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ABSTRACT
In software merge, the edits from di�erent branches can textually
overlap (i.e., textual con�icts) or cause build and test errors (i.e.,
build and test con�icts), jeopardizing programmer productivity and
software quality. Existing tools primarily focus on textual con�icts;
few tools detect higher-order con�icts (i.e., build and test con�icts).
However, existing detectors of build con�icts are limited. Due to
their heavy usage of automatic build, current detectors (e.g., Crystal)
only report build errors instead of identifying the root causes; de-
velopers have to manually locate con�icting edits. These detectors
only help when the branches-to-merge have no textual con�ict.

We present a new static analysis-based approach B����� (“build
con�ict detector”). Given three code versions in a merging scenario:
base b, left l , and right r , B����� models each version as a graph,
and compares graphs to extract entity-related edits (e.g., class re-
naming) in l and r . We believe that build con�icts occur when
certain edits are co-applied to related entities between branches.
B����� realizes this insight via pattern matching to identify any
cross-branch edit combination that can trigger build con�icts (e.g.,
one branch adds a reference to �eld F while the other branch re-
moves F). We systematically explored and devised 57 patterns, cov-
ering 97% of the build con�icts in our experiments. Our evaluation
shows B����� to complement build-based detectors, as it (1) de-
tects con�icts with 100% precision and 88%–100% recall, (2) locates
con�icting edits, and (3) works well when those detectors do not.
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1 INTRODUCTION
Developers create software branches for tentative feature addition
or bug �xing. They periodically integrate (i.e., merge) code changes
from distinct branches to release software with new features or
patches. In practice, the merge process is rarely straightforward
due to con�icts, i.e., the con�icting edits simultaneously applied in
branches-to-merge. Developers often spend hours or days detecting
and resolving con�icts before correctly merging branches [42].

A typical merging scenario in software version history in-
volves four program commits: the baseb, left version l , right version
r , and developers’ merge resultm (see Figure 1). Between l and r ,
there can be three types of merge con�icts [33, 59]: textual, build,
and test con�icts.Textual con�icts are caused by divergent branch
edits to the same line(s) of text, while higher-order con�icts (i.e.,
build and test con�icts) are caused by edits simultaneously applied
to di�erent lines. In particular, build con�icts produce build fail-
ures whenm is compiled. Test con�icts trigger test errors when
m compiles successfully and gets executed with test cases.

Master Branch

Feature Branch

New Merge 
Commit

Common Base

Version b Version l

Version r

Version m

Figure 1: An exemplar merging scenario

Table 1: Existing tool support for con�ict detection
Textual con�icts Build con�icts Test con�icts

Tools git-merge, FSTMerge, Au-
toMerge JDime, AutoMerge,
IntelliMerge, Crystal, WeCode

Crystal, WeCode,
IntelliMerge

Crystal,
WeCode,
SafeMerge

Existing tools o�er limited support for con�ict detection in Java
programs [6, 28, 29, 33–35, 40, 44, 48, 56, 57, 59, 62]. As shown in
Table 1, majority of the tools target textual con�icts. Crystal [33]
and WeCode [40] are among the few tools that detect all types of
con�icts. They apply textual-merge of version control systems (e.g.,



ASE ’22, October 10–14, 2022, Rochester, MI, USA Sheikh Shadab Towqir, Bowen Shen, Muhammad Ali Gulzar, and Na Meng

Changes in l Changes in r

public class A {
public void foo() {

+     C.m();
… } } …

public class C {
public static void m() {…}    

}

public class A {
public void foo() {

…
} } …

public class C {
- public static void m() {…}
+   public static void m(int p) {…}

}
Figure 2: An exemplar build con�ict
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Figure 3: B����� comprises three phases

git-merge) to tentatively merge two branches into one version Am ,
revealing textual con�icts along the way. Notice that developers
often createm based on Am , so Am can be di�erent fromm for two
reasons: (1) it shows all detected textual con�icts for developers to
resolve; (2) it may have build or test errors that developers should
�x to createm. If Am does not show any textual con�ict, Crystal
and WeCode use automatic build to compile Am . If l and r compile
successfully butAm fails, there are build con�icts between branches.
Lastly, the tools test the compiled version of Am . If the compiled
versions of l and r pass all tests but Am fails any test, there are test
con�icts between branches.

The compiler-based (i.e., build-based) detectors of build con�icts
have three limitations. First, when textual con�icts coexist with
build con�icts, Am marks all detected textual con�icts with spe-
cial lines ‘‘<<<<<<< Head’’, ‘‘=======’’, and ‘‘>>>>>>>...’’ in
code. Such program versions do not compile; thus, the automatic
build process is not runnable to reveal any error. Second, given a
build error in Am , developers must manually locate the con�icting
edits responsible for that error. This manual localization process
can be challenging and time-consuming, especially when the symp-
tom of error is geographically separated from the the root cause.
Third, during the build process, the build errors found earlier can
prevent compilers from detecting subsequent errors. In such cases,
developers must resort to multiple iterations of automatic build,
manual diagnosis of root causes, and manual con�ict resolution
to expose all errors. Because manual con�ict resolution can take
hours or days [42], such an iterative process can be very tedious
and error-prone.

To overcome all limitations mentioned above, we created B��
����, a new approach that detects build con�icts in Java code using
static analysis. Our approach is based on two insights. First, build
con�icts often occur when cross-branch edit combinations violate the
def-use constraints between program entities.We use program enti-
ties to refer to Java program components like classes, methods, or
�elds. Please refer to Table 3 (Section 3) for the complete list of pro-
gram entities. Figure 2 shows an exemplar build con�ict. A con�ict
exists because l adds a call to m() while r updates the method signa-
ture. The co-application of both edits can produce an unresolved
method reference. Second, due to the limited number of entity types
in Java code and limited edit types applicable to entities, it is possible
to enumerate all cross-branch edit combinations that violate def-use
constraints. By de�ning con�ict patterns for such combinations,
we can compare the co-applied edits between branches to report a
con�ict whenever a pattern is matched.

B����� has three phases. As shown in Figure 3, given the three
program versions of a merging scenario: b, l , and r , B����� creates
a program entity graph (PEG) for each version, to model entities
(e.g., Java methods) and inter-entity relations (e.g., method call).

Phase II compares the PEGs of l and b, and compares the PEGs of r
and b, to extract entity-related edits in both branches. It embeds all
edit information in respective PEGs, creating new PEGs G 0l and G

0
r .

Our systematic enumeration revealed 57 types of cross-branch edit
combinations that can cause build errors in the merged software.
Accordingly, we de�ned 57 patterns and implemented 57 matchers
in B�����. Those matchers are used to locate con�icting edits
between branches. For each pattern, Phase III searches among edits
in G 0l and G

0
r , and reports con�icts when matches are found.

We evaluated B����� with 3 datasets: (1) 57 merging scenarios
with in total 57 synthetic con�icts, (2) 55 scenarios with in total 81
real con�icts that trigger build errors in Am , and (3) 13 scenarios
with 17 real con�icts that coexist with textual con�icts and got
located by us manually. On Dataset 1, B����� detected all con-
�icts accurately. On Dataset 2, it detected con�icts with 100% preci-
sion, 95% recall, and 97% F-score. On Dataset 3, B����� achieved
100% precision, 88% recall, and 94% F-score. B����� complements
compiler-based detectors for three reasons. First, it detects con�icts
with high precision and high recall. Second, it pinpoints the root
causes of build con�icts, while compiler-based tools only present
the symptoms (i.e., build errors). Third, B����� detects con�icts via
static analysis instead of automatic build; therefore, it helps reveal
con�icts when compiler-based tools are inapplicable (i.e., textual
and build con�icts coexist). Our research will help developers merge
software more e�ectively and e�ciently. We open-sourced our pro-
gram and data at https://�gshare.com/s/459145063f38bdb244b9.

