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Brittle Creep and Failure: A Reformulation of the Wing Crack
Model

Yves Bernabé! (2 and Matej Pec!

'Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract we propose a reformulation of the wing crack model of brittle creep and failure. Experimental
studies suggest that the mechanical interactions of sliding and tensile wing cracks are complex, involving
formation, growth, and coalescence of multiple tensile, shear and mixed-mode cracks. Inspired by studies

of failure in granular media, we propose that these complex mechanical interactions lead to the formation

of micro shear-bands, which, in turn, develop longer wing cracks and interact with a wider volume of rock

to produce larger shear bands. This process is assumed to indefinitely continue at greater scales. We assume
that the original wing crack formalism is applicable to micro shear-band formation, with the difference that
the half-length, a, of the characteristic micro shear band is allowed to increase with wing crack growth. In

this approach, the functional relationship of a with the wing crack length / embodies the entire process of
shear band formation, growth and interaction with other shear bands and flaws. We found that the function
a(D/a(0) = 1 + (I/2)4, where A and ¢q are constant parameters, generated creep curves consistent with published
creep data of rocks. Similar accord was also obtained with experimental brittle failure data. Furthermore, we
found that the Mohr-Coulomb behavior emerged from our model, allowing estimation of the cohesion and angle
of internal friction in materials for which 4 and ¢ are independently known.

Plain Language Summary Rocks close to Earth's surface deform by fracturing. Fracturing can
occur abruptly if the load the rocks bear increases rapidly. Fracturing can however also occur over much longer
times without changes to the load during a process called brittle creep. Observations suggest that fracturing
occurs due to growth and linkage of many small-scale flaws present in the rock. The details of this growth and
linkage process, however, are very complex which complicates our ability to assess when rocks will ultimately
break. Here, we develop a model that simplifies the details of these small-scale interactions between large
populations of flaws into a simple functional form. We analyze a number of possible functional forms and find
that the simplest power law form yields good agreement with experimental data. Our model reproduces the
behavior observed in brittle creep experiments, where after a step increase in load, the initially rapid rate of
deformation first slows down, reaches a transitory steady-state and then accelerates until final failure occurs.
Our model hence improves our ability to predict when failure will occur and presents a step toward mitigating
the hazards associated with rock failure.

1. Introduction

Deformation in Earth's upper crust is dominated by fracturing and frictional sliding resulting in macroscopically
“brittle” behavior. Fractures occur over a range of length scales from intragranular microscopic cracks to fault
zones spanning plate boundaries that host destructive earthquakes. The stress in the upper crust is limited by fric-
tional sliding on favorably oriented faults (e.g., Zoback & Zoback, 2007) and therefore much focus was dedicated
to the problem of sliding frictional interfaces which are the end-product of brittle failure (e.g., Marone, 1998;
Dieterich, 2007). Brittle creep and brittle failure that precede the formation of a throughgoing fault are relatively
less studied phenomena, but nevertheless critical to our understanding of the long-term behavior of the crust and
the earthquake cycle (e.g., Brantut et al., 2013; Main, 2000).

Macroscopic limit laws such as Mohr-Coulomb failure envelope and Byerlee's rule for frictional sliding are
used to describe brittle deformation on the continuum scale and can be used to predict the strength of rocks and
orientation of faults upon failure. Linking these empirical macroscopic failure laws to the underlying microscopic
defects however remains elusive. Brittle deformation has been investigated from the point of view of microme-
chanics mostly using the idea that sliding, shear-loaded microcracks propagate out-of-plane as tensile cracks
called wing cracks (Brace & Bombolakis, 1963; Horii & Nemat-Nasser, 1985). This concept has been incorpo-
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rated in models that take multiple crack interactions into account (Ashby &
Hallam, 1986; Ashby & Sammis. 1990; Brantut et al., 2012). However, these

o
2 % % Ao models only consider very simplified crack interactions, by limiting the crack
Z e = = coalescence patterns to tensile merging of neighboring wing cracks. Our aim
g = § g £ in the present paper is to construct an improved micromechanical model of
& g Bz brittle deformation that includes the complex crack interactions underlying

o

the intricate coalescence patterns observed in laboratory studies such as
Wong and Einstein (2009a, 2009b).

time

Figure 1. Schematic of typical curves of stress and strain versus time recorded 1 1. Background: The Wing Crack Model
in laboratory constant stress (left diagram) and constant strain rate tests (right

diagram).

