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In most direct detection experiments, the free nuclear recoil description of dark matter scattering breaks
down for masses ≲100 MeV, or when the recoil energy is comparable to a few times the typical phonon
energy For dark matter lighter than 1 MeV, scattering via excitation of a single phonon dominates and has
been computed previously, but for the intermediate mass range or higher detector thresholds, multiphonon
processes dominate. We perform the first calculation of the scattering rate via multiphonon production for
the entire keV-GeV dark matter mass range, assuming a harmonic crystal target. We provide an analytic
description that connects the single phonon, multiphonon, and the nuclear recoil regimes. Our results are
implemented in the public package DARKELF.
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I. INTRODUCTION

The effort to directly detect dark matter (DM) is entering
the sub-GeV mass regime, thanks to experimental innova-
tions which allow for ever lower energy thresholds. For kine-
matic reasons, this regime is especially challenging for DM
which primarily couples to hadronic matter. For a DM mass
(mχ) below 1 GeV, the energy that the DM can deposit in an
elastic collision with a nucleus of mass mN is bounded by

EN ≤
2v2m2

χ

mN
: ð1Þ

For mχ ≪ mN this is only a small fraction of the total
availableDMkinetic energy, which canmake it very difficult
to detect. This problem can be mitigated to some extent
by choosing light element targets such as H [1], He [2–4],
or diamond [5] and by pushing for lower thresholds.
Alternatively, one may leverage inelastic processes such
as the Migdal effect [6–8] or bremsstrahlung [9]. Inelastic
processes occur at a substantially lower rate but are not
subject to the constraint in (1) and can also yield signals that
are more easily detected than a nuclear recoil, such as
electronic excitations, ionizations or x-rays.Which approach
is preferable depends on the characteristics of the detector.

At sufficiently low energy and momentum scales, DM-
nucleus scattering is also not subject to (1) because atom-
atom interactions become important. In particular, the
relevant excitations in a crystal target are phonons instead
of elastic nuclear recoils. For mχ ≲MeV, the momentum
transfer from DM scattering corresponds to wavelengths
comparable or larger than the interatomic spacing of a
typical target. In this regime, the dominant process will be
coherent scattering off multiple atoms, with creation of a
single phonon. For crystalline targets with phonon energies
as high as ∼100 meV, the energy deposited from DM can
be well above the naive estimate in (1). Single phonon
excitation has been studied extensively for sub-MeV dark
matter, where numerical and analytic calculations by
different groups are in good agreement [10–17]. These
calculations have also been extended to diphonon produc-
tion from sub-MeV dark matter1 [25] as well as to single
phonon production from MeV-GeV dark matter by includ-
ing Umklapp processes [12,14]. However, so far there has
not been a complete description of DM scattering for
intermediate energy and momentum transfers, where multi-
phonon processes are expected to dominate.
In this work, we develop an analytic treatment of DM

scattering that interpolates between the single phonon and
nuclear recoil regimes. The relevant approximations are set
primarily by the momentum transfer q. For single phonon
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1Analogous calculations were performed for superfluid He
[18–24], for which diphonon production is the leading observable
process for mχ ≲ 1 MeV.
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excitations and q < 2π=a, where a is typical atomic lattice
spacing, we use a long-wavelength approximation used
earlier in the literature [10,11,13,25]. For q > 2π=a, we
employ the incoherent approximation, which neglects
interference effects between the response of neighboring
atoms. This allows us to organize the calculation as a
systematic expansion in the number of final state phonons,
where each additional phonon comes with a factor of
q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
. Here, md and ω̄d are the mass and average

oscillation frequency of the atom in the position indexed by
d. For q <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
it is numerically practical to compute

the rate order-by-order in terms of the phonon density of
states of the material. For q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
, scattering into

many phonons dominates and the perturbation series
requires increasingly large orders in q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
to con-

verge. It can however be resummed by making use of the
impulse approximation, which in turn smoothly matches
onto the free nuclear recoil regime. A similar expansion in
number of modes has been performed previously for the
integrable toy model that is the harmonic oscillator [26].
Here we have generalized the approach to a harmonic
crystal, analogous to the procedure followed in [27,28], in
calculations of the Migdal effect and x-ray backgrounds,
respectively. Figure 1 illustrates our results from applying
these approximations. All of our calculations are imple-
mented as part of the DARKELF public code [29].2

The remainder of this paper is organized as follows: In
Sec. II we introduce the dynamic structure factor, which
captures the material dependence of the DM scattering
cross section, and motivate the incoherent approximation
for the structure factor. In Sec. III, we describe our analytic
approximations in detail across the different regimes in
energy and momentum transfer. We perform checks on our
use of the incoherent approximation by comparing with
previous calculations for single-phonon production and

analytic calculations for diphonon production. Our results
for GaAs are discussed in detail in Sec. IVand we conclude
in Sec. V. Appendix A contains the formulas for diphonon
production and Appendix B provides details on the impulse
approximation. The implementation in DARKELF is docu-
mented in Appendix C. We further provide numerical
results for Ge, Si, and diamond in Appendix D.

II. DYNAMIC STRUCTURE FACTOR

Our starting point will be a general potential for spin-
independent DM-nucleus interactions, although the for-
malism below could also be applied to spin-dependent
interactions. For a DM particle of mass mχ incident on a
crystal with N unit cells and n ions per unit cell, the
potential in Fourier space is given by

ṼðqÞ ¼
2πbp
μχ

F̃ðqÞ
XN

l

Xn

d¼1

fldeiq·rld : ð2Þ

Here, we sum over theN unit cells, labeled by lattice vectors
l, and atoms within the unit cell, labeled with the index d,
such that all atoms in the crystal with positions rld are
summedover. TheDM-proton scattering lengthbp is defined
by the DM-proton scattering cross section σp ≡ 4πb2p at
some referencemomentum, andμχ is theDM-proton reduced
mass.We first consider a general coupling strength fld of the
nucleus labeled byl; d relative to that of a single proton. fld
is specified for various interactions in Sec. IV, such as
nucleon number for scalarmediators and the effective electric
charge for scattering via a dark photon mediator. In the latter
case fld is q dependent when accounting for screening
effects.
We consider two form factors in (2) representing limiting

cases of interactions: scattering via a heavy mediator, where
F̃ðqÞ ¼ 1; and scattering via a massless mediator, where
F̃ðqÞ ¼ q20=q

2 with a model-dependent reference momen-
tum q0.
Collecting the overall factor 2πbpF̃ðqÞ=μχ, we define the

differential cross section as

dσ
d3qdω

¼
b2p
μ2χ

1

v
Ωc

2π
jF̃ðqÞj2Sðq;ωÞδðω − ωqÞ ð3Þ

where v is the initial velocity of the dark matter (incident on
a target at rest), Ωc ¼ V=N is the volume of the unit cell in
the crystal, and ωq ¼ q · v − q2=2mχ is the kinematic
constraint on the momentum and energy transfers to the
crystal q and ω. We have in turn also defined the dynamic
structure factor

Sðq;ωÞ≡ 2π
V

X

f

""""
XN

l

Xn

d¼1

hΦfjfldeiq·rld j0i
""""
2

δðEf − ωÞ:

ð4Þ

FIG. 1. Cross sections needed for 3 events=kg-year for various
target materials and threshold energies. A massive hadrophilic
mediator is assumed.

2https://github.com/tongylin/DarkELF.
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Note that the convention for Sðq;ωÞ varies across the
literature; here we use the convention that gives a similar
Sðq;ωÞ definition for both phonon interactions and DM-
electron interactions [12,30]. We also assume the system is
initially in its ground state j0i prior to the collision,
corresponding to a zero temperature system. We sum over
final states with energies Ef, such that each term represents
the probability to excite the final state jΦfi.

A. Coherent and incoherent structure factors

For a given crystal there are many possible configura-
tions of interaction strengths fld which may vary even for
different samples of the same material, e.g., the exact
distribution of spins or isotopes in the material for spin-
dependent3 or mass-dependent interactions, respectively.
This can be accounted for by averaging over a large
collection of target samples. With a large number of nuclei
in the crystal, we expect the exact distribution of interaction
strengths in a given sample to be inconsequential relative to
the result averaged over many samples. We can keep track
of fluctuations away from the average configuration by
splitting the scattering rate into a coherent and incoherent
contribution, as explained below.
We follow the procedure of Refs. [31,32] and first

reexpress (4) by expanding the square and Fourier trans-
forming the δ-function, giving

Sðq;ωÞ ¼
XN

l;l0

Xn

d;d0
fldf$l0d0Cl0d0ld ð5Þ

where Cl0d0ld is the time-dependent two-point function:

Cl0d0ld ≡ 1

V

Z∞

−∞

dt
X

f

h0je−iq·rl0d0 ð0ÞjΦfihΦfjeiq·rldðtÞj0ie−iωt

≡ 1

V

Z∞

−∞

dthe−iq·rl0d0 ð0Þeiq·rldðtÞie−iωt: ð6Þ

In the second line we used the completeness of the basis of
states. It will also be advantageous to define a shorthand
notation for the autocorrelation function for an atom with
itself as

Cld ≡ Cldld

≡ 1

V

Z∞

−∞

dthe−iq·rldð0Þeiq·rldðtÞie−iωt: ð7Þ

We assume that the fld are random throughout the
crystal. Under this assumption, the average of fldf$l0d0 over
target configurations, fdf$d0 , must be independent of the
lattice sites l;l0. Making this replacement in (5) gives

Sðq;ωÞ ¼
XN

l;l0

Xn

d;d0
fdf$d0 Cl0d0ld ð8Þ

where the averages may be written as

d ≠ d0∶fdf$d0 ¼ fd f$d0 ;

d ¼ d0∶fdf$d0 ¼ f2d:

For the d ≠ d0 case we assumed that the expectation values
of the fd for different atoms in the unit cell are uncorre-
lated. This allows one to split the structure factor into two
contributions:

Sðq;ωÞ ¼
XN

l≠l0

Xn

d≠d0
fd f$d0 Cl0d0ld þ

XN

l

Xn

d

f2d Cld ð9Þ

¼
XN

l;l0

Xn

d;d0
fd f$d0 Cl0d0ld þ

XN

l

Xn

d

ðf2d − ðfdÞ2ÞCld

ð10Þ

≡SðcohÞðq;ωÞ þ SðincÞðq;ωÞ ð11Þ

where the second line is obtained by adding and subtracting
the term proportional to ðfdÞ2 and regrouping. The first and
second terms in (11) are usually referred to as the coherent
and incoherent structure factors in the neutron scattering
literature.
The coherent structure factor relays the scattering rate if

the interaction strengths of all atoms in equivalent lattice
sites are equal to a common value fd. For example, one can
consider low energy, spin-independent neutron scattering in
a very pure crystal with only a single isotope per atom type.
This implies fd ¼ fld ¼ Ad, with Ad the atomic mass
number, such that the incoherent contribution in (11)
vanishes exactly. The sum in (10) then crucially includes
position correlators between differing nuclei, which capture
the interference between different lattice sites. In practice,
this interference leads to a coherence condition, which
demands that the momentum in the scattering process must
be conserved up to a reciprocal lattice vector. In particular,
the 0th order term in a low q expansion of (6) corresponds
to Bragg diffraction.
The incoherent structure factor on the other hand

accounts for the statistical variations in interaction strengths
between different scattering centers in the lattice. The
second sum in (10) contains no cross terms and thus does
not include interference between different lattice sites.

