
1.  Introduction
Deformation in Earth's upper crust is dominated by fracturing and frictional sliding resulting in macroscopically 
“brittle” behavior. Fractures occur over a range of length scales from intragranular microscopic cracks to fault 
zones spanning plate boundaries that host destructive earthquakes. The stress in the upper crust is limited by fric-
tional sliding on favorably oriented faults (e.g., Zoback & Zoback, 2007) and therefore much focus was dedicated 
to the problem of sliding frictional interfaces which are the end-product of brittle failure (e.g., Marone, 1998; 
Dieterich, 2007). Brittle creep and brittle failure that precede the formation of a throughgoing fault are relatively 
less studied phenomena, but nevertheless critical to our understanding of the long-term behavior of the crust and 
the earthquake cycle (e.g., Brantut et al., 2013; Main, 2000).

Macroscopic limit laws such as Mohr-Coulomb failure envelope and Byerlee's rule for frictional sliding are 
used to describe brittle deformation on the continuum scale and can be used to predict the strength of rocks and 
orientation of faults upon failure. Linking these empirical macroscopic failure laws to the underlying microscopic 
defects however remains elusive. Brittle deformation has been investigated from the point of view of microme-
chanics mostly using the idea that sliding, shear-loaded microcracks propagate out-of-plane as tensile cracks 
called wing cracks (Brace & Bombolakis, 1963; Horii & Nemat-Nasser, 1985). This concept has been incorpo-

Abstract  We propose a reformulation of the wing crack model of brittle creep and failure. Experimental 
studies suggest that the mechanical interactions of sliding and tensile wing cracks are complex, involving 
formation, growth, and coalescence of multiple tensile, shear and mixed-mode cracks. Inspired by studies 
of failure in granular media, we propose that these complex mechanical interactions lead to the formation 
of micro shear-bands, which, in turn, develop longer wing cracks and interact with a wider volume of rock 
to produce larger shear bands. This process is assumed to indefinitely continue at greater scales. We assume 
that the original wing crack formalism is applicable to micro shear-band formation, with the difference that 
the half-length, a, of the characteristic micro shear band is allowed to increase with wing crack growth. In 
this approach, the functional relationship of a with the wing crack length l embodies the entire process of 
shear band formation, growth and interaction with other shear bands and flaws. We found that the function 
a(l)/a(0) = 1 + (l/λ) q, where λ and q are constant parameters, generated creep curves consistent with published 
creep data of rocks. Similar accord was also obtained with experimental brittle failure data. Furthermore, we 
found that the Mohr-Coulomb behavior emerged from our model, allowing estimation of the cohesion and angle 
of internal friction in materials for which λ and q are independently known.

Plain Language Summary  Rocks close to Earth's surface deform by fracturing. Fracturing can 
occur abruptly if the load the rocks bear increases rapidly. Fracturing can however also occur over much longer 
times without changes to the load during a process called brittle creep. Observations suggest that fracturing 
occurs due to growth and linkage of many small-scale flaws present in the rock. The details of this growth and 
linkage process, however, are very complex which complicates our ability to assess when rocks will ultimately 
break. Here, we develop a model that simplifies the details of these small-scale interactions between large 
populations of flaws into a simple functional form. We analyze a number of possible functional forms and find 
that the simplest power law form yields good agreement with experimental data. Our model reproduces the 
behavior observed in brittle creep experiments, where after a step increase in load, the initially rapid rate of 
deformation first slows down, reaches a transitory steady-state and then accelerates until final failure occurs. 
Our model hence improves our ability to predict when failure will occur and presents a step toward mitigating 
the hazards associated with rock failure.
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rated in models that take multiple crack interactions into account (Ashby & 
Hallam, 1986; Ashby & Sammis. 1990; Brantut et al., 2012). However, these 
models only consider very simplified crack interactions, by limiting the crack 
coalescence patterns to tensile merging of neighboring wing cracks. Our aim 
in the present paper is to construct an improved micromechanical model of 
brittle deformation that includes the complex crack interactions underlying 
the intricate coalescence patterns observed in laboratory studies such as 
Wong and Einstein (2009a, 2009b).

1.1.  Background: The Wing Crack Model

In the laboratory, rocks are typically tested under either constant stress or 
constant strain rate boundary conditions (or more precisely under constant 
load or constant displacement rate boundary conditions). Typical stress-strain-

time plots obtained for both types of tests are schematically illustrated in Figure 1. Under constant stress, rocks 
exhibit trimodal creep curves. Namely, decelerating “primary creep” occurs after the initial change in stress, 
followed by a transitory, apparent steady state “secondary creep,” which eventually gives way to accelerating 
“tertiary creep” and failure (Figure 1, left diagram). In constant strain rate tests, rocks first deform elastically 
(albeit, often nonlinearly) until the yield point (i.e., onset of inelastic deformation), followed by strain hardening 
and accumulation of permanent strain. The axial stress eventually reaches a maximum (peak stress or strength), 
at which point a fault starts developing and the rock weakens to a stress level dictated by the residual friction on 
the fault (Figure 1, right diagram). This macroscopic behavior is controlled by the activation, propagation, and 
interactions of cracks in the rocks in the brittle regime. Loading conditions in nature are generally more complex 
than those employed in experiments, nevertheless laboratory tests can provide valuable insights into the micro-
mechanics of brittle creep and brittle failure.

The wing crack model, also called the sliding crack model, was proposed in 
the early 1960s to interpret the observations mentioned above, in particular 
the nearly ubiquitous development of tensile microcracks in crystalline rock 
samples subjected to compressive stresses (Brace & Bombolakis, 1963; see 
Paterson & Wong, 2005, for a review). The model attributes the rock inelastic 
deformation leading to failure to the formation of tensile cracks that emanate 
from the tips of the largest preexisting microcracks undergoing frictional 
shear. These activated microcracks are called the dominant cracks and are 
represented in the model by a single characteristic crack length, 2a0, and 
their inclinations with respect to the remotely applied principal compressive 
stresses, σ3 < σ2 < σ1 (note that this inequality implies the geophysics conven-
tion of positive compressive stresses and strains, which will be used through-
out the paper). Although cracks in rocks have a broad range of orientations, 
we follow the common practice of only considering the cracks for which 
the resolved shear stress is maximum (e.g., Baud et al., 2014) as the largest, 
most optimally oriented flaws will start propagating first. Thus, the model 
defines the dominant cracks as oriented parallel to the intermediate stress 
σ2 and inclined with respect to the minimum stress σ3 by an angle β = 45° 
(Figure 2). The intermediate stress plays no role in the process of rock failure 
except for controlling the orientation of the final fracture. Although experi-
mental observations have shown that brittle failure is indeed affected by the 
intermediate principal stress (Paterson & Wong, 2005), we will not attempt 
to modify this assumption in our model. A discussion of the effect of σ2 is 
considered out of the scope of the present paper.

In the idealized conditions depicted in Figure 2, the wing cracks are curved. 
The angle θ they form with the dominant microcrack changes during propa-
gation, starting at about 70° at initiation and decreasing until the wing cracks 

Figure 1.  Schematic of typical curves of stress and strain versus time recorded 
in laboratory constant stress (left diagram) and constant strain rate tests (right 
diagram).

Figure 2.  Schematic of a sliding microcrack and the associated wing cracks. 
The sliding crack is located in an infinite homogeneous solid subjected to 
compressive stresses. The intermediate stress σ2 is normal to the figure plane. 
The angle β is, hereafter, assumed to be 45°.
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become parallel to σ1. Considering that the dominant cracks have the most effective orientation, β = 45°, the 
normal stress and the resolved shear stress on the sliding cracks are as follows:

𝜎𝜎𝑁𝑁 = ½ (𝜎𝜎1 + 𝜎𝜎3)� (1)

|𝜏𝜏| = ½ (𝜎𝜎1 − 𝜎𝜎3)� (2)

Part of the shear stress is balanced by friction. According to Amonton's law, the effectively active shear stress is 
therefore given by

|𝜏𝜏eff | = |𝜏𝜏| − 𝜇𝜇𝜇𝜇𝑁𝑁,� (3)

where μ is the friction coefficient and the condition |τ| ≥ μσN imposes σ1/σ3 ≥ (1 − μ)/(1 + μ).