In the laboratory, rocks are typically tested under either constant stress or

constant strain rate boundary conditions (or more precisely under constant

load or constant displacement rate boundary conditions). Typical stress-strain-
time plots obtained for both types of tests are schematically illustrated in Figure 1. Under constant stress, rocks
exhibit trimodal creep curves. Namely, decelerating “primary creep” occurs after the initial change in stress,
followed by a transitory, apparent steady state “secondary creep,” which eventually gives way to accelerating
“tertiary creep” and failure (Figure 1, left diagram). In constant strain rate tests, rocks first deform elastically
(albeit, often nonlinearly) until the yield point (i.e., onset of inelastic deformation), followed by strain hardening
and accumulation of permanent strain. The axial stress eventually reaches a maximum (peak stress or strength),
at which point a fault starts developing and the rock weakens to a stress level dictated by the residual friction on
the fault (Figure 1, right diagram). This macroscopic behavior is controlled by the activation, propagation, and
interactions of cracks in the rocks in the brittle regime. Loading conditions in nature are generally more complex
than those employed in experiments, nevertheless laboratory tests can provide valuable insights into the micro-
mechanics of brittle creep and brittle failure.

The wing crack model, also called the sliding crack model, was proposed in
the early 1960s to interpret the observations mentioned above, in particular
the nearly ubiquitous development of tensile microcracks in crystalline rock
samples subjected to compressive stresses (Brace & Bombolakis, 1963; see
Paterson & Wong, 2005, for a review). The model attributes the rock inelastic
deformation leading to failure to the formation of tensile cracks that emanate
from the tips of the largest preexisting microcracks undergoing frictional
shear. These activated microcracks are called the dominant cracks and are
represented in the model by a single characteristic crack length, 2q,, and
their inclinations with respect to the remotely applied principal compressive
stresses, 0, < 6, < o, (note that this inequality implies the geophysics conven-
O tion of positive compressive stresses and strains, which will be used through-
out the paper). Although cracks in rocks have a broad range of orientations,
we follow the common practice of only considering the cracks for which
the resolved shear stress is maximum (e.g., Baud et al., 2014) as the largest,
most optimally oriented flaws will start propagating first. Thus, the model
defines the dominant cracks as oriented parallel to the intermediate stress
o0, and inclined with respect to the minimum stress o, by an angle f§ = 45°
(Figure 2). The intermediate stress plays no role in the process of rock failure
except for controlling the orientation of the final fracture. Although experi-
mental observations have shown that brittle failure is indeed affected by the
intermediate principal stress (Paterson & Wong, 2005), we will not attempt
to modify this assumption in our model. A discussion of the effect of o, is
considered out of the scope of the present paper.

Figure 2. Schematic of a sliding microcrack and the associated wing cracks.
The sliding crack is located in an infinite homogeneous solid subjected to In the idealized conditions depicted in Figure 2, the wing cracks are curved.

compressive stresses. The intermediate stress o, is normal to the figure plane. The angle 0 they form with the dominant microcrack changes during propa-

The angle f is, hereafter, assumed to be 45°.

gation, starting at about 70° at initiation and decreasing until the wing cracks
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become parallel to ¢,. Considering that the dominant cracks have the most effective orientation, f = 45°, the
normal stress and the resolved shear stress on the sliding cracks are as follows:

on =Y (01 + 03) (1)
|z| = Y2 (o1 — 03) 2

Part of the shear stress is balanced by friction. According to Amonton's law, the effectively active shear stress is
therefore given by

|zete| = |7| — pow, 3)
where y is the friction coefficient and the condition Izl > uo, imposes 6,/c, > (1 — w)/(1 + p).

The mode I stress intensity factor, «,, of a wing crack is a complex function of the remotely applied principal
stresses, the length 2a, of the dominant crack, the wing crack length /, and the angles $ and 6 (Figure 2). A
number of models have been published (see Baud et al., 1996, for a review). Although they differ in some details
depending on how the curvature of the wing cracks and other such features are treated, they all consist of the sum
of two terms, one driving and one resisting wing crack propagation. Here, we consider the simple model from
Kachanov (1982) (also used in Brantut et al., 2013)

K[=—1.15|Tc{f| wao + o3 77.'[/2 (4)

Although the Kachanov model ignores the wing crack curvature and, therefore, describes the early stage of wing
crack development relatively poorly, it becomes quite accurate when the wing cracks become straight and fully
aligned with the maximum principal stress (Brantut et al., 2013). The model predicts that wing cracks will form
when the initial stress intensity factor is larger than the rock fracture toughness, |xo| = 1.15|zest| \/n_a() > |Krels
or in other words, when Iz exceeds a critical shear stress 7. = |kyc|/ (1.15 ﬂa()). The first (driving) term in
Equation 4 expresses the wedging effect of shear displacements at the tips of the dominant crack. The second
(resistant) term depends on / and accounts for wing crack closure caused by o;. The two terms have different
signs, causing Ix,| to decrease with increasing /. Wing crack growth will therefore stop when x, becomes equal to
K., or in other words, when the wing crack length reaches I, = 2a, (1.15 (It — 7.)/63)%