3For spin-dependent interactions, fld is an operator rather than
a parameter, but otherwise the analysis proceeds analogously.
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There is therefore no corresponding coherence condition
and the incoherent structure factor does not enforce
momentum conservation.4

For most earlier DM direct detection calculations the
focus has been on spin-independent scattering in high
purity crystals with little isotopic variation. In this scenario,
we take the single isotope approximation f2d − ðfdÞ2 ¼ 0,
implying that only the coherent scattering contributes. For
spin-dependent dark matter scattering, the average will be
the quantum expectation value of the spin operator, result-
ing in f2d ≠ ðfdÞ2. We therefore expect the incoherent piece
in (11) to be important in this case. In this paper we focus
exclusively on spin-independent scattering in the single
isotope limit and the corresponding coherent structure
factors. The coherent structure factors are however more
difficult to evaluate, due to the conservation of crystal
momentum that is built into (6). This results in increasingly
complicated phase space integrals for multiphonon proc-
esses [25]. For our purposes, the utility of studying the
incoherent structure factor will be that the autocorrelation
function can be used to obtain a reasonable and more
manageable approximation of the coherent structure factor
at sufficiently high momenta. Our results can also be
extended to the case of spin-dependent scattering, but
we leave this for future work.
Before venturing further into this approximation and its

validity, we must first develop the structure factors into a

form which lends itself to a direct calculation. In order
to evaluate the structure factors in (4)–(8), the position
vector of each atom may be decomposed in terms of the
equilibrium lattice positions and displacement vectors,
rld ¼ lþ r0d þ uld. Here r0d is the equilibrium location
of atom d relative to the origin of the primitive cell and uld
is the displacement relative to that equilibrium. Following
this decomposition, we quantize the displacement vector
in the harmonic approximation with a phonon mode
expansion

uldðtÞ ¼
X3n

ν

X

k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nmdων;k

p ðeν;d;kâν;keik·ðlþr0dÞ−iων;kt

þ e$ν;d;kâ
†
ν;ke

−ik·ðlþr0dÞþiων;ktÞ: ð12Þ

The index ν denotes the phonon branches, of which there
are 3n, and k labels the phonon momentum in the first
Brillouin zone (BZ). The â†ν;k and âν;k are the creation and
annihilation operators for the phonons, ων;k is the energy of
the phonon, eν;d;k is the phonon eigenvector for atom d
normalized within a unit cell,

P
d e

$
ν;d;k · eμ;d;k0 ¼ δμνδk;k0 ,

and md is the mass of atom d.
The structure factor in (8) can then be explicitly

evaluated by applying (12) to (6). For a pure single isotopic
crystal with f2d ¼ ðfdÞ2, this is given by [25]

SðcohÞðq;ωÞ ¼ 2π
V

X

f

""""
XN

l

Xn

d

fd e−WdðqÞMld

""""
2

δðEf − ωÞ ð13Þ

where

Mld ≡ eiq·ðlþr0dÞhΦfj exp
#
i
X

k;ν

q · e$ν;k;dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nmdων;k

p â†ν;ke
−ik·ðlþr0dÞ

$
j0i ð14Þ

is the matrix element for scattering into the final state of the
crystal denoted by f. The Debye-Waller factor e−WdðqÞ is
given in terms of the function WdðqÞ≡ 1

2 hðq · uldð0ÞÞ2i.
We may Taylor expand the inner exponential in powers of q
where the nth term can excite a final state consisting of n
phonons. The phonon eigenvectors and energies may be
obtained numerically using density functional theory
(DFT) (see e.g., [33]); using these, the leading single
phonon structure factor has been calculated [11,14,17].

TheseDFT-based calculations quickly become cumbersome,
however, and have not yet been performed for generic
n-phonon terms. Analytic calculations may be performed
more easily, and havebeen carriedout for the single- and two-
phonon terms [25], but are only tractable when assuming an
isotropic crystal and that jqj is small relative to the size of the
first Brillouin zone. Such analytic calculations likewise lack
scalability for higher order phonon terms.
In summary, since the direct evaluation of (13) is very

tedious and not always possible, we will rely instead on an
approximate form of SðcohÞðq;ωÞ, bypassing the need to
deal with (13). This is described in the next section.

B. Incoherent approximation

The incoherent approximation amounts to dropping the
cross terms in (l ≠ l0 or d ≠ d0) from the sum in (10), thus

4An alternative but equivalent point of view is that for coherent
scattering, translation symmetry is broken up to a shift symmetry,
since all unit cells are identical. For incoherent scattering the
scattering centers are treated as independent and translation
invariance is therefore fully broken, resulting in the complete
loss of momentum conservation.
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neglecting the interference between nonidentical atoms.
In other words, one approximates the coherent structure
factor by

SðcohÞðq;ωÞ ≈
XN

l

Xn

d

ðfdÞ2Cld: ð15Þ

The incoherent structure factor remains unchanged, and
the total structure factor is then given by SðtotÞðq;ωÞ≈PN

l

Pn
d f

2
dCld. In this work we will focus only on pure

crystals with a single isotope for each type of atom, so that
the total structure factor can be computed with (15). The
incoherent approximation is expected to be a good approxi-
mation when the momentum transfer is larger than 2π=a
with a the interparticle spacing. Then the phase factors
associated with the interference terms are expected to add
up to a small correction compared to the l ¼ l0; d ¼ d0

terms in the sum. For an argument justifying (15) we refer
to [31,34].

For momentum transfers within the first Brillouin zone,
single phonon scattering always dominates the inclusive
scattering rate. It is however possible that the detector
threshold is such that single phonon processes cannot be
accessed but the double or multiphonon processes can. In
this case the incoherent approximation cannot a priori be
taken for granted. We nevertheless use it, but verify the
results against our earlier two-phonon calculations [25]
whenever possible (Sec. III B), finding satisfactory agree-
ment. The accuracy of the calculations in this part of phase
space is however less well understood and further work is
needed.
To evaluate the autocorrelation function, we first replace

the atomic positions rld in (11) with their displacement
operator decomposition, noting that the lþ r0d constant
cancels, amounting to a simple substitution of rld → uld:

Cld ¼
1

V

Z∞

−∞

dthe−iq·uldð0Þeiq·uldðtÞie−iωt: ð16Þ

The expectation value may be rewritten with an application
of the Baker-Campbell-Hausdorff formula, Bloch’s identity
heÂi ¼ e

1
2hÂ

2i, and some matrix algebra [11] giving

Cld ¼
1

V

Z∞

−∞

dt e−2WdðqÞehq·uldð0Þq·uldðtÞie−iωt: ð17Þ

When we deployed Bloch’s identity, we implicitly used the
harmonic approximation, by only considering displace-
ment operators of the form in (12).
The correlator hq · uldð0Þq · uldðtÞi may be evaluated

with the form of the displacement operator in (12), wherein
the l dependence cancels. This gives

hq · udð0Þq · udðtÞi ¼
X

ν

X

k

jq · eν;k;dj2

2Nmdων;k
eiων;kt ð18Þ

which can be simplified further by averaging over the
direction of momentum vector q

hq · udð0Þq · udðtÞi ≈
q2

3

X

ν

X

k

jeν;k;dj2

2Nmdων;k
eiων;kt ð19Þ

¼ q2

2md

Zþ∞

−∞

dω0 Ddðω0Þ
ω0 eiω

0t ð20Þ

where we defined the partial density of states for each atom
in the primitive cell as

DdðωÞ≡ 1

3N

X

ν

X

k

jeν;k;dj2δðω − ων;kÞ: ð21Þ

The partial density of states was normalized to satisfyRþ∞
−∞ dωDdðωÞ ¼ 1. This can be shown by using the
eigenvector completeness condition, which imposesP

ν e
$
ν;k;d;ieν;k;d;j ¼ δij for fixed k, d, where i, j are

spatial indices. In addition, the total density of states of
the material is defined by

DðωÞ≡
X

d

DdðωÞ ¼
1

3N

X

ν

X

k

δðω − ων;kÞ; ð22Þ

which satisfies
Rþ∞
−∞ dωDðωÞ ¼ n with n the number of

atoms in the unit cell.5 In materials such as Ge, Si, or GaAs
all atoms in the primitive cell have the same or similar mass
and as such contribute roughly equally to the density
of states, see Fig. 2. One could therefore approximate
DdðωÞ ≈DðωÞ=n in (20) for these materials. We however
choose to keep track of the partial density of states, to keep
the calculations as general as possible.
For mono-atomic lattices, the density of states can be

extracted directly from neutron scattering data through the
incoherent structure factor. This is not always possible
for multi-atomic lattices, since the scattering is only sen-
sitive to the combination

P
d jfdj2DdðωÞ=md. To infer the

individualDdðωÞ as well asDðωÞ, one therefore needs a set
of scattering techniques which allows one to effectively
vary the fd. This is not available for all materials, and it is
therefore often most convenient to extract the DdðωÞ from
DFT calculations. A comprehensive library of results has
been made available by the materials project [35].
Returning now to the calculation of the autocorrelation

function, we can expand the exponential term in (17) using
the form of the correlator in (20). This yields an explicit

5In the literature, the density of states is also sometimes
normalized to 3na, where na is the atomic density.
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representation of Cld as an expansion in number of
phonons n being excited:

Cld ¼
2π
V

e−2WdðqÞ
X

n

1

n!

%
q2

2md

&n

×
%Yn

i¼1

Z
dωi

DdðωiÞ
ωi

&
δ

%X

j

ωj − ω

&
ð23Þ

where the delta function arises from the time integral
1
2π

R
dt eið

P
ωiÞte−iωt and ensures energy conservation.

