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ABSTRACT

Modern websites heavily rely on JavaScript (JS) to implement le-
gitimate functionality as well as privacy-invasive advertising and
tracking. Browser extensions such as NoScript block any script
not loaded by a trusted list of endpoints, thus hoping to block
privacy-invasive scripts while avoiding breaking legitimate website
functionality. In this paper, we investigate whether blocking JS on
the web is feasible without breaking legitimate functionality. To this
end, we conduct a large-scale measurement study of JS blocking on
100K websites. We evaluate the e�ectiveness of di�erent JS block-
ing strategies in tracking prevention and functionality breakage.
Our evaluation relies on quantitative analysis of network requests
and resource loads as well as manual qualitative analysis of visual
breakage. First, we show that while blocking all scripts is quite e�ec-
tive at reducing tracking, it signi�cantly degrades functionality on
approximately two-thirds of the tested websites. Second, we show
that selective blocking of a subset of scripts based on a curated list
achieves a better trade-o�. However, there remain approximately
15% “mixed” scripts, which essentially merge tracking and legit-
imate functionality and thus cannot be blocked without causing
website breakage. Finally, we show that �ne-grained blocking of
a subset of JS methods, instead of scripts, reduces major breakage
by 3.8× while providing the same level of tracking prevention. Our
work highlights the promise and open challenges in �ne-grained
JS blocking for tracking prevention without breaking the web.
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1 INTRODUCTION

JavaScript is often used to provide rich user experiences on the web.
The volume of JavaScript on the web has steadily increased over
the years. The median web page load today ships 500+ kilobytes
of JavaScript [73]. While some of it is used to implement various
libraries and frameworks (e.g., jQuery, React), almost half of it is
third-party scripts that implement advertising and tracking services.
The research community is concerned about the negative impact
of JavaScript on performance [28, 47, 72], security [32, 36, 54, 76],
and privacy [34, 38, 44, 56, 57].

Due to these concerns, there is a small but active community
of web users who want to use the web without JavaScript. In fact,
all major browsers now provide a native way for users to block all
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JavaScript [12]. Moreover, users can employ browser extensions
such as NoScript [15] that block all scripts – except those from a
trusted source. HTML5 now also supports the noscript element
that allows web developers to gracefully support such browsers
that do not support scripting [13].

While blanket JavaScript blocking does alleviate these concerns,
it inevitably breaks the legitimate website functionality. The pri-
vacy community has developed content-blocking tools that selec-
tively block tracking resources (e.g., scripts) on a webpage. Privacy-
enhancing content blockers, such as uBlock Origin [11], block net-
work requests to known trackers by matching request URLs with
manually curated �lter lists [5, 7].

Since these privacy-enhancing content blockers are now used by
more than one-third of web users [2, 53], there are strong �nancial
incentives for web developers to evade content blockers. The typi-
cal evasion strategy is to manipulate the URLs, e.g., change the URL
path or hostname such that �lter lists are no longer e�ective [25, 39].
This has led to an arms race where �lter lists must be promptly
updated in response to such evasion attempts [30, 49, 68]. Filter list
curators have also made a concerted e�ort to selectively block the
underlying scripts from downloading or execution that are respon-
sible for initiating tracking requests. In response, a new evasion
strategy has emerged where web developers attempt to mix track-
ing and functional code in the same script (e.g., JS bundling [30]).
Privacy-enhancing content blockers risk breaking a webpage if they
block such scripts or compromise user privacy if they do not.

Privacy-enhancing content blockers aim to eliminate tracking
while preserving website functionality. However, if they are forced
to choose — e.g., when tracking and functional code is mixed —they
always prioritize functionality preservation. This is because most
users tend to disable privacy-enhancing content blockers if they
break legitimate website functionality. Recent research [26, 68] has
shown that many websites now mix functional and tracking code
that renders privacy-enhancing content blocking useless.

In this paper, we conduct a �rst-of-its-kind empirical investiga-
tion of JS blocking. To this end, we quantitatively and qualitatively
evaluate the impact of di�erent granularities of JS blocking on 100K
websites. Our goal is to assess whether it is feasible to eliminate
tracking e�ectively while preserving website functionality at di�er-
ent granularities of JS code i.e., script and method. Beyond blanket
JS blocking, we �rst investigate selective blocking of tracking scripts
as well as mixed scripts. We further expand our investigation to
the e�ectiveness of method-level blocking.

Our large-scale automated analysis of 100K websites rea�rms
that blanket JS blocking indeed eliminates tracking, but it also
breaks website functionality on approximately two-thirds of the
tested websites. We then show that selective blocking of tracking
scripts mitigates tracking without degrading website functionality,
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(a) Control (b) NoScript (c) uBlock Origin (d) Mixed (e) Method

Figure 1: The snapshot of livescore.com with (a) control-setting (no content blocker), (b) NoScript (default setting), (c) uBlock Origin (default

setting), (d) mixed script blocked (_app-*.js), and (e) JS method blocked (method in _app-*.js).

but there remains a signi�cant fraction of scripts that mix tracking
and functional behavior. Speci�cally, we �nd that 14.6% of the
scripts exhibit both tracking and functional (i.e., mixed) behavior.
We then adapt Spectra-based fault localization (SBFL), a popular
faulty code localization technique, to further localize tracking to the
constituent methods of these mixed scripts. We �nd that method-
level blocking of tracking methods signi�cantly reduces website
breakage while providing the same level of tracking prevention.

We also qualitatively analyze a sample of 383 websites under
di�erent JS blocking con�gurations for functionality breakage. We
characterize functionality into four components e.g., navigation,
single sign-on, appearance, and additional functionality, and quan-
tify breakage on 3-levels (none, minor, and major). Our evaluation
shows that method-level JS blocking is far better at preserving
functionality while achieving a similar level of tracking prevention.
Speci�cally, we �nd that script-level JS blocking results in 3.8× ma-
jor breakage and 1.5×minor breakage as compared to method-level
JS blocking.

We summarize our key �ndings and contributions below:

• We �nd that method-level JS blocking is able to prevent
tracking on par with script-level JS blocking while improving
functionality preservation by 3.8× major breakage and 1.5×
minor breakage.

• By comparing two web crawls conducted one year apart, we
�nd a 14% increase in the number of websites that employ
mixed scripts on 100K websites.

• Even at the method-level granularity, there remain 6% mixed
methods that combine tracking and functionality and require
even deeper program analysis for e�ective blocking without
breaking functionality.

• The data set crawled for this study o�ers a full-scale view
of JS code integration on today’s websites, presenting a de-
tailed lineage of tracking, functional, and mixed JS code units
across 100K websites.

Data Availability: Our source code and data is available at https:
//zenodo.org/record/6526537.

2 MOTIVATION

In this section, we present a case study to illustrate the tradeo�
between tracking prevention and functionality breakage.