This ultimate crack arrest means that the behavior of a single wing crack system cannot be used to model brittle
failure except, perhaps, in uniaxial compression conditions (increasing ¢, and o = 6, = 0), when the wing cracks
eventually intersect the sample edges (i.e., axial splitting). But this difficulty can be resolved by recognizing that
the rock contains a broad population of mechanically interacting flaws. Interacting dominant cracks are expected
to experience an increase of |k during wing crack extension. The currently published crack interaction models
are all variations of the model developed by Ashby and Hallam (1986) and Ashby and Sammis (1990). The main
idea of the model is that the dominant microcracks are spatially arranged in such a way that the wing cracks
emanating from two neighboring sliding cracks are aligned and, owing to their mutual influence, the remotely
applied lateral stress o, is locally reduced in the ligaments between them by a quantity o;. This causes a decrease
of the resistant term, (o3 — o) \/T/Z , and allows further propagation and finally coalescence of the wing cracks.
The wing cracks thus form columns parallel to the maximum stress ¢,, which ultimately fail, owing to the classic
buckling instability of slender columns. The intrinsic weakness of this model is the assumption of a very specific
geometrical structure of the dominant microcracks, which is very unlikely to be found in a natural material.
Nevertheless, the model has been quite successfully applied to experimental rock deformation and failure data
(see the review by Brantut et al., 2013). Note also that these models are only concerned by dilatant deformation
and therefore may not apply to highly porous rocks and/or very high confining pressure conditions (our model
shares this limitation).

1.2. Background: Crack Coalescence

Since the early work of Horii and Nemat-Nasser (1985), the interaction and coalescence of wing cracks in
conditions of uniaxial and biaxial compression have been experimentally investigated in a variety of materials,
including rocks (see the comprehensive review of Wong, 2008). One important result is that biaxially loaded
samples containing two parallel, cm-scale man-made crack-like flaws produced strongly different coalescence
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Figure 3. Simplified reproduction of Figure 12 of Lin et al. (2021). The
boxes show the outlines of growing wing cracks at the surface of a mortar
slab containing two cm-scale flaws. The slab was subjected to uniaxial
compression in the direction of the red arrows (the values of the axial stress is
indicated below each box). The initial flaws are positioned such that the wing
cracks merge and new tensile cracks are produced from the other side of the
sliding flaws.

patterns depending on their relative positions and inclinations with respect
to the applied principal stresses (e.g., Wong & Einstein, 2009a, 2009b; Lin
et al., 2021). In Lin et al. (2021), a scalar measure of the strain field was
determined as a function of time using digital image correlation analysis,
allowing identification of the fissures developing and coalescing around
the initial flaws. In the configuration shown in Figure 3 (a schematic partial
reproduction of Lin et al.’s (2021) Figure 12), the wing cracks emanating
from the inclined flaws merged and two new ones were created on the sides,
forming a column aligned with &, quite similar to the structure assumed in
the Ashby-Hallam-Sammis model. However, the unstable buckling of the
column predicted in the Ashby-Hallam-Sammis model was not observed,
perhaps because the experiment was prematurely stopped.

In other configurations of the initial flaws, very different coalescence
patterns occurred, in which the inclined shear cracks themselves were
actively involved. For example, a separate, small shear crack formed between
two nearly aligned initial flaws and eventually merged with both of them,
completely bridging the ligament (Figure 4). Very complex bridging struc-
tures combining tensile, shear and mixed mode cracks were also observed in
other configurations of the initial flaws.

Similar coalescence patterns were produced in samples of Carrara marble
and molded gypsum (Wong & Einstein, 2009a, 2009b). For example, nearly
aligned flaws produced bridging shear cracks, while merging of the tensile

wing cracks occurred when the flaws were shifted to form a 90° angle. Combinations of shear, tensile and mixed

mode bridging cracks were observed in other cases.

2. The Model

2.1. The Concept: Micro to Macroscopic Shear Bands

Despite the general similarity of the results described above, important differences were noted in materials with

distinct internal structures. For example, development of a secondary crack was usually preceded in Carrara

marble by an increase in light reflectivity (whitening) of the sample surface in a thin region exactly delineating
the path of the future secondary crack (Wong, 2008; Wong & Einstein, 2009a, 2009b). These “white patches”
visible on the sample surface prior to cracking can be attributed to the formation and accumulation of damage in

highly strained thin zones. This explanation implies the existence, in the material, of a population of very small

4 % 1

1 1 1
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Figure 4. Simplified reproduction of Figure 7 of Lin et al. (2021). Here, the
position of the initial flaws leads to the formation of a shear crack and the
eventual bridging of the ligament between the initial flaws.

defects and microcracks (invisible to the eye or even a very high-resolution
camera) that are activated by the amplified stresses around the large cm-scale
flaws. White patches were not observed in molded gypsum, a microgranular
material that was fabricated using procedures specifically designed to ensure
excellent homogeneity. Lajtai (1974) similarly noticed the formation and
growth of damaged shear zones at the tips of a sheared cm-scale synthetic
crack in a biaxially stressed plaster slab. Evidence of interaction of large
propagating cracks with smaller flaws is also reported in Brantut et al. (2014).
Their Figure 12 shows examples of, on one hand, very smooth and rectilinear
wing cracks in homogeneous sparitic calcite cement and, on the other, rough
and tortuous cracks traversing microgranular micritic aggregations.