Here, by using (20), the Debye-Waller function takes the
form of

WdðqÞ ¼
q2

4md

Z
dω0 Ddðω0Þ

ω0 : ð24Þ

Thus, in comparison to the difficulties discussed surround-
ing (13), inputting this form of the correlator into (15) gives
an analytic approximation for all phonon terms in the
appropriate regime of validity.
In this paper, we utilize the incoherent approximation to

calculate the contributions from higher-order phonon terms
to an arbitrary degree in a simple and fast manner. This allow
us tomake rate predictions for the entire relevant mass range,
going from the low-mass (mχ ≳ keV) single phonon regime
to the high-mass (mχ ≳ 50 MeV) nuclear recoil regime.

III. PROCESSES

Using the autocorrelation function, (23), we can estimate
the scale at which a generic n-phonon term starts becoming
a relevant contribution to scattering. To organize the
multiphonon expansion, it is useful to define an average
phonon energy

ωd ≡
Z

dω0 ω0Ddðω0Þ: ð25Þ

While ω̄d technically depends on the atom d, this just gives
an Oð1Þ dependence in the phonon scale. Since n! ∝ nn at

large n, we see that the nth term of the series (23) will
roughly begin giving an Oð1Þ contribution when

q2

2mdω̄d
∼ n: ð26Þ

This means that for a given q (or consequently, mχ) one can
determine the dominant scattering processes. When
q2

2mdω̄d
≲ 1, single phonon excitations will be the primary

channel; for md ∼ 30 GeV and ω̄d ∼ 30 meV, this corre-
sponds to q≲ 30 keV. Conversely, when q2

2mdω̄d
≫ 1, pho-

nons are no longer a suitable description and the scattering is
instead well modeled by the recoil of a single nucleus. This
transition occurs roughly atq ≳ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
. In between these

two extremes, we have n∼ few, indicating multiphonon
excitations as the primary process. The precise nature of the
dominant process for a given mχ will vary based on the
mediator mass and experimental threshold.
In this section, we describe analytic approaches for

characterizing the structure factor in crystal targets, broken
into subsections corresponding to the previously mentioned
processes. Sections III A and III B deal with single phonon
and two phonon excitations. Here we can also compare
calculations of the full structure factor with the incoherent
approximation. Section III C deals with many phonon
excitations, and Sec. III D describes the impulse approxi-
mation, which gives a good approximation to the structure
factor for momenta approaching the nuclear recoil limit.
For all numerical results in this section, we will assume a
coupling to nucleons (replacing the generic average inter-
action strength fd with the nucleon number Ad) for both
massive and massless mediators, and take a GaAs target as
a typical example of a simple cubic crystal of interest.

A. Single phonon production

If the unit cell contains at least two atoms, there are two
types of phonons that can be produced: acoustic and optical
phonons. As discussed in Sec. II, DFT-based calculations
for both single acoustic and single optical phonon excita-
tions have been performed across a large dark matter mass
range (∼keV to GeV) [11,14,17]. Meanwhile analytic
calculations so far have been limited q≲ 1 keV, which
corresponds to mχ ≲MeV [10,25]. Although the DFT-
based calculations span the entire mass range of interest and
can provide information such as directional dependence,
the numerics are more intensive; the phonon band structure,
eigenvectors, and structure factors must be calculated from
first principles for each material. For high q, the sum over
the reciprocal lattice must also be accounted for [12,16].
Here we extend the analytic calculations to the high q
regime by using the incoherent approximation. The com-
parison with the DFT results of [11] will also serve as a
validation of the incoherent approximation.
To organize the calculations, it is useful to define a

momentum scale (qBZ) which approximately reflects the

FIG. 2. Partial and total density of states for GaAs [35]. Labels
indicate the regions in which a particular phonon branch
dominates.
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size of the first Brillouin zone. We take qBZ ¼ 2π
a ≈ 2 keV,

where a is the lattice constant. We first review the single
phonon response for q < qBZ. In this regime, we compute
the structure factors in the isotropic approximation and in
the limit q ≪ qBZ. For this purpose we assume linear
dispersions ω ¼ csq for the longitudinal acoustic (LA) and
transverse accoustic (TA) modes, with cs replaced by cLA
and cTA for the longitudinal and transverse sound speeds,
respectively. The optical modes are assumed to have flat
(constant) dispersions for the longitudinal optical (LO) and
transverse optical (TO) phonon energies ωLO and ωTO. The
sound speeds and optical phonon energies are taken to be
their long-wavelength values (q ¼ 0). We will refer to this
set of assumptions as the long-wavelength approximation.
The matrix element is given by the leading nontrivial

term in the small q expansion of (14). The only relevant
contributions for q ≪ qBZ are those of the single LA and
LO phonons. We approximate the long-wavelength acous-
tic eigenvectors as

eLA;k;d ≈
ffiffiffiffiffiffi
Ad

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

d0Ad0
p k̂; ð27Þ

note that this form is valid for generic crystal targets and
not limited to GaAs. For the LO phonon, we use the
following eigenvectors, which are only valid for diatomic
lattices [25]:

eLO;k;1 ≈
ffiffiffiffiffi
A2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p k̂; ð28Þ

eLO;k;2 ≈ −
ffiffiffiffiffi
A1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p e−ik·r
0
2k̂ ð29Þ

where the first atom is taken to be at the origin of the
primitive cell, and the second atom is taken to be at the
coordinate r02 ¼ ða=4; a=4; a=4Þ for GaAs. The acoustic
and optical transverse eigenvectors are orthogonal to these
but do not contribute to the scattering into a single phonon.
With these approximations and taking fd ¼ Ad, the ana-
lytic expressions for the single phonon contributions to the
structure factor are [25]

Sn¼1;LAðq;ωÞ ≈
2π
Ωc

ð
P

d0 Ad0Þq2

2mpωLA;q
δðω − ωLA;qÞΘðωLO − ωÞ;

ð30Þ

Sn¼1;LOðq;ωÞ≈
2π
Ωc

q4a2

32ωLO

A1A2

mpðA1 þA2Þ
δðω−ωLOÞ; ð31Þ

Sðq<qBZÞn¼1 ðq;ωÞ ¼ Sn¼1;LAðq;ωÞ þ Sn¼1;LOðq;ωÞ ð32Þ

with Ωc the volume of the primitive cell. Here we have
introduced a cutoff of ω ¼ ωLO to the longitudinal acoustic
branch to avoid overestimating the scattering rate with the

LA mode near the edge of the Brillouin zone. The q4

scaling and appearance of the lattice constant a in the
optical structure factor comes from averaging over angles
with the eigenvectors, giving ðq · r02Þ2 ≈ q2a2=16 [13].
For dark matter with a standard velocity dispersion

v ∼ 10−3, the typical momentum transfer begins to fall
outside of the first Brillouin zone for mχ ≳ 1 MeV.
Physically, this corresponds to the wavelength becoming
smaller than the interatomic spacing, and the long-wave-
length formulas from (27) to (31) are no longer valid. We
can however utilize the incoherent approximation in (15)
and (23), which yields

Sðq>qBZÞ
n¼1 ðq;ωÞ ≈ 2π

Ωc

Xn

d

e−2WdðqÞðfdÞ2
q2

2md

DdðωÞ
ω

: ð33Þ

The forms of the structure factor are qualitatively quite
different in the two q regimes. In the coherent regime
q < qBZ, summing over the response of multiple atoms
with constructive interference leads to a resonant response
in (32). The impact of the interference is greatly reduced for
q > qBZ, such that the incoherent approximation becomes a
viable description.
While the sharp transition in the structure factor is an

artifact of our approximations, (32)–(33) can accurately
describe the integrated structure factor above or below
qBZ. Figure 3 compares our combined analytic single phonon
description with numerical DFT calculations. For the DFT
result we follow [11], computing the dynamical matrix
and phonon dispersions with respectively VASP [36] and
phonopy [33] (see also [14]), and take the angular average of
Sðq;ωÞ over all q directions for comparison with the
isotropic approximation. The top panels show the struc-
ture factors in (32) as a function of q, integrated over ω.
The top left panel shows Sðq;ωÞ integrated over ω ∈
½1 meV; 27 meV' to select the acoustic phonon branches
only and the top right panel shows the integral over ω ∈
½27 meV; 40 meV' for optical phonon branches. The ana-
lytic approximations are in good agreement with the DFT
result in their respective regimes of validity. For q < qBZ,
integrating (32) leads to respectively ∼q and ∼q4 scaling,
while the incoherent approximation in (33) always scales as
∼q2. As discussed above, the ω dependence of the analytic
structure factors is quite different in the two regimes, with the
coherent structure factor giving a resonant response around
the single-phonon dispersion while the incoherent approxi-
mation is continuous in ω. However, the integrated result
matches the full DFT calculation of the coherent structure
factor well, indicating that the analytic approach will be
useful in calculating integrated quantities such as rates.
Furthermore, the analytic approach provides physical insight
into the change in the q-scaling of the structure factor in
Fig. 3(a).
The plots in Fig. 3(b) show single phonon integrated rates

for both massive and massless scalar mediators. For the
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massless mediator, scattering into the acoustic phonon speci-
fically favors small q due to the ∝ q−4 contribution of the
mediator form factor. The analytic result of (30) therefore
applies across the entire DM mass range, as the large q
contributions are negligible. For all other cases the structure
factor scales with a positive power of q so that large q
contributions are the most important. We therefore see a
change in slope of the σp reach around mχ ∼MeV, when
q≳ qBZ becomes kinematically accessible. These features
are captured by the q > qBZ analytic description from the
incoherent approximation, and again agree with the DFT
results.

B. Two-phonon production (q < qBZ)

We next turn to the use and accuracy of the incoherent
approximation for two-phonon production, in particular for
q < qBZ. Single phonon production always dominates in
this regime if above threshold [25]. It is however expected
that there will be a phase in the experimental program for

which the energy threshold will still be too high to access
single optical and acoustic phonons, such that the formally
subleading double phonon production can be relevant.
While the incoherent approximation is expected to be the

least accurate for q < qBZ, it is still useful to compare it with
existing analytical results for the structure factor. The
analytic results are obtained in the long-wavelength approxi-
mation, as defined in Sec. III A. In this limit, the Wilson
coefficients of the self-interaction operators for the acoustic
modes can be extracted from the measured or calculated
elasticity parameters. With these assumptions, one can
explicitly evaluate (13) to second order in q=

ffiffiffiffiffiffiffiffiffi
mdω

p
[25].

