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We calculate the E1 breakup of the 2n halo nucleus 11Li in Halo E↵ective Field Theory (Halo
EFT) at leading order. In Halo EFT, 11Li is treated as a three-body system of a 9Li core and two
neutrons. We present a detailed investigation of final-state interactions (FSI) in the neutron-neutron
(nn) and neutron-core (nc) channels. We employ Møller operators to formulate an expansion scheme
that satisfies the non-energy-weighted cluster sum rule and successively includes higher-order terms
in the multiple-scattering series for the FSI. Computing the E1 strength up to third order in this
scheme, we observe apparent convergence and good agreement with experiment. The neutron-
neutron FSI is by far the most important contribution and largely determines the maximum value
of the E1 distribution. However, inclusion of nc FSI does shift the peak position to slightly lower
energies. Moreover, we investigate the sensitivity of the E1 response to the spin structure of the
neutron-9Li interaction. We contrast results for an interaction that is the same in the spin-1 and
spin-2 channels with one that is only operative in the spin-2 channel, and find that good agreement
with experimental data is only obtained if the interaction is present in both spin channels. The
latter case is shown to be equivalent to a calculation in which the spin of 9Li is neglected.

I. INTRODUCTION

Halo nuclei consist of a compact core and one or more loosely bound valence nucleons. As a consequence, they
are significantly larger than neighbouring nuclei in their isotopic chain. Neutron halos are the most universal halo
systems as their halo structure is not altered by the long-range Coulomb interaction [1, 2]. They were discovered in
the 1980’s at radioactive beam facilities by measuring their unusually large interaction radius [3]. Jonson and Hansen
subsequently showed that this large radius is connected to a small separation energy of the halo neutrons [4].
The corresponding separation of energy scales forms the basis for a controlled description of halo nuclei in the

framework of Halo E↵ective Field Theory (Halo EFT) [2, 5, 6], which systematizes cluster models of halo nuclei. The
breakdown scale Mcore is the lowest momentum scale not explicitly included in the theory. This is set by the excitation
energy of the core, or by the size of the core, whichever yields the smaller momentum scale. The EFT exploits that
the momentum scale of the halo nucleons set by their separation energy is much smaller, Mhalo ⌧ Mcore. Typically
Mhalo is of order tens of MeV for halo nuclei, while, the breakdown momentum scale, Mcore, varies between 50 and
150 MeV. The EFT expansion is then in powers of Mhalo/Mcore, and for a typical momentum of order Mhalo the EFT
uncertainty is of order (Mhalo/Mcore)n+1 for a calculation at order n. Halo EFT describes the structural properties
of one- and two-neutron halo nuclei with nucleon-nucleon and nucleon-core interactions. It has has also been applied
to a number of electromagnetic and weak observables, including capture reactions, photodissociation processes, and
weak decays (see, e.g., Refs. [2, 7–10] for a review and some recent references.)
In this work, we focus on Coulomb dissociation which is a powerful tool to study the structure of halo nuclei. The

electric dipole transition strength, which is enhanced at low excitation energies for halo nuclei, is probed in Coulomb
dissociation experiments by accelerating them to high energies and scattering them peripherally o↵ a high-Z target.
This “soft dipole mode” has been under intense investigation both in experiment and in theory since the discovery of
halo nuclei in the early 80’s [11]. Halo EFT was first applied to Coulomb dissociation of the one-neutron halo 11Be [12].
Further work extended the description to 19C [13]. In Ref. [2], it was shown that the E1 excitation of one-neutron
halo nuclei can be described by a dimensionless universal function of the energy in units of the one-neutron separation
energy.
The E1 response of a two-neutron halo is also expected to be governed by a universal function [14], in close analogy

to the one-neutron case discussed above. In this work, we discuss the E1 response of 11Li. Lithium-11 was previously
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considered in Halo EFT in Refs. [15–18]. Both 11Li and the 9Li core have the quantum number J
P = 3/2�, while

the unbound 10Li appears to have a low-energy anti-bound state with quantum numbers JP = 2� or 1�.
The two-neutron separation energy of 11Li is 0.369 MeV and the 10Li s-wave resonance1 is 26(13) keV above the

9Li-n threshold [19]. The momentum scale Mhalo can be estimated from these energy scales using M ⇠
p
mE as

Mhalo = 18.6 MeV. The first excitation energy of the 9Li ground state is 2.69 MeV [20] and its one-neutron separation
energy is 4.06 MeV [19], while the charge radius of 9Li is 2.25 fm [21], implying a scale Mcore of 50–90 MeV. This
yields an expansion parameter of, at worst, Mhalo/Mcore ⇠ 0.37.

A leading-order Halo EFT calculation of 11Li should therefore be able to describe Coulomb dissociation data with
reasonable accuracy. This was indeed found to be the case in preliminary Halo EFT calculations of this process [22–24]
that showed good agreement with the E1 strength extracted from Coulomb dissociation data in Ref. [25] at transition
energies within the domain of validity of Halo EFT. These studies, as well as earlier work within three-body models in
Refs. [26–28] found that, in contrast to the case of Coulomb dissociation of an s-wave one-neutron halo [23], final-state
interactions (FSIs) play a significant role in determining the neutron spectrum measured in Coulomb dissociation of
11Li. This was also observed for other 2n halos such as 22C, see, e.g., Ref. [29].
In this work, our aim is threefold:

• Obtain a description of the experimental E1 breakup data from Ref. [25] in Halo EFT with theoretical uncer-
tainties.

• Explore in detail the role of the nn and 9Li-n FSIs in this process, paying particular attention to the constraints
from the non-energy-weighted cluster sum rule for E1 breakup.

• Investigate the impact of the spin structure of the 9Li-n interaction, which is non-trivial because the 9Li core
has spin 3/2, and derive the relationship of such a calculation to the frequent assumption of a spin-0 core.

As was done in Refs. [15–18], we include only s-wave interactions in our leading-order calculation. We are aware that
this is a di↵erent strategy to the one typically taken in three-body cluster models, many of which predict significant
p-wave components in the wave function [30]. There is also experimental evidence for a mixing of di↵erent-parity
components [31]. However, the di↵erent models given in Ref. [32] showed that already a calculation with only s-wave
9Li-n interactions can yield momentum distributions in agreement with experimental data at an acceptable level at low
momenta. More recently, Casal and Moro achieved a reasonable description of the 9Li(d, p)10Li reaction using 1�/2�

s-wave virtual states and 1+/2+ p-wave resonances around 500 keV [33]. There seems to be no conclusive evidence
for a p-wave resonance in the 9Li-n system significantly below 500 keV, despite many investigations of this system
over the years [34–38]. We therefore follow the Halo EFT power counting, which stipulates that p-wave resonances at
energies ⇡ 500 keV, i.e., corresponding to momenta of order Mhalo, produce only a NLO e↵ect in the E1 response,
unless they are kinematically enhanced because the experimental energy is tuned to the resonance energy.
The paper is structured as follows. In Sec. II we derive the leading-order wave function of 11Li in Halo EFT. We

write down the Faddeev equations for this system and define the s-wave interactions that govern its structure at
leading order in Halo EFT. We also elucidate the di↵erences in these equations that result because 9Li is a spin-3/2
core and not a spin-0 core and discuss the circumstances under which the more complex spin situation encountered
in this problem reduces to the case of a spin-0 core. In Sec. III we present our calculations of the E1 matrix element
of the 11Li ground state and the non-interacting nnc scattering state and show how to use Møller operators to
incorporate nc and nn final-state interactions. Moreover, we discuss the influence of di↵erent-spin nc interaction
channels. In Sec. IV we show how to develop approximations to the final-state scattering wave function that preserve
the non-energy-weighted sum rule, before concluding in Sec. V.

II. 11LI IN HALO EFT

A convenient ingredient for describing 11Li and calculating observables is its wave function. In our Halo EFT
description this is the wave function of a three-body system. The wave function is a concept commonly known from
quantum mechanics, that can also appear in a nonrelativistic field theory through its relation to the vertex function
that is the residue of the three-body scattering amplitude at the bound-state pole (see, e.g., the review [2]). Since the
corresponding half-o↵-shell amplitude appears in many calculations the wave function is a useful intermediate step in
computations of observables, and can be seen as a way to modularize the calculations.

1
Due to the mentioned inconclusive state of the literature this resonance is in many cases also understood as a virtual state. Moreover,

there is some discussion whether
10
Li can be a low-energy s-wave resonance. In principle the e↵ective nuclear

9
Li-n interaction could

form a barrier. Thereby
10
Licould be a true resonance.
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We will calculate the wave function from Faddeev amplitudes determined by Faddeev equations. Our approach for
the ground state is similar to the one of Canham and Hammer in Ref. [15], where two-neutron halos were described as
three-body systems with s-wave interactions in Halo EFT. However, we go beyond the treatment of Ref. [15] since we
do not assume that the spin of 9Li and the total angular momentum of the 11Li bound state are both zero. Instead
we analyze the spin structure of 11Li in detail.