Shear failure also occurs in unconsolidated granular media (e.g.,
Desrues, 1990). At stresses below grain crushing stresses strain localization
is observed on shear bands, which form by grain sliding and rotation. The
initiation and growth of shear bands in granular materials has been exten-
sively investigated experimentally and numerically (see Desrues, 1990,
and references therein). One important observation is that the first stage of
strain localization consists in the formation of multiple, separate micro shear

BERNABE AND PEC

4 of 18



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Solid Earth 10.1029/2022JB024610

bands. With increasing stress, some of these micro shear bands interact with

* ;’;J neighboring ones, coalesce and eventually develop into macroscopic shear

x X * N bands (Desrues & Ando, 2015). Similar scale increase scenarios have been

0 X :?t‘gf ) ‘ ;‘J x*‘ﬁx X observed in rocks. For example, Figure 16 in Brantut et al. (2013) shows the

q'x + r il & | hypocenter locations of acoustic emissions recorded during a creep test of

. /i o x|t Lﬁl a granite sample. The distribution of hypocenters is random and featureless

L Vv x during primary and secondary creep but becomes concentrated into growing

* clusters during tertiary creep, eventually forming a single shear fracture (see

also, Fortin et al., 2009, 2010; Lockner, 1993, 1998; Lockner et al., 1992).

Figure 5. Schematic representation of mechanical interactions of cracks Here, we follow a similar concept. Natural flaws and microcracks in rocks
and flaws and the resulting micro shear band formation. The change of scale have a very broad distribution of sizes. The (largest and most favorably

shown here is assumed to continuously take place at greater and greater scales.  oriented) dominant cracks are the first to develop wing cracks, which, as

discussed above, are bound to interact with nearby minor flaws. We posit that

this process will generally result in the development, near the tip of the domi-
nant crack, of a complex array of microcracks (formed in tensile, shear and mixed mode) that globally deforms
in shear. For lack of a better term, we will use the granular material terminology and call these structures micro
shear bands. We emphasize that this term is meant to cover a broad range of damage structures, from simple
merged shear cracks to inclined zones of crushed material. All these structures share a greater susceptibility to
deform in shear than their surroundings, hence our choice to refer to them as shear bands. Shear cracks and micro
shear bands similarly slide when submitted to sufficient shear stresses, although they may have different effective
coefficients of friction. A wing crack should therefore develop at the outer edge of the shear band (Figure 5).
Note that wing cracks have indeed been observed to initiate from the edges of sheared microstructural objects
other than microcracks. For example, Rawling et al. (2002) present scanning electron microscope (SEM) images
of wing cracks emanating from the edges of sheared biotite grains in triaxially deformed samples of Four-mile
gneiss (e.g., see their Figure 9). Furthermore, owing to the overall increase in length, the wing crack emanating
from a micro shear band will be longer than the initial one, and thus, have the capacity to interact with a greater
volume of rock. It becomes therefore likely that two micro shear bands in favorable positions and orientations will
coalesce to form even longer micro shear bands, from the edges of which increasingly long wing cracks will grow
(Figure 5). The model does not include an upper cut-off scale and the process is therefore assumed to continue at
indefinitely increasing scales.

2.2. Micro Shear Band Model: Brittle Failure

We posit that the brittle deformation of rock illustrated in Figure 5 can be described as the result of crack growth
and coalescence around a representative dominant (or leading) micro shear band. Given the mechanical similarity
of shear bands and sheared cracks, it is reasonable to assume that a leading micro shear band can be also modeled
using the mathematical development rooted in linear elastic fracture mechanics leading to Equation 4, the only
difference being that the half-length a of the leading micro shear band increases during loading.