2 A PRELIMINARY STUDY
Before our approach design, we conducted a pilot study to under-
stand how build con�icts occur. To make our study representative,
we randomly picked eight popular Java repositories on GitHub:
fastjson [13], spring-cloud-alibaba [21], druid [11], redisson [20],
litemall [16], mybatis-plus [17], javapoet [14], and jedis [15]. We
chose these repositories because they are popular (i.e., with 9.5K–
25.4K stars and 1.2K–8.1K forks) and from di�erent domains.

In each selected repository, we searched for merging scenarios,
i.e., any commit with two parent/predecessor commits. We use l
and r to refer to the two parent commits in sequence. We treat the
common child and ancestor commits between l and r asm and b.
For each scenario, we �rst applied git-merge to l and r to generate
a text-based merge version Am . If Am had no textual con�ict, we
further built l , r , andAm . If l and r built successfully butAm did not,
there are build con�icts between l and r . To locate those con�icting
edits, we analyzed the reported build errors, manually related those
errors with program di�erences among all �ve relevant program
versions (l , r , b,m, Am ), and identi�ed the integrated branch edits
responsible for those errors.
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Table 2: Classi�cation of the 25 build con�icts in our preliminary study based on their root causes
Idx Con�ict Type Description # of Con�icts
1 Import: remove def vs. add use One branch removes a class import from a Java �le, while the other branch adds reference(s) to that class. 3
2 Class: remove def vs. add use One branch removes the de�nition of a Java class, while the other branch adds reference(s) to that class. 3
3 Class: add method def in super

vs. add sub class
One branch adds a methodM in a class A, while the other branch adds a class B to extend A. There is a method
in B , whose method name and parameter list are identical to that of M but the return type is di�erent. Namely,
the return types between super and sub methods con�ict.

1

4 Interface: change a class to imple-
ment the interface vs. change a
method’s return type in the class

One branch updates a class B to implement interface A. The other branch changes the return type of a method
M in class B . The return types between the super and sub versions of M con�ict.

9

5 Method: change the parameter list
vs. add use

One branch changes the parameter list of a Java method, while the other branch adds reference(s) to the original
method signature.

5

6 Field: remove def vs. add use One branch removes the de�nition of a Java �eld, while the other branch adds reference(s) to that �eld. 3
7 Field: change a �eld’s type vs. add

write access
One branch updates the data type of a �eld, while the other branch adds reference(s) to that �eld based on the
old data type.

1

As shown in Table 2, our study revealed 25 build con�icts, which
were classi�ed into 7 types based on the edited entities and edit
types. For instance, three con�icts are of Type-1; they occur when
one branch removes a class import and the other branch adds refer-
ence(s) to that originally imported class. Four con�icts are about
�elds (i.e., Type-6 and Type-7). They happen because one branch
removes or updates a �eld F and the other branch adds reference(s)
to the original �eld. Ten con�icts were concerning methods in
super-sub types (i.e., Type-3 and Type-4). Namely, when a sub-class
is edited to inherit a super-class or implement an interface, the
methods de�ned in the super- and sub-types should not con�ict. In
other words, if both super- and sub- classes de�ne a method with
the same signature but di�erent return types, automatic build fails.

Although the inspected con�icts are from distinct program con-
texts and have di�erent root causes, they all convey the same mes-
sage: build con�icts can occur when cross-branch edit com-
binations violate the def-use constraints between program
entities. Frequently applied edits involve additions, deletions, and
updates of entities’ defs/uses; typical def-use constraints include:

(1) When an entity is referenced, there should always be a cor-
responding entity de�nition visible to the reference.

(2) No entity should be de�nedmultiple times, except formethod
overriding.

(3) When a sub-class implements an interface, the class should
implement all methods declared by the interface.

(4) When a sub-class implements or overrides a methodM de-
clared by a super-type, the sub-class should use the name,
parameter list, and return type ofM in its method de�nition.

Our study implies that if we can characterize the types of branch
edits whose combination violates any def-use constraint, we do not
need to wait for developers to produceAm or to use automatic build
for con�ict detection. Instead, we can conduct static analysis to
eagerly relate edits simultaneously applied to distinct branches, rea-
son about the semantics of edits, and notify developers of potential
con�icts before they actually merge software.

3 APPROACH
Inspired by our preliminary study, we designed and implemented
B����� (short for “build con�ict detector”), a novel approach to
detect build con�icts via static analysis. In our research, we need
to tackle two technical challenges:

C1. How can we derive entity-related edits from l and r?
C2. How can we relate edits across branches to identify con�icts?

To address these challenges, we designed a three-phase approach.
As shown in Figure 3, Phases I and II create and compare graphs
to extract entity-related edits, addressing C1. For C2, we de�ned a
pattern set of con�icting edits in Phase III, based on our systematic
exploration of potential con�ict scenarios. With those patterns
de�ned, Phase III detects con�icts via pattern matching in graphs.
Sections 3.1–3.3 explain all phases in detail.
3.1 Phase I: Graph Construction
Our research intends to detect con�icts by extracting and contrast-
ing the entity-related edits of each branch. However, the default
program di� information recorded in software repositories does not
serve that purpose for two reasons. First, the program di� of l or r
records the changes each branch applied to the baseb, instead of the
di�erences between l and r . More importantly, many of the recorded
changes are irrelevant to any entity’s def or use (e.g., adding an
if-statement), and should be omitted for e�cient static analysis.
Second, to identify potential con�icts between branch edits, we
need to relate applied edits with their surrounding context (i.e.,
unchanged code). Program di� shows applied edits but provides
insu�cient contextual information for con�ict recognition.

To facilitate the extraction and comparison of edits, B�����
creates a program entity graph (PEG) separately for b, l , and r .
Speci�cally, given two program commits to merge in a Git repos-
itory, cl and cr , B����� applies the command “git merge-base” to
retrieve the common base commit cb . Next, B����� locates all
edited Java �les by cl or cr , and creates three folders to separately
hold the base, left, and right versions of those �les. For instance, if a
�le is updated by either branch, its three versions are put into sepa-
rate folders. If a �le is added by a branch, its unique version is only
put into the branch’s corresponding folder. Notice that B�����
only scans versions of edited �les (i.e., added, deleted, updated,
renamed, or moved �les) when modeling PEGs. This is because a
commit often edits a small portion of �les [31, 41, 61]. If we include
all Java �les into graph modeling, the resulting graphs can become
unnecessarily huge. Meanwhile, we noticed that when l and r build
successfully, the edited �les always contain all edit-related details.
Thus, it is safe to only analyze edited �les to detect build con�icts.

B����� traverses each folder, and parses every source �le with
JavaParser [5] to create abstract syntax trees (ASTs). Based on the
ASTs, B����� extracts entities as well as inter-entity relations, and
uses JGraphT [49] to build PEGs. In each PEG, vertices represent
entities and edges show inter-entity relations. Figure 4 shows three
exemplar PEGs for the merging scenario of Figure 2. In Figure 4,
each node records both the type and fully quali�ed name of an
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A.foo()

declares
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C.m()
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A
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A.foo()
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C

C.m()
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calls

A

…

A.foo()

declares
C

C.m(int p) 

declares

(a) base (b) left (c) right

Java class Java method Inter-entity relation

Figure 4: The PEGs for the merging scenario in Figure 2
Table 3: Types of vertices and edges in a PEG

Types of Source Ver-
tices/Entities

Types of Possible
Outgoing Edges

Types of Target
Vertices

Project (prj) contains pkg
Package (pkg) contains cu

Compilation Unit (cu) imports pkg, cls, itf, enm
declares cls, itf, enm

Class (cls)
extends cls
implements itf
declares �d, mtd, ctr, cls

Interface (itf) declares �d, mtd
Enum (enm) declares �d, ctr, ec

Field (�d)

reads �d, ec
calls mtd, ctr
initializes cls

Method (mtd)

reads �d, ec
writes �d
calls mtd, ctr
initializes cls

Constructor (ctr)

reads �d, ec
writes �d
calls mtd, ctr
initializes cls

Enum Constant (ec) - -
“-” means zero entry

entity (e.g., A.foo()). Each edge is labeled with the relation type (e.g.,
“declares”). There are 10 node types and 9 edge types in PEGs (see
Table 3). Speci�cally given entities E1 and E2,

• E1 contains E2 means the �le folder of E1 includes the �le
(or folder) of E2.