A. Jacobi momenta and Faddeev equations

Before discussing the Faddeev equations through which we calculate the ground state wave function and introducing
the di↵erent interactions therein, we first summarize how the di↵erent momenta in the three-body system can be
described. Typically Jacobi momenta are employed, whereby the system is described in terms of a relative momentum
within a two-body subsystem and the momentum between the third particle and the subsystem. The third particle
is called the spectator. Since there are three di↵erent choices of spectator possible there are three di↵erent Jacobi
co-ordinate systems and these are labeled by the particle chosen as spectator. The definition of the Jacobi momenta
p
i
and q

i
with respect to spectator i in a system with masses {mi,mj ,mk} and momenta {ki kj ,kk} reads

p
i
:= µjk

✓
kj

mj

� kk

mk

◆
, q

i
:= µi(jk)

✓
ki

mi

� kj + kk

Mjk

◆
. (1)

The Faddeev equations for the abstract Faddeev components |Fii can be written as

|Fii =
X

j 6=i

G0tj |Fji , (2)

where G0 is the free Green’s function and tj is the two-body t-matrix for the (ik) sub-system, embedded in the three-
body Hilbert space. The concrete expression in the case of a two-neutron system with one nn and one nc interaction
reads

Fc(q) =
⇣
1 + (�1)l(⇣c)+s(⇠c)

⌘Z
dq0 q02Xcn(q, q

0)4⇡taun(q
0)
c
h⇠c|⇠nin Fn(q

0) , (3)

Fn(q) = n
h⇠n|⇠cic

Z
dq0 q02Xnc(q, q

0)4⇡⌧c(q
0)Fc(q

0)�
n
h⇠n|P(spin)

nn
|⇠nin

Z
dq0 q02Xnn(q, q

0)4⇡⌧n(q
0)Fn(q

0) . (4)

whereby the functions Fi(q) are related to the abstract components |Fii via Fi(q) :=
R
dp p2gl(⇣i)(p)ihp, q; ⇣i|Fii with

some orbital angular momentum quantum numbers ⇣i. The regulators are given by the gl. The Xij are the so-called
“kernel functions” originating from the evaluation of free Green’s functions between states di↵ering in the spectator.
The expressions can be found in Ref. [2]2. The functions ⌧i are related to t-matrix elements and will be defined in
Eq. (25). A three-body force can be included in these Faddeev equations by replacing Xnn(q, q0) by Xnn(q, q0) + h

with h being some three-body force parameter, see, e.g., Ref. [2]. Here the multiindex ⇠n specifies the spin state
of the three-body system seen from the neutron as spectator when the nc subsystem is in the spin state of the nc

interaction channel. Analogously, ⇠c specifies the spin state seen from the core as spectator when the nn subsystem
is the the spin state of the nn interaction channel3. In the case of a spinless core these overlaps read

n
h⇠n|⇠cic = �1 , (5)

n
h⇠n|P(spin)

nn
|⇠nin = �1 , (6)

and one obtains Faddeev equations equivalent to the ones from Ref. [15]: the equations are the same apart from a
relative minus sign in the definition of Fc from the Fn between our version and the one from Ref. [15]. If one continues
this comparison to the level of wave functions, one finds that the total wave functions are equivalent up to overall
minus signs that depend on the spectator and are not observable: in the case of  c(p, q) there is a relative minus sign,
while in the case of  n(p, q) there is no sign di↵erence.

2
Note that we use the definition Xij(q, q0) :=

R
dp p2

R
dp0 p02gl(⇣i)(p)gl(⇣j)(p

0
)ihp, q; ⇣i|G0|p0, q0; ⇣jij . In the case of sharp-cuto↵ reg-

ularization via the gl these can be neglected at low momenta. If additionally the already mentioned interaction channels are s-wave,
one can use the expressions from Ref. [2]. The notation is slightly di↵erent, whereby the relation Xnc(q, q0) = Xn

00(q, q
0
;B3) holds.

Moreover, the relation Xcn(q, q0) = Xnc(q0, q) can be employed. The function Xnn has a P
(spatial)
nn in front of the G0. Here the relation

Xnn(q, q0) = Xc
00(q, q

0
;B3) can be used. Alternatively, the regulator e↵ects on the kernel functions could be explicitly taken into account

by evaluating some of the integrals in the functions numerically. This is discussed for
6
He in Ref. [39].

3
Note the semantic di↵erence between “specifies the spin state” and “is the spin state”: e.g., ⇠c is just a collection of quantum numbers,

denoted by an subscript c. If applied with the core as spectator, then this collection specifies the spin state of the nn interaction channel.

I.e., |⇠cic is the spin state of the nn interaction channel. Nevertheless ⇠c is just a collection of quantum numbers and can be also applied

by using another spectator, which results in a di↵erent spin state. This means that |⇠cin is a mathematically valid expression. However,

it is not necessarily an allowed spin state of this system (e.g., |⇠cin would require neutrons of spin 3/2).
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B. Spin structure of the interactions and of 11Li

Now that we have seen the Faddeev equations and the way they are influenced by spin states, we want to discuss
the spin structure of the interactions specified as t-matrices as well as the overall spin structure of the two-neutron
halo in detail. 11Li and 9Li have the same non-zero overall angular momentum: J = sc = 3/2. This makes the nc

dynamics more complicated, since the neutron and 9Li can interact in either the spin-1 or spin-2 channel.
We treat the core spin in two di↵erent ways:

• In Appendix A, we show that if the nc interactions in both the spin-1 and spin-2 channels have the same
strength then the three-body Hamiltonian can be separated into two terms. In one the nn system is in a spin-0
configuration and in the other the two neutrons form a spin-1 pair. The interactions in the first Hamiltonian
are the same as those in the Hamlitonian that treats the 9Li and 11Li as spin-0 particles. Therefore in this case
we can just carry out a calculation that neglects the core spin, since that quantum number does not play a role
in the dynamics of the system. For the ground state we explicitly checked the equivalence of the calculation
having two nc spin channels of equal interaction strength with the spinless calculation4 by verifying that the
numerical results for the wave functions were the same. Note that this equivalence statement only refers to the
spatial parts. If one wants to assemble the full state, the spatial solution has to be combined with the correct
spin state.

• In the other approach, we take the core spin into account and assume that the leading-order nc interaction is
only in the sc+1/2 (spin-2) channel. The interaction in the sc� 1/2 (spin-1) channel is taken to be subleading.

Previous Halo EFT treatments basically used the first approach, whereby Appendix A can be seen as a formalization
of an argument given in Ref. [2].
We now describe the spin configurations. We focus on the case with the nc interaction in the sc + 1/2 channel

and mention the simplifications when the case with two equal nc interactions is realized through a calculation taking
sc = 0. For specifying the interaction channels in the three-body system we use a basis of states of definite L and S

but in general indefinite J . The interaction channel for the nn interaction, which is given by the conditions

l = 0 , s = 0 (seen from core) , (7)

can be written as

|(0,�)�, µi
c

����

✓
0,

3

2

◆
3

2
,MS

�

c

(8)

where the core is used as the spectator. Here we have specified the states in LS-coupling, using the following notation:

|(l,�)L,MLii |(s,�)S,MSii , (9)

where the total orbital angular momentum of the three-body system L = l+�, with l the orbital angular momentum
of the jk subsystem and � the orbital angular momentum of particle i relative to the jk pair. Similarly the total spin
S is composed of the spin of the pair plus the spin of the spectator: S = s+�. In the case where the core spin does
play a role the nc pair interacts when

l = 0 , s = 2 (seen from the spectator neutron), (10)

which can be written as

|(0,�)�, µi
n

����

✓
2,

1

2

◆
3

2
,MS

�

n

, (11)

where the neutron is used as spectator. Since for the ground-state calculation we restrict ourselves to L = 0 it follows
that S = 3/2 has to hold so that the 11Li ground state has the correct angular momentum. The spins are not a↵ected
by the E1 operator, but, in contrast, the L can change, which is why we want to consider both L = 0 (bound state)
and L = 1 (scattering state created after action of electric dipole operator).

4
Note that we will sometimes call this calculation “spinless” for simplicity. However, this adjective refers only to the core and the overall

halo nucleus. The spins of the neutrons are always included.
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In the calculations where the core spin is neglected all the 3/2 have to be replaced by zeros and M = 0 holds. This
makes the transformation of the spin states between the di↵erent spectators simple:

|(0, 0) 0, 0i
c
= �

����

✓
1

2
,
1

2

◆
0, 0

�

n

. (12)

Now, if the core spin is taken into account the corresponding relation reads

����

✓
0,

3

2

◆
3

2
,MS

�

c

= �
p
5/2

2

����

✓
2,

1

2

◆
3

2
,MS

�

n

�
p
3/2

2

����

✓
1,

1

2

◆
3

2
,MS

�

n

(13)

If we write the spins in the subsystems out (in square brackets), the relation reads

����

✓
1

2
,
1

2

�
0,

3

2

◆
3

2
,MS

�

c

= �
p
5/2

2

����

✓
1

2
,
3

2

�
2,

1

2

◆
3

2
,MS

�

n

�
p
3/2

2

����

✓
1

2
,
3

2

�
1,

1

2

◆
3

2
,MS

�

n

(14)

As an approximation we take only the following partial-wave component of the 11Li ground state into account

����(0, 0) 0
✓
0,

3

2

◆
3

2
;
3

2
,M

�

c

= |(0, 0) 0, 0i
c

����

✓
0,

3

2

◆
3

2
,M

�

c

, (15)

which was easily recoupled from jJ-coupling into LS-coupling. In jJ-coupling we use the following notation:

|(l, s) j (�,�) J ; J,Mi
i
. (16)

Again, the relation for the spinless case is obtained by replacing the 3/2 in Eq. (15) by zeros.
In order to refer to certain partial-wave states compactly, we use multiindices. We use the following naming

convention here: multiindices specifying a full state in jJ-coupling are denoted by ⌅, multiindices denoting the
pure spatial part are denoted by ⇣, and those denoting the spin part are denoted by ⇠. We introduce the following
abbreviations:

⌅(M)
c

:= (0, 0) 0

✓
0,

3

2

◆
3

2
;
3

2
,M , (17)

⇣c := (0, 0) 0, 0 , (18)

⇠
(M)
c

:=

✓
0,

3

2

◆
3

2
,M . (19)

Using these Eq. (15) can be written as

���⌅(M)
c

E

c

=
���⇣c
E

c

���⇠(M)
c

E

c

. (20)

C. Spatial structure of the interactions

Now that we have discussed the spin structure of the interactions as well as of 11Li, we have to discuss the general
nature of the interactions. For our EFT calculation it is particularly useful to use the interactions in the form of
t-matrices, as in their denominators the di↵erent order terms can be identified. The leading-order reduced t-matrix
of the nn interaction reads

⌧nn(E) =
1

4⇡2µnn

1

1/ann + ik
, (21)

whereby ann is the nn scattering length and the relation k =
p
2µijE holds. The relation between the reduced

t-matrix matrix element and the full two-body t-matrix element is

hp, l, s|tij(E)|p0, l0, s0i = 4⇡�l,l0�s,s0�lij ,l�sij ,sglij (p)⌧ij(E)glij (p
0) . (22)
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The nc interaction is given at leading order by the s-wave virtual state5 characterized by the virtual state energy.
The t-matrix reads

⌧nc(E) =
1

4⇡2µnc

1

�nc + ik
. (23)

The virtual state momentum �nc is related to the virtual state energy Enc according to �nc = �
p
2µncEnc.