Since the second term of Equation 4 describes the restraining effect of ¢; on wing crack expansion, it does not
need to be modified. In the first term, the friction coefficient entering the definition of 7 may depend on the
internal structure of the shear band and thus vary during crack growth. For the sake of simplicity, we will assume
that the friction coefficient of the micro shear bands remains approximately equal to that of the sheared cracks.
Equation 4 then becomes

k1 = —1.15|7esr |V mwa(l) + o34/7l /2 )

where the half-length of the micro shear band is an increasing function of /, a(/), which provides a simple (albeit
inexplicit) way to express the complex crack interactions leading to the formation of micro shear bands. Note
that, in this model, wing crack growth causes an increase of the driving term y/za(l) in Equation 5 instead of a

reduction of the resistant term o34/z1/2 as in the Ashby-Hallam-Sammis model. Furthermore, we expect shear
failure to naturally arise from the formation of increasingly long shear bands, whereas unstable buckling of axial
columns has to be additionally invoked in the Ashby-Hallam-Sammis model.
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If we assume that wing crack growth is stable (as it has to be when the mechanical interactions are negligible) the
crack arrest condition, k; = k,, yields:

—1.15 (Jzese| — 7e) Vma(l) + o3\/7l /2 =0 (6)

If Iz is considered the independent variable (i.e., in constant loading rate tests), solving Equation 6 for a(l)
yields

alh = £(03/1.15 (|| = 7)) %

which simply states that a(/) can be calculated if the dependence of / on Iz] is known. In this description, failure
occurs with increasing Iz, | when the leading shear band eventually reaches the sample boundaries. Rock fail-
ure tests, however, are usually carried out in constant strain rate conditions and not at constant loading rate as
assumed by Equation 7. In this case, [ is the independent variable and prior knowledge of a(/) is needed to model
brittle failure.

2.3. Micro Shear Band Model: Brittle Creep

Following previous models of brittle creep, we introduce time dependence by assuming subcritical crack growth.
In this case, wing crack propagation can proceed at constant stresses below the critical shear stress 7. The initial

stress intensity factor is |ko| = 1.15]|zett|4/7mao < Ik, | and Equation 5 can be recast as
K1 03
— = [ — —=A\/zl/2
p Va(l)/ao P Vxl/ ¥

Equation 8 can be further simplified by using the following dimensionless variables and parameters: K| = k/k,,
A = alay, and L = l/l;, where I, = 2a,, (1.15 It \/6,)* = 2k,2/(n6,?), that is, the maximum possible length of the
wing cracks generated under the current state of stress at the tips of a microcrack of length 2a, in the absence of
any mechanical interactions (/; is thus an intrinsic property of the dominant microcracks of the undeformed rock).
Note that /; can be physically achieved when subcritical crack growth is operating since Ik is allowed to drop to
zero. We finally obtain

K, = VA(L) - VL ©)

Although Equation 9 is not a mechanistic model of crack coalescence, the function A(L) is effectively a closed-form
expression of the results of the extremely complex and varied mechanical interactions underlying the formation
and growth of micro shear bands. To do the job correctly, A(L) must satisfy a number of constraints. First, there
are the trivial conditions that A(0) = 1 and A(L) must be a monotonically increasing function. Thus, A(L) can be
expressed as A(L) = 1 + f(L), where f(L) is a monotonically increasing function verifying f{0) = 0. Most impor-
tantly, K, must always be strictly larger than zero. Negative values obviously contradict the definition of K| since
k, and k, are both negative quantities. Moreover, K; = 0 implies crack arrest and is therefore incompatible with
tertiary creep.

The simplest functions satisfying these conditions are the power law functions, (L) = (L/A)9, where A = M, is
a dimensionless length scale representing the normalized distance that the wing crack must propagate to enter
the vicinity of another microcrack or flaw, interact with it and therefore produce a substantial increase of K. Of
course, other more complex functions such as the polynomials, f{L) = f= , CiL(with C; > 0), can also meet the
conditions above. We will focus here on the power laws f(L) = (L/A)4, because they are the analytically simplest
functions, and as will be discussed later, produced results in good agreement with experimental brittle creep data.
We nevertheless investigated the polynomials f(iL) = (1 + L/A)? — 1 (i.e., A(L) = (1 + L/A)?) as thoroughly as
ML) = (L/A)? but the results obtained were inconsistent with experimental brittle creep observations and will not
be discussed in detail in the following text.

To illustrate how Equation 9 works, it is convenient to consider the perfect square function A(L) = (1 + L/A)?
(see Figure 6). Since the square root of A(L) is a linear function of L, the first term in Equation 9 yields a family
of straight lines with slopes increasing when A is decreased (the values of A are indicated in the same color as
the corresponding lines in Figure 6). The values of K| are graphically measured as the vertical distance between
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[ L

A(L) = (1+L/A)

Figure 6. Graphic representation of Equation 9 in the case of

A(L) = (1 + L/A)2. The vertical distance between the colored straight lines
(the values of A for each line are indicated in matching colors) and the dashed
purple curve is a measure of the stress intensity factor K,. The position L,, of
the minimum stress intensity factor K, of the black curve is indicated by the
small empty circle and the associated vertical dashed line. Note that K, is
nearly equal to zero in this case. See text for a detailed interpretation.

