
,

communication complexity O(kq), and constant success probability. By Theorem 5.3, this implies that

kq ≥ Ω(logK) = Ω(4k log(1/ε))

which implies the desired lower bound.
Let K denote the size of a maximal ε-packing of the space of k-qubit unitary matrices, with respect to the

distance measure dist(·, ·). In other words, this is the maximal number of disjoint ε-balls in the space of k-qubit
unitaries. By standard volume arguments (see [Sza97]), since dist(·, ·) is a unitarily invariant distance measure,

K is at least Ω
(
(1/ε)4

k
)
. Let {U1, . . . , UK} denote an enumeration of the maximal ε-packing.

Suppose Alice gets a random input x ∈ {1, 2, . . . ,K}. Bob will simulate the algorithm A. Whenever A has
to make a query to the oracle, Bob sends the first k qubits of his query register to Alice, then Alice applies
the k-qubit unitary Ux to the register, and then sends the register back. Indeed, if A’s query register is on n
qubits total, then the effective n-qubit unitary applied in this simulated execution of A is U = Ux ⊗ I where
Ux acts on the first k qubits and I acts on the remaining n − k qubits. Bob continues in this fashion until the
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algorithm A terminates and outputs (with constant probability) a classical description of a unitary V such that
dist(Ux⊗I, V ) ≤ ε where, by the correctness of the algorithm A, V is a quantum k-junta V ′⊗I that acts trivially
on all qubits except the first k. Thus we have that dist(Ux, V

′) ≤ ε, and by definition of an ε-packing, Ux is the
unique member of the packing that has distance ε to V ′. Thus Bob can uniquely identify Alice’s input x with
constant probability. The total communication complexity of this protocol is 2kq.
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A An Alternative Characterization of Influence

Below is an alternative characterization of the influence of a set of variables on a unitary. Our learning and testing
algorithms do not make use of this characterization, but it may be of independent interest.

Lemma A.1. (Equivalent characterization of influence) Given U ∈ UN and j ∈ [n], we have

Inf j [U ] = 1− 1

2n+1
Tr
(
(TrjU

†)(TrjU)
)
.

More generally, for S ⊆ [n], we have

InfS [U ] = 1− 1

2n+|S|Tr
(
(TrSU

†)(TrSU)
)
.

Proof. Note that for S ⊆ [n] and x ∈ Z
n
4 , we have that

TrS(σx) = 0 if and only if S ∩ supp(x) 6= ∅.

This is immediate from the fact that the only Pauli matrix with non-zero trace is σ0 = I. Writing U in the Pauli
basis, TrS(U) has the following form

(A.1) TrS(U) = TrS


∑

x∈Z
n
4

Û(x)σx


 = 2|S| ∑

x:supp(x)∩S=∅
Û(x)σx.

Using this characterization, it follows that

1

2n−|S|Tr
(
TrS(U)†TrS(U)

)
=

1

2n−|S| 〈TrS(U),TrS(U)〉

= 22|S| ∑

x:supp(x)∩S=∅
|Û(x)|2

= 22|S|(1− InfS [U ])

where the second equality follows from Parseval’s formula and equation A.1, while the final equality is because
‖U‖2 = N for all unitaries U ∈ UN . The lemma follows by rearranging the final expression above.
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