The embedding of the t-matrices in the three-body space is given by

i
hp, q; ⇣, ⇠|ti(E3)|p0, q0; ⇣ 0, ⇠0ii = �⇣,⇣0�⇠,⇠0 hp, l(⇣), s(⇠)|tjk

✓
E3 �

q
2

2µi(jk)

◆
|p0, l(⇣ 0), s(⇠0)i �(q � q

0)

q02
. (24)

This motivates the introduction of

⌧i(q;E3) := ⌧jk

✓
E3 �

q
2

2µi(jk)

◆
, (25)

for compact notation. The three-body energy E3 is in our case given by �B3 = �S2n. Sometimes this second
argument of ⌧i is omitted.

D. From the Faddeev amplitudes to wave functions

Now that we have discussed the Faddeev equations and the e↵ective interactions that appear in them, we turn our
attention to the wave function and how it is obtained from the Faddeev amplitudes. The starting point is the relation
between the abstract Faddeev amplitudes |Fii and the overall state | i. It is given by

| i =
X

i

G0ti |Fii . (26)

We can now define individual Faddeev components of the wave function that appear here as  i(p, q) = G
(i)
0 (p, q;E3)⌧i(q;E3)Fi(q).

By projecting on a reference state and using the representations of the Faddeev amplitudes one obtains the overall
wave function in a particular partial wave specified in terms of a spatial multiindex ⇣ and a spin multiindex ⇠ as:

 c;⇣,⇠(p, q) =
X

M 0

 c(p, q)�⇣,⇣c�⇠,⇠(M0)
c

+
X

M 0

⇣
1 + (�1)l�s

⌘
�L,0�ML,0��,l

p
2l + 1

2
(�1)l

⇥
c

D
⇠

���⇠(M
0)

n

E

n

Z 1

�1
dxPl(x) n(cnp(p, q, x),cnq(p, q, x)) . (27)

It turns out that in our case

 c(p, q) :=
c

D
p, q;⌅(M)

c

��� 
E
=

c

D
p, q; ⇣c, ⇠

(M)
c

��� 
E
, (28)

with the multi-index defined as in Eqs. (17), is the most important partial-wave component of the wave function.
Moreover, the quantum number M is undetermined, as the results are independent of M . (The superscript M of the
multiindex ⌅c is therefore omitted hereafter for brevity.) The expression obtained from Eq. (27) for this piece of the
wave function is:

 c(p, q) =  c(p, q) + c
h⇠c|⇠nin

Z 1

�1
dxP0(x) n(cnp(p, q, x),cnq(p, q, x)) . (29)

This is the piece of the wave function considered by Canham and Hammer in Ref. [15].
We also checked the importance of wave function components corresponding to higher angular momenta for both

the nn pair and the core relative to that pair, i.e.,

 (l)
c
(p, q) :=

c

D
p, q; ⇣(l)

c
, ⇠c

��� 
E
, (30)

5
Note that the atomic mass evaluation [19, 40] characterizes this state as an s-wave resonance. In principle the e↵ective nuclear

9
Li-n

s-wave potential could have a barrier that produces a low-energy resonance. However, the main references given by the atomic evaluation

in Ref. [40] characterize this state as a virtual state [41, 42]. We follow the original references.
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with the multiindex ⇣
(l)
c := (l, l) 0, 0 . Our calculations show that  (2)

c is typically suppressed by a factor of 100 or
more compared to  c in terms of their respective maxima. This means that here, as was done in Ref. [15], we will
use only the l = 0 states as reference states.

Moreover, all these equations are under the assumption that only L = 0 states appear in the bound-state wave
function. Because the core has spin 3/2 it is in principle possible for L = 2 components to also be present in the
J = 3/2� 11Li ground state. However, the leading-order three-body force in Halo EFT is operative only for L = 0:
three-body forces that mix angular momenta or are operative in other L channels occur in Halo EFT, but only at
higher orders. Therefore Halo EFT predicts a 11Li state with only L = 0 (at leading order). In the case of L = 0 and
only s-wave interactions it is no loss of generality to assume that ti projects also on L = 0 and on � = 0. In the spin
space, we project not only in s but also in � with no loss of generality.

Before presenting our results, we briefly discuss the parameters and renormalization conditions applied in our
calculation. The 9Li-n virtual state, which nature was already discussed, is characterized by an energy of Enc =
26(13) keV [19]. We use it to calculate a virtual-state momentum �nc = �

p
2µncEnc. This parameterizes the nc

interaction. The corresponding scattering length anc amounts to -29.8 fm. The nn interaction is parameterized by
ann = -18.7 fm [43]. Meanwhile, we use the two-neutron separation energy S2n = 0.369 MeV [19] to renormalize the
three-body energy. The mass of the 9Li core is approximated by Amn with the neutron mass mn and A = 9. The
two-body systems as well as the three-body system are regulated using sharp cuto↵s. Moreover, the three-body cuto↵
⇤ is chosen to be equal to the two-body cuto↵, ⇤ = 400 MeV. In order to check the convergence of the results, we
compare to calculations with ⇤ = 300 MeV and two thirds of the mesh points for discretizations and integrations.

E. Radius of 11Li

The matter radius rc which is the distance between the core and the halo’s center of mass can be extracted as
root-mean-square (rms) radius from the so-called form factor Fc via

⌦
r
2
c

↵
= �6

dFc

�
k
2
�

dk2

����
k2=0

✓
2

A+ 2

◆2

. (31)

The factor 2/(A+2) stems from the conversion between the distance yc, which corresponds to the momentum qc, and
rc. The expression for the form factor reads [2]

Fc

�
k
2
�
=

Z
dp dq p2q2 ⇤

c
(p, q) c(p, q + k) . (32)

We use only the l = 0 component of the wave function in our calculations, since, as discussed above, other components
are suppressed by at least a factor of 100. This way we obtain

p
hr2

c
i = 0.87 fm with an numerical uncertainty of

roughly 0.02 fm and LO EFT uncertainty of approximately
p

hr2
c
i
p
S2n/E

⇤ ⇡ 0.32 fm. Hereby, the two-neutron
separation energy of 11Li is given by S2n and the excitation energy of 9Li is given by E

⇤. In order to compare our value
with experimental data we use the experimental values for the rms charge radii of 9Li and 11Li,

p
hr29i and

p
hr11i from

which
⌦
r
2
c

↵
can be obtained. These can be obtained from isotope shift measurements. The first values were obtained in

Ref. [44], while we use the more current ones from Ref. [21]. These yield
p
hr2

c
i =

p
hr211i � hr29i = 1.04±0.14 fm. If we

also include the mean-square neutron charge radius,
⌦
r
2
n

↵
= �0.1161±0.0022 fm2 [45], we obtain

p
hr2

c
i = 1.08±0.14

fm by using the formula from Ref. [46]. Our theoretical result is in good agreement with both values.
Furthermore, it is interesting to use our

p
hr2

c
i together with the

p
hr29i from experiment to calculate an

p
hr211i.

We obtain
p
hr211i =

p
hr2

c
i+ hr29i = 2.41 ± 0.13 fm (including the rms neutron charge radius changes the result by

less than 0.02 fm). Our value is not far from the experimental result of 2.48±0.04 fm and agrees within uncertainties.
This means that a LO EFT three-body description of 11Li is able to describe the charge radius without explicitly
including core excitation. It will be interesting to see if this persists at NLO. Finally, we want to mention that rc is
related to the neutron-pair-to-core distance rc(nn) by 11 rc/2 = rc(nn). Thereby we obtain for hr2

c(nn)i1/2 a value of
4.8 fm with an LO EFT uncertainty of 1.8 fm. This large nn� c distance is another strong manifestation of the halo
structure of 11Li.

III. E1 COULOMB DISSOCIATION

In this section, we investigate the E1 strength function without final-state interactions (FSIs) as well as the impact
that nn and nc FSI separately have on this strength function. Before showing and discussing the results, we give
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a diagrammatic overview of these calculations in terms of the Feynman diagrams for the matrix elements of the E1
operator. The diagrams are shown in Fig. 1. Final-state interactions are those interactions happening after the E1
breakup of the halo nucleus. (In this section, only one FSI will be included at a time. The inclusion of multiple
interactions at once will be discussed in the following section.)

no FSI:
p

q :=
p

q Fc +2⇥
p

q Fn

with nn FSI:
p

q +
p

q

with nc FSI:
p

q +
p

q

Figure 1. Diagrammatic representation of the E1 matrix elements of distributions di↵ering in the included FSIs. The neutrons
are represented by blue solid lines and the 9Li core is represented by an orange dashed line. The first row describes the matrix
element without FSI, whereby the ellipse with the external line on the left side represents the complete matrix element resulting
from the action of the E1 operator on the ground state. On the right-hand side of the first row this is made more explicit:
The E1 photons are represented by wiggly lines and the ground state is composed from its Faddeev amplitudes represented by
ellipses with corresponding labels. The nn and nc t-matrices are represented by circles. The second row shows the contributions
for the matrix element that includes nn FSI, while the third row describes the matrix element with nc FSI.