L

m
1

these lines and the \/Z curve representing the second term of Equation 9
(the dashed line in Figure 6). Thus, in all cases, K, first decreases (primary
creep), reaches a minimum (secondary creep), and then increases indefinitely
(tertiary creep). To satisfy the condition, K, > 0, the colored straight lines in

Figure 6 are not allowed to intersect or tangentially touch the \/Z curve, thus
limiting the values that A can take (in this example, A < A_ = 4). We also
note that increasing A causes a reduction of the minimum K, of K, and of the
rate of increase of K| in the second stage while the value L of L at the mini-
mum increases (Figure 6). K, and L,, are key output parameters of the model
since they identify the transition from primary to tertiary creep.

4

The consecutive K-decreasing and K increasing stages illustrated in
L Figure 6 were produced by the power laws f{L) = (L/A)? with an exponent
q > 2 as well as all other functions f(L) examined in this study. These various
(L) functions, however, differed in the values of A, K, and L, that they
generated.

To assess the effect of the power law exponent g, we examined the form of
the curves of K versus L associated with f(L) = (L/A)? for different values of
g and A (the curves associated to g =2 to 6 and A = 1 are shown in Figure 7).

The limit A, is analytically related to the exponent g through the expres-

sion, A, = (g1 = 9 — g9/t = 9)(1 = 9/ (see Appendix A for the derivation).
According to this relation, A_ decreases from 2 to ~1.46 when g is increased from 2 to 8. As mentioned earlier,
A = M, represents the normalized distance, over which a wing crack must propagate to enter the vicinity of other
microcracks and flaws and interact with them. It is important to note that this interaction distance depends both
on the properties of the material being modeled and the state of stress considered. Indeed, the effect of the stress
state is introduced through the normalization factor [,  (I7,,l/c;)* while the material is described by both /,
which contains g, and 4, which can be understood as a characteristic flaw separation (or the inverse of the flaw
density). Consequently, variations of A may represent either distinct materials with differing flaw densities or a
single material subjected to various levels of stress. Thus, an increase of ¢ indicates an increase of either the flaw
density of the rock considered or the level of stress needed to allow brittle creep. We also note that the minimum
stress intensity factor K, along the K, versus L curves decreased with increasing g while the corresponding L,,
first decreased and then increased (Figure 7).

Time dependence is then introduced in the model by assuming subcritical crack growth. According to this
assumption, crack propagation proceeds gradually, starting at a stress intensity factor k, lower than k.. Although
different subcritical crack growth models can be used, the most commonly reported in previous studies is based
on the power law relation often called Charles' law (Charles, 1958; see also
Wiederhorn & Bolz, 1970):

't q
K, "
| L (ﬂ> (10)
3t Uo Ko
4 where v and v, are the current and initial growth rates of the wing cracks, and
2l 3 the exponent n usually takes very high values (between 10 and 50). Note that
) AL) = (LIA) Equation 10 is dimensionless and can be re-written V = K/, with V = v/y,,
and then combined with Equation 9 to yield:
Hy A=1 JL ,
\ v=E =W+ - VD) an
0 1 1 1 1 1 ] . . . . . .
0 1 2 3 4 5 6 where the normalized time is defined as T = t/t; = tv /l,. Using the previously
L discussed functions f{L) = (L/A)?, Equation 11 contains three parameters, the
normalized flaw separation A, the power law exponent ¢, and the subcritical
Figure 7. Examples of curves of stress intensity factor K, versus wing crack crack growth exponent 7. Since L is a strictly monotonic, increasing function

length L associated with f(L) = (L/A)4 with A = 1 for various values of the

of T, Equation 11 can be numerically solved using the following simple

exponent ¢ as indicated in matching colors. See text for a detailed discussion.

BERNABE AND PEC

7 of 18



A7t |

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Solid Earth 10.1029/2022JB024610

AL) =1+ (L/AY

_ 10,
voi q=2 v
001} 4 n=10
107}
1074
o 00
| 10719}
10771 40
107°11.75
0.601 16 165 169 1072 10° 10‘1B 1623
T T

Figure 8. Examples of curves of wing crack growth rate V versus time T associated with (L) = (L/A)? for g = 2 (left
diagram) and 4 (right diagram). The values of A corresponding to each curve are indicated in matching colors (the subcritical
crack growth exponent n was equal to 10 in all cases). The times T}, T, and T}, and the exponent m are graphically defined
in the inset. See text for a detailed discussion.

procedure. First we construct a wing crack length series, L, = (i — 1) dL, where dL denotes a small increment
(e.g., dL = 0.01 or lower for more accuracy). We then use Equation 10 to calculate the corresponding wing crack
velocity series V;. Finally, the time series 7, can be calculated using the recurrence T, , = T; + dT;, with dT; calcu-

lated by numerical integration of dT; = ILL_’“ W1+ f(L)—- \/Z)indL. Examples of curves of V as a function
of T corresponding to fiL) = (L/A)? with A = 0.1, 0.5, 1.0, 1.4, and 1.75; ¢ = 2 and 4; and n = 10 are shown in
Figure 8.