In this work, we will extend the long-wavelength
calculations to all final states (see Appendix A) and
compare them with the incoherent approximation. For this
purpose we extrapolate the results of Ref. [25] to higher q
values and make a number of additional assumptions to
model the self-interactions of the optical modes, thus giving
the complete structure factor. For these reasons the calcu-
lations in this section should however be considered only a

0

(a)

(b)

FIG. 3. Single phonon production. (a) Comparison of the integrated single phonon structure factor for GaAs. The left panel shows the
structure factor integrated over ω ¼ 1 − 27meV for acoustic phonon branches only and the right panel has ω ¼ 27 − 40meV for optical
phonon branches only. The dashed line shows the DFT result, averaged over all q directions, while the solid line shows our analytic
approximation based on joining (32) (valid for q < qBZ) with the incoherent approximation (33) (valid for q > qBZ). (b) Cross sections
giving a rate of 3 events=kg-year, assuming fd ¼ Ad. The rate is computed using our analytic single phonon structure factor
approximation (solid) or with DFT calculations (dashed). We find that the analytic approach agrees with the DFT calculations within an
Oð1Þ factor.
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toy model of a GaAs-like crystal. We will show below that
for this toy model and in the limit of small momentum
transfer, the incoherent and long-wavelength approxima-
tions give qualitatively similar DM scattering rates.
From Ref. [25], the two-phonon structure factor can be

written as

Sðq;ωÞ ¼ SðharmÞðq;ωÞ þ SðanhÞðq;ωÞ ð34Þ

in the long-wavelength limit. The first term is the structure
factor in the harmonic limit (also referred to as the contact
piece in [25]), where anharmonic corrections to the atomic
potentials are neglected. It can be obtained by expanding
(14) to second order, and evaluated analytically in the long-
wavelength limit. The second term contains contributions
to the structure factor from anharmonic interactions. In
order to evaluate this, one needs to include a phonon self-
interaction Hamiltonian in computing (14), as described in
detail in [25]. The interactions of acoustic phonons are
based on an effective three-phonon Hamiltonian valid in the
long-wavelength limit, but to obtain a more complete
picture we include a highly approximate three-phonon
Hamiltonian for interactions involving optical phonons.
These calculations are summarized in Appendix A.
To perform the most meaningful comparison between

the incoherent and long-wavelength approximations, we
assume the following Debye model for the partial density
of states for a diatomic crystal:

D1;2ðωÞ ¼
1

q3BZ

1

A1 þ A2

%
A1;2

ω2

c3LA
ΘðcLAqBZ − ωÞΘðωÞ

þ A1;2
2ω2

c3TA
ΘðcTAqBZ − ωÞΘðωÞ

þ A2;1
q3BZ
3

δðω − ωLOÞ

þ A2;1
2q3BZ
3

δðω − ωTOÞ
&
; ð35Þ

which is derived from the long-wavelength approximation as
described in Sec. III A.6 The explicit structure factor from
using this toy density of states in (23) is given inAppendixA,
which for simplicity we evaluate with A1 ¼ A2 for GaAs.
The top panel of Fig. 4 compares the calculations of the

two-phonon structure factor in the incoherent and long-
wavelength approximations. For the incoherent approxima-
tion, we show the result with the toy density of states in (35)
as well as with the true density of states from Fig. 2. The
dashed line shows the harmonic limit, meaning that SðanhÞ is

neglected. This is the case that is most directly comparable to
the incoherent approximation, which assumes the harmonic
mode expansion in (12). For the dotted line, the leading
phonon self-interactions were included.
In the harmonic limit, all modes scale as ∼q4 except for

optical-acoustic final state, which scales as ∼q6. The
incoherent approximation naturallymisses thesemore subtle
destructive interference effects but still captures the correct
q4 scaling for most of the modes. We see in Fig. 4 that the
incoherent approximation iswithin a factor of∼5 of the long-
wavelength approximation for all ω > ωLO, for both the toy
model and true density of states. The difference at smaller ω
is not experimentally relevant, as the single phonon rate will
completely dominate in this region. There are also delta-
function terms from the optical-optical branches which do
not appear in the plot; their contributions to the overall
scattering rate are comparable for the incoherent and long-
wavelength approximations as well. See Appendix A for
details. These terms dominate the scattering rate at higher
energies, and overall we see in Fig. 4 that the incoherent
approximation reproduces the structure factor in the har-
monic limit to within a factor of a few.
When anharmonic interactions are included, the differ-

ence becomes larger and the incoherent approximation may
underpredict the rate by up to an order of magnitude in our
estimate. However, as discussed above, the anharmonic
Hamiltonian used is itself also only valid at the order of
magnitude level, particularly for optical modes. We expect
that our approach can model the rate in this regime at the
order-of-magnitude level, but a proper DFT calculation is
needed for it to be rigorously validated.
Finally, we show in the bottom panel of Fig. 4(a)

comparison of the cross sections corresponding to a rate
of 3 events/kg year, with the different approximations for
the two-phonon structure factor. We assume ω > 40 meV,
since for lower thresholds the rate is dominated by single-
phonon production [25]. We emphasize that here we are
only illustrating that the incoherent approximation is
within a factor of few of the full structure factor, as long
as the same assumptions are made for the phonon
dispersion relations. Therefore, we restrict our comparison
to mχ < MeV such that we can restrict to q < qBZ. The
incoherent approximation underestimates the rate by a
factor of few in the harmonic limit, and up to an order
of magnitude when anharmonic interactions are included.
Using the true density of states slightly improves the agree-
ment. Though this comparison only applies to a limited q
range, our result suggests that the incoherent approximation
should give a reasonable, order-of-magnitude estimate for
multiphonon production even at low q. We expect this
uncertainty to decrease for larger q where the incoherent
approximation is most justified, and in particular we will
see that the incoherent approximation reproduces the
expected rate in the free nuclear recoil limit, as discussed
in the next sections.

6Here the maximum momentum of the modes is determined by
requiring that the sum over all modes is equal to the total number
of degrees of freedom. For GaAs and in the isotropic approxi-
mation, the exact momentum cutoff is about 2% different from
qBZ ¼ 2π=a. This error is negligible compared to the uncertain-
ties on the other assumptions made in this section.
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C. Multiphonon production

In the previous section, where we dealt with q < qBZ, the
incoherent approximation should be viewed as an order-of-
magnitude estimate only. For q > qBZ, it is however on firm
ground [31,34] and is used routinely to measure the density
of states from neutron scattering data [31]. Moreover, in the
q ≫ qBZ regime multiphonon processes become important.
This follows from the form of the structure factor, obtained
by inserting (23) into the incoherent approximation (15):

Sðq;ωÞ≈ 2π
Ωc

Xn

d

ðfdÞ2e−2WdðqÞ
X

n

%
q2

2md

&n

×
1

n!

%Yn

i¼1

Z
dωi

DdðωiÞ
ωi

&
δ

%X

j

ωj −ω

&
: ð36Þ

From the discussion around (26), the typical number of
phonons is n∼ q2

2mdωd
. With ω̄d ≳ 30 meV andmd ≳ 30 GeV

for most crystals, the self-consistency condition for the
incoherent approximation (q ≳ qBZ) is therefore always
satisfied for n > 2 processes. The evolution of (36) for
increasingly large q is shown in Fig. 5(a).
We can obtain an approximate scaling for (36) by

separating each term in the sum over n into q-dependent
and ω-dependent parts. The ω-dependent part is given by
the second line of the equation, which is only nonzero at
ω≲ nωLO in order to satisfy the delta function. This part of
the structure factor can be estimated to have at most the
value of 1=ðn!ω̄nþ1

d Þ; this is illustrated in Fig. 11 of
Appendix C, where we plot the numerical result. For q ≲ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
[left and center panels of Fig. 5(a)], the Debye-

Waller factor can be neglected and the structure factor then
scales as Sðq;ωÞ ∝

P
n

1
n! ð

q2

2mdω̄d
Þn. For q2=ð2mdω̄dÞ≲ 1,

the structure factor therefore scales as Sðq;ωÞ ∼ q2m, with
m the lowest number of phonons that is kinematically
allowed. This scaling will be useful in Sec. IV, where we

FIG. 4. Two phonon production. Top: comparison of the two-phonon structure factor calculated with various approximations, where
the toy model assumes the long-wavelength approximation. Optical-optical channels give a δ-function and are not plotted. Bottom: cross
sections for producing two phonons at a rate of 3 events=kg-year using the same approximations as above. We restrict the mass range to
mχ ≲ 1 MeV so that typical q values are below qBZ, where our long-wavelength approximations are valid. The energy threshold is taken
to be 40 meV, above the single phonon energies.
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use it to extract the approximate scaling behavior of the DM
cross section curves. It no longer holds for q ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω̄d
p

[right-hand panel of Fig. 5(a)], where many modes con-
tribute equally. This regime however can be understood in
the impulse approximation, which is the subject of the next
section.

D. The impulse approximation (q ≫ qBZ)

For q ≫ qBZ the sum of the multiphonon terms asymp-
totes to an approximately Gaussian envelope, as can be
seen most clearly from the rightmost panel in Fig. 5(a). This
asymptotic form can be derived directly with a steepest
descent approximation, also known as the impulse approxi-
mation. It is valid whenever the interaction with the probe
particle happens on a time scale short compared to that of
the phonon modes.