While they modify the shape of the E1 distribution, the integral over the distribution, i.e., the overall E1 strength,
is conserved according to a sum rule and therefore is not a↵ected by FSIs. First we explain how this sum rule comes
about.

A. The non-energy-weighted sum rule

The cumulative E1 strength B(E1)(E) is defined as the integral of the E1 strength up to an energy E.

B(E1)(E) :=

Z
E

0
dE0 dB(E1)

dE0 . (33)

According to the non-energy weighted sum rule (see, e.g., Ref. [47]) the total strength, i.e., integrated all the way to
infinite energy, is related to the RMS-radius

p
hr2

c
i by

lim
E!1

B(E1)(E) =
3

4⇡
Z

2
c
e
2
⌦
r
2
c

↵
. (34)

This sum rule is derived using only the identity r
2
c
= ~rc ·~rc and the completeness of the intermediate states. Therefore

any approximate treatment of FSI should produce a cumulative distribution that has the same asymptotic value as
that obtained when FSI is neglected, and that value should also be consistent with the

⌦
r
2
c

↵
computed using the

bound-state wave function.

B. E1 strength distribution without FSI

Our explicit expression for obtaining the E1 strength of the 2n halo nucleus with the ground state | i reads

dB(E1)

dE
= e

2
Z

2
c

X

µ,M

Z
dp dq p2q2

���
c

D
p, q; ⇣(1,µ)

c
, ⇠c

���rcY1µ(rc)P⌅c

��� 
E���

2
�

✓
E � p

2

2µnn

� q
2

2µc(nn)

◆
, (35)
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where we applied the approximation of using only the |⌅cic partial-wave component. This is realized by inserting
the corresponding projection operator P⌅c . It results in the omission of the l 6= 0 components (see Eq. (30)). This
should be a good approximation since, as discussed above, the higher-l components are suppressed by a factor of at

least 100. The orbital angular momentum quantum numbers after the breakup are collected in the multiindex ⇣
(1,µ)
c ,

which is given by

⇣
(1,µ)
c

= (0, 1) 1, µ . (36)

Working in the c-representation for the wave function | i and retaining only the dominant component
c

D
p, q; ⇣c, ⇠

(M)
c

��� 
E

it is straightforward to evaluate the operator rcY1µ(rc) in the plane-wave basis. This produces the concrete relation
that is implemented:

dB(E1)

dE
=

3e2Z2
c

4⇡

✓
2

A+ 2

◆2 Z p
2µcE

0
dq q2

p
2µ3

nn

s

E � q2

2µc

�����@q
0 c

 s

2µnn

✓
E � q2

2µc

◆
, q

0

!���
q0=q

�����

2

, (37)

where A is the mass number of the core and µc := µc(nn) holds. The wave function  c(p, q) is obtained from the
Faddeev amplitudes as described in the previous section.

C. Including nn FSI

The dipole strength can also be calculated straightforwardly with nn final state interactions (FSI) taken into
account. This is done by inserting the Møller [48, 49] operator of the nn interaction ⌦†

nn
right before the final state:

dB(E1)

dE
= e

2
Z

2
c

1

4

X

µ,M

Z
dp dq p2q2

���
c

D
p, q; ⇣(1,µ)

c
, ⇠

(M)
c

���⌦†
nn

rcY1µ(rc)P⌅c

��� 
E���

2
�

✓
E � p

2

2µnn

� q
2

2µc

◆
. (38)

The Møller operator ⌦†
nn

is given by

⌦†
nn

= +

Z
dp dq p2q2

⇣
|p, qi

c c
hp, q|⌦ (orbital) ⌦ (spin)

⌘
tnn(Ep)G

(nn)
0 (Ep) . (39)

It converts the free state
c

D
p, q; ⇣(1,µ)c , ⇠c

��� into the product of an nn distorted wave and a plane-wave associated with the

Jaocbi momentum of the core relative to the nn pair at t = 0. The resulting three-body state has
c

D
p, q; ⇣(1,µ)c , ⇠c

��� eiH0t

as an asymptotic state for t ! 1.6 The inclusion of ⌦†
nn

therefore ensures that the state obtained after the action
of the E1 operator is overlapped with the three-body scattering state that includes nn FSI, so leading to an E1
distribution in which the e↵ects of nn FSI are included.
Since ⌦†

nn
is an identity in the momentum of the spectator, q, and in the associated parts of the partial wave

states, it commutes with the E1 operator rcY1µ(rc). This means that this calculation is an easy extension of the one
described in the previous subsection. One obtains

dB(E1)

dE
=

3e2Z2
c

4⇡

✓
2

A+ 2

◆2 Z p
2µcE

0
dq q2

p
2µ3

nn

s

E � q2

2µc

�����@q
0 (wFSI)

c

 s

2µnn

✓
E � q2

2µc

◆
, q

0

!���
q0=q

�����

2

. (40)

where we have now defined a wave function that includes nn FSI:

 (wFSI)
c

(p, q) :=
c

D
p, q; ⇣c, ⇠

(M)
c

���
⇣

+ tnn(Ep)G
(nn)
0 (Ep)

⌘��� 
E
. (41)

An explicit expression is given in Eqs. (35, 36) of Ref. [50]. While the nucleus considered in Ref. [50] is 6He, the
corresponding equations apply here as well, as they only describe the inclusion of nn FSI.

6
The Møller operator thus makes use of the asymptotic condition, which requires that every state in the Hilbert space H of solutions of

a Schrödinger equation can form the asymptote of some scattering state, see e.g. Ref. [48].
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D. Including nc FSI

The distribution with nc FSI can be obtained in a similar fashion as the distribution with nn FSI. The Møller
operator ⌦†

nn
has to be replaced by ⌦†

nc
, which is given by

⌦†
nc

= +

Z
dp dq p2q2

⇣
|p, qi

n n
hp, q|⌦ (orbital) ⌦ (spin)

⌘
tnc(Ep)G

(nc)
0 (Ep) . (42)

However, because ⌦†
nc

does not commute with the E1 operator, multiple three-body bases have to be used in the
evaluation of Eq. (42). An explicit expression for the distribution with nc FSI will be given below.

E. Results

We now show our results for the E1 strength distributions from calculations with the two nc interaction channels
(s =1 and s=2). For the spatial part of the solution, we employed the equivalence statement described in Appendix A,
i.e., we did an calculation with core spin and overall spin set to zero.
The results for the E1 distributions with no FSI as well with either a single nn or nc FSI are shown in the left-hand

panel of Fig. 2. In the right panel, we show the cumulative distribution B(E1)(E).

Figure 2. The left panels shows E1 strength distributions of 11Li with di↵erent FSIs included. The right panel shows the
corresponding cumulative E1 strength distributions. Numerical uncertainties are indicated by bands, which are very narrow
here. They were obtained by comparing the calculations with ones having roughly two thirds as many mesh points and a cuto↵
of three fourths of the original one.

It can be seen that the nn FSI influences the shape of the strength distribution significantly, producing a strong
enhancement at low energies, and a continuing depletion of the strength at higher energies. nc FSI (and n

0
c FSI) also

increase the strength at low energy, but their influence is markedly less than that of the nn FSI.
In the case of the cumulative distributions a common asymptotic value can be observed, in accordance with the

sum rule. We expect that the agreement would become even better if we continued the calculation to higher energies.
The asymptotic values are also in approximate agreement with the overall E1 strength value calculated from

⌦
r
2
c

↵

computed in Sec. II E

F. Role of nc interaction channels in 11Li

Now that we have assessed the impact of FSI on the results, we want to compare the calculation with two nc

interaction channels to that with only one nc interaction channel. The parameter describing the nc interaction Enc

was in both cases the same, the di↵erence is that when only the s = 2 nc spin channel is active the interaction is
switched o↵ in the s = 1 nc spin channel. The results of the calculations are shown in Fig. 3. While the left panel
contains the theoretical curves, the right panels contains the same distributions but folded with the detector resolution
and compared with the experimental data. More information on the folding and the experimental data can be found
in Section IVD.



11

Also shown there is a recent calculation of Hongo and Son for 2n halo nuclei [51]. In this context, it is important
to note that the universal curve from Hongo and Son is derived in an EFT picture of 2n-halo nuclei in which they
are bound by the nn interaction and a three-body force: the nc interaction is taken to be an NLO e↵ect there. It
therefore applies to 2n halo nuclei where S2n and ✏n = h̄

2
/(2µnna

2
nn

) are smaller than all other energy scales, and
in particular smaller than ✏nc. This is not the case in 11Li due to the near-threshold resonance in 10Li, and Hongo
and Son themselves say the applicability of their results to 11Li is “doubtful”. Fig. 3 shows that the Hongo and Son
calculation predicts a much lower E1 strength than any of the calculations in which a low-energy nc virtual state
plays a role in the structure of 11Li.

Figure 3. E1 strength distributions with nn FSI included and di↵erent numbers of nc interaction channels for the ground state.
We show the result by Hongo and Son [51] (blue), which corresponds to no nc interaction spin channels, in comparison with
our results using one spin channel (orange) and two spin channels (green). The left panel shows the theoretical curves. In
the right panel these distributions have been folder with the detector resolution and compared to the experimental data from
Nakamura et al. [25] (adjusted to the current S2n value).