In all cases considered in this study, the V versus L curves displayed the same generic shape consistent with the
three classic stages of creep. As illustrated in Figure 8, the crack propagation velocity V first decreases gradually
(decelerating or primary creep stage) down to a minimum value (secondary creep) and then sharply increases
up to failure (accelerating or tertiary creep stage). The failure time 77 is obtained by integrating dT = dL/V for L
increasing from O to infinity.

Ty = / WT+7D - VD) dL (12)
0

The integral of Equation 12 is convergent for all values of A satisfying condition A < A_ and all functions f(L)
mentioned in previous sections. Figure 8 also shows that the decelerating stage consists of two segments, first
the deceleration magnitude IdV/dT] increases and then, after an inflection point is passed, decreases down to zero
(i.e., the point where the accelerating stage begins). Comparison of the right- and left-hand diagrams demon-
strates that increasing the polynomial degree g (for a given A) brings the minimum propagation velocity closer to
zero, increases greatly the time to failure and strongly sharpens the transition to tertiary creep. Similar effects are
produced by raising the subcritical crack growth exponent n (not shown in Figure 8).

Based on the results described above, three key points can be identified along the curve of V versus T, namely, (a)
the inflection point within the decelerating creep stage, (b) the minimum of the curve (note that this point is the
limit between the primary and tertiary creep segments; it can therefore be interpreted as the center of a secondary
creep segment), and (c) the failure point. These three points are distinguished by their respective time coordinates,
T

a local power law V « 77, which becomes steeper with increasing A (see inset in Figure 8). Although the indi-

T,, and T (see inset in Figure 8). Furthermore, in a log-log plot, the tangent at the inflection point T ; defines
vidual normalized times T, and T, may be difficult to determine experimentally because the time normalization,
T =t 1,/V,, involves [;, a quantity that may not be experimentally accessible, the ratio T,/7, is independent of
normalization and can be measured in laboratory tests.

We measured T,/T, for (L) = (L/A)? in various conditions of A, g, and n. We observed that T,/T, strongly
decreased with increasing A when g was equal to 2, changed to a much flatter, non-monotonic behavior with
increasing g from 3 to 5, and eventually became a steadily but moderately increasing function of A for ¢ = 6
(Figure 9, right diagram). In all cases, T,/T, approached a limit value of 2 for the largest A’s while a wide range,
from as high as 3 to as low as 1.6, was obtained for A near zero depending on the polynomial degree g.
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Figure 9. Examples of the predicted dependence of the primary creep exponent m (left diagram) and the failure time to
secondary creep time ratio 7,/T, (right diagram) on the characteristic flaw separation A. These curves correspond to the
function f(L) = (L/A)? with values of ¢ indicated in matching colors (the subcritical crack growth exponent n was equal to 10
in all cases). The positions of the limit A, for the different exponents g are indicated by colored solid dots in the left diagram.
See text for a detailed discussion.

Because inflection points are patently difficult to determine from noisy data, T ; is not a practical parameter to
use for comparison with experimental data, but the exponent m is independent of time normalization and can be
estimated as a characteristic power law exponent of rock primary creep data. We calculated m for a variety of
values of A and g. We observed that m showed approximately logarithmic dependence on A for different values
of g (Figure 9, left diagram). The calculated m's increased from values between 0.2 and 0.5, depending on g, at
low A’s to an upper limit of about 1 at A’s approaching A (Figure 9, left diagram).

3. Discussion
3.1. Comparison With Experimental Data: Brittle Creep

Testing this model against experimental data cannot be done directly since the essential wing crack parameters /
and v cannot be measured in rock samples during deformation. Even, estimating the half-length a, of the domi-
nant flaws from SEM images of the undeformed rock is an extremely difficult and uncertain undertaking. We will
assume here that the macroscopic creep strain rate ¢ of a very large volume of material containing many dominant
microcracks is linearly related to the wing crack propagation velocity v. Note that the (usually nonlinear) rela-
tions between v and ¢ derived in various versions of the Ashby-Hallam-Sammis model (e.g., Brantut et al., 2012)
cannot be used in our model. Indeed, these relations only include the effect of wing cracks growth and neglect the
shear displacements along the dominant microcracks.