No JS blocking. Let’s take the example of livescore.com, a top-10
ranked sports website [14]. We �rst load the homepage of livesc
ore.com in a stock Chrome browser without any JavaScript inter-
vention. Loading this webpage results in 294 network requests in
11 seconds, including 83 requests to fetch scripts and 175 requests
initiated by these scripts. For motivation, consider two of these

scripts that initiate network requests to known1 tracking endpoints:
gtm.js served by googletagmanager.com and _app-*.js served
by livescore.com. gtm.js sends network requests to googleadse
rvices.com and google-analytics.com. _app-*.js sends net-
work requests to doubleclick.net. Upon careful inspection, we
�nd that _app-*.js also sends a network request to livescore.com
/api/announcements/ that includes known tracking cookies such
as _gads [29, 60]. While both scripts are responsible for network
requests to tracking endpoints, _app-*.js is a mixed script that
seems to implement both legitimate website functionality (e.g., add
media, populate game statistics) and tracking. Figure 1 (a) shows the
homepage of livescore.com in the control con�guration (without
any blocking).

Blanket JS blocking.The naiveway is to block all JS on livescore
.com at the page load time. This capability is available in all major
browsers [12]. While this approach blocks all the aforementioned
tracking requests, it also completely breaks the website function-
ality. livescore.com becomes unusable and in fact noti�es the
user2 that JS needs to be enabled for the website to display cor-
rectly. NoScript [15] also blocks all JS on livescore.com, including
gtm.js served by googletagmanager.com and _app-*.js served
by livescore.com. This again completely breaks the website func-
tionality. Figure 1 (b) shows the homepage of livescore.comwhen
NoScript [15] is used.

Selective JS blocking. We next use a tracker blocking tool, called
uBlock Origin [11], on livescore.com. Note that these tracker
blocking tools do not speci�cally target JS. Instead, they use a
curated �lter list to block network requests to known tracking
endpoints that may incidentally include network requests to fetch
JS. Thus, compared to blanket JS blocking, uBlock Origin aims to
block all network requests to known tracking endpoints while al-
lowing other network requests. After loading livescore.com with
uBlock Origin installed, we observe that gtm.js is blocked, thus
eliminating all subsequent tracking network requests from gtm.js.
However, instead of blocking _app-*.js, uBlock Origin blocks the
network request to doubleclick.net while it allows the network
request livescore.com/api/announcements/ containing track-
ing cookies. Figure 1 (c) shows the homepage of livescore.com
when uBlockOrigin [11] is used. Although there is nowebsite break-
age, uBlock Origin has essentially decided not to block _app-*.js

to avoidwebsite breakage even though it results in tracking requests.
As we elaborate later, trackers have been increasingly putting
tracker blocking tools in such a bind.

1See, for example, Disconnect tracking protection list [4]
2The notice on livescore.com states: “Your browser is out of date or some of its features
are disabled, it may not display this website or some of its parts correctly. To make
sure that all features of this website work, please update your browser to the latest
version and check that Javascript and Cookies are enabled.”
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Figure 2: Steps for localizing tracking and functional JS code using Spectra-based fault localization.   shows the two network requests on

intuit.com. Filter lists are used to label requests in À. Spectra-based fault localization is used to classify resources based on participation, as

shown in Ã and Õ.

   
À À

Figure 3: Illustration of the breakage metrics for automated JS block-

ing. Request count ( ) and HTML of website (À) are compared with

control con�guration.

Tracking and Mixed JS blocking. To understand why uBlock
Origin chose not to block _app-*.js, we next use uBlock Origin
but also con�gure it to block _app-*.js. As shown in Figure 1 (d),
this leads to a major functionality breakage on livescore.com; the
navigation button, game statistics, and the featured news section are
not rendered correctly. Put simply, there is a no-win situation when
it comes to _app-*.js. Blocking it results in website breakage, and
not blocking it results in tracking.

1 - u = function(e) {

2 + donotExecuteMe = function(e) {

3 ...

4 return fetch(e).then(c.cg).then(( function(e)

5 {return e || {}}))

Listing 1: JS method u that initiates tracking requests in script

_app-*.js. We replace this method name with donotExecuteMe.

Method-level JS blocking. Recent work [26, 68] has applied dy-
namic analysis to identify tracking methods in mixed scripts man-
ually. Our analysis of network requests initiated by _app-*.js

shows that the tracking requests were initiated by the method
shown in Listing 1. As shown in Figure [14] (e), when this method
in _app-*.js is blocked (e.g., it is renamed such that all calls to this
method are invalidated), the entire webpage renders completely
while all tracking requests are also blocked. It is noteworthy that
manually refactoring mixed scripts is not feasible at scale. There-
fore, only a handful of mixed scripts have been refactored in prior
work [18].

3 METHODOLOGY

This section describes our methodology for automated analysis of
JS blocking on 100K webpages (Phase I) and manual inspection of
JS blocking on 383 websites (Phase II).

3.1 Phase I: Automated JS Blocking Analysis

Figure 2 shows our automated JS blocking analysis pipeline com-
prising a JS collection step and JS code localization step. Figure 3
shows our JS blocking impact analysis step.

3.1.1 JavaScript Corpus Collection. We crawl landing pages of 100K
randomly sampled websites from Tranco top-million list [63] using
a custom-built Chrome extension. We spend 20 seconds on a page,
exceeding the median onLoad time by 13.5 seconds on average. This
allows us to capture the vast majority of the content fetched, which
is consistent with over 90% of all webpages [20]. Nonetheless, we
measure the impact of increasing the crawl time to 90 seconds on
200 web pages randomly sampled from 100K. We notice average
di�erences of 2% and 5.2% in tracking and functional requests,
respectively, causing an insigni�cant impact on our �ndings. Thus,
we set the crawl time to 20 seconds.

For each webpage, our crawler outputs a JSON �le that maps
each network request to its initiator script and method (step  ).
We then label each network request and its initiator code (e.g., JS
script and methods) as tracking or functional using �lter lists [5, 7]
(step À). We use EasyList [5] and EasyPrivacy [7] that are used
by existing content blockers such as uBlock Origin [11], Brave [3],
and Adblock Plus [1]. These �lter lists only do binary classi�cation
and tend to classify mixed resources as functional to avoid website
breakage. This is an inherent limitation of �lter lists that our work
aims to highlight in the context of JavaScript blocking.

3.1.2 Localizing Tracking and Functional JS Code. Next, we classify
each script and method using spectra-based “fault” localization
(SBFL) [22, 43]. SBFL requires a set of failing and passing test cases.
For every test, it simply collects the list of code units that partici-
pated in the test execution. Based on the test output, it labels the
participating code units as either passing or failing. Finally, it com-
pares the participation of code units in passing and failing tests and
assigns a score to them.