Since nn FSI is included in all curves, they can directly be compared. It is clear that the low-energy strength
increases with the number of nc interaction channels. The result by Hongo and Son [51] (blue curve) has too little
strength for E ⇡ 0.5 MeV. The calculation with one channel (orange curve) has already more strength, while using
two channels (green curve) results in the highest strength. Since the nc interaction does not appear in any of the
final-state-interaction treatments used here all the di↵erences between the di↵erent results stem from e↵ects in the
initial-state 11Li nucleus. Crucially, all three calculations are adjusted to the same S2n. It is then quite striking that
the E1 strength increases appreciably depending on the fraction of nc pairs that interact with a large nc scattering
length: 0 of them, 5/8 of them, or all of them. (The factor of 5/8 is the ratio of the spin multiplicity of the nc

interaction channel and the sum of multiplicities of all possible nc spin couplings, see Eq. (13).)
The description using two nc interaction channels, in which all the nc pairs in 11Li can scatter via a large anc, yields

a much better description of the data in this leading-order calculation. Therefore we will use it for the investigations
of the next section, where we seek to include e↵ects due to both nn and nc FSI.

IV. SUM-RULE PRESERVING APPROXIMATION SCHEMES FOR FSI

In this section, we explore di↵erent approximation schemes for the FSI in detail. Our goals are:

(i) derive accurate approximation schemes for practical calculations, and

(ii) understand the role of di↵erent FSI channels and orders in the multiple scattering series.

For this purpose, we make use of Møller operators, which were already briefly discussed in Section III C. The full final
state can be written as

c
hp, q;⌅f |⌦†

nn+nc+n0c , (43)

where ⌅f is some set of orbital angular momentum and spin quantum numbers and ⌦†
nn+nc+n0c is the Møller operator

containing all the two-body final-state interactions:

⌦nn+nc+n0c = +

Z
dp dq p2q2

X

⌅

1

Ep,q �H0 � Vnn � Vnc � Vn0c + i✏
(Vnn + Vnc + Vn0c) |p, q;⌅ic c

hp, q;⌅| . (44)
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Calculating the action of this operator on a plane-wave state is challenging due to the presence of three di↵erent
two-body potentials, Vnn, Vnc, Vn0c. To obtain the three-body scattering state, we would have to solve the Faddeev (or
equivalent) equations above three-body breakup. Therefore we are interested in approximation strategies, especially
since comparing di↵erent approximations can lead to additional insights into the final-state dynamics. Note, however,
that there are also calculations based on full three-body scattering states of 11Li available, see, e.g., Ref. [28].

We continue by analyzing the final scattering state in order to obtain approximations. Using the Faddeev equations
for scattering states as an intermediate step produces

c
hp, q;⌅f |⌦†

nn+nc+n0c = c
hp, q;⌅f |

0

@ +
X

i

tiG0 +
X

i

tiG0

X

j 6=i

tjG0 + ...

1

A , (45)

where we omitted the arguments of the t-matrices and Green’s functions for brevity. From this the following approx-
imation can be obtained:

c
hp, q;⌅f |

 
+
X

i

tiG0

!
. (46)

This treatment, which keeps the first-order terms in the multiple-scattering series, is not unitary. In contrast the Møller
operators introduced in the previous section are isometric and unitary (since neither the nn nor the nc subsystem
supports a bound state). Non-unitarity can lead to unphysical gains and losses of probability, which are manifest as
violations of the non-energy-weighted sum rule.
In order to ensure we have a sum-rule-preserving approximation scheme, we propose to use products of Møller

operators, whereby the single Møller operators correspond to single types of interactions (nn or nc or n
0
c). This

ensures that we keep unitarity-preserving combinations of terms in the multiple-scattering series. Of course, in doing
so we do not truncate the multiple-scattering series at a given order in t-matrices, because it is not possible to do that
and also maintain unitarity. Unitarity is only obtained in such a scheme if the multiple-scattering series is summed
to infinite order.

A. Organization of FSI calculations

We will now work out how to e�ciently organize calculations of E1 distributions with FSIs based on combinations
of Møller operators. We will identify ingredients which di↵erent distributions have in common and describe the
calculation of the di↵erent matrix elements on this basis. The procedure to obtain the final distributions from the
matrix elements is then basically independent of included FSIs.
In proceeding in this way, it is useful to specify the initial and final states and to discuss their partial-wave

structure. The initial state used in the calculations of this section is that obtained by acting with the E1 operator on
the ⌅c := ⇣c, ⇠c partial-wave component of the ground state:

|ii := M(E1, µ)P⌅c | i . (47)

After this E1 transition (FSIs not yet included) the system is in the partial-wave state

���⇣(1,µ)c
, ⇠c

E

c

. (48)

In order to compactly specify the final states after FSIs, which can be in various partial waves due to recoupling,
we introduce the multiindex

����⇣
(l̄,�̄;µ)
f

�

c

:=
���l̄, �̄

�
1, µ
↵
c

(49)

for the spatial part and the multiindex

���⇠(s̄;M)
f

E

c

:=

����

✓
s̄,

3

2

◆
3

2
,M

�

c

(50)

for the spin part. For illustrative purposes, we put the multiindices directly into kets, since they are usually used
with the core as spectator. The quantum numbers here have bars on top in order to distinguish them from the ones
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characterizing the ground state. While overall spin and orbital angular momentum are conserved, the subsystem
quantum numbers are in general not conserved.
In the case of the two nc interaction channels (sc + 1/2 and sc � 1/2), the Hamilton operator decouples into one

with the nn system in spin 0 configuration and one with the nn system in spin 1 configuration. Therefore, the initial
state with s = 0 will remain in this configuration and we have s̄ = 0.
On this basis we define the following “ingredients”:

A(1)
l̄,�̄;µ;s̄,M

(p, q) :=
c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����
�
⌦†

nc
�

�����i
�

, (51)

A(2)
l̄,�̄;µ;s̄,M

(p, q) :=
c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����
⇣
⌦†

n0c �
⌘ �

⌦†
nc

�
�����i
�

. (52)

To evaluate these matrix elements we must recouple the partial-wave states (momenta, angular momenta, and spins)

from the c-spectator basis to the n
0-spectator basis in the case of A(1)

l̄,�̄;µ;s̄,M
(p, q), and then, additionally from the

n
0-spectator basis to the n-spectator basis in the case of A(2)

l̄,�̄;µ;s̄,M
(p, q). In both cases the final state is specified using

the core as spectator implying another recoupling. The details of those calculations, together with explicit expressions
for these matrix elements, are given in Appendix B and Appendix C respectively.

Once A(1)
l̄,�̄;µ;s̄,M

(p, q) and A(2)
l̄,�̄;µ;s̄,M

(p, q) have been calculated the related matrix elements

eA(1)
l̄,�̄;µ;s̄,M

(p, q) :=
c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����
⇣
⌦†

n0c �
⌘����i
�

, (53)

eA(2)
l̄,�̄;µ;s̄,M

(p, q) :=
c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����
�
⌦†

nc
�

� ⇣
⌦†

n0c �
⌘����i
�

, (54)

in which the roles of the two neutrons, n and n
0, have been interchanged, can be found using the properties of the

permutation operators P(spatial)
nn and P(spin)

nn . These yield the following relations between the A and eA functions:

eA(1)
l̄,�̄;µ;s̄,M

(p, q) = (�1)l̄ (�1)�s̄ A(1)
l̄,�̄;µ;s̄,M

(p, q) , (55)

eA(2)
l̄,�̄;µ;s̄,M

(p, q) = (�1)�l̄ (�1)�(1�s̄) (�1)A(2)
l̄,�̄;µ;s̄,M

(p, q) , (56)

i.e., the tilde matrix elements are the same as the unbarred ones up to phase factors stemming from nn permutations.
Another important ingredient is the overlap of final and initial state with no “FSI operator” in between:

A(0)
µ

(p, q)�
l̄,0��̄,1 :=

c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(M)
c

����i
�

. (57)

This was already evaluated as part of the calculation of Eq. (37). This function depends on µ but not on l̄, �̄ and s̄,
since the overlap on the right is non-vanishing only if l̄ = 0 and �̄ = 1 and s̄ = 0.
Using these ingredients, and the definition

e⌦ij := ⌦ij � , (58)

we can obtain comparatively compact expressions for the matrix elements of di↵erent combinations of Møller operators.

First, we see that, with A(0)
µ (p, q) in hand, the matrix element of the nn Møller operator, implicitly worked out in

the previous section, is easily written as7 :

c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����⌦
†
nn

����i
�

=

c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����

 
+

Z
dp̃ dq̃ p̃2q̃2

X

⌦

|p̃, q̃ ;⌦i
c c
h...| tnn(Ep̃)G

(nn)
0 (Ep̃)

!����i
�

(59)

= �
l̄,0��̄,1�s̄,0

✓
A(0)

µ
(p, q) +

2

⇡
g0(p)⌧nn(p)

Z
dp0 p02g0(p

0)
�
p
2 � p

02 + i✏
��1 A(0)

µ
(p0, q)

◆
(60)

=: Bµ(p, q)�l̄,0��̄,1�s̄,0 . (61)

7
Note that ⌧ which is the ”reduced t-matrix element” takes sometimes a momentum and sometimes an energy as argument in this paper.