The mode I stress intensity factor, κI, of a wing crack is a complex function of the remotely applied principal 
stresses, the length 2a0 of the dominant crack, the wing crack length l, and the angles β and θ (Figure 2). A 
number of models have been published (see Baud et al., 1996, for a review). Although they differ in some details 
depending on how the curvature of the wing cracks and other such features are treated, they all consist of the sum 
of two terms, one driving and one resisting wing crack propagation. Here, we consider the simple model from 
Kachanov (1982) (also used in Brantut et al., 2013)

�� = −1.15|�eff |
√

��0 + �3
√

��∕2� (4)

Although the Kachanov model ignores the wing crack curvature and, therefore, describes the early stage of wing 
crack development relatively poorly, it becomes quite accurate when the wing cracks become straight and fully 
aligned with the maximum principal stress (Brantut et al., 2013). The model predicts that wing cracks will form 
when the initial stress intensity factor is larger than the rock fracture toughness, 𝐴𝐴 |𝜅𝜅0| = 1.15|𝜏𝜏eff |

√
𝜋𝜋𝜋𝜋0 ≥ |𝜅𝜅𝐼𝐼𝐼𝐼| , 

or in other words, when |τeff| exceeds a critical shear stress 𝐴𝐴 𝐴𝐴𝑐𝑐 = |𝜅𝜅𝐼𝐼𝐼𝐼|∕
(
1.15

√
𝜋𝜋𝜋𝜋0

)
 . The first (driving) term in 

Equation 4 expresses the wedging effect of shear displacements at the tips of the dominant crack. The second 
(resistant) term depends on l and accounts for wing crack closure caused by σ3. The two terms have different 
signs, causing |κI| to decrease with increasing l. Wing crack growth will therefore stop when κI becomes equal to 
κIc, or in other words, when the wing crack length reaches l0 = 2a0 (1.15 (|τeff| − τc)/σ3) 2.

This ultimate crack arrest means that the behavior of a single wing crack system cannot be used to model brittle 
failure except, perhaps, in uniaxial compression conditions (increasing σ1 and σ3 = σ2 = 0), when the wing cracks 
eventually intersect the sample edges (i.e., axial splitting). But this difficulty can be resolved by recognizing that 
the rock contains a broad population of mechanically interacting flaws. Interacting dominant cracks are expected 
to experience an increase of |κI| during wing crack extension. The currently published crack interaction models 
are all variations of the model developed by Ashby and Hallam (1986) and Ashby and Sammis (1990). The main 
idea of the model is that the dominant microcracks are spatially arranged in such a way that the wing cracks 
emanating from two neighboring sliding cracks are aligned and, owing to their mutual influence, the remotely 
applied lateral stress σ3 is locally reduced in the ligaments between them by a quantity σi. This causes a decrease 
of the resistant term, 𝐴𝐴 (𝜎𝜎3 − 𝜎𝜎𝑖𝑖)

√
𝜋𝜋𝜋𝜋∕2 , and allows further propagation and finally coalescence of the wing cracks. 

The wing cracks thus form columns parallel to the maximum stress σ1, which ultimately fail, owing to the classic 
buckling instability of slender columns. The intrinsic weakness of this model is the assumption of a very specific 
geometrical structure of the dominant microcracks, which is very unlikely to be found in a natural material. 
Nevertheless, the model has been quite successfully applied to experimental rock deformation and failure data 
(see the review by Brantut et al., 2013). Note also that these models are only concerned by dilatant deformation 
and therefore may not apply to highly porous rocks and/or very high confining pressure conditions (our model 
shares this limitation).

1.2.  Background: Crack Coalescence

Since the early work of Horii and Nemat-Nasser  (1985), the interaction and coalescence of wing cracks in 
conditions of uniaxial and biaxial compression have been experimentally investigated in a variety of materials, 
including rocks (see the comprehensive review of Wong, 2008). One important result is that biaxially loaded 
samples containing two parallel, cm-scale man-made crack-like flaws produced strongly different coalescence 
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patterns depending on their relative positions and inclinations with respect 
to the applied principal stresses (e.g., Wong & Einstein, 2009a, 2009b; Lin 
et  al.,  2021). In Lin et  al.  (2021), a scalar measure of the strain field was 
determined as a function of time using digital image correlation analysis, 
allowing identification of the fissures developing and coalescing around 
the initial flaws. In the configuration shown in Figure 3 (a schematic partial 
reproduction of Lin et  al.’s  (2021) Figure 12), the wing cracks emanating 
from the inclined flaws merged and two new ones were created on the sides, 
forming a column aligned with σ1 quite similar to the structure assumed in 
the Ashby-Hallam-Sammis model. However, the unstable buckling of the 
column predicted in the Ashby-Hallam-Sammis model was not observed, 
perhaps because the experiment was prematurely stopped.

In other configurations of the initial flaws, very different coalescence 
patterns occurred, in which the inclined shear cracks themselves were 
actively involved. For example, a separate, small shear crack formed between 
two nearly aligned initial flaws and eventually merged with both of them, 
completely bridging the ligament (Figure 4). Very complex bridging struc-
tures combining tensile, shear and mixed mode cracks were also observed in 
other configurations of the initial flaws.

Similar coalescence patterns were produced in samples of Carrara marble 
and molded gypsum (Wong & Einstein, 2009a, 2009b). For example, nearly 
aligned flaws produced bridging shear cracks, while merging of the tensile 

wing cracks occurred when the flaws were shifted to form a 90° angle. Combinations of shear, tensile and mixed 
mode bridging cracks were observed in other cases.

2.  The Model
2.1.  The Concept: Micro to Macroscopic Shear Bands

Despite the general similarity of the results described above, important differences were noted in materials with 
distinct internal structures. For example, development of a secondary crack was usually preceded in Carrara 
marble by an increase in light reflectivity (whitening) of the sample surface in a thin region exactly delineating 
the path of the future secondary crack (Wong, 2008; Wong & Einstein, 2009a, 2009b). These “white patches” 
visible on the sample surface prior to cracking can be attributed to the formation and accumulation of damage in 
highly strained thin zones. This explanation implies the existence, in the material, of a population of very small 

defects and microcracks (invisible to the eye or even a very high-resolution 
camera) that are activated by the amplified stresses around the large cm-scale 
flaws. White patches were not observed in molded gypsum, a microgranular 
material that was fabricated using procedures specifically designed to ensure 
excellent homogeneity. Lajtai  (1974) similarly noticed the formation and 
growth of damaged shear zones at the tips of a sheared cm-scale synthetic 
crack in a biaxially stressed plaster slab. Evidence of interaction of large 
propagating cracks with smaller flaws is also reported in Brantut et al. (2014). 
Their Figure 12 shows examples of, on one hand, very smooth and rectilinear 
wing cracks in homogeneous sparitic calcite cement and, on the other, rough 
and tortuous cracks traversing microgranular micritic aggregations.

Shear failure also occurs in unconsolidated granular media (e.g., 
Desrues, 1990). At stresses below grain crushing stresses strain localization 
is observed on shear bands, which form by grain sliding and rotation. The 
initiation and growth of shear bands in granular materials has been exten-
sively investigated experimentally and numerically (see Desrues,  1990, 
and references therein). One important observation is that the first stage of 
strain localization consists in the formation of multiple, separate micro shear 

Figure 3.  Simplified reproduction of Figure 12 of Lin et al. (2021). The 
boxes show the outlines of growing wing cracks at the surface of a mortar 
slab containing two cm-scale flaws. The slab was subjected to uniaxial 
compression in the direction of the red arrows (the values of the axial stress is 
indicated below each box). The initial flaws are positioned such that the wing 
cracks merge and new tensile cracks are produced from the other side of the 
sliding flaws.