• E1 imports E2 means a compilation unit E1 imports E2,
where E2 is a package, a class, an interface, or an enum type.

• E1 declares E2 means E1 declares another entity E2 inside
its implementation. For instance, “cls declares cls” means “a
class declares an inner class”.

• E1 extends E2 means a type (i.e., class or interface) E1 inher-
its �elds and methods from another type E2. We use “sub”
and “super” to refer to E1 and E2.

• E1 implements E2 means a class E1 implements an inter-
face E2. In such scenarios, we also use “sub” and “super” to
separately refer to E1 and E2.

• E1 reads E2 means E1 references E2 for its value. For exam-
ple, “mtd reads �d” means “a method reads a �eld’s value”.

• E1 writes E2 means that E1 references E2 to store a value to
E2. For instance, “cts writes �d” means “a constructor writes
a value to a �eld”.

• E1 calls E2 means the de�nition of E1 calls a function (i.e.,
a method or constructor) E2. For instance, “�d calls mtd”
means “the de�nition statement of a �eld calls a method”.

• E1 initializes E2 means the de�nition of E1 calls a construc-
tor of class E2.

Among the nine relations, “contains” and “declares” serve as ways
to de�ne E2. “Imports” can be considered as both def and use of E2,
because an import declaration uses an entity de�ned by another
�le and de�nes the imported entity E2 for the current �le. The
other six relations show alternative ways to use entity E2. We
intentionally di�erentiated between the read and write accesses of
entities, as in certain scenarios (e.g., a final �eld) we handle these
accesses di�erently (see Section 3.3). Additionally, we modeled
two edges for each constructor invocation: “entity calls ctr” and
“entity initializes cls”. This is because constructors are di�erent from
general Javamethods in three ways. First, they share nameswith the
declaring classes. Second, even if a class A de�nes no constructor,
the default implicit constructor with no argument A() is always
callable. Third, any explicitly de�ned constructor replaces such an
implicit constructor. By tracking the relations of any constructor
caller with (1) the constructor declaration and (2) the declaring
class, we can comprehensively relate edits with their context.
Algorithm 1: Graph construction
Input :F , /* list of edited �les for a given branch */
Output :G , /* constructed PEG for a given branch */

1.1 G  ;; /* PEG to store a set of nodes and edges */
/* Step 1: Traverse each AST to extract all entities, and add nodes as well as
related contains/declares/imports edges to G. */

1.2 foreach f 2 F do
1.3 ast  parseAST (f ); /* parse each Java �le */
1.4 traverse(ast, G);

/* Step 2: Enumerate all entity nodes, map imported entities, and add the
other six types of edges as needed. */

1.5 foreach n 2 G do
1.6 if n.nodeType == cu then
1.7 mapImports(n, G);

1.8 else if n.nodeType == cls then
1.9 addExtendImpls(n, G);

1.10 else
1.11 // add reads/writes/calls/initializes edges as needed

addOtherEdges(n, G);

Algorithm 1 overviews our procedure of graph construction. This
algorithm consists of two steps. As shown by lines 1.2–1.4, Step 1
parses each edited Java �le in a given branch to create ASTs. It also
traverses ASTs to extract entities as well as contains/declares/imports-
relations between entities, in order to add nodes and edges to G.
Speci�cally, contains-edges are created based on the package decla-
rations in individual Java �les; declares-edges are created based on
the parent-child relations between entities in ASTs; imports-edges
are created based on the import declarations of each compilation
unit. Here, for each imported entity, B����� creates a dummy node
to hold the entity name, because Step 2 will map some of the entities
to their actual nodes parsed from Java �les.

Note that this step does not attempt to extract the other six
types of relations (e.g., reads) or add edges for those relations. The
reason is that before adding all nodes to G, B����� cannot al-
ways locate the target nodes of potential edges within the analysis
scope. To facilitate later addition of edges, this step also stores
necessary information into nodes, including the types and fully
quali�ed names of nodes, extends/implements-related info for classes,
read/write-accesses for �elds, and function calls by the statements
of �eld/method/constructor declarations.

Step 2 enumerates all nodes in G , to map dummy imports-targets
to nodes extracted via AST traversal, and to add extra edges based
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on the information stored by Step 1 (lines 1.5–1.11). Speci�cally,
if a given node n is a compilation unit, B����� scans the imports-
related dummy nodes created by Step 1, and maps those nodes to
nodes actually extracted from edited Java �les. If an imported entity
e is not de�ned by any analyzed Java �le, e.g., e is a class de�ned
by JDK or a third-party library, B����� keeps the dummy node as
a placeholder for e’s declaration. Otherwise, if e is de�ned by an
analyzed Java �le, B����� connects the dummy node with e’s node
via an imports-edge. Such special handling is due to the dual role
played by an import declaration: it uses an entity de�ned elsewhere
and de�nes an imported entity locally.

Alternatively, if n is a class, B����� scans the extends/implements-
related info to locate nodes corresponding to the extended class and
implemented interfaces, and adds edges accordingly. If n is a �eld,
method, or constructor, its declaration bodymay access �elds or call
functions (i.e., methods or constructors). B����� scans related AST
nodes to add reads/writes/calls/initializes edges. B����� adopts
the built-in JavaSymbolSolver of JavaParser to resolve type bindings
for names of called methods, and uses string matching to tentatively
resolve type bindings for �eld accesses.

When JavaSymbolSolver fails to resolve bindings for somemethod
calls like m(...), B����� implements a naïve approach to search
for any entity de�ned with that name, to recognize the inter-entity
relation. Namely, B����� searches for all methods de�ned with m,
and tentatively compares the methods’ parameter types as well as
parameter counts with that of m-call. If only one method matches
the method call, B����� considers this method’s node as the calls-
target. Otherwise, if multiple methods can match the call, B�����
does not link the caller to any method’s node for conservativeness.

3.2 Phase II: Graph Comparison
We refer to the PEGs created for distinct program versions with the
following notations: Gb , Gl , andGr . This phase compares Gl and
Gr separately withGb , to derive entity-related edits for each branch.
The phase has three steps: content-basedmatching, similarity-based
matching, and edit generation.

3.2.1 Content-Based Matching. When comparing two graphs, B��
���� �rst matches entity nodes purely based on their content.
Namely, for each node, B����� computes a unique ID—a hashcode
of the node type and fully quali�ed name (FQN). It then compares
hashcodes across graphs to match nodes. All node matches are then
recorded in a map M . For the PEGs in Figure 4, the comparison
between Gb and Gl results in a complete match between nodes,
as l did not modify any entity’s FQN. Meanwhile, the comparison
between Gb and Gr only reveals three pairs of node matches; it
cannot match the nodes ofC .m(...) across graphs because the right
branch r updated the method signature.