This variation stems from the context and there is no other reason. ⌧k(E) can be read as ⌧k
�p

2µijE
�
.
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Then, since we also have a result for eA(1)
l̄,�̄;µ;s̄,M

(p, q), if we notate the action of the nn Møller operator to be the

Bµ(p, q) defined in Eq. (61), we can write the matrix element of the product of the nn and nc Møller operators as:

c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����⌦
†
nn

⌦†
nc

����i
�

=
c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����
⇣
⌦†

nn
+ e⌦†

nc
+ e⌦†

nn
e⌦†
nc

⌘����i
�

(62)

= �
l̄,0��̄,1�s̄,0Bµ(p, q) +A(1)

l̄,�̄;µ;s̄,M
(p, q)

+ �
l̄,0��̄,1�s̄,0

2

⇡
g0(p)⌧nn(p)

Z
dp0 p02g0(p

0)
�
p
2 � p

02 + i✏
��1 A(1)

0,1;µ;0,M (p0, q) . (63)

Finally, we can write the matrix element of a product of three Møller operators

c

⌧
p, q; ⇣

(l̄,�̄;µ)
f

, ⇠
(s̄;M)
f

����⌦
†
nn

⌦†
n0c⌦

†
nc

����i
�

= �
l̄,0��̄,1�s̄,0Bµ(p, q) +

⇣
1 + (�1)l̄+s̄

⌘
A(1)

l̄,�̄;µ;s̄,M
(p, q)

+ 2�
l̄,0��̄,1�s̄,0

2

⇡
g0(p)⌧nn(p)

Z
dp0 p02g0(p

0)
�
p
2 � p

02 + i✏
��1 A(1)

0,1;µ;0,M (p0, q)

+A(2)
l̄,�̄;µ;s̄,M

(p, q) + �
l̄,0��̄,1�s̄,0

2

⇡
g0(p)⌧nn(p)

Z
dp0 p02g0(p

0)
�
p
2 � p

02 + i✏
��1 A(2)

0,1;µ;0,M (p0, q) , (64)

where we also used Eq. (55). In the case of Eq. (64) the relation

⌦†
nn

⌦†
n0c⌦

†
nc

=
⇣

+ e⌦†
nn

⌘⇣
+ e⌦†

n0c

⌘⇣
+ e⌦†

nc

⌘
(65)

= ⌦†
nn

+
⇣
e⌦†
n0c +

e⌦†
nc

⌘
+ e⌦†

nn

⇣
e⌦†
n0c +

e⌦†
nc

⌘
+ e⌦†

n0c
e⌦†
nc

+ e⌦†
nn
e⌦†
n0c
e⌦†
nc

(66)

was employed. Note that, with a result for the product of three Møller operators in hand, the expression for the

matrix element of ⌦†
n0c⌦

†
nc

can be obtained from Eq. (64) by replacing Bµ(p, q) by A(0)
µ (p, q) and setting the ⌧nn in

this formula to zero for all momenta.
In each of these expressions integrals stemming from taking the t-matrix elements have to evaluated. Limiting

ourselves to the case of sharp-cuto↵ regularization at ⇤ in the subsystems, i.e.,

gl(p) := p
l⇥(⇤� p) , (67)

we can use the relation

Z
dp0 p02

g0(p0)f(p0, q)

p2 � p02 + i✏
=

Z ⇤

0
dp0

p
02
f(p0, q)� p

2
f(p, q)

p2 � p02
�
✓
i⇡

2
� 1

2
ln

✓
⇤+ p

⇤� p

◆◆
g0(p)pf(p, q) . (68)

For a derivation see the supplemental material of Ref. [50].

B. Physical properties of approximation schemes

Now we are in a position to calculate the E1 strength distribution for all these additional combinations of Møller
operators. The combinations we are interested in are listed in Table I. In the third, fourth, and fifth columns some
desirable properties of the resulting matrix element are listed. A particularly important one is the unitarity of the
approach: the physical FSIs are norm-preserving, because there is no “probability flow” into bound states in our
problem. That means that any violation of unitarity represents a defect of our approximation scheme. Another
relevant aspect is if the FSI operator commutes with the nn permutation operator Pnn. The full FSI operator
commutes with Pnn, so that the nn antisymmetry is not broken by FSI. Also here, any violation of nn anti-symmetry
must result from approximations we have introduced. Additional characteristics are the order of the expression in the
t-matrices, as well as whether all di↵erent two-body interactions up to that order are taken into account. Note that in
the table also some abbreviations for the di↵erent combinations of operators are introduced: a bar over the subscript n
means that the operator has been averaged between the two identical neutrons, so as to ensure nn antisymmetry. The
bar over ⌦†

3 in ⌦̄†
3 indicates that the two di↵erent orderings of the Møller operators ⌦†

nc
and ⌦†

n0c have been averaged.
And in both (⌦0

3)
† and (⌦̄0

3)
† the prime indicates that the nc and n

0
c interactions come after the nn interaction, rather

than before it.
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Table I. Overview of di↵erent FSI schemes specified in terms of the used combinations of Møller operators. Especially interesting
combinations are highlighted in color.

operator max.
order
in tijG0

commutes
with Pnn

unitary all
two-body
interactions
included

0 3 3 7⇣
⌦(fo)

⌘†
1 3 7 3

⌦†
nn 1 3 3 7

⌦†
nc 1 7 3 7

⌦†
n̄c := 1

2

⇣
⌦†

nc + ⌦†
n0c

⌘
1 3 7 7

⌦†
nn⌦

†
nc 2 7 3 7

⌦†
nn⌦

†
n̄c 2 3 7 3

⌦†
3 := ⌦†

nn⌦
†
n0c⌦

†
nc 3 7 3 3

⌦̄†
3 := 1

2⌦
†
nn

⇣
⌦†

n0c⌦
†
nc + ⌦†

nc⌦
†
n0c

⌘
3 3 7 3

(⌦0
3)

† := ⌦†
n0c⌦

†
nc⌦

†
nn 3 7 3 3

�
⌦̄0

3

�†
:= 1

2

⇣
⌦†

n0c⌦
†
nc + ⌦†

nc⌦
†
n0c

⌘
⌦†

nn 3 3 7 3

The table makes it clear that the di↵erent combinations have di↵erent advantages. The expression using all t-

matrices up to first order, i.e. the expression using
�
⌦(fo)

�†
, has the advantage that nn antisymmetry is preserved and

all interactions are taken into account. However, it is not necessarily unitary. The combination of all three di↵erent
Møller operators ⌦†

3 has the advantages of taking all interactions into account and of being unitary. However, it does

not commute with Pnn. It is possible to produce a commutative variant of this combination called ⌦̄†
3 at the price of

losing guaranteed unitarity. In terms of this selection of “features” it is thereby on a par with
�
⌦(fo)

�†
. However, on

a quantitative level there might be significant di↵erences: It might be that the violation of unitarity of ⌦̄†
3 is much

smaller than in the case of
�
⌦(fo)

�†
.

Before showing the results, we want to mention that in the calculation of the E1 distributions from the matrix
elements sums over final-state quantum numbers are involved. In the case of some terms truncations are necessary.
A detailed discussion of these sums and the convergence of the truncation can be found in Appendix D.

C. Numerical results

The E1 distributions based on
�
⌦(fo)

�†
, ⌦†

3, ⌦̄
†
3, (⌦

0
3)

†, and
�
⌦̄0

3

�†
are shown in Fig. 4. Numerical uncertainties

are indicated by bands, which are very narrow here. They were obtained by comparing the calculations with ones
having roughly two thirds as many mesh points and a cuto↵ of three fourths of the original one. The right panel of
Fig. 4 contains the cumulative distributions. Some of the distributions already shown in Fig. 2 are also included for
comparison.

A striking feature of Fig. 4 is how much the distribution using
�
⌦(fo)

�†
(green dashed curve) di↵ers from all the

others: it has much more strength than any of them. It violates the non-energy-weighted sum rule by a significant
margin, attaining an asymptotic value that is roughly twice as large as it should be. The deviation is not totally
surprising, as this FSI operator is only an approximation to a unitary Møller operator.
In contrast, there is no large di↵erence between the distribution using ⌦†

3 (crimson dot-dashed curve) and the one
just having nn FSI (orange dashed curve). This combination of Møller operators includes the same first-order terms in

the multiple-scattering series as
�
⌦(fo)

�†
but is explicitly unitary. It does preserve the sum rule. Including n

0
c and nc

interactions via a product of Møller operators moves the peak of the E1 strength distribution to slightly lower energy
and increases the peak height slightly. This observation might show that taking products of increasing numbers of
Møller operators forms a convergent approximation to the multiple-scattering series at low energies.
⌦̄†

3 does not need to be unitary, but it gives a result that is indistinguishable from that of ⌦†
3. This implies both

that ⌦̄†
3 is approximately unitary (and indeed, it fufils the sum rule well) and that the violation of antisymmetry in

⌦†
3 is small.

We also consider the operator (⌦0
3)

†, which di↵ers from ⌦†
3 only in the position of ⌦†

nn
. In ⌦†

3 it is the first factor in
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Figure 4. The left panels shows E1 strength distributions of 11Li with di↵erent FSIs including higher-order schemes. The
right panel shows the corresponding cumulative E1 strength distributions. The small horizontal band again shows the ex-
pected asymptotic value for the cumulative E1 strength distribution, based on

⌦
r2c
↵
extracted from Fc

�
k2

�
. Note that the

results for ⌦†
nn⌦

†
n0c⌦

†
nc and for 1

2⌦
†
nn

⇣
⌦†

n0c⌦
†
nc + ⌦†

nc⌦
†
n0c

⌘
are on top of each other. The same is true for ⌦†

n0c⌦
†
nc⌦

†
nn and

1
2

⇣
⌦†

n0c⌦
†
nc + ⌦†

nc⌦
†
n0c

⌘
⌦†

nn.

the product of operators, in (⌦0
3)

† it is the last one. We also note that results for (⌦0
3)

† and
�
⌦̄0

3

�†
agree excellently.