Figure 4.  Simplified reproduction of Figure 7 of Lin et al. (2021). Here, the 
position of the initial flaws leads to the formation of a shear crack and the 
eventual bridging of the ligament between the initial flaws.
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bands. With increasing stress, some of these micro shear bands interact with 
neighboring ones, coalesce and eventually develop into macroscopic shear 
bands (Desrues & Andó, 2015). Similar scale increase scenarios have been 
observed in rocks. For example, Figure 16 in Brantut et al. (2013) shows the 
hypocenter locations of acoustic emissions recorded during a creep test of 
a granite sample. The distribution of hypocenters is random and featureless 
during primary and secondary creep but becomes concentrated into growing 
clusters during tertiary creep, eventually forming a single shear fracture (see 
also, Fortin et al., 2009, 2010; Lockner, 1993, 1998; Lockner et al., 1992). 
Here, we follow a similar concept. Natural flaws and microcracks in rocks 
have a very broad distribution of sizes. The (largest and most favorably 
oriented) dominant cracks are the first to develop wing cracks, which, as 
discussed above, are bound to interact with nearby minor flaws. We posit that 
this process will generally result in the development, near the tip of the domi-

nant crack, of a complex array of microcracks (formed in tensile, shear and mixed mode) that globally deforms 
in shear. For lack of a better term, we will use the granular material terminology and call these structures micro 
shear bands. We emphasize that this term is meant to cover a broad range of damage structures, from simple 
merged shear cracks to inclined zones of crushed material. All these structures share a greater susceptibility to 
deform in shear than their surroundings, hence our choice to refer to them as shear bands. Shear cracks and micro 
shear bands similarly slide when submitted to sufficient shear stresses, although they may have different effective 
coefficients of friction. A wing crack should therefore develop at the outer edge of the shear band (Figure 5). 
Note that wing cracks have indeed been observed to initiate from the edges of sheared microstructural objects 
other than microcracks. For example, Rawling et al. (2002) present scanning electron microscope (SEM) images 
of wing cracks emanating from the edges of sheared biotite grains in triaxially deformed samples of Four-mile 
gneiss (e.g., see their Figure 9). Furthermore, owing to the overall increase in length, the wing crack emanating 
from a micro shear band will be longer than the initial one, and thus, have the capacity to interact with a greater 
volume of rock. It becomes therefore likely that two micro shear bands in favorable positions and orientations will 
coalesce to form even longer micro shear bands, from the edges of which increasingly long wing cracks will grow 
(Figure 5). The model does not include an upper cut-off scale and the process is therefore assumed to continue at 
indefinitely increasing scales.

2.2.  Micro Shear Band Model: Brittle Failure

We posit that the brittle deformation of rock illustrated in Figure 5 can be described as the result of crack growth 
and coalescence around a representative dominant (or leading) micro shear band. Given the mechanical similarity 
of shear bands and sheared cracks, it is reasonable to assume that a leading micro shear band can be also modeled 
using the mathematical development rooted in linear elastic fracture mechanics leading to Equation 4, the only 
difference being that the half-length a of the leading micro shear band increases during loading.

Since the second term of Equation 4 describes the restraining effect of σ3 on wing crack expansion, it does not 
need to be modified. In the first term, the friction coefficient entering the definition of τeff may depend on the 
internal structure of the shear band and thus vary during crack growth. For the sake of simplicity, we will assume 
that the friction coefficient of the micro shear bands remains approximately equal to that of the sheared cracks. 
Equation 4 then becomes

𝜅𝜅𝐼𝐼 = −1.15|𝜏𝜏eff |
√
𝜋𝜋𝜋𝜋(𝑙𝑙) + 𝜎𝜎3

√
𝜋𝜋𝜋𝜋∕2� (5)

where the half-length of the micro shear band is an increasing function of l, a(l), which provides a simple (albeit 
inexplicit) way to express the complex crack interactions leading to the formation of micro shear bands. Note 
that, in this model, wing crack growth causes an increase of the driving term 𝐴𝐴

√
𝜋𝜋𝜋𝜋(𝑙𝑙) in Equation 5 instead of a 

reduction of the resistant term 𝐴𝐴 𝐴𝐴3

√
𝜋𝜋𝜋𝜋∕2 as in the Ashby-Hallam-Sammis model. Furthermore, we expect shear 

failure to naturally arise from the formation of increasingly long shear bands, whereas unstable buckling of axial 
columns has to be additionally invoked in the Ashby-Hallam-Sammis model.

Figure 5.  Schematic representation of mechanical interactions of cracks 
and flaws and the resulting micro shear band formation. The change of scale 
shown here is assumed to continuously take place at greater and greater scales.
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If we assume that wing crack growth is stable (as it has to be when the mechanical interactions are negligible) the 
crack arrest condition, κI = κIc, yields:

−1.15 (|𝜏𝜏eff | − 𝜏𝜏c)
√
𝜋𝜋𝜋𝜋(𝑙𝑙) + 𝜎𝜎3

√
𝜋𝜋𝜋𝜋∕2 = 0� (6)

If |τeff| is considered the independent variable (i.e., in constant loading rate tests), solving Equation 6 for a(l) 
yields

𝑎𝑎(𝑙𝑙) =
𝑙𝑙

2
(𝜎𝜎3∕1.15 (|𝜏𝜏eff | − 𝜏𝜏c))

2� (7)

which simply states that a(l) can be calculated if the dependence of l on |τeff| is known. In this description, failure 
occurs with increasing |τeff| when the leading shear band eventually reaches the sample boundaries. Rock fail-
ure tests, however, are usually carried out in constant strain rate conditions and not at constant loading rate as 
assumed by Equation 7. In this case, l is the independent variable and prior knowledge of a(l) is needed to model 
brittle failure.

2.3.  Micro Shear Band Model: Brittle Creep

Following previous models of brittle creep, we introduce time dependence by assuming subcritical crack growth. 
In this case, wing crack propagation can proceed at constant stresses below the critical shear stress τc. The initial 
stress intensity factor is 𝐴𝐴 |𝜅𝜅0| = 1.15|𝜏𝜏eff |

√
𝜋𝜋𝜋𝜋0  < |κIc| and Equation 5 can be recast as

𝜅𝜅I

𝜅𝜅0

=
√
𝑎𝑎(𝑙𝑙)∕𝑎𝑎0 −

𝜎𝜎3

𝜅𝜅0

√
𝜋𝜋𝜋𝜋∕2� (8)

Equation 8 can be further simplified by using the following dimensionless variables and parameters: ΚI = κI/κ0, 
A = a/a0, and L = l/l0, where l0 = 2a0 (1.15 |τeff|/σ3) 2 = 2κ0 2/(πσ3 2), that is, the maximum possible length of the 
wing cracks generated under the current state of stress at the tips of a microcrack of length 2a0 in the absence of 
any mechanical interactions (l0 is thus an intrinsic property of the dominant microcracks of the undeformed rock). 
Note that l0 can be physically achieved when subcritical crack growth is operating since |κI| is allowed to drop to 
zero. We finally obtain

K𝐼𝐼 =
√
𝐴𝐴(𝐿𝐿) −

√
𝐿𝐿� (9)

Although Equation 9 is not a mechanistic model of crack coalescence, the function A(L) is effectively a closed-form 
expression of the results of the extremely complex and varied mechanical interactions underlying the formation 
and growth of micro shear bands. To do the job correctly, A(L) must satisfy a number of constraints. First, there 
are the trivial conditions that A(0) = 1 and A(L) must be a monotonically increasing function. Thus, A(L) can be 
expressed as A(L) = 1 + f(L), where f(L) is a monotonically increasing function verifying f(0) = 0. Most impor-
tantly, ΚI must always be strictly larger than zero. Negative values obviously contradict the definition of ΚI since 
κI and κ0 are both negative quantities. Moreover, ΚI = 0 implies crack arrest and is therefore incompatible with 
tertiary creep.

The simplest functions satisfying these conditions are the power law functions, f(L) = (L/Λ) q, where Λ = λ/l0 is 
a dimensionless length scale representing the normalized distance that the wing crack must propagate to enter 
the vicinity of another microcrack or flaw, interact with it and therefore produce a substantial increase of ΚI. Of 
course, other more complex functions such as the polynomials, f(L) = 𝐴𝐴

∑𝑞𝑞

𝑖𝑖=1
𝐶𝐶𝑖𝑖𝐿𝐿

𝑖𝑖 (with Ci ≥ 0), can also meet the 
conditions above. We will focus here on the power laws f(L) = (L/Λ) q, because they are the analytically simplest 
functions, and as will be discussed later, produced results in good agreement with experimental brittle creep data. 
We nevertheless investigated the polynomials f(L) = (1 + L/Λ) q − 1 (i.e., A(L) = (1 + L/Λ) q) as thoroughly as 
f(L) = (L/Λ) q but the results obtained were inconsistent with experimental brittle creep observations and will not 
be discussed in detail in the following text.

To illustrate how Equation 9 works, it is convenient to consider the perfect square function A(L) = (1 + L/Λ) 2 
(see Figure 6). Since the square root of A(L) is a linear function of L, the first term in Equation 9 yields a family 
of straight lines with slopes increasing when Λ is decreased (the values of Λ are indicated in the same color as 
the corresponding lines in Figure 6). The values of ΚI are graphically measured as the vertical distance between 
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these lines and the 𝐴𝐴

√
𝐿𝐿 curve representing the second term of Equation 9 

(the dashed line in Figure 6). Thus, in all cases, ΚI first decreases (primary 
creep), reaches a minimum (secondary creep), and then increases indefinitely 
(tertiary creep). To satisfy the condition, ΚI > 0, the colored straight lines in 
Figure 6 are not allowed to intersect or tangentially touch the 𝐴𝐴

√
𝐿𝐿 curve, thus 

limiting the values that Λ can take (in this example, Λ < Λc = 4). We also 
note that increasing Λ causes a reduction of the minimum Κm of ΚI and of the 
rate of increase of ΚI in the second stage while the value Lm of L at the mini-
mum increases (Figure 6). Κm and Lm are key output parameters of the model 
since they identify the transition from primary to tertiary creep.