To derive this, it is most insightful to take a step back
from (36) and return to using (20) in (17). The autocorre-
lation function is then

Cld ¼
1

V
e−2WdðqÞ

Z∞

−∞

dt e
q2

2md

R
dω0Ddðω0Þ

ω0 eiω
0 t
e−iωt: ð37Þ

When q ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
, the exponent involving the density of

states integral will be highly oscillatory in t, and the integral
may be approximated by expanding about t ¼ 0 through a
steepest descent method. (See Appendix B.) Doing so gives

Cld ≈
1

V

ffiffiffiffiffiffi
2π
Δ2

d

s

exp
%
−
ðω − q2

2md
Þ2

2Δ2
d

&
ð38Þ

(a)

(b)

FIG. 5. Multiphonon transition into the nuclear recoil regime. (a) The first ten phonon structure factors in the incoherent
approximation for GaAs, plotted for various fixed q. At sufficiently large q >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
, the total structure factor converges to the

impulse approximation (IA, dashed line). In the right panel, there is a slight difference between the peak of the true structure factor and
the impulse approximation. This can be accounted for in the impulse approximation by including higher orders in the steepest descent
expansion [37]. (b) Cross sections for 3 events=kg-year in GaAs for a hadrophilic mediator. Rates are computed with the n ≤ 10 phonon
terms in the incoherent approximation (solid lines), the impulse approximation (IA; dashed), and the analytic free nuclear recoil result
(NR; dotted). We see that at sufficiently high masses–and hence momentum transfers–the impulse approximation sufficiently recovers
the result of summing the phonon terms. Likewise, for yet larger momenta the impulse approximation merges onto the free nuclear recoil
result, as discussed in Sec. III D.
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where Δ2
d ≡ q2ω̄d

2md
. This approximation is referred to as the

impulse approximation since the saddle point around t ¼ 0
dominates the rate. The true peak is shifted slightly from
the result (38), which can be corrected by including higher
orders in the expansion [37]. Including these additional
terms has negligible impact on later results.
From (38), we see that the structure factor in the impulse

approximation is

SIAðq;ωÞ ¼
Xn

d

ðfdÞ2

Ωc

ffiffiffiffiffiffi
2π
Δ2

d

s

exp
%
−
ðω − q2

2md
Þ2

2Δ2
d

&
ð39Þ

which is a sum of Gaussians peaked around q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mdω

p
,

one for each atom in the unit cell. In Fig. 5(a) we see
that (39) is a reasonable approximation for q ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdωd

p

and converges rapidly to the full result in (36) for
q≳ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
. As expected, it does not capture the

features in the structure factor for q ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
. In our

final results, we use (39) for q > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
, as it is

numerically much faster than (36). For crystals com-
posed of multiple atoms, we define the boundary as
maxd½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
'. At this scale, the average number of

phonons is about four, and it is sufficient to truncate the
sum at n ¼ 10 for all smaller q.

As we consider larger DM masses which access larger q
and ω, the Gaussian becomes more sharply peaked. This
can be seen by comparing the width Δd to the peak value
ω ¼ q2=2md. In the large-q limit, we have

lim
q→∞

Δd

ω
≈

ffiffiffiffiffiffi
ω̄d

ω

r
ð40Þ

so the Gaussian becomes narrow for ω well above the
typical phonon energy. Then the narrow width limit exactly
reproduces the expected free nuclear recoil delta function
response:

lim
q;ω→∞

Cld ¼
2π
V

δ

%
ω −

q2

2md

&
; ð41Þ

SFRðq;ωÞ ¼
X

d

2π
Ωc

ðfdÞ2δ
%
ω −

q2

2md

&
: ð42Þ

We therefore recover the familiar free nuclear recoil
response for each individual atom in the unit cell.
In Fig. 5(b) we show cross section curves with a GaAs

target, for both massive and massless scalar mediators.
We compare the reach obtained with the full structure
factor (in the incoherent approximation), the impulse
approximation, and the free nuclear recoil limit. For
mχ ≲ 20–40 MeV, the full structure factor must be used
to capture the rate, depending on the mediator mass and
threshold. For mχ ≳ 20–40 MeV, the q values compatible

with the impulse approximation start to dominate, and we
see that it reproduces the full result very closely. At even
higher masses, the free nuclear recoil response becomes an
excellent approximation, as expected.
A particular feature to notice from Fig. 5(b) is that the

free nuclear recoil rate agrees with the impulse approxi-
mation result even in regions of the q, ω phase space where
the Gaussian is not narrow. For example, for the massive
mediator and mχ ¼ 50 MeV, the rate will be dominated by
momentum transfers q ∼ 2mχv ∼ 100 keV, corresponding
most closely to the rightmost panel of Fig. 5(a). From (40)
this gives Δd=ω ≈ 0.5 which is not particularly small. The
nuclear recoil approximation nevertheless works remark-
ably well. The reason is that phase space integral in (3) has
a trivial ω dependence aside from the Sðq;ωÞ factor, since
the delta function in ω just determines the region of phase
space that is integrated over. Therefore, as long as the
energy threshold is small compared to the peak in ω, the
phase space integral over (39) and (41) yields similar
answers.

E. Summary

Figure 6 schematically illustrates the various approx-
imations for the structure factor discussed in this section.
The boundaries reflect only our choice of approxima-
tion and not a sharp transition in the behavior of the
structure factor. The dotted gray parabola represents the
phase space boundary for a given mχ and v (see Sec. IV).
This parabola extends upwards and rightwards as mχ is
increased, such that multiple different regimes are sampled
for high enough mχ .

FIG. 6. Schematic figure (not to scale) depicting the approxi-
mation used to calculate the structure factor in various regions of
phase space. The “1-ph long wavelength” regime is discussed in
Sec. III A, the “n-ph incoherent approximation” regime in
Sec. III B and III C, and the “impulse approximation” region
in Sec. III D.
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For the single phonon excitations (n ¼ 1) described in
Sec. III A, we use the long-wavelength and incoherent
approximations for q < qBZ and q > qBZ, respectively.
This combination gives good agreement with a full DFT
calculation of the scattering rate, at least for a cubic crystal
such as GaAs.
For multiphonon excitations (n ≥ 2), we use the inco-

herent approximation for the structure factor for all q below
maxd½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdωd

p
'. This is motivated by Sec. III B, where we

argued that the incoherent approximation can serve as an
order-of-magnitude estimate even for q ≪ qBZ. Given the
limitations of the long-wavelength approximation, a dedi-
cated DFT calculation is needed in this regime. For
multiphonon excitations, we sum terms in (36) until we
achieve convergence, as explained in Sec. III C. Finally, for
q ≥ maxd½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
' we make use of the impulse approxi-

mation, which ultimately transitions into the well-known
free nuclear recoil regime. This was explained in Sec. III D.
Figure 7 shows our full calculation of the structure factor

for GaAs, overlaid with the phase space boundaries for a
few representative DM masses. In the low q, single phonon
regime, the response is given by a set of δ-functions on the
LO and LA phonon dispersions, represented by the orange
curves. At intermediate and high q, the structure function is
modeled by a continuous function, where the layered
structure for ω≲ 50 meV reflects the various single and
multiphonon contributions. At higher q and ω the individ-
ual resonances cease to be visible and one transitions into
the smooth Sðq;ωÞ predicted by the impulse approxima-
tion. At very high ω the structure function converges

toward its free nuclear recoil form, which is represented
by the black dashed line.

IV. RESULTS

In this section we convert our newly gained under-
standing of the structure factor into concrete predictions for
the DM scattering rate in a crystal target. The event rate per
unit of target mass is

R ¼ 1P
d md

ρχ
mχ

Z
d3v vfðvÞ

Z
d3q dω

dσ
dqdω

ð43Þ

where the experimental energy threshold is implicit in the
boundary of the ω integral. fðvÞ is the DM velocity
distribution, which we take to be

fðvÞ ¼ 1

N0

exp
#
−
ðv þ veÞ2

v20

$
Θðvesc − jv þ vejÞ;

N0 ¼ π3=2v30

#
erf

%
vesc
v0

&
− 2

vesc
v0

exp
%
−
v2esc
v20

&$
; ð44Þ

withv0¼220 km=s, Earth’s averagevelocityve¼240 km=s,
and vesc ¼ 500 km=s the approximate local escape velocity
of the Milky Way. The scattering rate can be further
simplified in the isotropic limit; using (3),

R ¼ 1

4πρT

ρχ
mχ

σp
μ2χ

Z
d3v

fðvÞ
v

Zqþ

q−

dq
Zωþ

ωth

dω qjF̃ðqÞj2Sðq;ωÞ

ð45Þ

where ωth is the energy threshold of the experiment, and the
other integration limits7 are

q( ≡mχv

 

1(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ωth

mχv2

s !

; ð46Þ

ωþ ≡ qv −
q2

2mχ
: ð47Þ

Note (47) defines the phase space boundary shown in Fig. 6
for a given mχ and v. Finally, ρT is the mass density of the
targetmaterial andwehave recast the rate in terms of theDM-
proton scattering cross section σp ≡ 4πb2p.

A. Massive hadrophilic mediator

In the case of a massive mediator coupling to baryon
number, we calculate the scattering rate by taking fd ¼ Ad

FIG. 7. GaAs structure factor. Density plot of the structure
factor in the same regimes of (q;ω) as shown in Fig. 6. Dotted
lines are phase space boundaries for various DM masses with a
typical initial velocity v ¼ 10−3. At low q and ω, the solid yellow
lines are the dispersion relations of the single LA and LO
phonons. At large q, the black dashed line is the free nuclear
recoil dispersion relation; in general, there are separate lines for
Ga and As but for clarity we show only one line corresponding to
the average mass of Ga and As.

7In numerical implementations of (45), as done in DARKELF, it
is beneficial to change the order of integration by first integrating
over v, then q, and finally over ω.
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and F̃ðqÞ ¼ 1. The cross sections corresponding to a rate of
3 events=kg-year exposure are shown in the left panel of
Fig. 8, assuming a GaAs target and for different energy
thresholds. The same figures for Si, Ge, and diamond can
be found in Appendix D.
We can understand the numerical results in Fig. 8

analytically using the scaling of the structure factor
discussed in Secs. III A–III D. First, from (45), the mχ

dependence of the rate is contained in

R ∝
σp

mχμ2χ

Zqþ

q−

dq
Zωþ

ωth

dω qSðq;ωÞ: ð48Þ

The structure factor only contains positive powers of q
across the entire phase space, so for a massive mediator, the
integral (48) will be dominated by the largest kinematically
accessible momentum transfers.
For mχ ≫ 30 MeV, the kinematically allowed phase

space is extended to q and ω where the free nuclear recoil
approximation can be used. The rate therefore approx-
imately scales as R ∼ 1=mχ for mp ≳mχ ≫ 30 MeV. For
low enough thresholds, this scaling holds even as the dark
matter mass comes within OðfewÞ of 30 MeV, where the
structure factor is relatively broad in ω. The reason is that
the kinematically allowed phase space is wide enough in ω
that the integral over the Gaussian in the impulse approxi-
mation gives within a factor of few of the integral over the
delta function in (41), as discussed earlier in Sec. III D.
For dark matter masses of 1 to 30 MeV, the allowed

phase space is restricted to values of q <
ffiffiffiffiffiffiffiffiffiffiffiffi
2mdω

p
. Here the

structure factor can be expanded in powers of q=
ffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄

p

and favors small ω. As noted in Sec. III C the structure
factor scales as ∼q2m, with m the smallest number of

phonons whose total energy is above the energy threshold.
We see there is significant threshold dependence: the single
phonon final state strongly dominates the rate if it is above
the energy threshold, while for higher thresholds only
multiphonons contribute. The rate integral now scales as