3.2.2 Similarity-BasedMatching. For all unmatched nodes between
two graphs, B����� further sorts nodes based on their types, and
compares same-typed nodes by their surrounding context. Specif-
ically for a node n, we use context to refer to the nodes that are
directly connected with n via edges. Given two same-typed nodes
n1 and n2 and their contextual node sets N1 and N2, we compute
the similarity as below:

Context_Sim =
N1 \ N2
N1 [ N2

(1)

Here both the set intersection and union are computed based on
the node matches recorded inM . Context_Sim varies within [0, 1].
The higher this value is, the more similar n1 is to n2.

For most node types (except methods, constructors, �elds, and
enum constants), B����� uses contextual similarity to decide how
similar two given nodes are to each other. If the score is above a
threshold (i.e., the golden ratio 0.618 [3]), we consider the two nodes
similar enough to match. We chose 0.618, because it is used by prior
work [56] and led to reasonably good results. When a node from
a graph successfully matches multiple nodes in the other graph,
B����� picks the one with the highest similarity score.

For the remaining four node types (i.e., methods, constructors,
�elds, and enum constants), contextual similarity is insu�cient to
match nodes accurately for two reasons. First, Context_Sim cannot
easily di�erentiate between entities within the same context. For
instance, when multiple �elds are located in the same class and all
initialized with null, they have identical context. Second, in addition
to FQNs, these entities also have separate code implementation,
such as statements inside a method body or expressions inside an
enum constant (i.e., public enum Planet{Mercury(3.303e+23, 2.4397e6),

...}). Such code implementation can help further di�erentiate the
same-context entities. Therefore, we de�ned three additional for-
mulas to compute the similarity scores for the four entity types:

Function_Sim = (Name_Sim +Context_Sim + Bod�_Sim)/3 (2)

F ield_Sim = (Name_Sim +T�pe_Sim + Expression_Sim)/3 (3)

EC_Sim = (Name_Sim +Context_Sim + Expression_Sim)/3 (4)

Formula (2) computes the similarity between method (or con-
structor) nodes as the mean value of Name_Sim, Context_Sim, and
Body_Sim. Here, Name_Sim is the string similarity derived from
the n-grams of both method names, where n = 3. Here, we set
n = 3 because the setting is used by prior work [56] and shows
great e�ectiveness in experiments.

Body_Sim describes how similar two method (or constructor)
bodies are to each other. We reused GumTree [39] to compute the
AST similarity between methods. GumTree takes in two ASTs, and
uses a greedy top-down algorithm as well as a bottom-up algorithm
to map AST nodes. Once all mappings are established, B�����
computes the similarity score by dividing the total number of node
matches with the node count of the larger AST.

Formula (3) computes the similarity between �eld nodes as the
mean value of Name_Sim, Type_Sim, and Expression_Sim. Di�erent
from functions, each �eld declaration consists of only one state-
ment with the typical format “Type fieldName [ = Expression]”. We
cannot naïvely compare the ASTs of �elds to measure similarity,
as any minor di�erence in these ASTs can signi�cantly impact the
measured value. Instead, we compute the string similarities of (1)
type names, (2) �eld names, and (3) (optionally) expressions, and
average them for the �nal result.

Formula (4) computes the similarity between enum constants
as the mean value of Name_Sim, Context_Sim, and Body_Sim. An
enum constant declaration has the typical format “Name [(Expression

{, Expression})]”.We compute the string similarities of (1) names and
(2) (optionally) expression lists, averaging them with the context
similarity of enum constants.
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Figure 5: The types of edits that B����� recognizes

At the end of this step, B����� updatesM by adding all nodes
matched based on similarities, and removing those nodes from the
unmatched sets. For the PEGs of Figure 4, this step detects the
mapping of C.m(...) between r and b, because the two methods
have the same name m, same context, and similar bodies.

3.2.3 Edit Generation. Based on the mapping results, this step (1)
recognizes �ve major categories of entity-related edits: node addi-
tion, node deletion, node update, edge addition, and edge deletion
(see Figure 5), and (2) links branches.

Edit Identi�cation. For each unmatched node between graphs,
B����� infers the entity addition or deletion by either branch. For
instance, between Gl and Gb , B����� considers an unmatched
node inGl to imply an entity addition, and derives an entity deletion
from any unmatched node inGb . It records add/delete operations in
the edited nodes to facilitate later data queries. For matched nodes,
B����� compares the code details to generate entity updates as
needed. For instance, if two matched nodes have distinct names,
B����� generates a rename operation and stores that edit inside the
branch node (i.e., the edited node in either Gl or Gr ). Similarly, if
two matched nodes have distinct modi�ers (e.g., public vs. private),
B����� creates a modi�er update. If two matched nodes have
distinct incoming edges, B����� compares edges and their types,
to record edge additions and edge deletions inside the branch node.
We denote all identi�ed edits by l and r with �l and �r .

Branch Linking. Both �l and �r are described with respect to
the common base b. However, if we simply use these edits to infer
potential build con�icts, we have to frequently map edited nodes
in one branch (e.g., l ) to b, and map those edits to the other branch
(e.g., r ) for con�ict reasoning. To avoid redirecting the mapping via
b, B����� links nodes betweenGl andGr based on their separate
mappings with Gb . Speci�cally, if an updated or unchanged node
nl 2 Gl is mapped to nb 2 Gb which is further mapped to nr 2 Gr ,
then B����� adds a direct link between nl and nr . For any node n
deleted by either branch, B����� copies n from the base version
to that branch’s graph and marks the copy as “deleted”. In this
way, B����� ensures that every node inGb can �nd a counterpart
in the other two graphs and adds direct links betweenGl and Gr .
Once all links are established, B����� can freely switch between
the branch graphs without revisitingGb anymore. We denote the
linked revised graphs with G 0l and G

0
r .

3.3 Phase III: Pattern Matching
Our research novelty mainly lies in this phase. We de�ned a pat-
tern set to comprehensively enumerate the possible cases where

Edits by one branch: Edits by the other branch:
Node addition
Node deletion
Node update
Edge addition
Edge deletion

Node addition
Node deletion
Node update
Edge addition
Edge deletion

Yes, E.g., the same field 
is added twice.

Do they conflict?

Yes, E.g., one branch 
removes a method M in 
interface I, and the other 
branch adds a class to 
implement I (including M).

…

…

…
No

node add vs. node addnode delete vs. node add

edge delete vs. edge delete
…

Figure 6: Our exploration procedure of con�ict patterns

the combination of branch edits can trigger build con�icts (Sec-
tion 3.3.1). Accordingly, B����� performs pattern matching on the
edits embedded in G 0l and G

0
r to detect con�icts (Section 3.3.2).

3.3.1 Pa�ern Definition. Our preliminary study in Section 2 shows
that when cross-branch edit combinations violate the def-use con-
straints between entities, build con�icts occur. Thus, we systemati-
cally explored all possible cross-branch combinations between the
�ve major edit types shown in Figure 5, assessed whether a build
error can occur for each combination, and de�ned con�ict patterns
for all recognized combinations that can trigger build errors.

Figure 6 visualizes our exploration process. We enumerated edit
combinations between branches to decide whether any combination
can trigger build errors. To recognize the con�icting scenarios
for every combination, we considered (1) all possible node/entity
types, (2) all possible ways to use an entity, (3) all possible update
operations applicable to any entity type (e.g., method renaming
or parameter-list changes), and (4) whether the co-applied edits
involve def/use of the same entity or distinct entities in the same
class hierarchy. For each enumerated scenario, we assessed whether
a build con�ict can occur based on the four def-use constraints
mentioned in Section 2. Namely, if a scenario violates any def-use
constraint, the edit combination triggers a build error, and thus
the combined edits con�ict with each other. Notice that we do not
explore the scenarios where combined edits trigger both textual and
build con�icts (e.g., both branches insert defs of the same method
at the same location). As current tools can detect textual con�icts,
our research focuses on the scenarios overlooked by prior work.