The consecutive ΚI-decreasing and ΚI-increasing stages illustrated in 
Figure 6 were produced by the power laws f(L) = (L/Λ) q with an exponent 
q ≥ 2 as well as all other functions f(L) examined in this study. These various 
f(L) functions, however, differed in the values of Λc, Κm, and Lm that they 
generated.

To assess the effect of the power law exponent q, we examined the form of 
the curves of ΚI versus L associated with f(L) = (L/Λ) q for different values of 
q and Λ (the curves associated to q = 2 to 6 and Λ = 1 are shown in Figure 7).

The limit Λc is analytically related to the exponent q through the expres-
sion, Λc = (q 1/(1  −  q) − q q/(1  −  q)) (1  −  q)/q (see Appendix A for the derivation). 

According to this relation, Λc decreases from 2 to ∼1.46 when q is increased from 2 to 8. As mentioned earlier, 
Λ = λ/l0 represents the normalized distance, over which a wing crack must propagate to enter the vicinity of other 
microcracks and flaws and interact with them. It is important to note that this interaction distance depends both 
on the properties of the material being modeled and the state of stress considered. Indeed, the effect of the stress 
state is introduced through the normalization factor l0 ∝ (|τeff|/σ3) 2 while the material is described by both l0, 
which contains a0, and λ, which can be understood as a characteristic flaw separation (or the inverse of the flaw 
density). Consequently, variations of Λ may represent either distinct materials with differing flaw densities or a 
single material subjected to various levels of stress. Thus, an increase of q indicates an increase of either the flaw 
density of the rock considered or the level of stress needed to allow brittle creep. We also note that the minimum 
stress intensity factor Κm along the ΚI versus L curves decreased with increasing q while the corresponding Lm 
first decreased and then increased (Figure 7).

Time dependence is then introduced in the model by assuming subcritical crack growth. According to this 
assumption, crack propagation proceeds gradually, starting at a stress intensity factor κ0 lower than κIC. Although 
different subcritical crack growth models can be used, the most commonly reported in previous studies is based 

on the power law relation often called Charles' law (Charles, 1958; see also 
Wiederhorn & Bolz, 1970):

�
�0

=
(

��

�0

)�

� (10)

where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴0 are the current and initial growth rates of the wing cracks, and 
the exponent n usually takes very high values (between 10 and 50). Note that 
Equation 10 is dimensionless and can be re-written V = 𝐴𝐴 K𝑛𝑛

𝐼𝐼
 , with V = v/v0, 

and then combined with Equation 9 to yield:

𝑉𝑉 =
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= (

√
1 + 𝑓𝑓 (𝐿𝐿) −

√
𝐿𝐿)

𝑛𝑛

� (11)

where the normalized time is defined as T = t/t0 = tv0/l0. Using the previously 
discussed functions f(L) = (L/Λ) q, Equation 11 contains three parameters, the 
normalized flaw separation Λ, the power law exponent q, and the subcritical 
crack growth exponent n. Since L is a strictly monotonic, increasing function 
of T, Equation  11 can be numerically solved using the following simple 

Figure 6.  Graphic representation of Equation 9 in the case of 
A(L) = (1 + L/Λ) 2. The vertical distance between the colored straight lines 
(the values of Λ for each line are indicated in matching colors) and the dashed 
purple curve is a measure of the stress intensity factor ΚI. The position Lm of 
the minimum stress intensity factor Κm of the black curve is indicated by the 
small empty circle and the associated vertical dashed line. Note that Κm is 
nearly equal to zero in this case. See text for a detailed interpretation.

Figure 7.  Examples of curves of stress intensity factor ΚI versus wing crack 
length L associated with f(L) = (L/Λ) q with Λ = 1 for various values of the 
exponent q as indicated in matching colors. See text for a detailed discussion.
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procedure. First we construct a wing crack length series, Li = (i − 1) dL, where dL denotes a small increment 
(e.g., dL = 0.01 or lower for more accuracy). We then use Equation 10 to calculate the corresponding wing crack 
velocity series Vi. Finally, the time series Ti can be calculated using the recurrence Ti+1 = Ti + dTi, with dTi calcu-

lated by numerical integration of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖 = ∫
𝐿𝐿𝑖𝑖+1

𝐿𝐿𝑖𝑖

(
√
1 + 𝑓𝑓 (𝐿𝐿) −

√
𝐿𝐿)

−𝑛𝑛

𝑑𝑑𝑑𝑑 . Examples of curves of V as a function 
of T corresponding to f(L) = (L/Λ) q with Λ = 0.1, 0.5, 1.0, 1.4, and 1.75; q = 2 and 4; and n = 10 are shown in 
Figure 8.

In all cases considered in this study, the V versus L curves displayed the same generic shape consistent with the 
three classic stages of creep. As illustrated in Figure 8, the crack propagation velocity V first decreases gradually 
(decelerating or primary creep stage) down to a minimum value (secondary creep) and then sharply increases 
up to failure (accelerating or tertiary creep stage). The failure time TF is obtained by integrating dT = dL/V for L 
increasing from 0 to infinity.

𝑇𝑇𝐹𝐹 =
∫

∞

0

(
√
1 + 𝑓𝑓 (𝐿𝐿) −

√
𝐿𝐿)

−𝑛𝑛

𝑑𝑑𝑑𝑑� (12)

The integral of Equation 12 is convergent for all values of Λ satisfying condition Λ < Λc and all functions f(L) 
mentioned in previous sections. Figure 8 also shows that the decelerating stage consists of two segments, first 
the deceleration magnitude |dV/dT| increases and then, after an inflection point is passed, decreases down to zero 
(i.e., the point where the accelerating stage begins). Comparison of the right- and left-hand diagrams demon-
strates that increasing the polynomial degree q (for a given Λ) brings the minimum propagation velocity closer to 
zero, increases greatly the time to failure and strongly sharpens the transition to tertiary creep. Similar effects are 
produced by raising the subcritical crack growth exponent n (not shown in Figure 8).

Based on the results described above, three key points can be identified along the curve of V versus T, namely, (a) 
the inflection point within the decelerating creep stage, (b) the minimum of the curve (note that this point is the 
limit between the primary and tertiary creep segments; it can therefore be interpreted as the center of a secondary 
creep segment), and (c) the failure point. These three points are distinguished by their respective time coordinates, 
Tinf, T2, and TF (see inset in Figure 8). Furthermore, in a log-log plot, the tangent at the inflection point Tinf defines 
a local power law V 𝐴𝐴 ∝ T −m, which becomes steeper with increasing Λ (see inset in Figure 8). Although the indi-
vidual normalized times T2 and TF may be difficult to determine experimentally because the time normalization, 
T = t l0/V0, involves l0, a quantity that may not be experimentally accessible, the ratio TF/T2 is independent of 
normalization and can be measured in laboratory tests.

We measured TF/T2 for f(L)  =  (L/Λ) q in various conditions of Λ, q, and n. We observed that TF/T2 strongly 
decreased with increasing Λ when q was equal to 2, changed to a much flatter, non-monotonic behavior with 
increasing q from 3 to 5, and eventually became a steadily but moderately increasing function of Λ for q = 6 
(Figure 9, right diagram). In all cases, TF/T2 approached a limit value of 2 for the largest Λ’s while a wide range, 
from as high as 3 to as low as 1.6, was obtained for Λ near zero depending on the polynomial degree q.

Figure 8.  Examples of curves of wing crack growth rate V versus time T associated with f(L) = (L/Λ) q for q = 2 (left 
diagram) and 4 (right diagram). The values of Λ corresponding to each curve are indicated in matching colors (the subcritical 
crack growth exponent n was equal to 10 in all cases). The times Tinf, T2, and TF, and the exponent m are graphically defined 
in the inset. See text for a detailed discussion.
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Because inflection points are patently difficult to determine from noisy data, Tinf is not a practical parameter to 
use for comparison with experimental data, but the exponent m is independent of time normalization and can be 
estimated as a characteristic power law exponent of rock primary creep data. We calculated m for a variety of 
values of Λ and q. We observed that m showed approximately logarithmic dependence on Λ for different values 
of q (Figure 9, left diagram). The calculated m's increased from values between 0.2 and 0.5, depending on q, at 
low Λ’s to an upper limit of about 1 at Λ’s approaching Λc (Figure 9, left diagram).