R ∝
σp
m3

χ

Z2mχv

dq q2mþ1

Z

ωth

dω ∝ σpm2m−1
χ ; ð49Þ

where q was evaluated at its maximum q ∼ 2mχv. The ω
integral does not contribute to the mχ scaling of the rate,
since the integrand is peaked in ω somewhere near the
energy threshold ωth. This expression then gives the
approximate scaling R ∝ m2m−1

χ . Since m is dependent
on the energy threshold, this explains why different thresh-
olds in Fig. 8 result in a different scaling as a function
of mχ .
At even lower dark matter masses (mχ < 1 MeV), the

phase space is restricted to q values within the first
Brillouin zone, which is dominated by single phonon
production in the long-wavelength regime. If the threshold
is low enough to access a single phonon, the scaling further
depends on whether the threshold captures an appreciable
part of the LA branch. If so, the leading contribution comes
from the acoustic mode (30), which gives

R ∝
σp
m3

χ

Z2mχv

dq q2
Z

dωδðω − cLAqÞ ∝ σp; ð50Þ

approximately independent of mχ . This behavior is clearly
reproduced in Fig. 8 for the 1 meV threshold, for which the
acoustic branch is always accessible. If the threshold is too

FIG. 8. Cross section plots corresponding to a rate of 3 events=kg-yr for massive and massless scalar mediators in GaAs for various
thresholds. The structure factors used are the analytic results demarcated in Fig. 6 for each corresponding regime in the ðq;ωÞ phase
space. For the massive mediator, we see the dominance of the single acoustic phonon at low masses and low thresholds, and of the
optical phonon for intermediate thresholds. Eventually, for sufficiently high masses the process becomes dominated by the free nuclear
recoil response. For the massless mediator, the q−4 form factor favors small momenta, and the rate is dominated by the lowest accessible
mode for a given threshold.
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high to access the acoustic branch, but can detect the optical
branch, the structure factor has an extra q3 scaling and we
find R ∝ m3

χ . This case occurs for mχ ≲ 0.3 MeV on the
20 meV curve in Fig. 8. For mχ ≳ 0.3 MeV the DM can
excite the acoustic branch, resulting in a sharp enhance-
ment of the rate.

B. Massless hadrophilic mediator

If we instead have a massless mediator that couples to
baryon number, then by convention, the mediator form
factor is taken to be jF̃ðqÞj2 ¼ ðmχv0

q Þ4 with v0 ¼ 220 km=s.
The cross section curves for this scenario are given in the
right panel of Fig. 8 again for different thresholds.
As in Sec. IVA, we can analytically explain the scaling

of the different curves across the DMmass range. The main
difference with the massive mediator case is that for a
massless mediator, there is a 1=q4 scaling in the form
factor, which leads to a scattering rate that generally favors
low q and ω. The main contribution to the rate will
therefore be much more threshold dependent across all
DM masses.
If the threshold is small enough to access single acoustic

phonon excitations, then this will be the dominant con-
tribution to the rate at all masses. Again from (45) and using
the analytic acoustic structure factor, the rate for thresholds
that are sensitive to a single acoustic phonon scales as

R ∝ σpmχ

Z

ωth=cLA

dq
1

q2

Z
dωδðω − cLAqÞ: ð51Þ

The integrand is largest at the smallest q, so we estimate the
q integral by evaluating the integrand at q ≈ ωth=cLA in
(46). The integrand therefore has no mχ dependence and
gives the scaling R ∝ mχ for the ω > 1 meV curve in
Fig. 8. Note however that this scaling behavior is sensitive
to our convention for the reference momentum in F̃ðqÞ. For
example, in models with both electron and nucleon
couplings one often chooses to normalize the form factor
with the reference momentum q0 ¼ αme, which would
yield R ∝ m−3

χ .
If the LA branch is not accessible but the LO branch is,

the production of a single LO mode will generally
dominate. This introduces a different mχ dependence,
which can be seen in Fig. 8 by comparing the 1 meV
and 20 meV curves in the region with mχ ≲ 30 MeV. If
mχ < 1 MeV, using the expression in (31) gives

R ∝ σpmχ

Z2mχv

dq q
Z

dωδðω − ωLOÞ: ð52Þ

Unlike for the acoustic phonon, the structure factor favors
high q so that the largest contribution is near q ∼ 2mχv,

giving R ∝ m3
χ . If mχ > 1 MeV, the rate integrand is

dominated by momentum transfers q ∼ qBZ. This is
because when q > qBZ and ω ≤ ωLO we are using the
incoherent approximation for single phonon production,
where the q integrand drops as q−1. Thus, we estimate the
rate by integrating up to qBZ only:

R ∝ σpmχ

ZqBZ
dq q

Z
dωδðω − ωLOÞ; ð53Þ

and find that R ∝ mχ . This is the reason why the 20 meV
curve in Fig. 8 changes slope around mχ ∼ 1 MeV.

We next turn to the intermediate mass range (1–30 MeV)
with ωth > ωLO, such that n ≥ 2 phonons. In Fig. 8 this
corresponds to the curves with thresholds of 40 meV and
above. As in Sec. IVA, we again notice that the leading
contribution to the structure factor will be given by the
smallest number of phonons,m, that can exceed the threshold
energy. In this regime, the integrand ∝ Sðq;ωÞ=q3 scales
with positive powers of q for m ≥ 2 phonons, since (23)
grows faster than q3. The analysis for multiphonons then
follows exactly the same logic as the discussion in the
previous section and we find that R ∝ m2m−1

χ .
For large dark matter masses (≫ 30 MeV), again if the

threshold is well above the single phonon energy, we can
apply the free nuclear recoil approximation to obtain the
scaling. Using the free nuclear structure factor gives

R ∝
σp
m3

χ

Z

ffiffiffiffiffiffiffiffiffiffiffi
2mdωth

p
dq q

%
mχv0
q

&
4
Z

dωδ

%
ω −

q2

2md

&
: ð54Þ

The q integral is dominated by low-momentum transfers
along the free nuclear recoil dispersion, so we evaluate the
integral at the intersection of ω ¼ ωth and ω ¼ q2

2md
, or

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdωth

p
. Then, the approximate scaling in this

regime is R ∝ mχ=ωth, which we verify numerically
in Fig. 8.

C. Dark photon mediators

The defining feature of a dark photon mediator is that it
couples to the electric charge of the SM particles. In the
regime where phonons are the relevant degrees of freedom,
the charge of the nucleus is (partially) screened by the
electrons. This means that we need a notion of an effective
charge, as seen by the DM, which is momentum depen-
dent. For individual atoms, this effective charge interpolates
between zero in the low momentum, fully screened regime
and the nuclear charge in the high momentum regime. We
use the calculations from Brown et al. [38] of the effective
charge for individual atoms, as shown in Fig. 9. We expect
this approximation to hold only for q≳ qBZ, since addi-
tional many-body effects should be relevant for q < qBZ.
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This is particularly true for a polar material such as GaAs,
where the Born effective charge of the Ga and As atoms is
nonzero in the q → 0 limit. In this regime a full DFT
calculation of the momentum dependence of the effective
charge is needed, which we do not attempt here.
In this work, we will therefore focus on the momentum

regime q≳ qBZ, which corresponds to mχ ≳MeV. In this
case we can use the incoherent approximation and take
fd ¼ ZdðqÞ, with ZdðqÞ the atomic effective charges in
Fig. 9. This allows us to compute scattering rates with dark
photon mediators for the production of two or more
phonons, which is dominated by the highest kinematically
accessible momentum transfers.
The regime q < qBZ is relevant primarily for massless

dark photon mediators. (For massive dark photon media-
tors, there are strong BBN constraints that severely limit the
scattering rate for sub-MeV dark matter, see e.g., [39].) In
this regime, there are substantial deviations from the atomic
effective charges due to the delocalized nature of the
valence electrons. For instance, a polar material such as
GaAs, SiC, and sapphire can have a residual dipole moment

associated with atomic displacements even for q → 0. The
effective couplings fd in this limit are given by Z$

d=ϵ∞,
where Z$

d is the Born effective charge and ϵ∞ is a screening
due to valence electrons; the Born effective charges can be
calculated with DFT methods [11,14,16]. This was treated
in previous studies of single-phonon production through a
massless dark photon mediator [10–17]. For nonpolar
materials such as Si, Ge, and diamond, the Born effective
charges vanish and instead multiphonon production is
expected to dominate. This can be estimated with the
energy loss function [29], at least for sub-MeV dark matter.
Since this q < qBZ regime is already included in DARKELF

[29], we restrict our results here to multiphonon processes
with q > qBZ and ω > ωLO.
Our results are shown in Fig. 10 for GaAs; the results for

Ge, Si and diamond are deferred to Appendix D. As is
conventional for dark photon mediators, we choose the
reference momentum for the massless mediator to be
q0 ¼ αme and present the results in terms of the effective
DM-electron cross section σ̄e [40], with

σ̄e ¼
μ2χe
μ2χ

σp ð55Þ

and μχe the DM-electron reduced mass. In our calculations
using the atomic effective charges, we impose q > qBZ to
ensure we are not sampling the area of phase space for
which these charges are clearly invalid. This means that our
rate calculations for mχ ≲ 10 MeV are a slight under-
estimate of the true result.

V. CONCLUSIONS AND OUTLOOK

It is well known that DM scattering in crystals can lead to
one or more phonons being produced if DM has MeV-scale
mass, as well as a recoiling nucleus if DM has GeV or
higher mass. These processes are two sides of the same

FIG. 9. Momentum dependence of the effective ion charge for
atomic elements, as computed in [38].