Since one is unitary and the other respects nn antisymmetry this again suggests that violations of these symmetries
are small in either approximation scheme. However, (⌦0

3)
† and ⌦†

3 give somewhat di↵erent results. That di↵erence
can be taken to be an estimate of the remaining uncertainty in the FSI. This suggests that our approximation to
the multiple-scattering series is not fully converged, although the uncertainty due to the approximations used for
computing the FSI here is certainly smaller than the uncertainty due to NLO e↵ects.
Any of these combinations of three Møller operators can thus be used for a comparison with experimental data,

since they are either exactly, or to a high degree, nn anti-symmetric and norm preserving. Note that this scheme
can not be easily extended to order 4 in the three-body system, since then at least one Møller operator, which we
will call ⌦†

ij
, would need to appear two times in the product. Even if there are other Møller operators between the

two occurrences, this would also generate an factor of tijG
(ij)
0 tijG

(ij)
0 in some term8 due to the identity terms in the

Møller operators between the two occurrences. This would be unphysical, as tij fully iterates the ij interaction and
therefore the same t-matrix should not be applied two times directly subsequently with only Green’s functions in
between. That such a “doubling” is not allowed can also be seen from the expression for the multiple-scattering series
in Eq. (45).

D. Comparison with other theoretical results and with experimental data

We proceed by comparing our results with experimental data from Ref. [25]. Figure 5 shows our results with
di↵erent implementations of FSI through combinations of Møller operators. In the left panel the results of our
calculations are plotted, in the right panel these theoretical distributions folded with the detector response are shown
in comparison with the experimental data9. The three results di↵ering in FSIs all have in common that nn FSI, which
turned out to be rather important, is taken into account: the orange dashed line is the result for nn FSI alone, while
the light green and dark green dot-dashed curves are two di↵erent orderings of the three possible Møller operators
for this system. The di↵erence between the light and dark green curves can thus be taken as an estimate of the
uncertainty in our approach. Bands indicating the uncertainties due to truncating the EFT at leading order are also

8
The full factor written more formally readsZ

dp dq p2q2
⇣
|p, qik khp, q|⌦

(orbital)
⌦

(spin)
⌘
tij(Ep)G

(ij)
0 (Ep)

⇥

Z
dq0 dp0 q02p02

⇣��p0, q0
↵
k k

⌦
p0, q0

��⌦ (orbital)
⌦

(spin)
⌘
tij

�
Ep0

�
G

(ij)
0

�
Ep0

�
.

9
Within the folding the finite energy resolution as well as the finite angular resolution reported in Ref. [25] are taken into account.

Moreover note that the extraction of the E1 strength from the di↵erential cross section depends on the virtual photon number and

thereby also a dependency on the two-neutron separation energy S2n enters. Ref. [25] from 2006 used S2n = 300 keV. The current value

is approximately 369 keV [19]. Therefore, we reextracted the E1 curve using the current value. This reextraction is mainly relevant in

E < 1 MeV region, where it changes the peak height by approximately 10 %.
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shown. We estimated those uncertainties using

�

✓
dB(E1)

dE

◆
=

dB(E1)

dE

s
E

E⇤(9Li)
, (69)

whereby E
⇤�9Li

�
= 2.7 MeV is the excitation energy of the 9Li core, which is the lowest scale of omitted physics. The

figure clearly shows that, in this leading-order calculation, the EFT uncertainties are larger than the uncertainties
due to the treatment of FSI.

Figure 5. The left panels shows our results for the E1 strength distribution in comparison with the universal curve by
Hongo and Son [51]. The right panel shows our results and the result of Hongo and Son folded with the detector resolution
in comparsion with the experimental data from Nakamura et al. [25] (adjusted to the current S2n value). The uncertainty
bands show the estimated uncertainties of the leading-order EFT results. The uncertainty stemming from approximations of
the multiple-scattering series by products of Møller operators can be estimated by comparing the curve using ⌦†

nn⌦
†
n0c⌦

†
nc with

the one using ⌦†
n0c⌦

†
nc⌦

†
nn.

The prediction of Hongo and Son [51] agrees well with experimental data and our results at higher energies, but
has far too little strength at low energies. The doubtful applicability of it to this halo nucleus thereby manifests itself
in a low-energy discrepancy from experimental data.
Our di↵erent distributions, which all take nn FSI into account, show qualitative agreement with the experimental

values. In the case of the height and width of the low-energy peak there are some discrepancies, which depend also on
the concrete FSI approximation scheme. That using solely nn FSI can lead to good agreement10 with experimental
data can be also seen in Refs. [25, 27].
We conclude that our leading-order calculation of the E1 strength distribution of 11Li agrees reasonably well with

experimental data. The FSI approximation technique based on products of Møller operators has proven to be useful,
in particular because it provides insight into the role of di↵erent FSIs.

V. CONCLUSION

In this work we calculated the E1 strength distribution of the two-neutron halo nucleus 11Li using a three-body
description in Halo e↵ective field theory (EFT) at leading order. We investigated the role of the final-state inter-
actions (FSI) and found that they influence the shape of the distribution significantly. The results show that nn

FSI is the most important single FSI. We also investigated approximations to the full multiple-scattering series that
determines the FSI. Including all possible FSIs via a first-order treatment of their t-matrices leads to large unitarity
violations, which become manifest in large violations of the non-energy-weighted sum rule. Therefore, we propose a
unitary approximation scheme based on products of Møller scattering operators. We were able to verify the expected
compliance with the sum rule. In computations up to third order in the t-matrix, the dominance of nn FSI was
confirmed.
We have provided expressions for the E1 distribution with FSI included that are suitable for application to other

Borromean 2n halos. In future studies these could be computed in this framework and compared with experimental

10
However, note that the model of

11
Li from Ref. [26] empolyed along with others in Ref. [27] yields an S2n of 200 keV in contrast to

the current experimental value of 369 keV.
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data. Moreover, the convergence pattern of the FSI approximations would be an interesting aspect for further studies.
These patterns should also be compared to exact calculations of the three-body scattering state like in Ref. [28] and
alternative approaches including full FSI e↵ects such as the Lorentz integral transform method [52].
The comparison of the results with experimental data showed good agreement, given that we carried out the

calculation only to leading order in Halo EFT. At next-to-leading order (NLO) the impact of low-energy p-wave
resonances in 10Li will appear as perturbative corrections to both the initial-state bound 11Li wave function and the
FSI. The nn and nc e↵ective ranges are also both an NLO e↵ect.
This control over final-state interactions allows us to investigate the impact of di↵erent assumptions about the

9Li-nn dynamics on the E1 strength distribution. We showed that a description taking all spins into account and
using both s-wave nc interaction channels (sc � 1/2 and sc + 1/2) at the same strength yields a good leading-order
description of the E1 strength. Conveniently, such a calculation is equivalent to a calculation with only neutron spins
included and therefore can be recast as a calculation with a spinless core. We also provided the formalism for a
calculation in which only the (sc + 1/2) channel has the low-energy enhancement that leads to the 10Li virtual state.
Such a calculation significantly underpredicts the data. Finally, we compared to the EFT calculation of Hongo and
Son [51], which is based on di↵erent assumptions about the underlying scales of the nnc system. In particular, it
assumes that the neutron-9Li interaction is subleading. The corresponding prediction disagrees with data in the range
from E = 0–1 MeV by a factor of three to four. Since all calculations are adjusted to have the same S2n of 11Li, the
di↵erences in the E1 distribution genuinely reflect the di↵erent assumptions about the nc subsystem dynamics.
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Appendix A: Mapping the calculation with two nc interaction channels onto the spinless calculation

In this section we consider 2n halos where the core as well as the whole halo have spin sc. We show that a
leading-order description of these systems using two nc interaction channels (sc � 1/2 and sc + 1/2) is equivalent to
a description with only the neutron spins taken into account and thereby having necessarily only one nc interaction
channel.
Definitions: The spin states describing such a system seen from the core as spectator or a neutron as spectator are

given by

���⇠(�;sc,M)
c

E

c

=

����

✓
1

2
,
1

2

◆
�, sc; sc,M

�

c

� 2 {0, 1} , (A1)

���⇠(⌧ ;sc,M)
n

E

n

=

����

✓
1

2
, sc

◆
sc + ⌧

1

2
,
1

2
; sc,M

�

n

⌧ 2 {�1,+1} . (A2)

The corresponding projection operators are

P
(�)
c

=
X

M

���⇠(�;J,M)
c

E

c c

D
⇠
(�;J,M)
c

��� , (A3)

P
(⌧)
n

=
X

M

���⇠(⌧ ;J,M)
n

E

n n

D
⇠
(⌧ ;J,M)
n

��� . (A4)

Statement: Having these definitions at hand we can now state that the mapping can be made if the Hamilton
operator has the structure

H0 = H
(spatial)
0 ⌦ (spin) = H

(spatial)
0 ⌦

⇣
P

(0)
c

+ P
(1)
c

⌘
, (A5)

Vnn = V
(spatial)
nn

⌦ P
(0)
c

, (A6)

Vnc + Vn0c =
⇣
V

(spatial)
nc

+ V
(spatial)
n0c

⌘
⌦
⇣
P

(�)
n

+ P
(+)
n

⌘
(A7)

and

P
(0)
c

+ P
(1)
c

= P
(�)
n

+ P
(+)
n

(A8)

holds. Equation (A7) means that the spatial/momentum-space part of the nc interaction has to be the same in
sc � 1/2 and sc + 1/2.