Since there is no prior knowledge of all possible con�icting
scenarios, we spent lots of time to enumerate edit combinations
and to identify con�icting scenarios. In particular, the �rst author
did the systematic exploration mentioned above to develop an
initial pattern set. Afterwards, all authors held multiple meetings
to discuss and iteratively improve the pattern set. We regularly
searched for real build con�icts in open-source projects to check
whether our pattern set covers them; if not, we added those missing
patterns to ensure comprehensiveness. In total, we spent six months
de�ning and re�ning con�ict patterns.

Table 4 summarizes the 57 con�ict patterns. As shown in the
table, the patterns are derived from six cross-branch edit combi-
nations. Most of these patterns (i.e., 30) describe the con�icting
scenarios where one branch updates the def of an entity (e.g., a
class or a method), and the other branch adds relevant entity uses.
The 30 patterns are di�erent in terms of the node types, �ner-
grained update categories (e.g., modi�er changes vs. rename), and
edge types. Another 11 patterns are about the scenarios where
one branch updates an entity, and the other branch adds an entity
related to the old version of updated entity. Nine patterns are about
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Table 4: The 57 con�ict patterns we identi�ed
Edit Combination # of Patterns Exemplar Pattern Description of The Exemplar Con�ict Pattern
Node update vs. Edge addition 30 Field: change modi�er to final vs. add

write access
One branch makes a �eld final, while the other branch adds code to write a value
to the �eld.

Node update vs. Node addition 11 Class: change a class to an abstract one
vs. add sub class

One branch revises a concrete class to be an abstract one, and adds abstract method
declarations; the other branch creates a new class to extend the original class,
without overriding the abstract methods or declaring itself to be abstract.

Node deletion vs. Edge addition 9 Method: remove def vs. add use One branch removes the de�nition of a Java method, while the other branch adds
invocation(s) of that method.

Node addition vs. Node addi-
tion

4 Field: add def vs. add def One branch adds a �eld in class A, while the other branch inserts the same �eld at
a di�erent program location in A.

Node addition vs. Edge addition 2 Class: add method def in super vs.
change a class to extend the super class

One branch adds a method foo() in a class A; the other branch updates class B to
extend A. B has an existing de�nition of foo(), whose return type or modi�ers are
inconsistent with the super method.

Node deletion vs. Node addition 1 Interface: remove method def vs. add
class to implement the super

One branch removes method foo() from an interface I; the other branch creates a
class to implement I and annotates its implementation for foo() with @Override.

Table 5: Utility functions de�ned to query graphsG 0l andG 0r
Category Functions
Common getName(), getNewRefs(...), getParent(),

hasModifierChanged(...), isAbstract(),
isAdded(), isRenamed(), isRemoved(),
otherBranch().

Function-speci�c getNewExceptions(), getOverridingMethods(),
hasExceptionChanged(), hasParamChanged(),
hasReturnChanged(), isOverridden()

Type-speci�c getFields(), getImports(), getMethods(),
hasPackageChanged(), isNewlyExtended(),
isNewlyImplemented()

Field-speci�c hasTypeChanged()

the scenarios where one branch deletes an entity, and the other
branch adds reference(s) to the original entity. The remaining seven
patterns correspond to another three edit combinations. Due to the
space limit, Table 4 only shows a subset of all patterns in B�����.
These exemplar patterns do not overlap with the ones shown in
Table 2, although both sets are covered by B�����. Please refer to
our open-sourced dataset for more details of the patterns.

3.3.2 Matcher Implementation. We �rst de�ned reusable utility
functions to query graphs for various edits on nodes or edges.
Based on those utility functions, we created a set of matchers to
match the edits embedded inG 0l and G

0
r with known patterns. As

shown in Table 5, there are four kinds of utility functions: common,
function-speci�c, type-speci�c, and �eld-speci�c. Common func-
tions can be invoked on almost all entity types. Function-speci�c
ones can be invoked on two specialized entity types: methods and
constructors. Type-speci�c functions are callable on two entity
types: classes and interfaces. Field-speci�c means that the func-
tion hasTypeChanged() is only invokable on �eld entities.

The utility functions either (1) query attributes of any given
entity, (2) check for any entity’s editing status, or (3) retrieve edit
details. For instance, if getFields() is called on a class, the return
value is a list of �elds de�ned by that class. If hasParamChanged() is
called on a method, a boolean value is returned to imply whether
the method’s parameter list is updated. If getNewRefs(...) is called
on an entity e , the return value is a list of entities that have newly
add edges pointing to e . When otherBranch() is called on an entity
in one graph (e.g., G 0l ), the entity’s counterpart in the other graph
(e.g., G 0r ) is returned for further comparison.

We successfully implemented 57 matchers for the identi�ed pat-
terns using the above utility functions. Algorithm 2 presents the
pseudocode of one exemplar matcher in B�����. For instance, to

identify all con�icts of type “Method: remove def vs. add use”, the
matcher enumerates all method nodes in both graphs. For each
enumerated nodem, the matcher checks whether the node is la-
beled “deleted” while its counterpart in the other graph remains
unchanged. If so, the matcher further checks whether the coun-
terpart has any use-typed edge (e.g., “calls”) added. A con�ict is
reported wheneverm satis�es all the above conditions.

Algorithm 2: The matcher that identi�es con�icts of type
“Method: remove def vs. add use”

2.1 conf l icts  ;;
2.2 foreach m in allMethods do
2.3 if m.isRemoved() && m.otherBranch().noChange then
2.4 if m.otherBranch().getNewRefs() != ; then
2.5 // report con�ict details

4 EVALUATION
To assess the e�ectiveness of B�����, we explored the following
three research questions (RQs):

• RQ1: Can B����� identify various con�icts correctly?
• RQ2: How e�ective B����� is in identifying real-world
build con�icts?

• RQ3: How e�ectively does B����� work when the auto-
matic build is inapplicable to detect con�icts?

The following subsections will describe the datasets, evaluation
metrics, and experiment results. Our evaluation was conducted on
a computer with Intel (R) Core (TM) i5-4210U CPU @2.40GHz, 8
GB memory, and Windows 8 OS.

4.1 Datasets
There is no publicly available dataset of build con�icts in Java
programs, so we created three datasets for tool evaluation.

4.1.1 Dataset 1. This dataset contains 57 merging scenarios we
manually crafted, to assess the implementation status of B�����’s
pattern-matching logic (RQ1). Each scenario has exactly one con-
�ict, corresponding to one of the patterns B����� handles. We
prepared three program versions for each scenario: b, l , and r , and
recorded the con�ict detail as ground truth.