We adapt SBFL to localize tracking code units (i.e., scripts, meth-
ods). Instead of test cases, we analyze each network request and
the methods and scripts in the call stack trace of the network re-
quest. For example, Figure 2-  shows two network requests on
intuit.com. We use �lter lists (step À) to classify a request (and
its call stack) as tracking (i.e., failed test case) and functional (i.e.,
passed test case). We then calculate “tracking score” (Eq 1) for
each code unit (i.e., script or method) based on its participation in
the call stack trace of tracking and functional requests, as shown
in step Ã. The script utag.js initiates 132 tracking requests and
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ID Level JS Blocked Annotated Entity

block Tracking Mixed Functional

CTRL None None 7 7 7

ALL script Blanket 4 4 4

TS script Selective 4 7 7

MS script Selective 7 4 7

TMS script Track & Mixed 4 4 7

TM method Method 4 7 7

Table 1: Six di�erent JS blocking con�gurations. 7 represents an

unblocked entity, and 4 represents a blocked entity.

160 functional requests. In this script, method loader initiates 131
tracking requests and 1 functional request. Method fireCORS initi-
ated 159 functional and 1 tracking request. Figure 2 demonstrates
the calculation of the tracking score on the webpage in step Õ.

CA02:8=6 B2>A4 = log

✓

=D<14A > 5 CA02:8=6 A4@D4BCB

=D<14A > 5 5 D=2C8>=0; A4@D4BCB

◆

(1)

We classify code units that participate 100× times more in track-
ing than functional (i.e., tracking score of > 2 ) as tracking. We
classify code units that participate 100× times more in functional
than tracking (i.e., tracking score of < −2 ) as functional. This
threshold is determined experimentally in prior work [26]. The
code units that fall in neither category are classi�ed as mixed. The
localization step results in a list of tracking, functional, and mixed
JS methods and scripts. In this example, script utag.js is classi�ed
mixed, method fireCORS() is functional, and method loader() is
tracking.

3.1.3 JS Blocking Impact Analysis. To measure the impact of block-
ing JS code units, our custom-built Chrome extension loads every
page from the 100K websites and blocks the associated tracking
JS script or method from the list of labeled methods and scripts. It
blocks the JS scripts from loading in the browser, similar to exist-
ing content blockers. To block a script method, it simply replaces
the method name with doNotExecuteMe to redirect its invocations,
as shown in Listing 1. Renaming the method name may cause a
MethodNotFound exception that terminates the tracking thread in
a webpage’s JS execution as intended.

We conduct this experiment on the same 100K webpages in six
parallel con�gurations shown in Table 1. These con�gurations are
illustrated in the livescore.com case study and inspired by unique
JS blocking strategies that are mostly in practice or proposed by
prior work. Control con�guration (CTRL) is used to localize JS code
units (scripts and methods) using the aforementioned SBFL tech-
nique and for breakage comparison in the later subsection. In ALL,
all scripts (tracking, mixed, and functional) are blocked to evaluate
blanket JS blocking. This con�guration represents NoScript, which
blocks all scripts by default. In TS, tracking scripts are blocked to
evaluate selective JS blocking. This con�guration represents the
majority of content blockers such as uBlock Origin [11], Brave [3],
and Adblock Plus [1] that use EasyList [5] and EasyPrivacy [7]. In
MS, mixed scripts are blocked to see its adverse consequence on
functionality. In TMS, tracking and mixed scripts are blocked to eval-
uate tracking and mixed JS blocking. TMS is the optimum choice for
content blockers in tracking prevention, but it risks functionality
breakage, as shown in Section 2. Finally, we compare the results

Script Script Method Websites

Domain (%)

google-analytics.com analytics.js wd 38%
google-analytics.com analytics.js ta 25%
facebook.net fbevents.js c 19%
googlesyndication.com sodar2.js Ma 11%
twitter.com widget.js i.e 7%

Table 2: Top JS methods found on the maximum number of websites

in control con�guration.

of TMS with TM, where we block tracking methods (all located in
tracking and mixed scripts) to evaluate method-level JS blocking.

In CTRL con�guration, we have websites that do not crash. How-
ever, website crashes and breakages may still occur in the blocking
con�gurations due to blocking. Website breakage is a subjective
metric that requires a visual inspection, which is not feasible on
100K webpages. Therefore, we discuss two metrics that are corre-
lated with website breakage [49].
Tracking and Functional request count. Network requests fetch
critical functional resources like scripts, images, and other media
as well as JS scripts and images that perform tracking activity. We
use the number of tracking and functional requests as a measure
of tracking and functional activity on a webpage. We compare
these numbers with the control con�guration (CTRL) to get the
missing requests, as shown in Figure 3- . This metric helps in
collecting non-visual breakage clues. For example, we do not see
any visual breakage on website poshmark.ca after blocking mixed
script sdk.js?hash=*. Instead, we observe two missing requests, one
that sets the cookie and the other functional request that redirects
the login button.
HTML of websites.We scan the HTML tags with src attributes on
a webpage to estimate visible functional deterioration. These HTML
tags include <img>, <video>, and <iframe>. Each tag has a source,
src, attribute that speci�es the URL of a resource �le. We compare
the missing tags in our experiments with the control con�guration
(CTRL), as shown in Figure 3-À. Note that if the attribute of amissing
URL belongs to the functional request in the control con�guration
(CTRL), then it is classi�ed as functional breakage.

3.2 Phase II: Manual Inspection of JS Blocking

3.2.1 Data Sampling. Manually inspecting 100k websites is time-
consuming and practically infeasible. We randomly sample 500
websites from the top 100K websites used in Phase I. We exclude du-
plicate websites and websites with the same second-level domains
(SLD), but di�erent top-level domains (TLD) e.g.,google.com.uk
and google.com. We excluded a total of 117 websites and manually
inspected 383 websites, which is a statistically signi�cant sample
size for 100K websites with ± 5% margin of error [16].

3.2.2 Manual Inspection. Two testers independently inspected 383
websites. Inspecting six con�gurations for each website manually
and in parallel is prohibitively expensive. Therefore, we choose the
three most important con�gurations i.e., CTRL (for comparison), TMS
(tracking and mixed JS blocking), and TM (method-level JS blocking).
To assist inspection, our study platform launches three independent
instances of Chrome (CTRL, TMS, and TM from Table 1) displayed ad-
jacent to each other. Each tester spent at least 5 minutes inspecting

4



Blocking JavaScript Without Breaking the Web: An Empirical Investigation Proceedings on Privacy Enhancing Technologies 2023(3)

Total Network Requests Script-Initiated Network Requests Total Total

Blocking Con�guration Tracking Functional Total Tracking Functional Total Scripts JS Methods

CTRL 1,175,033 4,279,844 5,454,877 953,931 882,111 1,836,042 256,042 366,025
ALL 265,101 3,248,767 3,513,868 177,352 315,378 492,730 91,984 137,006
TS 355,169 4,049,340 4,404,509 248,103 820,428 1,068,531 164,670 239,960
MS 1,012,708 3,916,499 4,929,157 815,553 684,084 1,499,637 227,658 323,174
TMS 349,888 3,887,372 4,237,260 245,389 657,361 902,750 155,810 224,681
TM 348,135 4,115,351 4,463,486 243,002 749,238 991,240 164,543 233,927

Table 3: Characteristics of the crawled dataset across six blocking con�gurations.
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Figure 4: The top domains of request-initiating scripts across six blocking con�gurations. X-axis shows the top domains of the request-initiating

scripts, and Y-axis shows the % of websites.

the three windows, scrolling each page end to end, and clicking
on di�erent webpage components. The two testers spent a total of
85 hours manually inspecting the websites and documenting their
�ndings according to the following rubric. They report visual and
functional di�erences in the following four categories and use a
3-level breakage scale (i.e., no breakage, minor breakage, and ma-
jor breakage). Any disagreements were discussed and resolved by
consensus.