3.  Discussion
3.1.  Comparison With Experimental Data: Brittle Creep

Testing this model against experimental data cannot be done directly since the essential wing crack parameters l 
and v cannot be measured in rock samples during deformation. Even, estimating the half-length a0 of the domi-
nant flaws from SEM images of the undeformed rock is an extremely difficult and uncertain undertaking. We will 
assume here that the macroscopic creep strain rate 𝐴𝐴 𝐴𝐴𝐴 of a very large volume of material containing many dominant 
microcracks is linearly related to the wing crack propagation velocity v. Note that the (usually nonlinear) rela-
tions between v and 𝐴𝐴 𝐴𝐴𝐴 derived in various versions of the Ashby-Hallam-Sammis model (e.g., Brantut et al., 2012) 
cannot be used in our model. Indeed, these relations only include the effect of wing cracks growth and neglect the 
shear displacements along the dominant microcracks.

In our model, on the other hand, the macroscopic creep strain rate is mainly produced by formation and shearing 
of the micro shear bands. Accordingly, the experimental equivalent of the wing crack length l is the (inelastic) 
creep strain ε. Note that there is no measurable equivalent of l0, making it impossible to normalize experimental 
time so that it can be directly compared to the model dimensionless time T = t v0/l0. However, the main output 
parameters of the model, the exponent m and the ratio tF/t2 can be estimated from experimental creep curves 
spanning the three regimes from primary to tertiary creep without time normalization. Note that experimental 
data are necessarily afflicted by noise, mostly random fluctuations of the readings of the measuring devices but 
sometimes also errors caused by computer glitches. Published data sometimes contain “unphysical” features in 
the recorded signals, like sharp steps (i.e., points of extremely high strain rates) or oscillations (i.e., alternating 
positive and negative strain rates), which require specific removal treatments (the easiest being manually passing 
a smooth curve through the steps or oscillations). Since the combination of regularization techniques needed for 
the purpose of differentiating the experimental ε versus t data strongly depended on the particular data being 
analyzed, we did not attempt to develop a comprehensive data-treatment workflow. Each data set was individually 
processed, although we made every effort to maintain consistency.

We downloaded or digitized the published brittle creep data of Inada granite (Fujii et al., 1999), Thala limestone 
(Brantut et al., 2013), Etna basalt (hereafter labeled Etna basalt 1; Heap, 2009; Heap et al., 2011), and Darley Dale 

Figure 9.  Examples of the predicted dependence of the primary creep exponent m (left diagram) and the failure time to 
secondary creep time ratio TF/T2 (right diagram) on the characteristic flaw separation Λ. These curves correspond to the 
function f(L) = (L/Λ) q with values of q indicated in matching colors (the subcritical crack growth exponent n was equal to 10 
in all cases). The positions of the limit Λc for the different exponents q are indicated by colored solid dots in the left diagram. 
See text for a detailed discussion.
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sandstone (Heap, 2009; Heap et al., 2009) and calculated the corresponding 
time-dependent strain rates (simple differencing was used). In the case of 
Darley Dale sandstone and Etna basalt 1 (Heap, 2009), preliminary constant 
strain rate tests at different effective confining pressures were performed to 
determine the rock strength defined as the peak effective differential stress 
σpeak − σ3 (note that all stresses reported in the above references are effec-
tive stresses, i.e., differences of the total stresses and pore pressures). Creep 
tests at the same effective confining pressure (30 MPa) and various effec tive 
differential stresses σ1  −  σ3 below the previously measured peak stresses 
were then carried out in samples from the same quarry blocks (Heap, 2009). 
These tests are particularly interesting to us since the samples had presuma-
bly iden tical properties and microstructures but were subjected to different 
stresses. We therefore expected that the experimental data would yield values 
of TF/T2 and m consistent with a single value of q and decreasing Λ’s with 
increasing creep stress. We also analyzed creep curves measured in basalt 
samples from a different outcrop on Mount Etna (hereafter labeled Etna 
basalt 2, Mansbach, 2022) and a cored well in Iceland (Xing et al., 2022), 
and in thermally cracked glass cylinders (Mallet et al., 2014, 2015).

The experimental curves of log(𝐴𝐴 𝐴𝐴𝐴 ) versus log(t) of these rock samples (e.g., 
Figure 10) appear indeed similar to the theoretical curves of Figure 8. We 
were, therefore, able to estimate the two primary output parameters, tF/t2 and 
m, from these data. The time to failure tF is easy to measure but t2 can be 
more challenging (note that superposing the smoothed creep curves and the 
original noisy ones is quite helpful to avoid unreasonable under- or over-
estimations of t2 and to estimate uncertainties). The inflection point within 
the decelerating stage is all but impossible to identify, but the power law 
exponent m can still be estimated by selecting a segment of data points at the 
center of the primary creep stage (see the example of Figure 10; again super-
posing the smoothed and original data is a very useful precaution). Within 
the estimated uncertainties, the measured values of the ratio tF/t2 ranged from 
about 1.5 to 2.2, and m from 0.4 to slightly over 1.

For comparison purposes, we superposed the experimental (m, tF/t2) data on 
the theoretical TF/T2 versus m curves obtained by cross-plotting the numeri-
cal results for the function f(L) = (L/Λ) q and constant values of q. Note that 
the theoretical curves converge from the left border to the vicinity of the 
point (m = 1; TF/T2 = 2), thus delimiting a wedge-shaped region that excludes 
values of m significantly exceeding one. The experimental results are in 
good agreement with the model in the sense that the measured data points 
approximately fall within the allowed wedge-shaped region (Figure 11). This 
observation also lends support to our assumption that the strain rate 𝐴𝐴 𝐴𝐴𝐴 is line-
arly related to the wing crack propagation velocity v. Indeed, let us assume 
instead that 𝐴𝐴 𝐴𝐴𝐴 is an arbitrary (monotonically increasing) function g of v. The 
experimental strain rate versus time curves (e.g., Figure 10) should then be 
compared to curves of g(V) versus T, which should have similar shapes to 
the  curves shown in Figure  8 but yield very different values of m. These 
changes would likely produce a very different Figure 11. They could signif-
icantly distort the region in (m; TF/T2) space allowed by the model and thus 
reduce or even destroy any agreement of model and experiments.

Although we cannot exclude that other functions besides (L/Λ) q may 
yield similarly satisfactory results, we can definitely eliminate the func-
tion A(L) =  (1 + L/Λ) q (or f(L) =  (1 + L/Λ) q − 1), which only generated 
values of TF/T2 greater than 2 that are not consistent with more than half 

Figure 10.  Example of a strain rate versus time curve calculated from a 
digitized experimental creep curve (here, a Darley Dale sandstone creep 
test at a creep to peak stress ratio of 0.93; Heap, 2009; Heap et al., 2009). 
Experimental data with (dotted blue line) and without smoothing (solid black 
dots) are shown. The digitized creep curve is displayed in the inset. The 
estimates of tF, t2, and the primary creep exponent m are graphically indicated. 
See text for a detailed discussion.

Figure 11.  Experimental estimates of tF/t2 and m for Inada granite (black), 
Thala limestone (dark blue), Darley Dale sandstone (light blue), Etna basalt 
1 (purple), Etna basalt 2 (red), Iceland basalt (orange), and thermally cracked 
glass (green). The error bars indicate the estimated uncertainties of the 
calculated values of tF/t2 and m. In the case of Darley Dale sandstone and 
Etna basalt 1, the creep stress levels (σ1/σpeak) are shown above the data points 
in matching color. The theoretical curves of TF/T2 versus m for the function 
f(L) = (L/Λ) q and various values of the exponent q as indicated in the inset on 
the right side of the diagram, are superposed on the experimental data. The 
olive green arrow indicates the direction in which the theoretical interaction 
distance Λ increases in this diagram.
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the experimental data. We surmise that the unfitness of the function A(L) = (1 + L/Λ) q is shared by all polyno-
mial functions combining terms of widely variable degrees in L/Λ, including linear and quadratic terms, which 
produce values of TF/T2 significantly greater than 2. If this is true, we can, hereafter, safely limit our discussion 
to the simple power laws f(L) = (L/Λ) q.