FIG. 10. Cross section plots for a rate of 3 events=kg-year in GaAs, for massive and massless dark photon mediators. For comparison,
the dashed black lines represent the cross sections required for DM-electron scattering with a 2 e− ionization threshold with the same
exposure, as computed using DARKELF [29,41].
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coin, depending on whether the momentum transfer is
comparable to the inverse of the interparticle spacing and
whether the energy deposition is comparable to the typical
phononenergy∼ω̄.Whenbothmomentumandenergy scales
are small, single phonon production dominates, and when
both are large, nuclear recoils dominate. Here we studied the
intermediate regime which is dominated by many phonons,
which allows us to smoothly interpolate between single
phonon production and nuclear recoils (see Fig. 8).
To make the multiphonon calculation tractable, we relied

on the isotropic, incoherent, and harmonic crystal approx-
imations. This allowed us to obtain analytic results for the
scattering rate in terms of the phonon density of states in the
crystal. These approximations are expected to be very good
for q ≫ qBZ (mχ ≫ 1 MeV), as they explicitly reproduce
the nuclear recoil limit when q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω̄

p
. For q≲ qBZ

(mχ ≲ 1 MeV) the experimental threshold determines
which theoretical treatment is most appropriate: for single
phonon production, one can obtain analytic formulas by
instead using a long wavelength, isotropic approximation.
These results are currently only valid for cubic crystals
such GaAs, Si, Ge, and diamond. For strongly anisotro-
pic materials such as sapphire, one must find a way to
generalize them further or rely on DFT calculations. For
multiphonon production and q≲ qBZ, the situation is more
complicated: in this case it cannot be taken for granted that
anharmonic corrections to the various multiphonon channels
can be neglected. The anharmonic multiphonon contribu-
tions involving optical modes are particularly difficult to
model analytically, and at the moment we perform a simple
estimate in a toymodel to justify extrapolating the incoherent
and harmonic approximations to q≲ qBZ. A dedicated DFT
calculation is needed to improve their accuracy.
Our approach provides a smooth description of sub-GeV

dark matter scattering down to keV masses for hadrophilic
mediators. For dark photon mediators, a DFT calculation of
the momentum-dependent couplings in the q ∼ qBZ regime
is needed to complete the interpolation. For both mediators,
we have provided results for multiple direct detection
materials of interest, and also included our calculation as
part of the DARKELF public code package. These will be
essential to interpret direct detection results as experimental
thresholds for calorimetric detectors reach the eV scale
and lower.
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APPENDIX A: TWO PHONON ANALYTIC
STRUCTURE FACTORS

In Sec. III B we compared the long-wavelength and
incoherent approximations for the two-phonon final states,
for q within the first BZ. In this appendix we provide the
analytic expressions for both approximations.

1. Long-wavelength approximation

Here we discuss how we extend the analytic calculations
from [25] for the coherent two-phonon structure factor to
additional combinations of final state phonon pairs. As in
Sec. III B, we assume a hadrophilic mediator with fd ¼ Ad
throughout this appendix. It was shown in [25] that the
structure factor separates into harmonic and anharmonic
contributions

Sðq;ωÞ ¼ SðharmÞðq;ωÞ þ SðanhÞðq;ωÞ ðA1Þ

which do not interfere at leading order in the long wave-
length limit. The first term involves expanding (13) to
second order; note that it was referred to as the contact term
in [25]. The anharmonic term is computed using an
anharmonic phonon interaction Hamiltonian to first order.
The specific matrix elements to be used are given in
Eqs. (12) and (13) of [25]. We take the long-wavelength
approximation for the phonon modes, as described in
Sec. III A. For a crystal with two atoms in the unit cell,
the longitudinal eigenvectors can be approximated by

eLA;k;1 ≈
ffiffiffiffiffi
A1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p k̂; ðA2Þ

eLA;k;2 ≈
ffiffiffiffiffi
A2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p e−ik·r
0
2k̂; ðA3Þ

eLO;k;1 ≈
ffiffiffiffiffi
A2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p k̂; ðA4Þ

eLO;k;2 ≈ −
ffiffiffiffiffi
A1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p e−ik·r
0
2k̂; ðA5Þ

with k̂ the unit vector along the phonon propagation
direction. Note that the r02 dependence was neglected in
the LA eigenvector in (27) and in [25]; here we have kept
this additional phase so that the acoustic and optical
eigenvectors are explicitly orthogonal across a unit cell.
This additional phase factor will only be relevant in cases
where there is a destructive interference in the leading
coupling to acoustic phonons, which occurs for some final
states [13]. The transverse eigenvectors lay in the plane
perpendicular to k̂ and have analogous normalizations.
Analytic expressions for the harmonic structure factor

were provided in Ref. [25] for acoustic-acoustic final states
only. We require expressions for the optical-optical and
optical-acoustic final states as well to perform the compari-
son with the incoherent approximation. A straightforward
application of (16) in [25] to the lowest order in q gives
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SðharmÞ
LOLO ¼ 2π

Ωc

πq4

120m2
pω2

LO
δðω − 2ωLOÞ;

SðharmÞ
LOTO ¼ 2π

Ωc

πq4

90m2
pωLOωTO

δðω − ðωLO þ ωTOÞÞ;

SðharmÞ
TOTO ¼ 2π

Ωc

πq4

45m2
pω2

TO
δðω − 2ωTOÞ ðA6Þ

for the optical-optical modes.
For the optical-acoustic modes, the harmonic structure

factors are of the form

SðharmÞ
LOLA ¼ 2π

Ωc

a5

2304π2c2LAm
2
pωLO

A1A2

ðA1 þ A2Þ2

%
ω − ωLO

cLA

&
7

× gðharmÞ
LOLA ðxÞΘðcLAqBZ − ðω − ωLOÞÞ; ðA7Þ

where x≡ cLAq
ω−ωLO

. The other structure factors for optical-
acoustic final states are given by relabelings LO → TO,
LA → TA, where the expressions g expanded at small q are

gðharmÞ
LOLA ðx ≪ 1Þ ≈ 3

10
x6 −

1

7
x8 þ 1

15
x10;

gðharmÞ
LOTA ðx ≪ 1Þ ≈ 1

5
x6 þ 12

35
x8 −

4

105
x10;

gðharmÞ
TOLA ðx ≪ 1Þ ≈ 1

5
x6 þ 1

7
x8 − 1

15
x10;

gðharmÞ
TOTA ðx ≪ 1Þ ≈ 4

5
x6 −

12

35
x8 þ 4

105
x10: ðA8Þ

We see that at leading order in small q, the optical-acoustic
structure factors are all suppressed by an additional factor
of q2 relative to the optical-optical modes, which is due to
destructive interference. Since we will be comparing with
the incoherent approximation at small q, we can effectively
neglect these final states.
We would also like to compute the anharmonic con-

tributions to the 2-phonon structure factor, which we
do with the inclusion of an anharmonic interaction
Hamiltonian. For acoustic phonons in the long-wavelength
limit, we have an effective Hamiltonian for acoustic
phonons where the interactions are given in terms of
macroscopic properties of the crystal through the Lamé
parameters, as described in [25]. For the interactions of
optical phonons, however, it is more difficult to write down
a reliable analytic Hamiltonian. In this case we use (45) of
Ref. [25], which comes from [42]. This Hamiltonian should
be taken only at the order-of-magnitude level. We restrict
the use of both effective Hamiltonians to the first BZ. The
analytic expressions for the acoustic-acoustic and acoustic-
optical final states are given already, so we complete this by
calculating the optical-optical terms. At leading order in q,
this gives

SðanhÞLOLO ¼ 2π
Ωc

π
6m2

p

c2LA
c2

ω2
LOq

4

ðð2ωLOÞ2 − ðcLAqÞ2Þ2

× δðω − 2ωLOÞ;

SðanhÞLOTO ¼ 2π
Ωc

2π
3m2

p

c2LA
c̄2

ωLOωTOq4

ððωLO þ ωTOÞ2 − ðcLAqÞ2Þ2

× δðω − ωLO − ωTOÞ;

SðanhÞTOTO ¼ 2π
Ωc

2π
3m2

p

c2LA
c̄2

ω2
TOq

4

ðð2ωTOÞ2 − ðcLAqÞ2Þ2

× δðω − 2ωTOÞ; ðA9Þ

where c̄≡ ðcLA þ cTAÞ=2. We have also assumed that the
Grüneisen constant γG ≈ 1.

2. Incoherent approximation

The second result needed for the comparison in Sec. III B
is the two-phonon structure factor for GaAs in the
incoherent approximation. To calculate this, we use the
simplified density of states in (35) corresponding to
the long-wavelength limit. Performing the n ¼ 2 integral
in (23) gives

Sn¼2ðq;ωÞ ¼ SLALA þ SLATA þ… ðA10Þ

where each S is a contribution to the n ¼ 2 structure factor
from the part of the density of states associated with the
subscripted modes, and the ellipsis indicates we sum over
all combinations of modes. The first term of the sum in
(A10) is

SLALA ¼ 2π
Ωc

q4

96c6LAq
6
BZm

2
p
ðω3ΘðcLAqBZ − ωÞ

− ð4c3LAq3BZ − 6c2LAq
2
BZωþ ω3Þ

× Θðω − cLAqBZÞΘð2cLAqBZ − ωÞÞ; ðA11Þ

and STATA is given by SLALA with the replacement LA →
TA and an additional overall factor of 4. The same
procedure gives the LATA term as

SLATA ¼ 2π
Ωc

q4

24c3LAq
6
BZm

2
p

%
ω3

c3TA
ΘðcTAqBZ −ωÞ

þ−2cTAq3BZ þ 3ωq2BZ
cTA

Θðω− cTAqBZÞΘðcLAqBZ −ωÞ

þ−2ðc3LA þ c3TAÞq3BZ þ 3ðc2LA þ c2TAÞq2BZω−ω3

c3TA

×Θðω− cLAqBZÞΘððcLA þ cTAÞqBZ −ωÞ
&
:

ðA12Þ

as well as the LOLA term,
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SLOLA ¼ 2π
Ωc

a5ðq2BZq4Þ
768π5c3LAm

2
pωLO

ðω − ωLOÞ

× Θðω − ωLOÞΘððcLAqBZ þ ωLOÞ − ωÞ: ðA13Þ

Again we may find SLOTA, STOLA, and STOTA by
relabelings and inserting relevant factors of two for
polarizations. Note that, since the incoherent approxi-
mation does not recover the q6 scaling resulting from
interference, we have written the structure factor here
using qBZ ¼ 2π=a to make the comparison more explicit.
At lowest order in x and for A1 ≈ A2, such a comparison
of (A7) and (A13) shows a relative factor of 40=π3 ≈ 1
for the LOLA channel. Lastly, for the remaining optical-
optical channels we find

SLOLO ¼ 2π
Ωc

q4

144m2
pω2

LO
δðω − 2ωLOÞ;

SLOTO ¼ 2π
Ωc

q4

36m2
pωLOωTO

δðω − ðωLO þ ωTOÞÞ;

STOTO ¼ 2π
Ωc

q4

36m2
pω2

TO
δðω − 2ωTOÞ: ðA14Þ

A comparison now of (A6) and (A14) shows the
incoherent approximation gives a smaller structure factor
by factors of 2π=5 − 6π=5 ≈ 2 − 4.