• Navigation. Website navigation contains lists of links to
internal webpages. It typically consists of a menu or naviga-
tion bar that contains links to various sections of the website,
such as the homepage, products or services, about us, and
contact. Minor breakage involves non-functional navigation
links, abnormal styling layouts, or missing icons. These is-
sues can be frustrating for users and may make it di�cult to
navigate the website. Major breakage involves more serious
issues, such as the navigation button not being operational or
the navigation bar not appearing at all. This type of breakage
can signi�cantly impact the website’s usability.

• Single sign-on (SSO).Website SSO allows users to sign in
using credentials from services such as Google and Face-
book. Minor breakage typically involves issues such as non-
functional SSO services, unresponsive login buttons, or miss-
ing login options. For example, if the Google SSO service is
not functioning, users may be unable to sign in to the website
using their Google account. Major breakage involves more

serious issues, such as the missing SSO service or the failure
of all SSO options. This type of breakage can signi�cantly
impact the website’s usability.

• Appearance. This category includes the appearances of
media elements, the scrolling behavior of websites, and the
HTML element. We exclude advertisements when inspecting
appearance-based breakage. Minor breakage involves miss-
ing media resources, unstyled HTML, or jittery/unsmooth
page scrolling experience. Major breakage involves all the
media resources missing altogether or an unscrollable page.

• Additional functionality. Anything that does not fall into
the mentioned categories is added to this category, such as
dark mode, website settings, and chatbot. Minor breakage
entails abnormal behavior or non-responsive feature. Major
breakage includes page crashes and missing components.

3.3 Dataset

This section summarizes the characteristics of dataset crawled
across six blocking con�gurations. Table 3 lists the total network
requests and script-initiated requests in six con�gurations over
100K websites and the JS scripts and methods that initiate those
requests. In control con�guration (CTRL), out of 5.45 million re-
quests, 22% of the requests are tracking, leaving the remaining 78%
as functional. 34% of the total requests are initiated by JS scripts. In
script-initiated requests, 52% are tracking, and the remaining 48%
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are functional. These script-initiated requests are initiated by 366K
JS methods inside 256K scripts.

Figure 4 shows the top domains of the scripts that initiate net-
work requests. In control con�guration (CTRL), 39% of websites initi-
ate requests from the script served by google-analytics.com, 30%
of websites initiate requests from the script served by googletagma-
nager.com, and 29% of websites initiate requests from the script
served by googlesyndication.com.

Our baseline JS blocking con�guration is ALL in which all track-
ing, mixed, and functional scripts are blocked. Note that a small
number of scripts may still load in All if such scripts were pre-
viously not observed during the localization step in Section 3.1.2.
When tracking JS scripts are blocked (TS con�guration), the major-
ity of tracking script domains disappear, including google-analyt-
ics.com. We observe a relatively lower occurrence of script do-
mains in TMS than TM because TMS blocks all tracking and mixed
scripts that include all tracking methods and some functional meth-
ods.Whereas in TM, only trackingmethods are blocked. For example,
due to the mixed nature of scripts from facebook.net, scripts from
facebook.net appear in TM, but not in TMS.

1 wd = function(a, b, c, d) {

2 var e = O.XMLHttpRequest;

3 if (e) return 1;

4 var g = new e;

5 if ((�withCredentials� in g)) return 1;

6 a = a.replace (/^ http:/, �https:�);

7 g.open(�POST�, a, 0);

8 g.withCredentials = 0;

9 g.setRequestHeader(�Content -Type�, �text/plain�);

10 g.onreadystatechange = function () {

11 if (4 == g.readyState) {

12 if (d && �text/plain� === g.getResponseHeader(�

Content -Type�)) try {

13 Ea(d, g.responseText , c)

14 }

15 catch (ca) {

16 ge(�xhr�,

17 �rsp�), c()

18 } else c();

19 g = null }};

20 g.send(b);

21 return 0}

22 ...

23 ta = function(a) {

24 var b = M.createElement(�img�);

25 b.width = 1;

26 b.height = 1;

27 b.src = a;

28 return b}

Listing 2: Methods wd and ta in analytics.js served by google-

analytics.com are present on 38% and 25% of 100K websites,

respectively.

Table 2 shows the top �ve request-initiating JS methods across
100k websites. Method wd in script analytics.js is served by
google-analytics.com. It appears in 38% of the 100K websites
where it sets up a request and its header using XMLHttpRequest
[21] API, shown in Listing 2. Method ta in script analytics.js is
served by google-analytics.com. It appears in 25% of the web-
sites where it adds the <img> tag with a speci�c source given as a
parameter to the function, shown in Listing 2. Both of thesemethods
are classi�ed as tracking in the localization step in Section 3.1.2.
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Figure 5: (a) compares the request count of control con�guration

with blanket JS blocking (ALL). (b) shows average % reduction in

request per website for blanket JS blocking (ALL).
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Figure 6: The % of blocked request in blanket JS blocking con�g-

uration (ALL). Low % of blocked functional requests and high % of

blocked tracking requests are desirable.

Tag Blanket JS

Category Blocking (ALL)

<image> 70600
<video> 5
<iframe> 21052
<script> 100278
<source> 39

Table 4: Missing HTML tags whose URLs are classi�ed as functional

in blanket JS blocking (ALL).

4 RESULTS

This section presents the results of our empirical investigation of
di�erent types of JS blocking listed in Table 1.

4.1 Phase I: Large-scale JS Blocking Analysis

We aim to address the following research questions in our analysis
of JS blocking.

(1) How resilient is website functionality against blanket JS
blocking (ALL)?

(2) How e�ective is selective script-level JS blocking in tracking
prevention and functionality preservation (TS and MS)?
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Figure 7: (a) compares the request count of control con�guration

with selective JS blocking (TS and MS). (b) shows average % reduction

in request per website for selective JS blocking (TS and MS).
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Figure 8: The % of blocked request in selective JS blocking con�g-

uration (TS). Low % of blocked functional requests and higher % of

blocked tracking requests are desirable.

(3) How common is it for website developers to mix tracking
and functionality in the same script?

(4) How e�ective is method-level JS blocking in tracking pre-
vention and functionality preservation (TMS and TM)?