4.1.2 Dataset 2. This dataset contains 55 real merging scenar-
ios, among which 81 con�icts triggered build errors. We used this
dataset to assess how well B����� performs when identifying real
build con�icts (RQ2). We found these con�icts and labeled them in
the following way. First, we ranked Java projects on GitHub based
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Table 6: Distribution of the 81 con�icts in Dataset 2
Con�ict Type # of Con-

�icts
Class: add method def in super vs. add sub class 2
Class: change a method’s parameter list in super vs. add sub class 2
Class: change a method’s return type in super vs. add sub class 1
Class: remove def vs. add use 9
Class: rename def vs. add use 7
Constructor: change the parameter list vs. add use 5
Field: add def vs. add def 3
Field: change a �eld’s type vs. add use 1
Field: remove def vs. add use 4
Import: remove def vs. add use 7
Interface: add method def in super vs. add class to implement the
super 6

Interface: change a class to implement the super vs change a
method’s return type in the class 9

Interface: change a method’s parameter list in super vs. add class to
implement the super 2

Interface: remove method def in super vs. add class to implement
the super 1

Interface: rename a method in super vs. add class to implement the
super 1

Local Variable: move def into an if-block vs. split that if-block
into two 2

Method: change the parameter list vs. add use 3
Method: change the return type vs. add use 1
Method: remove def vs. add use 8
Method: rename def vs. add use 5
Package: rename def vs. add use 2

on their popularity (i.e., star counts), and then cloned repositories
for the top 1,000 projects. Next, we only kept the projects that can be
built with Maven [7], Ant [26], or Gradle [4], as we relied on these
build tools to compile each naïvely merged versionAm . Afterwards,
we removed tutorial projects as they are not real Java applications
and may not show real-world merging scenarios. Starting with the
re�ned 209 repositories, we identi�ed 117,218 merging scenarios by
searching for any commit with two parent/predecessor commits.

We processed each merging scenario in three steps to create the
ground truth of real build con�icts. Step 1 applies git-merge to l and
r to generate a text-based merged version Am . If Am contains any
textual con�ict, we discard the scenario. Otherwise, if Am has zero
textual con�ict, in Step 2, we try to build l , r , and Am . If both l and
r build successfully butAm does not, we conclude that the scenario
has at least one build con�ict. In Step 3, for each revealed build error
in Am , we use the error as guidance, analyze program di�erences
among versions (b, l , r ,Am ,m), look for edited code responsible for
that error, and label the scenario if we �nd con�icting branch edits
in Java code as the root cause. In this procedure, we found 15,886
scenarios to have textual con�icts and 55 scenarios to have 81 build
con�icts. Table 6 shows the distribution of 81 build con�icts based
on their types. As shown in the table, the build con�icts are diverse,
belonging to 21 types, 20 of which are in our 57-pattern set.

4.1.3 Dataset 3. This dataset has 13 real merging scenarios, with
17 con�icts found via manual inspection. We used this dataset to
assess how e�ectively B�����works whenmerging scenarios have
both textual and build con�icts (RQ3). Notice that in such scenarios,
the Am produced by git-merge has textual con�icts, so automatic
build is inapplicable. Developers must manually resolve all textual
con�icts before using automatic build to �nd build con�icts. We
envision B����� to make up for the limitations of git-merge and
automatic build. In other words, the application of both B�����

Table 7: Distribution of the 17 con�icts in Dataset 3
Con�ict Type # of Con�icts
Class: rename def vs. add use 2
Constructor: change the parameter list vs. add use 2
Field: remove def vs. add use 1
Import: remove def vs. add use 4
Interface: change a method’s return type in super vs. add class
to implement the super 2

Interface: rename def vs. add use 1
Local Variable: add def vs. add def 1
Method: remove def vs. add use 1
Method: rename vs. add use 3

and git-merge can give developers a global overview of the co-
existence between textual and build con�icts, before developers
attempt to resolve any con�ict. The global view can give developers
more comprehensive information, faciltating them to make better
decisions on how to resolve individual con�icts.

To �nd con�icts manually, we randomly picked nine popular
open-source Java repositories: Activiti [10], pebble [19], fastjson [13],
vectorz [23], nuxeo [18], wild�y [25], webmagic [24], truth [22], and
elasticsearch [12]. We �ltered out the scenarios where no textual
con�ict is reported by git-merge. Among the remaining scenarios,
we manually compared all versions involved: l , r , b, m, and Am .
Based on our understanding of program context and the semantics
of branch edits, we speculated the semantics of naïve edit combina-
tion across branches, analyzed the potential build errors that can be
triggered, and identi�ed con�icting edits. For instance, in a merging
scenario of fastjson [1], we observed that l adds a reference to an
imported class GenericArrayType, and r removes that class import
from the same �le. Thus, we speculated the naïve integration of
branch edits to cause a broken def-use link for GenericArrayType. Our
further examination ofm con�rmed the speculation, as developers
added back the removed class import inm. In this way, we found a
build con�ict. Table 7 shows all con�icts we manually identi�ed.

Among the 3 datasets, Dataset 1 covers the most con�ict types
(i.e., 57), as we crafted the synthetic con�icts to expose B����� to
diverse merging scenarios. Dataset 2 contains the most con�icts
(i.e., 81). Dataset 3 has the fewest con�icts (i.e., 17) and covers only 9
types, because manually detecting con�icts is very time-consuming.
To ensure that we collected con�icts without bias towards our tool,
we had one author independently mine software repositories for
Datasets 2&3, and had another author separately create our tool.
Once the datasets were created, three authors inspected all included
con�icts to ensure the correctness of ground truth.

4.2 Metrics
The following metrics are used to evaluate con�ict detectors.

Precision (P) measures among all reports generated by a detec-
tor, how many of them are true positives:

P =
# of correct reports

Total # of reported con�icts

For Dataset 1, we used the labeled data to calculate precision auto-
matically. Suppose that we have a set of labeled con�icts S1, and the
set of reported con�icts is S2. We use |S1\S2 |/|S2 | to compute preci-
sion. The labeled ground truth in Datasets 2 & 3 can be incomplete,
due to the limitation of compiler-based detection and manual detec-
tion. Thus, in addition to |S1 \ S2 |, we also manually checked the
reported con�icts not covered by ground truth, to reveal additional
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Table 8: The merging scenario where B����� missed two
build con�icts [8]

Changes in l Changes in r
- if((api != null)...) { if ((api != null)...){
+ final boolean readable =

(api != null) ... ;
+ if(readable) {

... ...
String produces = ... ; String produces = ... ;
String consumes = ... ; String consumes = ... ;
... // code_block_1 ... // code_block_1

+ }
+ if (api == null ||

readable) {
... // code_block_2 ... // code_block_2

+ String[] apiConsumes = consumes;
+ String[] apiProduces = produces;

correct reports and compute precision accordingly. For each report
not matching the ground truth, our manual checking compares b,
l , r , andm. We consider a reported con�ict to be correct if (1) the
branch edits are not naïvely integrated intom, (2)m modi�es part
of the branch edits, and (3) the modi�cation can �x any build error
triggered by a naïve integration of branch edits.

Recall (R) measures among all known true positives, how many
of them are reported by a detector:

R =
# of retrieved con�icts

Total # of known con�icts

We relied on the labeled data in all datasets to compute recall.
Suppose that the labeled con�ict set is S1, and the reported con�ict
set is S2. We use |S1 \ S2 |/|S1 | to compute recall.

F score (F) is the harmonic mean between precision and recall.
It re�ects the trade-o� between those two metrics.

F =
2 ⇥ P ⇥ R
P + R

.

All metrics have values within [0, 1]: the higher value, the better.

4.3 Experiment Results on Dataset 1
WeappliedB����� to all the syntheticmerging scenarios inDataset
1, and checked if it detects all labeled con�icts correctly. The mea-
sured precision, recall, and F-score rates are all 100%. By covering
all 57 patterns, this dataset enabled us to assess B�����’s capability
of handling distinct build con�icts.
Finding 1: B����� identi�ed 57 types of con�icts correctly, show-
ing great capability of handling diverse con�icting scenarios.

4.4 Experiment Results on Dataset 2
When applied to Dataset 2, B����� reported 79 con�icts, 77 of
which exist in ground truth. Our manual inspection shows that the
remaining two con�icts are also real (i.e., true positives). B�����
missed four known con�icts in the labeled dataset. Therefore, B��
���� achieved 100% precision (79/79), 95% recall (77/81), and 97%
F-score. In one scenario, B����� was able to identify two more
con�icts than compiler-based con�ict detection. Thanks to its usage
of static analysis, B����� did not get stuck with the compilation
errors resulting from initially found con�icts.