If the functions f(L) = (L/Λ) q are indeed the appropriate functions for interpreting rock data, we can infer the 
values of q and Λ corresponding to each creep experiment. For example, q ≈ 4 fits both Inada granite and Thala 
limestone although a larger Λ is associated to the granite than the limestone (Λ ≈ 0.5 and 0.1, respectively). It is 
tempting to interpret this result as indicating that the granite, whose low porosity (0.45%) presumably consists 
of long, thin microcracks, has a lower flaw density than a strongly heterogeneous, porous (17.5%) carbonate. 
However, this interpretation is uncertain because Λ is normalized by l0, an unknown quantity that could take very 
different values in these two rocks. The only other observation in support of taking large Λ’s as an indication of 
low flaw density is the fact that even larger values of Λ (>1.5) correspond to the two thermally cracked glass 
samples. Their microstructure, indeed, exclusively consists of cm-scale rather thin and smooth microcracks with 
intersections distant from each other by a few to tens of millimeters (Mallet et al., 2014).

Even though the absolute values of Λ are practically impossible to interpret, relative variations can be amenable 
to quantitative analysis. As mentioned earlier, creep experiments at different stress levels were carried in four 
samples of Etna basalt 1 extracted from the same block and a similar procedure was applied to three samples of 
Darley Dale sandstone (Heap, 2009). We therefore expect q to be constant in each rock, which is indeed observed 
for three of the Etna basalt 1 samples (q = 2) and all the Darley Dale sandstone ones (q ≈ 7 or 8). We also note 
that the inverse of Λ can be expressed as a second-degree polynomial in σ1

1

Λ
= 𝐶𝐶0 − 2𝐶𝐶1𝜎𝜎1 + 𝐶𝐶2𝜎𝜎

2

1� (13)

Indeed, combining Equations 1–3 yields the linear expression, |τeff| = aσ1−b, where the positive constants are 
given by a = (1 − μ)/2 and b = σ3 (1 + μ)/2. By definition l0 is proportional to |τeff| 2 = a 2σ1 2 − 2abσ1 + b 2 and so 
is 1/Λ = l0/λ, hence demonstrating Equation 13. The positive constants C0, C1, and C2 are proportional to b 2/λ, 
ab/λ, and a 2/λ, respectively, and therefore obey the equality C2/C1 = C1/C0 = a/b.

We graphically estimated Λ ≈ 0.40, 1.15, and 1.89 for the three Etna Basalt 1 samples with σ1/σpeak = 0.97, 0.86, 
and 0.80, respectively. Using the values above, the curve of 1/Λ versus σ1/σpeak is indeed very well fitted with a 
second-degree polynomial of the same form as in Equation 13. The estimated constants C0 = 32.9, C1 = 41.8, and 
C2 = 53.8 yield ratios C1/C0 = 1.27 and C2/C1 = 1.29 within 1.5% of the theoretical equality. We applied the same 
analysis to the Darley Dale sandstone data. A value of q greater than 6 was needed, which posed some numerical 
problems because we had to use a much smaller increment dL of 3 × 10 −5 to maintain an acceptable accuracy. 
Using q = 8, we obtained Λ ≈ 0.27, 0.19, and 0.059 for the creep stress levels σ1/σpeak = 0.84, 0.88, and 0.93, 
respectively, which yielded C0 = 1,560, C1 = 1,930, and C2 = 2,270, corresponding to ratios C1/C0 = 1.170 and 
C2/C1 = 1.174 in excellent agreement with the theoretical equality. Thus, the values of Λ fitting the Etna basalt 1 
and Darley Dale sandstone experiments are quantitatively consistent with the creep stresses used in them.

3.2.  Comparison With Experimental Data: Brittle Failure in Constant Strain Rate Experiments

Since f(L) = (L/Λ) q appears to yield an appropriate description of experimental creep data in a large variety of 
rocks, it is worth incorporating it in the failure model. Equation 6 thus becomes

−1.15 (|𝜏𝜏eff | − 𝜏𝜏c)

√

𝜋𝜋𝜋𝜋0

(

1 +

(
𝑙𝑙

𝜆𝜆

)𝑞𝑞
)

+ 𝜎𝜎3

√
𝜋𝜋𝜋𝜋∕2 = 0� (14)

Equation 14 can be written in dimensionless form using τ* = (|τeff|-τc)/σ3, l* = l/(1.15 2 2a0), and λ* = λ/(1.15 2 
2a0) (note that the previously used normalization of l and λ to l0 is not possible here because the remotely applied 
stresses are not constant in constant strain rate experiments). Solving it for τ*, yields

𝜏𝜏
∗ =

√
√
√
√

𝑙𝑙∗

1 +

(
𝑙𝑙∗

𝜆𝜆∗

)𝑞𝑞� (15)
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Equation 15 can be used to model constant strain rate tests by calculating the variations of τ* associated to a 
constant rate of increase of l*. We thus determined the τ* versus l* curves for q varying from 2 to 12 and λ* from 
0.1 to 16. All curves go through a maximum, τ* = τ*peak, analogous to rock peak strength at l* = l*peak (see exam-
ples in Figure 12). The right-hand side of Equation 15 is sufficiently simple to allow determining the coordinates 
of the peak analytically, yielding

𝑙𝑙
∗

peak
= 𝜆𝜆

∗∕(𝑞𝑞 − 1)
1∕𝑞𝑞� (16)

and 𝜏𝜏
∗

peak
=

√

𝜆𝜆∗

𝑞𝑞
(𝑞𝑞 − 1)

𝑞𝑞−1

𝑞𝑞

,� (17)

which implies 𝐴𝐴 𝐴𝐴
∗

peak
=
√

𝑙𝑙
∗

peak
(𝑞𝑞 − 1)∕𝑞𝑞 (see derivation in Appendix B). Thus, l*peak is proportional to λ* (the 

pre-factor decreasing from 1 to ∼0.757 and then slightly increasing to ∼0.784, when q is increased from 2 to ∼4.6 
and finally 8). In the same range of q, τ*peak varies as the square root of λ* (the pre-factor gradually increasing 
from ∼0.707 to ∼0.828). Although the definitions of λ* and Λ are not identical, these two parameters are both 
related to the separation distance between microcracks and/or flaws, or in other words, inversely related to the 
flaw density. As intuitively expected, the model predicts that strength increases with decreasing flaw density (left 
diagram, Figure 12).

Interestingly, normalizing the shear stress and wing crack length to their values at the peak (i.e., τ*/τ*peak and 
l*/l*peak) produced exactly coincident curves for a given value of q, independent of λ* (right diagram, Figure 12). 
Thus, λ* (equivalently, the flaw density) affects the values of τ*peak and l*peak but not the shape of the curves. 
Instead, it is the power law exponent q which appears to control the shape of the τ* versus l* curves, particularly 
the post-peak softening stage. Increasing values of q produce an increasingly sharp softening post-peak behavior 
(right diagram, Figure 12). Note that, in the softening stage, τ* asymptotically approaches zero while l* increases 
to infinity (Figure 12). This implies that formation of new larger shear bands continues indefinitely at shear 
stresses (|τeff|) closer and closer to τc, the shear stress, below which wing crack growth was not initially allowed. 
This property is due to the fact that the model does not include an upper scale limit and therefore does not allow 
formation of a through-going shear band like those ultimately occurring in (finite size) rock samples deformed 
to brittle failure.