4.1.1 RQ1: Blanket JS Blocking. We �rst study the naive approach
to JS blocking by blocking all JS scripts (ALL con�guration in Table
1). Speci�cally, we block all 256K scripts on 100Kwebpages and com-
pare the breakage metrics (i.e., network request count and HTML
resource count) with the control (CTRL). Given blanket JS blocking,
we expect a sharp drop in the number of tracking or functional
requests. Figure 5 (a) shows that 22% of functional requests and
76% of tracking requests remain after blocking all JS scripts (ALL).
Note that a few requests are initiated by the scripts previously not
captured in the localization step in Section 3.1.2 and hence, were
not blocked in blanket JS blocking (ALL) con�guration. Figure 5 (b)
presents the average percentage of reduction in request count per
webpage. On average, per webpage, the tracking and functional re-
quest count decrease by 70% and 65%, respectively. This shows that
webpages today can retain one-third of functionality even with ex-
treme blocking strategies. Another observation is that the tracking
reduction per webpage is higher than functional reduction, which
means that many webpages often sacri�ce tracking but attempt to
retain functionality.

Tag Tracking Mixed

Category JS Blocked (TS) JS Blocked (MS)

<image> 12607 20035
<video> 0 0
<iframe> 11774 14682
<script> 21650 37197
<source> 23 37

Table 5: Missing HTML tags whose URLs are classi�ed as functional

in selective JS blocking (TS and MS) .

To map this behavior per webpage, we �nd the number of web-
pages with di�erent levels of request reduction for both tracking
and function. Figure 6 illustrates the result.We �nd that themajority
of the webpages (57%) have either less than 10% request reduction
or more than 90% request reduction in both tracking and functional.
This result shows both (1) high resilience against tracking reduc-
tion and functional breakage due to anti-content blocking strategies
such as loading resources by changing network endpoints [25, 50],
and also (2) low resilience where blocked scripts are critical for a
functioning webpage [26, 68]. Further inspection of HTML DOM
elements reveal that 191K functional HTML tag sources are missing
from 100Kwebpages when ALL scripts are blocked, re�ecting severe
functionality loss. Table 4 shows the breakdown of the category of
these missing sources. In ALL con�guration, 71K functional <img>
tags, 21K functional <iframe> tags, and 100K functional <script>
tags are missing.

Takeaway. Two-thirds (66%) of the webpages experience
a signi�cant functionality breakage when blanket JS block-
ing is employed.

4.1.2 RQ2: E�ectiveness of Selective JS Blocking. Since Blanket JS
blocking is ine�ective, we study the e�ectiveness of selective JS
blocking by blocking tracking scripts (TS con�guration in Table 1).
Later, we block mixed scripts (MS con�guration in Table 1) to see
its adverse e�ects on functionality.
Blocking Tracking Scripts. In this experiment, we block 93K
tracking scripts (TS) from 256K JS scripts across 100K live webpages
and investigate its impact on tracking mitigation and functional
breakage. Figure 7 (a) reports that 95% of functional requests per-
sist, whereas 30% of tracking requests manage to survive. Figure 7
(b) shows an average reduction in requests per webpage. In the
case of TS, we observe a 57% reduction in tracking requests and
an 11% reduction in functional requests per webpage on average.
Measurement with HTML tag metric in Table 5 shows that blocking
tracking JS scripts (TS) results in 46K missing functional sources
across 100K webpages. In TS con�guration, 13K functional <img>
tags, 12K functional <iframe> tags, and 22K functional <script>
tags are missing.
Blocking Mixed Scripts. In this experiment, we block only mixed
JS scripts (MS). We expect a decrease in both functionality and track-
ing, as mixed scripts represent both. Figure 7 (a) visualizes these
results. Overall, we see 86% of tracking and 92% of functional re-
quests. This observation is consistent with other HTML tag metric
in Table 5. In MS con�guration, 20K functional <img> tags, 15K
functional <iframe> tags, and 37K functional <script> tags are
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Figure 9: Visual impact of blocking mixed JS script. The left side

shows a normal website, whereas the right side shows a breakage

due to blocking.

missing. Figure 9 show visual breakage on pressl.co due to block-
ing mixed JS scripts that eliminate tracking at the cost of critical
functional breakage.

We further ask Do all webpages react similarly when tracking

scripts are blocked? Our goal is to unfold the resilience of di�erent
webpages with blocked tracking scripts (TS). Figure 8 measures
the distribution of webpages across di�erent levels of functional
breakage and tracking mitigation from blocking tracking scripts.
39K webpages experience less than 10% functional deterioration,
and 35K webpages experience less than 10% tracking mitigation.
The left of the bar chart represents webpages that heavily employ
mixed scripts, making JS script blocking ine�ective. 19K webpages
are only left with greater than 90% functionality deterioration and
tracking mitigation, representing the class of webpages relying less
on mixing scripts and thus are susceptible to JS script blocking.
Although JS script blocking is e�ective on a few webpages, it does
not apply to a signi�cant proportion of webpages that employ
mixed scripts. Therefore, we must address the tracking behavior
concealed in mixed scripts.

Takeaway. To maximize tracking prevention while mini-
mizing functional breakage, mixed scripts need to be in-
spected at a �ner granularity.

4.1.3 RQ3: Prevalence of Mixed Scripts. A trivial way for web de-
velopers and trackers to bypass �lter lists is by mixing functional
behavior with tracking in a single script. Privacy-enhancing content
blockers, such as uBlock Origin, cannot a�ord to break the webpage
and have no choice but to allow such scripts to load in the browser.
To gather concrete evidence on the prevalence of this practice, we
�rst conduct a longitudinal experiment on the frequency of mixed
JS scripts over the past two years (2021 and 2022) on 100K webpages.
In 2021, we crawled 100K webpages and classi�ed the collected JS
code using the SBFL-inspired approach from Section 3. We repeat
the same experiment in 2022 on the same 100K webpages.

Figure 10 shows the result of the experiment. The x-axis repre-
sents the percentage of scripts that are mixed, ranging from 0 to
100 in 10 bins each of size 10. The y-axis represents the number
of webpages in each bin. In 2021, 15% of webpages out of 100K
have between 11% to 20% of scripts that were mixed. This number
increases to 18% in 2022. Overall, in 2021, out of 220K JS scripts,
28K are mixed JS scripts, making it 12.8%, whereas, in 2022, 37.5K
out of 256K JS scripts are mixed, making it 14.6%. There is 14%
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Figure 10: Comparison of % mixed JS scripts when tracking score is

in [-2,2] for web corpus collected in 2021 and 2022.
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Figure 11: Comparison of % mixed JS scripts without any threshold

on tracking scores for web corpus in 2021 and 2022.

increase in the number of websites employing mixed scripts over
100K websites, as compared to last year. For example, on the web-
site kixie.com, we observe a new mixed JS script 20564323.js in
2022, initiating HubSpot analytics code along with the functional
code that redirects the Try Kixie Free button. We also �nd that
the change in total script count corroborates the general belief that
JS scripts across the web have increased marginally since 2021 [73].