We manually inspected the four false negatives—the con�icts
missed by B�����, and found two reasons. First, con�icts were
concerning the def and use of local variables. A program usually
has a lot more local variables (LVs) than entities. Thus, B�����

Table 9: Themerging scenario where B�����missed a build
con�ict related to an import-declaration [9]

Changes in l Changes in r
- import java.net.*; import java.net.*;
... ...

+ } catch (SocketTimeoutException ste) {
+ throw ste;

does not model LVs in graphs for e�ciency, nor does it detect LV-
related con�icts. As shown in Table 8, a merging scenario has two
con�icts separately related to variables produces and consumes. The
con�icts happened because l split an if-statement into two: the
�rst if-statement de�nes both variables; the second one contains
code_block_2, which does not use any of the variables. Meanwhile,
r inserted usage of both variables at the end of code_block_2. The
naïve integration of branch edits caused the newly added variable
usage to be out of the scope of variable de�nitions.

The other two false negatives were related to import-declarations.
As shown in Table 9, while l removes the import-declaration for
classes java.net.*, r adds a ref to the class java.net.SocketTimeoutException.
Because there is no explicit mapping between the removed classes
represented by wildcard “*” and the added class usage, B�����
could not identify the build con�ict. In the future, we plan to im-
prove B����� to analyze software libraries, better interpret the
meaning of wildcards, and recognize such con�icts.
Finding 2: On Dataset 2, B����� detected con�icts with 100%
precision, 95% recall, and 97% F-score. It means that B����� can
identify build con�icts with high precision and high recall.

As a software merge tool, IntelliMerge [56] creates program ele-
ment graphs for b, l , and r . It compares graphs to detect refactoring
operations, which help improve the results of element matching
and software merge. IntelliMerge seems to be able to handle build
con�icts when the con�icting edits are relevant to refactorings
(e.g., entity renaming or removal). Because B����� has a similar
approach design to IntelliMerge in terms of graph construction
and graph comparison, we were curious how B����� compares
with IntelliMerge when detecting build con�icts. Therefore, we
also applied IntelliMerge to Dataset 2. Our experiment shows that
IntelliMerge only detected and resolved four build con�icts, all of
which were of the type Import: remove def vs. add use. Our observa-
tion means that IntelliMerge rarely detects build con�icts. B�����
outperforms IntelliMerge by identifying a lot more build con�icts.

Discussion. B����� is di�erent from IntelliMerge in terms of
the research objective, approach design, and implementation. In-
telliMerge aims at detecting textual con�icts more accurately than
text-based merge, while B����� intends to detect build con�icts via
static analysis, without using automatic build. In terms of approach
design, IntelliMerge textually compares the edits that are simulta-
neously applied by distinct branches to the same or aligned entities.
However, B����� compares the edits simultaneously applied by
distinct branches to di�erent but related entities. Such an edit com-
parison is far more complicated than text-based comparison, as it
requires for extensive semantic reasoning. Thus, B����� novelly
de�nes a set of 57 patterns to represent the scenarios where co-
applied edits can introduce build con�icts. It also de�nes 57 novel
pattern-matchers to reason about the semantics of edits.
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In terms of implementation, as IntelliMerge focuses on entity
alignment, it does not carefully model or align edges as what
B����� does. For instance, IntelliMerge provides insu�cient or
no support for modeling (1) calls/initializes-edges introduced by
this-expressions (e.g., this(...)) and �eld declarations (e.g., A a =

B.foo(...)), (2) imports-edges pointing to the entities de�ned by JDK
or third-party libraries (e.g., import java.util.List), (3) reads-edges
pointing to enum constants. B����� models all these edges.

As mentioned in Section 1, compiler-based tools (i.e., Crystal
and WeCode) detect build con�icts via compilation instead of static
analysis, so they report only build errors instead of the responsible
con�icting edits. Additionally, both tools are unavailable, so we
were unable to run either tool for the empirical comparison with
B�����. However, our experiment with Dataset 2 can still simulate
an indirect comparison between compiler-based tools and B�����.
Speci�cally, because all 81 con�icts were manually located based
on the build errors in Am , theoretically speaking, compiler-based
tools can report those build errors as hints of the 81 con�icts. As
shown by our experiment results, B����� independently reported
79 con�icts, with 2 of the con�icts not implied by any build error.
Our observations indicate that B����� complements compiler-
based tools in two ways: (1) it pinpoints build con�icts; (2) it can
reveal con�icts not implied by any observed build errors.
Finding 3: On Dataset 2, B����� detected a lot more build con-
�icts than IntelliMerge (79 vs. 4). B����� complements Intel-
liMerge by o�ering a better support for build-con�ict detection.

4.5 Experiment Results on Dataset 3
For Dataset 3, B����� reported 19 con�icts, 15 of which match
the ground truth. Our manual inspection shows that the remaining
four con�icts are also true positives. B����� missed two known
con�icts. The �rst con�ict was originally introduced by duplicated
additions of the same local variable; the second one was similar to
the con�ict shown in Table 9. Because B����� does not track local
variables or interpret wildcards used in import-declarations, it could
not recognize the con�icts. In summary, B����� achieved 100%
precision (19/19), 88% recall (15/17), and 94% F-score.

Table 10 shows the time cost of B����� when it was applied to
Dataset 3. The three columns under # of Analyzed Files separately
count the edit-relevant Java �les in b, l , and r . The columns under #
of Analyzed Entities count the total number of entities included
in those �les. B�����’s time cost often increases with the number
of analyzed �les or entities because given a scenario, B����� spent
over 99% of execution time on PEG construction and comparison. As
there are more entities and more inter-entity relations, the graphs
can become more complex, PEG comparison can become more
time-consuming and thus B�����’s runtime overhead grows.

This experiment simulates another indirect comparison between
B����� and compiler-based tools. Speci�cally in Dataset 3, because
textual con�icts coexist with build con�icts in each merging sce-
nario, none of the automatically merged versions Am is compilable.
Automatic build is inapplicable and compiler-based tools cannot
report build errors for any of the known 17 con�icts. Our results
show thatB����� independently detected 15 of the 17 con�icts, and
found 4 extra con�icts not covered by the ground truth. These ob-
servations imply that B����� complements compiler-based tools.

Table 10: The time cost of B����� when it was applied to
the 13 merging scenarios in Dataset 3

Idx # of Analyzed Files # of Analyzed Entities Time Cost
b l r b l r (minute)

1 196 198 207 4,817 4,840 4,933 11.8
2 43 55 49 2,462 2,694 2,503 2.8
3 158 167 158 5,804 5,952 5,797 21.6
4 137 141 137 2,391 2,520 2,396 3.2
5 10 11 12 1,281 1,323 1,302 1.5
6 21 20 22 631 624 639 0.3
7 83 91 86 1,596 1,770 1,640 1.4
8 9 13 27 214 315 524 0.1
9 49 58 51 1,683 1,790 1,713 0.9
10 9 10 9 951 971 959 0.4
11 11 12 13 150 161 164 0.1
12 137 145 132 4,345 4,516 4,220 4.6
13 125 137 125 4,410 4,746 4,423 7.5

Finding 4: On Dataset 3, B����� detected con�icts with 100%
precision, 88% recall, and 94% F-score. It complements compiler-
based tools (e.g., Crystal) in two ways: reporting build con�icts
instead of build errors and bypassing automatic build.