APPENDIX B: IMPULSE APPROXIMATION

In this section we discuss how to obtain the impulse
approximation form of the structure factor, (39) in Sec. III D.
To achieve this wemust approximate the t integral in (37) for
large q. The expression in (37) can be written as

Cld ¼
1

V
e−2WdðqÞ

Z∞

−∞

dt efðtÞ ðB1Þ

with

Re½fðtÞ'≡ q2

2md

Z
dω0Ddðω0Þ

ω0 cosðω0tÞ;

Im½fðtÞ'≡ q2

2md

Z
dω0Ddðω0Þ

ω0 sinðω0tÞ − ωt: ðB2Þ

From this, we see there is a global maximum in the real part
and a globalminimum in themodulus of the imaginary part at
t ¼ 0. This allows us to perform a steepest-descent expan-
sion about t ¼ 0, giving

Cld ≈
1

V

Z∞

−∞

dt eitð
q2

2md
−ωÞ−t2

2

q2ω̄d
2md ; ðB3Þ

where again ω̄d ¼
R
dω0 ω0Ddðω0Þ. Note that the leading

term in the expansion about t ¼ 0 cancelled the Debye
Waller factor, assuming the form given in (24). Evaluating
the above gives

Cld ≈
1

V

ffiffiffiffiffiffi
2π
Δ2

d

s

e
−

'
ω− q2

2md

(
2

2Δ2
d ; ðB4Þ

which is the impulse approximation result.
In obtaining this form, we have assumed that any other

local maxima in t gives a subdominant contribution to the
t ¼ 0 maximum. In particular, aside from the t ¼ 0 point,
which is a global maximum in Re½fðtÞ', there are local
maxima in the real part which will generally be near integer
multiples of 2π=ω̄d. The leading order contribution from
each additional maxima tmax is given by evaluating the real
part in the exponential at the location of the maxima.
This must necessarily be smaller than the t ¼ 0 con-

tribution since the following inequality is always satisfied:

Z
dω0Ddðω0Þ

ω0 cosðω0tmaxÞ <
Z

dω0Ddðω0Þ
ω0 : ðB5Þ

Since tmax ∼ 2π=ω̄d, the left-hand side will be suppressed
by an Oð1Þ amount due to presence of the cosðω0tmaxÞ.
Then, the contribution from the local maxima will be
exponentially suppressed:

e
q2

2md

R
dω0Ddðω0Þ

ω0 cosðω0tmaxÞ ≪ e
q2

2md

R
dω0Ddðω0Þ

ω0 ðB6Þ

as long as the following condition is satisfied:

q2

2md
≫

1
R
dω0 Ddðω0Þ

ω0

∼ ω̄d: ðB7Þ

Here we have taken
R
dω0 Ddðω0Þ

ω0 ∼ 1=ω̄d as a typical scale
for this integral, although it will differ by an Oð1Þ factor.
Therefore, as long as the free nuclear recoil energy ω ¼
q2=ð2mdÞ is well above the typical phonon energy ω̄d for a
scattering off of atom d, the t ¼ 0 maximum is dominant
and the impulse approximation should be accurate.
In the regime where q2=2md is comparable to ω̄d,

the contributions from the additional maxima in t can
become important. Nevertheless, the impulse approxi-
mation is still accurate at large ω even in this case because
of cancellations from the rapidly changing phase in
Im½fðtÞ'. When ω ≫ ω̄d, then Im½fðtÞ' ≈ −ωt for t around
tmax ∼ 2π=ω̄d. This implies large oscillations of fðtÞ
around tmax, which suppresses the contribution from these
local maxima. On the other hand, if ω≲ ω̄d, there may be
large corrections to the impulse approximation due to
these additional maxima.
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These effects were shown in Fig. 5(a) when compar-
ing the multiphonon expansion result to the impulse
approximation. The middle panel showed the result if
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
, in the mGa ≈mAs approximation. For

ω≳ ω̄d the structure factor falls smoothly and can be
reasonably captured by the impulse approximation,
while for ω≲ ω̄d ≈ 22 meV or at the optical phonon
energies 31 and 33 meV there are sharp peaks in the
multiphonon response that are not captured by the
impulse approximation. For q ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
the many

multiphonon peaks merge and add up to a shape similar
to the impulse approximation over the whole ω range.
Practically, for our calculations, we use the impulse
approximation for the structure factor at q > 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
.

Though the approximation has small differences with
the exact result when q ∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p
, integrating over

the allowed phase space for the rate largely washes out
these differences.

APPENDIX C: IMPLEMENTATION
IN DARKELF

In the main text, we presented the formulas in the manner
which is most clear from the point of view of the various
approximations and their regimes of validity. These for-
mulas were not always suitable however for an efficient
numerical implementation, which we address in this
section. We also provide details on their implementation
in the DARKELF package [29].
In the main text we gave the rate in the isotropic limit,

(45). In order to calculate the rate for any mediator and to
obtain the differential rate dR=dω, it is convenient to
perform the v integral first and rewrite the rate as

R ¼ 1

4πρT

ρχ
mχ

σp
μ2χ

Zωþ

−∞

dω
Zqþ

q−

dq qjF̃ðqÞj2Sðq;ωÞηðvminðq;ωÞÞ

ðC1Þ

where now the integration limits are given by

q( ¼ mχ

 

vmax (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2max −
2ω
mχ

s !

ðC2Þ

ωþ ¼ 1

2
mχv2max ðC3Þ

with vmax ¼ vesc þ ve the maximum DM speed in the lab
frame. The η function is given by

ηðvminÞ ¼
Z

d3v
fðvÞ
v

Θðv − vminÞ ðC4Þ

with vminðq;ωÞ ¼ q
2mχ

þ ω
q.

To evaluate the rate using incoherent approximation, we
provide look-up tables for the structure factor. At each n for
the sum in (36), the q and ω parts of the integral are
separable, so we can capture the ω-dependent part with the
family of functions

Fn;dðωÞ≡ 1

n!

%Yn

i¼1

Z
dωi

DdðωiÞ
ωi

&
δ

%X

i

ωi − ω

&
; ðC5Þ

and calculate the rate in terms of functions Fn;d. These
functions are simple to calculate numerically up to n ≤ 10,
which we have tabulated and provided in DARKELF as look-
up tables to speed up the calculation. The combination
ω̄nFnðωÞ is shown in Fig. 11 for GaAs in the mGa ≈mAs
approximation. For increasingly high n, the Fn;d become
increasingly smooth.
We have added several additional functions to

DARKELF for the differential and integrated rate calcu-
lations from the single phonon to the nuclear recoil
regime. Table I describes some of the new relevant
functions. These functions currently work for mate-
rials with up to two atoms per unit cell. We have
included the necessary data files for the multiphonon
calculation for GaN, Al, ZnS, GaAs, Si, and Ge from a
combination of DFT and experimental sources. We also
allow the user to input their own calculations or
extractions of the (partial) density of states, as well
as momentum-dependent dark matter-nucleon couplings.
Before calculating multiphonon scattering rates in
DARKELF, it is necessary to tabulate the auxiliary
function (C5) for each atom. This is done using the
DARKELF function create_Fn_omega. This step is the
most time consuming part of the calculation, so we
provide these pretabulated for the aforementioned mate-
rials. For calculations with a user-supplied (partial)

FIG. 11. Here we have plotted ω̄nFnðωÞ, where FnðωÞ is the
ω-dependent part of the structure factor in the incoherent
approximation and given explicitly in (C5). At fixed q, the
structure factor decreases quickly with increasing ω.
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density of states, these tables must first be updated by
running create_Fn_omega. DARKELF will save these
new look-up tables for future computations, such that
this step only needs to be performed once. Next we
describe the functions that return important results. All
of the following straightforwardly apply Eqs. (C1)–(C4).
R_single_phonon: This function takes the energy thresh-

old and DM-nucleon cross sections and outputs the rate in
the long-wavelength single phonon regime using the
analytic functions (30)–(31).
R_multiphonons_no_single: This function takes the

energy threshold and DM-nucleon cross section as inputs
and calculates the total integrated rate, excluding the single
phonon processes at long wavelengths q < qBZ. In other
words, this calculation includes only the purple (multi-
phonon expansion) and red (impulse approximation) phase
space regions in Fig. 6.
sigma_multiphonons: This takes the energy threshold

as input and returns the necessary DM-nucleon cross
section to produce three events per kg-year for any
number of phonons. In order to return this cross section,
this function first calculates the total rate by summing
the outputs of R_single_phonon and R_multiphonons_
no_single, so it includes the entire calculation scheme
depicted in Fig. 6.
_dR_domega_multiphonons_no_single: This function

takes the energy transfer ω and DM-nucleon cross section
and returns the differential rate dR

dω at that energy excluding
single phonons in the long wavelength regime. This comes
from Eq. (C1) without evaluating the ω integral. We
exclude the single coherent phonon here since the long-
wavelength approximation has delta functions in energy in
the differential rate.

APPENDIX D: ADDITIONAL RESULTS

Here, we provide additional results for Ge, Si, and
diamond. Concretely, Fig. 12 shows the density of states
for these three materials, as extracted from [35].
Figure 13 shows the differential scattering rate via a
massive scalar mediator for two example DM masses in
GaAs, Ge, and Si targets. Finally, Figs. 14, 15, and 16

are the cross section plots corresponding to an integrated
rate of 3 events=kg-year for Ge, Si, and diamond, respec-
tively. The electron recoil cross sections shown (dashed
black lines) are based on calculations in [41] for Ge, Si,
and in [43] for diamond.

TABLE I. List of public functions in DARKELF related to multiphonon excitations from DM scattering. Only mandatory arguments are
shown; for optional arguments and flags, see text and the documentation in repository. Some functions are only available for select
materials, as indicated in the right-hand column.

DM-Multiphonon Scattering

Function Description Available for

dRdomega_multiphonons_
no_single(omega)

Differential rate dR=dω in 1=kg=yr=eV excluding
long-wavelength single phonons

All except SiO2, Al2O3

R_multiphonons_no_single(omega) Total phonon rate in 1=kg-yr excluding
long-wavelength single phonons

All except SiO2, Al2O3

sigma_multiphonons(omega) Nucleon cross section to produce 3 events=kg-yr All except SiO2, Al2O3

FIG. 12. Densities of states for germanium, silicon, and
diamond [35].
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FIG. 13. Differential rate for various materials and a massive scalar mediator, compared with the nuclear recoil approximation. The
single phonon contribution from the long wavelength regime is not shown, since it gives a delta function contribution.
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FIG. 14. Cross section plots for a rate of 3 events=kg-year exposure for different thresholds in Ge.

FIG. 15. Cross section plots for a rate of 3 events=kg-year exposure for different thresholds in Si.
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