While investigating selective JS blocking, we also �nd deterio-
ration in the functionality when only tracking scripts are blocked
(TS). Naturally, we ask why does blocking tracking scripts (TS) result

in functional deterioration?We suspect that such an issue may arise
due to the narrow threshold on SBFL’s tracking score. JS code units
(i.e., scripts, methods) with > 2 score are annotated as purely track-
ing. Functional behavior in tracking scripts can also exist due to
the dynamic nature of webpages. Between the tracking score mea-
surement and blocking experiments, the script may have changed,
or the webpage deliberately refactors the script slightly for rea-
sons such as JS obfuscation [61, 67] or mini�cation [59]. For better
threshold selection, we must answer what are the consequences of
widening the tracking score threshold?We conduct a brief sensitivity
analysis on the tracking score’s threshold. Figure 11 shows the new
distribution when the threshold is set to maximum. We �nd that
46% of the webpages have more than 50% of their scripts mixed
with at least one tracking or functional request, further reducing
the applicability of JS script blocking and showing the extent of
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Figure 12: (a) compares the request count of control con�guration

with tracking and mixed (TMS) and method-level JS blocking (TM). (b)

shows average % reduction in request per website for tracking and

mixed (TMS) and method-level JS blocking (TM).

this problem. Our investigation in RQ3 highlights the following
trade-o�. We either sacri�ce functionality when blocking mixed JS
scripts or let go of privacy. If functional preservation is critical, we
forego opportunities to block numerous tracking activities.

Takeaway.Websites are increasingly employing sophis-
ticated code refactoring techniques (e.g., inlining or
bundling) to mix tracking code with functional code, mak-
ing existing content-blocking techniques ine�ective.

4.1.4 RQ4: Fine-Grained JS Blocking. In RQ4, we assess the bene�ts
of performing JS blocking at the method-level. Our hypothesis is
that blocking tracking JS method will provide higher precision
in tracking prevention, leading to signi�cantly lower functional
breakage than JS script-level blocking. In our �rst experiment, we
compare the e�ectiveness of method-level JS blocking (TM) against
tracking and mixed JS blocking (TMS).

We combine results from blocking both tracking and mixed
scripts (TMS) as the baseline because all tracking methods are either
located in tracking scripts or mixed scripts. Blocking a tracking JS
method (TM) may eliminate the tracking behavior of a mixed script
or a tracking script.

Figure 12 summarizes these results. Both baseline tracking and
mixed JS blocking (TMS) and method-level JS blocking (TM) reduce
the tracking requests by 71% and block on average 62% of the track-
ing requests per page. The two con�gurations cover most of the
tracking requests among themselves, and blocking them will yield
the same result. More surprisingly, we see an improvement in total
functionality retention when blockingmethod-level (TM) i.e., a 6% to-
tal improvement, whereas the average functional request breakage
per page decreases by 7%. On evaluating HTML, JS method-level
blocking(TM) retains approximately 2X more functional HTML tag
sources, such as images and scripts, than blocking tracking and
mixed JS scripts (TMS), as shown in Table 6. For example, in Fig-
ure 14, we visually inspect deeretnanews.com to �nd functional
media breakage in TMS con�guration that loads normally in TM

con�guration.
We further investigate how much functional breakage does each

webpage face with method-level blocking (TM) compared to the base-

line TMS? Figure 13 sheds more light on the functional request count
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Figure 13: The % of functional requests in tracking andmixed (TMS) JS

blocking and method-level JS blocking (TM). A higher % of functional

requests is desirable.

Tag Tracking & Mixed Tracking JS Methods

Category JS Blocked (TMS) Blocked (TM)

<image> 30512 17524
<video> 0 2
<iframe> 18362 14035
<script> 56852 30011
<source> 37 35

Table 6: Missing HTML tags whose URLs are classi�ed as functional

in tracking and mixed (TMS) and method-level (TM) JS blocking.

between two blocking granularities. With method-level JS blocking
(TM), 40% webpages have less than 10% functional breakage (pre-
served more than 90% functional requests). In comparison, tracking
and mixed JS blocking (TMS) leads to around 25% of webpages in
this category.

We observe two classes of webpages: (1) webpages that decouple
functionality and tracking more prominently at the method-level
and hence, are less prone to functional breakage, and (2) webpages
that tightly integrate tracking code with functional, which is harder
to separate even at the method-level and thus results in high func-
tional breakage when such methods are blocked. Further investiga-
tion on the number of such mixed methods �nds that 6% of 366k JS
methods integrate tracking with functional code.

Takeaway. Nearly 40% of the webpages implement func-
tional and tracking code in a modularized fashion. Block-
ing tracking methods in such webpages shows improved
tracking prevention and reduced functional breakage as
compared to script-level blocking. The rest of the webpages
demand increasing the granularity (i.e., statement-level)
or incorporating more sophisticated dynamic analysis.

4.2 Phase II: Visual Inspection of JS Blocking
and Web Breakage

In Phase II, we perform a qualitative study to validate our quantita-
tive �ndings with an in-depth visual inspection of sampled websites,
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Figure 14: Image compares the functional breakage in tracking and

mixed JS blocking (right) as compared to method-level JS blocking

(left), which loads the website deeretnanews.com normally.

as described in Section 3.2. We seek to answer the following re-
search questions:

(5) Does our manual inspection validate that method-level JS
blocking is more e�ective than JS blocking?

(6) Is method-level JS blocking the most e�ective in minimizing
breakage while preventing tracking?

(7) Can webpages withstand the removal of tracking methods?

4.2.1 RQ5: Validating the e�ectiveness of method-level JS blocking.

Figure 15 and Figure 16 summarizes the results of investigating true
functional breakage on 383 websites, measured according to four
established metrics (i.e., navigation, SSO, appearance, and others)
and three levels of breakage. The X-axis represents the percentage
of websites with functional breakage. Overall, there is an evident
decline in the number of broken websites, for both major and minor
breakage, when JS method-level blocking is used instead of tracking
and mixed JS blocking. These results validate the �ndings of quan-
titative analysis in RQ4. In tracking and mixed JS blocking (TMS), 68
websites have minor breakage and 118 websites have major break-
age, whereas, in method-level JS blocking, 45 websites have minor
breakage, and 29 websites have major breakage. Most of the break-
ages were observed in additional feature categories, comprising
broken widgets (e.g., chatbots and feedback) and malfunctioning
home buttons.

Washingtonpost.com (ranked 9C⌘ in news and media publisher
category in USA [19]) is one of the 383 sampled websites. It su�ers
a crash (a major breakage) in tracking and mixed scripts JS block-
ing (TMS). On the contrary, the website is completely functional
and tracking-free at method-level JS blocking (TM). Similarly, on
tenki.jp (ranked 4C⌘ in the streaming and online TV category in
Japan [17]), manual inspection reveals a missing Twitter widget and
a Twitter button in tracking and mixed scripts JS blocking (TMS).
These breakages are documented as minor breakages. However,
in method-level JS blocking (TM), all tracking advertisements are
blocked, and both the button and widget appear correctly and are
functional, similar to the control experiment (CTRL). The website
ndtv.com (rank 5C⌘ in the news and media category in India [48])
renders multiple advertisements in the control experiment (CTRL).
Website completely crashes in tracking and mixed scripts JS block-
ing (TMS), whereas, in method-level JS blocking, it renders normally
without any advertisement.