More specifically, in this case the Schrödinger equation can be decoupled into one in the P
(0)
c -space and one in the

P
(1)
c -space11:

H = H
(0) +H

(1) = H
(spatial;0) ⌦ P

(0)
c

+H
(spatial;1) ⌦ P

(1)
c

(A9)

While the P
(1)
c -space Schrödinger equation misses an nn interaction, the P

(0)
c -space one is equivalent to a calculation

with sc = 0. This equivalent equation has the Hamilton operator

H
(0) = H

(spatial;0) ⌦ P
(0)
c

, (A10)

H
(spatial;0) = H

(spatial)
0 + V

(spatial)
nc

+ V
(spatial)
n0c + V

(spatial)
nn

. (A11)

Sketch of the proof: The relation for the projection operators given in Eq. (A8) can be verified by inserting

���⇠(�;J,M)
c

E
=

p
2� + 1

p
2sc

⇢
1/2 sc sc � 1/2
sc 1/2 �

� ���⇠(�;J,M)
n

E
+
p
2� + 1

p
2sc + 2

⇢
1/2 sc sc + 1/2
sc 1/2 �

� ���⇠(+;J,M)
n

E

(A12)

11
This is because Vnc + Vn0c =

⇣
V

(spatial)
nc + V

(spatial)
n0c

⌘
⌦

⇣
P

(0)
c + P

(1)
c

⌘
holds then.
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into P
(0)
c +P

(1)
c and using the ortho-normality relations for the Wigner-6j symbols, as they can be found in Ref. [53].

The other pillar of the proof is to show that in a leading-order calculation with sc = 0 the Hamilton operator has
indeed the form

H = H
(spatial) ⌦ P , (A13)

H
(spatial) = H

(spatial)
0 + V

(spatial)
nc

+ V
(spatial)
n0c + V

(spatial)
nn

. (A14)

This can be shown by introducing the spin states |⇠cic for the nn interaction channel and |⇠nin for the nc interaction
channel. As the core has here spin zero and the overall spin is zero, the only allowed nn spin configuration is zero.
Thereby the two states are equal up to a sign and the Hamilton operator for sc = 0 takes indeed this form.

Appendix B: Explicit relations for A(1)

In the following we give equations suitable for evaluating A(1), which is defined in Eq. (51):

A(1)
l̄,�̄;µ;s̄,M

(p, q) = �
p
2l̄ + 1

p
2�̄+ 1

✓
�̄ 1 l̄

0 0 0

◆p
⇡

✓
pf̄

�̄
(p, q)� 1

2
qf̄

l̄
(p, q)

◆

⇥
c

⌧✓
s̄,

3

2

◆
3

2
,M

����P⇠n

����⇠
(M)
c

�

c

, (B1)

whereby the round brackets with six arguments denote a Wigner-3j symbol. Equations for f̄ and its ingredients are
given below:

f̄(p, q, x := cos (✓p,q)) :=
1

cnq(p, q, x)

Z
dp̃0 p̃02g0(cnp(p, q, x))⌧nc(cnp(p, q, x))g0(p̃

0)G(nc)
0

�
p̃
0;Ecnp(p,q,x)

�

⇥
p
⇡

✓
�p̃

0 ef1(p̃0, q̃0)�
A

A+ 1
q̃
0 ef0(p̃0, q̃0)

◆ ���
q̃0=cnq(p,q,x)

, (B2)

ef
�
p̃
0
, q̃

0
, x̃

0 := cos
�
✓p̃0

,q̃0
��

:=
f(ncp(p̃0, q̃0, x̃0),ncq(p̃0, q̃0, x̃0))

ncq(p̃0, q̃0, x̃0)
, (B3)

f(p, q) = i

r
1

4⇡
eZc

2

A+ 2
(@q̃ c(p, q̃))

��
q̃=q

, (B4)

whereby the functions ijk (i, j 2 {n, c} and k 2 {p, q}) are defined in Ref. [39]. Furthermore, we used the following
generic definition of a function fi(p, q) via

fi(p, q) :=

Z
dxPi(x)f(p, q, x) . (B5)

The i-th Legendre polynomial is denoted by Pi.
In order to obtain these expressions inter alia the following relations and techniques were employed:

• relation for expressing Yl,m(a+ b) using Yl,m(a) and Yl,m(b) (see, e.g., Ref. [54]),

• relations for recoupling the Jacobi momenta (see, e.g., Ref. [39]),

• expansion of functions in terms of Legendre polynomials and expressing Legendre polynomials in terms of Y0,0
l,l

(see, e.g., Ref. [54]),

• relation for the integral of three spherical harmonics (see, e.g., Ref. [53]).

Appendix C: Explicit relations for A(2)

We give an expression for A(2), which is defined in Eq. (52):

A(2)
l̄,�̄;µ;s̄,M

(p, q) = (�1)l̄
p
⇡

p
2�̄+ 1

p
2l̄ + 1

✓
�̄ 1 l̄

0 0 0

◆✓
pf

(2)
�̄

(p, q)� 1

2
qf

(2)
l̄

(p, q)

◆

⇥
c

⌧✓
s̄,

3

2

◆
3

2
,M

����P
(spin)
nn

P⇠nP(spin)
nn

����⇠c
�

c

, (C1)
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Also here Eq. (B5) applies. The function f
(2)

is given by

f
(2)

(p, q, x := cos ✓p,q) :=
2⇡

cnq(p, q, x)

Z
dp̃0 p̃02e⌧nc(cnp(p, q, x))g0(p̃

0)G(nc)
0

�
p̃
0;Ecnp(p,q,x)

�

⇥
✓
p̃
0
f
(2)

1 (p̃0,cnq(p, q, x))�
cnq(p, q, x)

A+ 1
f
(2)

0 (p̃0,cnq(p, q, x))

◆
, (C2)

whereby the short-hand notation

e⌧nc(p) := g0(p)⌧nc(p) (C3)

is used. Equation (C2) can be rewritten into

f
(2)

(p, q, x) =
g0(p̄)

2⇡2

1

a
�1
nc + ip̄

⇥
 Z ⇤

0
dp0

p
02
f
(2b)

(p0; p, q, x)� p̄
2
f
(2b)

(p̄; p, q, x)

p̄2 � p02
� I(p̄;⇤)p̄f

(2b)
(p̄; p, q, x)

�����
p̄=cnp(p,q,x)

. (C4)

Hereby the relations

f
(2b)

(p̃0; p, q, x) :=
2⇡

cnq(p, q, x)

✓
p̃
0
f
(2)

1 (p̃0,cnq(p, q, x))�
cnq(p, q, x)

A+ 1
f
(2)

0 (p̃0,cnq(p, q, x))

◆
, (C5)

I(p̄;⇤) :=

✓
i⇡

2
� 1

2
ln

✓
⇤+ p̄

⇤� p̄

◆◆
g0(p̄) . (C6)

are employed. Furthermore the definition

f
(2)

(p, q, x := cos ✓p,q) := e⌧nc
�

0
nnp

(p, q, x)
� Z
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A+ 1

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nnq

(p, q, x) ef0
�
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00
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0
nnq

(p, q, x)
�◆

(C7)

holds. This function can be rewritten in a similar way:

f
(2)

(p, q, x) =
g0(p̄)

2⇡2

1

a
�1
nc + ip̄

⇥
 Z ⇤

0
dp0

p
02
f
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(p0; p, q, x)� p̄
2
f
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f
(2b)

(p̃00; p, q, x) :=

p
⇡

0
nnq

(p, q, x)

✓
�p̃

00 ef1
�
p̃
00
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0
nnq
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0
nnq
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�
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. (C9)

Hereby ef is the one from Eq. (B3).
Also for obtaining these expressions the relations and techniques listed in Appendix B were employed.

Appendix D: Sums over the quantum numbers of the final state and their convergence

In this appendix we briefly discuss the handling of the partial waves of the final states. Eqs. (61), (63) and (64) show

that only those terms directly proportional to A(1)
l̄,�̄;µ;s̄,M

(p, q) or A(2)
l̄,�̄;µ;s̄,M

(p, q) are non-zero for multiple combinations

of final-state quantum numbers l̄, �̄. In contrast to that, other terms are only non-zero for l̄ = 0 together with �̄ = 1.

The expressions for A(1)
l̄,�̄;µ;s̄,M

(p, q) and A(2)
l̄,�̄;µ;s̄,M

(p, q) in Appendices B and C show that these are already non-

vanishing if �̄ � 1  l̄  �̄ + 1. Using this condition restricts the sum over l̄ for a given �̄ to a finite number of
terms, while the sum over �̄ stays in principle unrestricted. Therefore we truncate the sum over �̄ at �̄max (inclusive).
We usually use �̄max = 5, because the relative changes between the results based on �̄max = 3 and those based on
�̄max = 5 are smaller than 5 % measured in terms of the former. (In fact, in the E < 3 MeV region, which we show
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in most plots, the relative change is below 2.5 %.) In the case of the quantum number µ the sum runs from -1 to 1,
and we use the fact that the matrix element is independent of µ in order to reduce the numerical costs. The spin of
the nn system in the final state can generally be 0 or 1, while in the case of some terms only 0 is possible. Moreover,
sometimes cancellations emerge for certain values naturally because of the nature of the equations. E.g., in the case
of ⌦†

3 the partial wave s = 1 ^ l = 0 has in principle a non-vanishing contribution, as ⌦†
3 does not commute with

Pnn, while in the case of ⌦̄†
3 this contribution is vanishing due to the nn antisymmetry of the operator.

Finally, we present numerical data on the error orginating from the truncation in the quantum number �̄ at �̄max.
Figure 6 shows the quotients of distributions obtained with �̄max = 5 and �̄max = 3.

Figure 6. Quotients of E1 strength distributions with �̄max = 5 and with �̄max = 3 di↵ering in the FSI treatment.

In the case of the shown distributions the relative changes are smaller than 5 %. Given the significant EFT
uncertainty bands at leading order this is su�cient precision.
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