Stress-strain curves measured in brittle materials are similar to the theoretical curves shown in Figure  12. 
However, unlike the τ* versus l* curves, which represent the results of exclusively inelastic processes, exper-
imental stress-strain curves include both elastic and inelastic strains. For the purpose of comparison with the 
model, the axial strain, ε = εe + εi, measured in a constant strain rate test must be corrected of its elastic compo-
nent εe so that only the inelastic strain εi remains. Elastic strains must obviously be dominant during the early 
stage of a constant strain rate test when the applied stress is too low to produce significant inelastic deformation. 
This elastic stage is usually identified as the upwardly curved segment, commonly observed at the beginning of 

Figure 12.  Examples of curves of normalized resolved shear stress τ* versus normalized wing crack length l* for the 
function (l*/λ*) q with q = 2 and various values of the dimensionless flaw separation λ* as indicated in matching colors (left 
diagram). Curves of τ* versus l* normalized to their peak values τ*peak and l*peak, respectively, for various values of q as 
indicated in matching colors (right diagram). Importantly, these curves are independent of the values of λ* used to calculate 
them (in other words, variations of λ* at constant q yield exactly coincident curves).
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the stress-strain curve (e.g., Heap & Faulkner, 2008). Along this segment, 
the slope of the stress-strain curve (i.e., the tangent axial Young's modu-
lus E) increases gradually owing to the closure of cracks normal to σ1 and 
reaches a maximum at σ1 = σc that is generally assumed to mark the onset 
of inelastic deformation. The interpretation of the upwardly curved segment 
as purely elastic has generally been considered satisfactory in many studies 
where dilatancy was measured and/or acoustic emissions recorded (among 
others, Lockner et  al.,  1992; Lockner,  1993; Stanchits et  al.,  2006; Fortin 
et al., 2009; Fortin et al., 2010). However, even if the purely elastic stage of 
a given laboratory test is accurately identified, determining εe along the rest 
of the stress-strain curve cannot be done without extrapolation unless the 
elastic properties were actually measured at regular intervals, for example, 
by running small cyclic stress excursions (e.g., Bernabé et al., 1994). The use 
of such techniques, however, is extremely rare in practice. Here, we manu-
ally digitized the stress-strain curves reported for Etna basalt 1 and Darley 
Dale sandstone by Heap (2009), since we had previously determined suitable 
values of q for these rocks, and attempted to construct models of the rocks 

Young's modulus as a function of stress and total axial strain. Our first attempt yielded values of (σpeak − σc)/σ3 
(i.e., the equivalent of τ*peak) that did not scale as the square root of εpeak, the inelastic strain at the peak of the 
stress-strain curve, as predicted by the model. However, fine-tuning the elastic model brought the results closer 
to the model prediction. Since the validity of the elasticity models cannot be checked independently, these efforts 
do not produce truly meaningful results and this approach was not pursued further.

3.3.  Correspondence to the Mohr-Coulomb Criterion

Despite decades of intensive work on micromechanical models, the most successful and, therefore, most 
commonly used brittle failure model is still the simple Mohr-Coulomb criterion, which totally ignores microme-
chanics. The Mohr-Coulomb criterion states that failure occurs when the Mohr circle corresponding to the state 
of stress applied to a rock sample becomes tangent to a straight line of equation t = t0 + σN tanϕ, where τ0 is the 
cohesion and ϕ the internal friction angle. Since only the externally applied principal stresses σ1 and σ3 are readily 
known in triaxial tests, the Mohr-Coulomb criterion is best expressed as (Labuz & Zang, 2012):

𝜏𝜏𝑚𝑚 = 𝜎𝜎𝑚𝑚 sin𝜙𝜙 + 𝜏𝜏0 cos𝜙𝜙𝜙� (18)

where τm = 1/2(σ1−σ3) is the radius of the Mohr circle depicting the state of stress at failure and σm = 1/2(σ1 + σ3) 
represents the coordinate of the Mohr circle center on the σN axis. To check whether or not the Mohr-Coulomb 
behavior emerges within our model, we need to construct the Mohr circles of failure states predicted by the model 
for constant values of the material input parameters. Using Equation 17 and the definition of τ*, we can express 
the theoretical failure shear stress as

𝜏𝜏peak − 𝜏𝜏c = 𝜎𝜎3

√

𝜆𝜆∗

𝑞𝑞
(𝑞𝑞 − 1)

𝑞𝑞−1

𝑞𝑞

= 𝜎𝜎3

√
𝜆𝜆∗𝜉𝜉(𝑞𝑞),� (19)

which can be recast in terms of the externally applied principal stresses as

𝜎𝜎peak − 𝜎𝜎c = 2𝜎𝜎3

√
𝜆𝜆∗𝜉𝜉(𝑞𝑞)

1 − 𝜇𝜇
= 𝜎𝜎3Ψ,� (20)

where �� = 2|���|∕
(

(1 − �)1.15
√

��0
)

 is the axial stress corresponding to τc. It follows then that 
τm = 1/2(σc+σ3(Ψ − 1)) and σm = 1/2(σc + σ3(Ψ + 1)). Plots of Mohr circles calculated for increasing values of 
σ3 at constant σc, q, and λ*, indeed, appeared to satisfy the Mohr-Coulomb criterion graphically (Figure 13). This 
result can also be demonstrated rigorously as follows. We form two independent equations by plugging the above 
expressions of τm and σm into Equation 18 for two values of σ3 differing by an arbitrary factor α (i.e., σ3 and ασ3). 
Subtracting the first equation from the second, all terms that do not contain σ3 get removed and we obtain

Figure 13.  Three examples of Mohr-Coulomb envelope for various values of 
the model material parameters.
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sin𝜙𝜙 =
Ψ − 1

Ψ + 1
,� (21)

or tan𝜙𝜙 =
Ψ − 1

2
√
Ψ

.� (22)

Returning to the first equation mentioned above, we use Equation 21 to eliminate sinϕ and cosϕ, and after some 
algebraic manipulations, we obtain

𝜏𝜏0 = 𝜎𝜎𝑐𝑐∕
(
2Ψ1∕2

)
.� (23)

These results demonstrate that the Mohr-Coulomb criterion is recovered from our model because the predicted 
friction angle and cohesion do not depend on the stress conditions but only on the material constants, σc, q, and 
λ* (note that, unlike Λ, the normalization factor in λ* does not contain the principal stresses). Given the remark-
ably wide applicability of the Mohr-Coulomb criterion to rocks, its emergence in our model is a very important 
supporting factor and strongly suggests that brittle deformation of rocks is controlled in majority by wing crack 
growth and related processes. Baud et al. (2014) obtained a similar result using a very different model, albeit one 
also based on the wing crack model.

We note that Equation 22 predicts an internal friction angle vanishing and becoming negative for Ψ ≤ 1, indicat-
ing that the model yields unphysical results for values of λ* below a lower limit λ*min = (1 − μ) 2/(4 ξ(q)). Based on 
the definition of Ψ, it appears that the modeled internal friction angle is mostly affected by the friction coefficient 
μ and the normalized flaw separation λ*, while the exponent q has a rather limited effect. Indeed, the function ξ(q) 
only increases from 0.5 to 0.72 when q varies from 2 to 10. The coefficient of internal friction, tanϕ, nonlinearly 
increases with λ* and μ (Figure 14).

Figure 14.  The coefficient of internal friction, tanϕ, as a function of q and μ for three values of the normalized flaw 
separation λ*. The gray area in the top-left diagram shows a region where the values of λ* are below the lower limit λ*min (see 
text for more details).



Journal of Geophysical Research: Solid Earth

BERNABÉ AND PEC

10.1029/2022JB024610

15 of 18

Among the rocks previously discussed in the context of brittle creep, Etna basalt and Darley Dale sandstone 
were also submitted to a series of dry, constant strain rate tests at different confining pressures (Hackston & 
Rutter, 2016; Heap, 2009; Zhu et al., 2016). We calculated the failure Mohr circles for each set of experiments and 
observed that they defined approximately linear envelopes, in good agreement with the Mohr-Coulomb criterion. 
We then applied Equation 18 to each set of mechanical data to calculate the coefficient of internal friction and the 
cohesion. From these values and Equations 20, 21 and 23, we computed finally Ψ, σc, and λ* (q is known for both 
rocks from the previous creep analysis summarized in Figure 11 and values of μ are reported in Baud et al. (2014) 
and Hackston & Rutter (2016)).

The values of tanϕ and τ0 are somewhat similar to those reported by Baud et al. (2014) for EB_I and EB_III, 
tanϕ ≈ 0.91 and τ0 ≈ 46.4 MPa, and tanϕ ≈ 0.81 and τ0 ≈ 68.0 MPa, respectively. Using Equations 21 and 23, we 
calculated Ψ ≈ 6.3 and σc ≈ 234. MPa. The values of λ* vary from 1.6 to 3.6, with an average of 2.8, indicating 
a characteristic flaw separation larger than the size of the dominant cracks from which the initial wing cracks 
emanate. A large flaw separation appears consistent with the microstructure of the intact rocks as revealed from 
SEM images shown in Zhu et al. (2016). Indeed, the rock consists mainly of a glassy matrix densely speckled 
with micron-scale inclusions. The glassy matrix also contains few microcracks (most likely the dominant cracks 
responsible for wing crack formation) and widely separated, large phenocrystals and quasi-spherical vugs (sizes 
on the order of 200  μm or more). Microcracks are visible inside the phenocrystals but they did not initially 
extend outside. SEM images of deformed samples reveal very long (several hundred of microns), approximately 
axially  oriented cracks often emanating from (or ending at) vugs but largely avoiding the micron-scale inclusions 
and phenocrystals (Zhu et al., 2016). It thus appears that these apparent wing cracks were generally able to travel 
over large distances without clear perturbations, consistent with large values of λ*. In the case of Darley Dale 
sandstone the results are:

The values of τ0 obtained here are comparable to 22.1 MPa reported for Wertheim sandstone (a rock with nearly 
identical porosity and friction coefficient to those of Darley Dale sandstone; Baud et al., 2014). However, tanϕ 
tends to be slightly smaller than 0.86 observed for Wertheim sandstone. The inferred values of Ψ, σc, and espe-
cially λ* appear significantly lower in Darley Dale sandstone than Etna basalt. SEM images of undeformed and 
deformed Darley Dale sandstone samples, indeed, suggest that grain boundaries were generally partially open 
and acted as the dominant cracks of the wing crack model (Wu et al., 2000). The characteristic length a0 is there-
fore roughly equal to the mean grain size. Although intra-granular cracks are relatively rare in the intact rock, 
the SEM images reveal the ubiquitous presence of a dense population of asperities along the grain boundaries 
and irregularities within the inter-granular cement and clays. These defects appear to play an important role in 
the formation of quasi-axial cracks in samples deformed in the dilatant regime (i.e., at relatively low confining 
pressures). Under high confining pressures, pore collapse and grain crushing become the prominent deformation 
mechanisms in porous rocks, implying that our model is not applicable in these conditions. In summary, we found 

In the case of etna basalt we obtained the following results:

tanϕ 1.06 0.91 0.91

τ0 (MPa) 46.4 56.2 45.7

Ψ 6.3 5.1 5.1

σc (MPa) 234. 255. 207.

λ* 3.6 3.3 1.6

Heap (2009) (EB_I) Zhu et al. (2016) (EB_III) Zhu et al. (2016)

tanϕ 0.56 0.69

τ0 (MPa) 25.6 22.2

Ψ 2.9 3.6

σc (MPa) 87. 84.

λ* 0.37 0.58

Heap (2009) Hackston and Rutter (2016)
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that, applied to experimental values of the coefficient of internal friction and cohesion of a given rock, our model 
predicted normalized flaw separations λ* consistent with the observed microstructure of the rock. The model also 
infers the onset of inelastic deformation, σc, from τ0. However, the validity of the predicted values of σc is hard 
to assess since (a) the onset of inelastic deformation is not accurately identifiable from stress-strain curves alone 
(auxiliary techniques such as acoustic emissions monitoring are necessary) and (b) the definition of σc involves 
the critical stress intensity factor κIc, a quantity generally unknown in rocks.

4.  Implications
We developed a brittle creep and brittle failure model recognizing that flaws in rocks exist over a broad range of 
length-scales. Our assumption behind the model is motivated by the fact that self-similarity is one of the charac-
teristics of brittle systems; grain size distributions in fault rocks (e.g., Keulen et al., 2007), roughness of frictional 
interfaces (e.g., Candela et al., 2012), acoustic emissions recorded during experiments (e.g., Goebel et al., 2017), 
as well as moment-magnitude scaling of crustal earthquakes (Gutenberg & Richter, 1944) are all suggesting that 
cracking is a process that is self-similar over many orders of magnitude in length scale. The interactions of the 
dominant microcracks with smaller flaws in their vicinity lead to their coalescence, formation of micro shear 
bands, and eventually to shear failure when the growing dominant shear band reaches the sample boundaries as 
typically observed in rocks deformed under confining pressure.

In our model, both the inclined dominant microcracks as well as their associated wing cracks are allowed to 
grow in contrast to traditional models of brittle creep where only wing crack growth is assumed (e.g., Ashby & 
Sammis, 1990; Brantut et al., 2012). Comparison of our model to experimental data suggests that the complex 
and non-tractable interactions of the rock microcracks and flaws can be adequately expressed by the simple 
power law functions, f(L) = (L/Λ) q, where L is the normalized wing crack length and Λ represents the normalized 
distance over which a wing crack must propagate to interact with other flaws.

The model reproduces all three characteristic stages of creep and returns experimentally determinable quantities, 
namely the ratio of the time to failure, tF, to the time of minimum wing crack propagation velocity (i.e., minimum 
strain rate, or center of the secondary creep segment), t2, and a power-law exponent, m, that characterizes the 
mean deceleration rate of primary creep. The model successfully fits data from a broad range of rocks and—with 
appropriate normalization and accounting for elastic deformation—can be also used to model brittle failure. 
Furthermore, our model predicts that brittle creep can occur over a very broad range of flaw densities and/or 
stress levels depending on the exact functional form. Tertiary, accelerating creep has typically been observed 
only at a high percentage (>50%) of the ultimate failure strength (e.g., Brantut et  al.,  2012), however recent 
experiments document primary and secondary brittle creep operating at stress levels as low as ∼10% of the fail-
ure strength (Xing et al., 2022) providing evidence that brittle creep indeed occurs over a broad range of stress 
levels—resolving whether creep at such low fractions of the failure strength will eventually enter the tertiary 
creep stage is however impossible in the laboratory. As shown in Figure 8, the time to failure predicted by the 
model varies by over 20 orders of magnitude for the variations of Λ explored in this work.

5.  Conclusions
We reformulated the wing crack model of brittle creep and brittle failure to allow for the formation, growth and 
coalescence of micro shear bands over a broad range of length scales and found that

•	 �The model using a wide class of function A(L) properly returns classical trimodal creep curves for constant 
stress boundary conditions and characteristic stress-strain curves under constant strain rate boundary conditions

•	 �The model returns dimensionless parameters that can be experimentally measured. Key outputs are the ratio 
of time to failure, tF, to the time of minimum strain rate, t2, and a power-law exponent, m, that characterizes 
the mean deceleration rate of primary creep. The values of the model input parameters, q and Λ, can then be 
inferred for each rock considered (see Figure 11).

•	 �The function A(L) = 1 + f(L), where f(L) is a simple power law, f(L) = (L/Λ) q, produced values of the constants 
Λ and q consistent with those estimated from the experimental data. The parameter Λ represents a normalized 
distance over which a flaw must propagate to interact with other flaws and can be related to flaw density and 
stress level.
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•	 �Polynomial functions which combine the effect of multiple terms with different degrees, yielded results incon-
sistent with the experimental data, suggesting that brittle creep of rocks can be appropriately described using 
the power law function, f(L) = (L/Λ) q.

Appendix A

The limit Λc is the upper limit of Λ such that the curves of 𝐴𝐴

√
1 + (𝐿𝐿∕Λ𝑐𝑐)

𝑞𝑞  and 𝐴𝐴

√
𝐿𝐿 versus L are tangent. As 

discussed in Section 2.3, the two curves do not intersect when Λ is smaller than Λc and they intersect on two 
separate points for Λ strictly larger than Λc. We now note that the curves produced by elevating the two functions 
above to the power 2 are also tangent to each other for Λ = Λc. They therefore have a single common point, where 
the derivatives of the functions with respect to L must be equal. We can therefore write the two obvious equalities 
1 + (L/Λc) q = L and q (L q  −  1/Λc q) = 1. Eliminating L between these two equations yields Λc = (q 1/(1  −  q) − q q/

(1  −  q)) (1  −  q)/q.

Appendix B
We wish to calculate the coordinates τ*peak and l*peak of the maximum of the curve of τ* versus l* predicted 
by Equation 15. For this, we only need to calculate the derivative with respect to l* of the right-hand side of 
Equation 15:

𝜏𝜏
′ (𝑙𝑙∗) =
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Solving τ'(l*) = 0 for l* yields the solution 𝐴𝐴 𝐴𝐴
∗

peak
= 𝜆𝜆

∗∕(𝑞𝑞 − 1)
1∕𝑞𝑞 and plugging this value in Equation 15 produces 

𝐴𝐴 𝐴𝐴
∗
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(𝑞𝑞 − 1)
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𝑞𝑞  , which can be rewritten 𝐴𝐴 𝐴𝐴
∗
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=
√
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(𝑞𝑞 − 1)∕𝑞𝑞 .

Data Availability Statement
Our model is analytical. Computer programming is therefore unnecessary in principle. However, certain param-
eters such as the power law exponent m are easier to determine numerically. To help interested readers, the 
Mathematica script used to construct and interpret Figure 8 is available at Zenodo. Except for the Iceland and 
Etna 2 basalts, we used published experimental data that can be obtained from the articles cited. The Iceland and 
Etna 2 basalts data were produced in our laboratory and are available at https://doi.org/10.5281/zenodo.6812115.
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