We also argue that minor improvements can make a di�erence
in many websites. For example, website gamestop.com (rank 9C⌘
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Figure 15: Comparison of "minor" breakage in tracking and mixed JS

blocking (TMS) vs method-level JS blocking (TM) among 383 sampled

websites.
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Figure 16: Comparison of "major" breakage in tracking and mixed JS

blocking (TMS) vs method-level JS blocking (TM) among 383 sampled

websites.

in the gaming category in USA [10]) shows 37.5% breakage in track-
ing and mixed scripts JS blocking (TMS) whereas shows only 12.5%
breakage at method-level JS blocking(TM). At TMS, we see unex-
pected white spaces on the top of the website, a minor breakage in
the appearance category. The webpage’s home button also causes
the website to crash, a major breakage recorded in additional func-
tionality. However, in TM, we only see an unexpected white space
on the website, a minor breakage in the appearance category. These
results also a�rm that the breakage metrics (network request and
media resources) used in Phase I are e�ective measures of breakage.

4.2.2 RQ6: Is method-level blocking most e�ective in reducing break-

age and eliminating tracking? Although method-level JS blocking
(TM) performs signi�cantly better than tracking and mixed JS block-
ing (TMS), there are cases where we observe little or no improvement.
This is mainly because of 6% methods still show mixed behavior i.e.,
include tracking and functional code. Elpais.com (currently ranks
2=3 in the news and media publisher category in Spain [8]) fails
to load a single resource in tracking and mixed scripts JS blocking
(TMS). However, in method-level JS blocking (TM), it causes the nav-
igation bar to be unresponsive, a minor breakage due to the mixed
method e.loadInternal in script provider.hlsjs.js.
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4.2.3 RQ7: Can webpages sustain simply removing the tracking JS

method? On 100K webpages, we have found that webpages in their
vanilla form have 1.32 severe errors on average. Severe error refers
to three main compile-time errors in JavaScript: syntax errors, run-
time errors, and logical errors. Errors are common in JS and do
not always impact functionality. Compared to other software, web-
pages can withstand many runtime issues, such as network error,
JS script not found, and JS script syntax errors that can arise from
diverse host environments. In our experiments, we block JS track-
ing method by simply renaming the method, which may lead to
MethodNotFound error. Replacing a method name and redirecting
its invocation may generate additional errors. However, such errors
do not a�ect the website’s functionality, as they only terminate the
tracking-inducing thread in the JS process.

5 DISCUSSION

In this section, we present the key takeaways of our empirical
investigation, highlight the key challenges of e�ective JS blocking,
and o�er future ideas for dynamic analysis-based �ne-grained JS
blocking.
JS blocking at �ner granularity. While blocking JS tracking
methods is bene�cial, we still observe that 5.5% webpages with
some levels of tracking activity and functionality breakage. These
webpages contain method(s) that (1) implement both tracking and
functionality or (2) are used by tracking and functional code for
downstream activity (e.g., initiating a network request). We foresee
better separation at a �ner granularity. In the future, we propose
applying dynamic program slicing [24, 46, 75] to separate tracking
statements from functional statements. For inseparable code, we
propose dynamic invariant detection [35, 51] to construct program
variable pro�les for tracking and functional behaviors. Program in-
variants for tracking can be used as an automated guard to prohibit
tracking execution.
Dynamic nature of JS.We �nd that a number of scripts use dy-
namic features such as eval() and anonymous functions [59, 65]. A
number of scripts also employ JS mini�cation and obfuscation tech-
niques that produce code that is uninterpretable manually [61, 67].
Such practices further motivate the use of advanced dynamic pro-
gram analysis techniques for tracking code identi�cation and re-
moval.
JS data�ow analysis. In this work, we captured the stack trace
of a tracking or functional network request and then annotate
the script method at the top of the stack. By focusing on request-
initiator code units, we may miss opportunities to trace back to
the source of the tracking behavior inside the nested JS codebase.
Finding such a location may o�er better opportunities to preserve
functionality as the request-initiator method or script may simply
be a “gateway” for all network requests. In addition to the call
stack, we can also leverage the data�ow graph of the JS codebase
to perform a richer analysis of a webpage’s execution. For example,
in Listing 3, the stack trace inside the method B does not contain
the parameter C. Since the method B depends on parameter C, the
identi�cation technique may not understand the entire context
when B() is called. We recommend capturing such rich execution
traces with calling contexts and a complete data �ow graph to
understand better the �ow of information through the nested code

and how it in�uences the execution behavior, tracking, or functional.
We anticipate that such traces can help identify better locations
(e.g., non request-initiator methods) to alleviate tracking while
preserving functionality.

1 function TrackingReq () {

2 C = getVal ();

3 B(C)}; };

Listing 3: Call stack does not show complete data�ow.

Performance impact of JS blocking. Although we do not con-
sider performance in our analysis, our focus is to minimize tracking
without comprising functionality. Recent works [27, 28] show that
the removal of non-critical components of JS code can signi�cantly
reduce page load times. Similarly, removing the tracking JS code
may reduce the performance overhead along with functionality
preservation.
Other future research directions.We plan to conduct an investi-
gation into more meaningful and semantics-aware tracking code
identi�cation. Our key observation is that �nding a tracking code
unit in webpages has striking similarities with fault localization.
Even a simple faulty code localization method such as SBFL showed
promising results towards functionality-preserving JS blocking. On
the code refactoring front, our observation of 100K vanilla live
websites reveals that today’s webpages can withstand severe errors.
Therefore, we expect that slightly unsafe code refactoring tech-
niques to remove the tracking code may be promising in e�ectively
preserving functionality while preventing tracking.

Future tracking code identi�cation techniques can greatly bene-
�t from recent advances in automated debugging and fault local-
ization [41, 55]. For example, given �lter list as a test oracle, we
can adapt search-based debugging approaches to perform a sys-
tematic search on JS code and precisely isolate the tracking and
functional code units [58]. Similarly, the completeness of static code
dependency analysis (e.g., reachability analysis) can complement
the soundness of dynamic analysis (e.g., call graph) to improve the
precision of tracking code localization.

Code clone detection is an active area of research, with many
advanced techniques available for traditional software [31]. Given
annotated JS code units, code clone detection techniques can iden-
tify similar code on webpages to �nd the presence of tracking code.
Once a JS code clone is correctly detected, we can leverage super-
vised learning [38, 66] to extract valuable features, both semantic
and syntactic, for accurate tracking code localization. If such an
accurate model is available, a JS blocker can detect tracking JS code
units in real time and block them before loading the website.