5 THREATS TO VALIDITY
Threats to External Validity. The evaluation is based on 155 la-

beled con�icts, so our observations may not generalize well to
con�icts outside the evaluation datasets. We have spent one year
collecting data of build con�icts, so the current datasets are the
best options we have for tool evaluation now. The major di�culty
of creating large-scale datasets is that compiler-based con�ict de-
tection has great limitations when being applied to open-source
repositories: they do not work when branches-to-merge have tex-
tual con�icts and most con�icting merging scenarios have textual
con�icts (see Section 4.1.2). In the future, we plan to expand the
evaluation datasets to make our �ndings more representative.

Threats to Construct Validity. We de�ned 57 con�ict types based
on (1) the observations of real con�icts and (2) the generalization
of observations. B����� shares the same limitation with existing
static analysis-based tools, for being sound but incomplete. How-
ever, as a complementary tool to compiler-based tools, B�����
can help developers better understand the merging scenarios when
both build and textual con�icts exist. Its high detection precision
implies that the tool can always report con�icts reliably. According
to our experience, the 57 types cover all observed con�icts except
for those related to (1) local variables or (2) wildcard usage.

Threats to Internal Validity. B����� uses JavaSymbolSolver to
resolve identi�er bindings. When JavaSymbolSolver fails, B�����
implements a naïve approach that applies string matching to func-
tion names and parameter lists, in order to infer the caller-callee
relations with best e�ort. Similarly, B����� also applies string
matching to resolve type bindings for �eld accesses. Although this
approach does not guarantee to always successfully resolve bind-
ings, it has worked well so far.

When matching nodes between graphs, B����� reuses the pa-
rameter settings of existing work [56] to decide whether two nodes
are similar enough to match. These settings include the similarity
threshold 0.618 and the 3-grams used for string partition. We did
not explore di�erent value settings to �nd the best con�guration.
Intuitively, as the values increase, it becomes harder for B����� to
�nd matches between nodes, while the matched nodes are often
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very similar to each other. Meanwhile, as the parameter values
decrease, it becomes easier for B����� to match nodes, although
the quality of matches may su�er. As prior work shows that both
parameter settings lead to reasonably good results, we reused the
settings and also observed them to work well in B�����.

6 RELATEDWORK
Our research is related to automated software merge, awareness-
raising tools, and empirical studies on merge con�icts.

6.1 Automated Software Merge
Tools were built to detect or resolve merge con�icts [6, 28, 29, 33–
35, 37, 40, 44, 48, 56, 57, 62]. For instance, FSTMerge [6, 29, 35] parses
code for ASTs, and matches nodes between l and r purely based on
the class or method signatures; it then integrates the edits inside
each pair of matched methods via textual merge. JDime [28] also
matches Java methods and classes based on syntax trees. However,
unlike FSTMerge, JDime merges edits inside methods based on
ASTs. It can report con�icts more precisely than FSTMerge [36].
AutoMerge [62] also detects con�icts based on AST comparison.
However, going beyond con�ict detection, AutoMerge attempts
to resolve con�icts by proposing alternative strategies to merge
l and r , with each strategy integrating branch edits in a distinct
way. DeepMerge [37] uses deep learning to resolve textual con�icts.
None of the tools mentioned above detect higher-order con�icts.

SafeMerge [57] takes in b, l , r , andm, for a given merging scean-
rio. It statically infers the relational postconditions of distinct ver-
sions to model program semantics. By comparing postconditions,
SafeMerge decides whetherm is free of con�icts, i.e., without in-
troducing new semantics nonexistent in l or r . SafeMerge cannot
e�ectively detect build con�icts, as it does not relate edits applied to
distinct entities for semantic reasoning. MrgBldBrkFixer [58] com-
pares the ASTs of C++ �les. It detects and resolves the build con�icts
related to (1) renamed entities (e.g., class renaming), and (2) changes
to the parameter/return types of functions. Wuensche et al. also cre-
ated a build-con�ict detector for C++ code [59]. The tool statically
analyzes call graphs to reveal three causes for con�icts: (1) changes
to method signatures (i.e., modi�ed names/arguments/return val-
ues) and complete entity removals, (2) missing #include-statements,
and (3) duplicate de�nitions of functions or variables.

Our pattern set is more comprehensive than the con�ict types
considered by prior build-con�ict detectors. As with prior work,
B�����models the calls, imports, declares, and contains relations be-
tween entities to capture con�icts related to (1) renamed or removed
entities, (2) duplicated entities, (3) signature changes of functions,
and (4) import declarations. However, di�erent from prior work,
B����� also models �ve other types of inter-entity relations (see
Section 3) to capture con�icts related to edited class inheritance,
interface implementation, class initialization, and �eld access.

6.2 Awareness-Raising Tools
Several tools [30, 33, 34, 40, 42, 43, 46, 54] were created to monitor
and compare programmers’ development activities, and to improve
team activity awareness. For instance, Palantír [54] informs a de-
veloper of the artifacts changed by other developers, calculates
the severity of those changes, and visualizes the information. Cas-
sandra [42] is a con�ict minimization technique. It observes the

super-sub and caller-callee dependencies between program entities.
By treating those dependencies as constraints on �le-editing tasks,
Cassandra identi�es tasks that will con�ict when performed in
parallel. It then schedules tasks to recommend con�ict-free devel-
opment paths. None of these tools localize merge con�icts.

6.3 Empirical Studies on Merge Con�icts
Some studies were conducted to characterize the relationship be-
tween merge con�icts and developers’ coding activities [27, 38, 45,
47, 50, 52]. For instance, Leßenich et al. surveyed 41 developers
and identi�ed 7 potential indicators (e.g., # of changed �les in both
branches) for merge con�icts [45]. Mahmoudi et al. observed that
certain refactoring types (e.g., Extract Method) are more related to
con�icts [47]. Other studies characterize the root causes or resolu-
tions of con�icts [2, 32, 51, 53, 55, 60]. Speci�cally, Shen et al. [55]
manually inspected three types of con�icts: textual, build, and test
con�icts. They reported that higher-order con�icts are hard to de-
tect and resolve, although existing tools mainly focus on textual
con�icts. Inspired by the study by Shen et al., we developed B�����
to reduce the technical barrier of detecting build con�icts.

7 CONCLUSION
Software merge is complex and time-consuming. Although several
tools can detect textual con�icts, we found few tools to detect build
con�icts. Our preliminary study with build con�icts reveals the
typical constraints that con�ict-free software merge should satisfy.
Such observations motivated us to create B�����. Our evaluation
with three datasets shows exciting results. B����� detected con-
�icts with high precision and high recall. Although it missed some
con�icts detected by automatic build or manual inspection, it man-
aged to reveal more con�icts when (1) textual and build con�icts
coexist, or (2) compiler-based con�ict detection is stuck with the
build errors triggered by initially revealed con�icts. B����� com-
plements existing tools due to its usage of static analysis and the
comprehensive pattern set of con�icts.

We made three major contributions. First, we de�ned a novel
pattern set to enumerate 57 types of con�ict-triggering edit combi-
nation. This set is based on our preliminary study, the systematic
exploration of edit combinations, and frequent crawling for real
build con�icts. The process is very challenging, demanding signif-
icant creativity and brainstorming among authors. We spent six
months de�ning and re�ning those patterns. Second, B����� is
the �rst static analysis-based tool that detects Java build con�icts
e�ectively. Third, we evaluated B����� using three datasets. All
con�icts in Datasets 2&3 are from open-source repositories. We
spent one year creating the datasets. No prior work provides such
comprehensive datasets of real build con�icts.

The approach design (including the 57 patterns) of B�����
can be reimplemented for di�erent object-oriented programming
languages (e.g., C#) to detect con�icts in non-Java projects. In the
future, we will extend B����� to also resolve build con�icts.
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