Similar to training a classi�cation model, one possible direction
is to create a taxonomy of tracking code’s signature, similar to the
ones in malware detection [37, 40, 77], and �nd a match with a
webpage’s JS entity at page load. However, page load times are
critical in the web domain, refraining from any computationally
expensive operation. Using �ngerprints to locate tracking code at
page load is a lightweight process that can easily be performed at
page load time without a noticeable slowdown.

Can publishers also bene�t from the results of our JS blocking

study? Our study is conducted from the perspective of privacy-
enhancing content-blocking tools. If suitable, we suggest publishers
adopt an approach such that either the website works reasonably
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without JS or at least employ a highly decoupled JS architecture that
separates tracking and functionality, i.e., separate JS scripts/meth-
ods. This architecture will retain functionality e�ectively when JS
code level blocking reduces tracking. On the contrary, publishers
who want to retain maximum tracking may leverage the current
weakness of JS script-level content blocking by maximizing the
overlap between tracking and functional code units.

6 LIMITATIONS

Internal validity.Our analysis in Section 4 relies on the correlation
between a JS blocking strategy and the webpage’s behavior in terms
of network requests and resource loads. However, other confound-
ing factors may impact the webpage’s behavior. For instance, some
webpages fetch di�erent number and type of resources for each
visit due to the inherent dynamism. For our experiments, requests
monitored in one experiment may not be triggered in another exper-
iment. Other factors include behavior change due to environment
(i.e., browser and host OS), visit time, and location. We minimize
internal validity threats by keeping the environments consistent
across di�erent blocking con�gurations i.e., same location, browser,
and stateless crawls.
External validity. We conducted our experiments using the Chro-
me browser with a Chrome-based extension. Extensions on other
browsers have di�erent permissions and have access to a varying
set of information about a webpage’s behavior. While our choice of
using the Chrome browser minimizes external validity threats, it is
possible that our results may not fully generalize to JS method-level
blocking on other browsers. Similarly, our annotation relies on
previously observed tracking behavior captured in �lter lists. Its
e�ectiveness may be limited for unseen JS. To minimize this issue,
we use the two most actively maintained �lter lists for annotation.
Construct validity.We collect the website’s data at page load time
and do not capture other events triggered by the user interactions
such as scrolling and clicking. This is a general limitation of dy-
namic analysis that can be mitigated by using a forced execution
framework [45].

7 RELATED WORK

Smith et al. [68] and Amjad et al. [26] identify tracking code regions
in the JS scripts of websites. Sugarcoat [68] dynamically captures
the call graphs of web APIs and uses it to determine the call site in
JS code that tries to access the user-sensitive information from the
local storage, which is unanimously considered as tracking behavior.
They replace these identi�ed call sites with the surrogate JS code
that mitigates the information access but preserves functionality.
This process helps create surrogate scripts for exception rules in the
�lter list. SugarCoat requires excessive manual e�ort by a domain
expert to identify the tracking call sites in the JS code. Due to
this limitation, our empirical study could not validate SugarCoat’s
e�ectiveness. Amjad et al. [26] introduce a hierarchical approach
to annotate web entities (domain, hostname, script, and method) to
precisely isolate the code responsible for tracking behavior. They
dynamically collect the call stack information for tracking behavior
and isolate the entities based on their participation in invoking it.
We adapt their approach for web corpus collection and extend it to
enable real-time code blocking and capture additional information.

Modern websites extensively use third-party JS scripts that may
access potentially sensitive information [44, 52, 69, 70]. Tran et al.
[70] develop a principal-based tainting approach that dynamically
analyzes the JS libraries to identify the underlying privacy viola-
tions. They tag each compiled JS library at run-time and observe
its suspicious behavior with the author-de�ned principles i.e., a set
of permissions that should not be violated. Similarly, Staicu et al.
[69] introduce an automated approach that collects taint speci�ca-
tions of JS libraries and identi�es behaviors that lead to security
vulnerabilities. These approaches work at the granularity of JS li-
braries, which, as we �nd, is insu�cient for preserving functionality.
Moreover, these works use taint analysis that incurs prohibitively
high-performance overhead and can not e�ciently work in the
browser in real-time. Prior work’s �ndings on the challenges from
JS dynamism resonate with our �ndings. Jueckstock et al. [44]
present a lightweight dynamic analysis tool using chrome V8 to
identify untrustworthy JS scripts. It logs function calls and storage
access during JS execution to identify suspicious code.

The limitations of identifying tracking code share similarities
with prior research on fault localization. For example, spectra-based
fault localization (SBFL) [33, 42, 62, 64, 74] leverages the statement
coverage using the set of passing and failing test cases to localize
the statement that is most likely to induce a test failure. Similarly,
Bela et al. [71] and Laghari et al. [48] present an approach that
uses the frequency of method occurrence in the call stack of failing
test cases for localizing the faulty methods. A method that appears
more in the call stack of failing test cases is more likely to be faulty.
Abreu et al. [23] conducted an empirical study on the accuracy
of these SBFL techniques and highlighted that these approaches
are independent of the quality of the test oracle. Crowdsourced
blocklists [5–7, 9] are the authoritative source of labels for requests
and are adequate to detect tracking behavior.

Websites heavily rely on JS libraries containing signi�cant dead
code that is unused or unreachable, posing a noticeable impact on
the website’s performance. Kupoluyi et al. [47] highlight that pop-
ular websites have 70% unused functions, and their elimination can
speed up the page load by 30%. Recent works [27, 28] have further
explored non-critical regions in JS libraries and the performance
overhead caused by them. Zaki et al. [28] propose on rule-based
classi�cation techniques to identify and replace non-critical regions
in JS using pre-de�ne code patterns, achieving a 50% reduction in
page load time. Towards the same goal, Chaqfeh et al. [27] develop
a tool that helps developers in eliminating JS elements by visually
inspecting them and shows 90% improvement in Google’s light-
house performance score. Similarly, Vazquez et al. [72] proposed
a technique to decompose bundles JS code in a website, reducing
code size by 26%. Our �ndings in this study are equally bene�-
cial to the research on improving website performance and energy
consumption that speci�cally adopt functionality-preserving code
debloating approaches.

8 CONCLUSION

In this paper, we conduct a large-scale empirical investigation on
the impact of di�erent JS Code blocking methodologies on 100K
websites, followed by a careful visual inspection of 383 websites to
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measure website breakage. Our results show that blanket JS block-
ing prevents tracking but incurs major functionality breakage on
approximately two-thirds of the websites. We identify that 15% of
the scripts on the web combine tracking and functionality, leading
to website breakage if blocked. When we increase the granularity
of JS blocking to target tracking methods inside mixed scripts, the
functional breakage of websites reduces by 2X while providing the
same level of tracking prevention. Our in-depth manual inspection
of 383 websites validates that method-level JS blocking reduces ma-
jor breakage by 3.8×. Through this study, we highlight the promise
of �ne-grained JS blocking and the subsequent open challenges
towards adapting such a technique in practice.
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