In our model, on the other hand, the macroscopic creep strain rate is mainly produced by formation and shearing
of the micro shear bands. Accordingly, the experimental equivalent of the wing crack length [ is the (inelastic)
creep strain ¢. Note that there is no measurable equivalent of /,, making it impossible to normalize experimental
time so that it can be directly compared to the model dimensionless time T = ¢ v //,. However, the main output
parameters of the model, the exponent m and the ratio #,/t, can be estimated from experimental creep curves
spanning the three regimes from primary to tertiary creep without time normalization. Note that experimental
data are necessarily afflicted by noise, mostly random fluctuations of the readings of the measuring devices but
sometimes also errors caused by computer glitches. Published data sometimes contain “unphysical” features in
the recorded signals, like sharp steps (i.e., points of extremely high strain rates) or oscillations (i.e., alternating
positive and negative strain rates), which require specific removal treatments (the easiest being manually passing
a smooth curve through the steps or oscillations). Since the combination of regularization techniques needed for
the purpose of differentiating the experimental ¢ versus ¢ data strongly depended on the particular data being
analyzed, we did not attempt to develop a comprehensive data-treatment workflow. Each data set was individually
processed, although we made every effort to maintain consistency.

We downloaded or digitized the published brittle creep data of Inada granite (Fujii et al., 1999), Thala limestone
(Brantut et al., 2013), Etna basalt (hereafter labeled Etna basalt 1; Heap, 2009; Heap et al., 2011), and Darley Dale
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Figure 10. Example of a strain rate versus time curve calculated from a
digitized experimental creep curve (here, a Darley Dale sandstone creep

test at a creep to peak stress ratio of 0.93; Heap, 2009; Heap et al., 2009).
Experimental data with (dotted blue line) and without smoothing (solid black
dots) are shown. The digitized creep curve is displayed in the inset. The

estimates of #, t,, and the primary creep exponent m are graphically indicated.

See text for a detailed discussion.
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Figure 11. Experimental estimates of ¢,/t, and m for Inada granite (black),
Thala limestone (dark blue), Darley Dale sandstone (light blue), Etna basalt

1 (purple), Etna basalt 2 (red), Iceland basalt (orange), and thermally cracked
glass (green). The error bars indicate the estimated uncertainties of the
calculated values of #./t, and m. In the case of Darley Dale sandstone and
Etna basalt 1, the creep stress levels (0,/6,,.,,) are shown above the data points
in matching color. The theoretical curves of T,/T, versus m for the function
AL) = (L/A)? and various values of the exponent ¢ as indicated in the inset on
the right side of the diagram, are superposed on the experimental data. The
olive green arrow indicates the direction in which the theoretical interaction
distance A increases in this diagram.

sandstone (Heap, 2009; Heap et al., 2009) and calculated the corresponding
time-dependent strain rates (simple differencing was used). In the case of
Darley Dale sandstone and Etna basalt 1 (Heap, 2009), preliminary constant
strain rate tests at different effective confining pressures were performed to
determine the rock strength defined as the peak effective differential stress
Opeax — 03 (note that all stresses reported in the above references are effec-
tive stresses, i.e., differences of the total stresses and pore pressures). Creep
tests at the same effective confining pressure (30 MPa) and various effective
differential stresses o, — o, below the previously measured peak stresses
were then carried out in samples from the same quarry blocks (Heap, 2009).
These tests are particularly interesting to us since the samples had presuma-
bly identical properties and microstructures but were subjected to different
stresses. We therefore expected that the experimental data would yield values
of T,/T, and m consistent with a single value of g and decreasing A’s with
increasing creep stress. We also analyzed creep curves measured in basalt
samples from a different outcrop on Mount Etna (hereafter labeled Etna
basalt 2, Mansbach, 2022) and a cored well in Iceland (Xing et al., 2022),
and in thermally cracked glass cylinders (Mallet et al., 2014, 2015).

The experimental curves of log(¢) versus log(#) of these rock samples (e.g.,
Figure 10) appear indeed similar to the theoretical curves of Figure 8. We
were, therefore, able to estimate the two primary output parameters, #,/t, and
m, from these data. The time to failure 7, is easy to measure but 7, can be
more challenging (note that superposing the smoothed creep curves and the
original noisy ones is quite helpful to avoid unreasonable under- or over-
estimations of 7, and to estimate uncertainties). The inflection point within
the decelerating stage is all but impossible to identify, but the power law
exponent m can still be estimated by selecting a segment of data points at the
center of the primary creep stage (see the example of Figure 10; again super-
posing the smoothed and original data is a very useful precaution). Within
the estimated uncertainties, the measured values of the ratio #,/t, ranged from
about 1.5 to 2.2, and m from 0.4 to slightly over 1.

For comparison purposes, we superposed the experimental (m, #,/t,) data on
the theoretical T,/T, versus m curves obtained by cross-plotting the numeri-
cal results for the function f(L) = (L/A)? and constant values of g. Note that
the theoretical curves converge from the left border to the vicinity of the
point (m = 1; T,/T, = 2), thus delimiting a wedge-shaped region that excludes
values of m significantly exceeding one. The experimental results are in
good agreement with the model in the sense that the measured data points
approximately fall within the allowed wedge-shaped region (Figure 11). This
observation also lends support to our assumption that the strain rate ¢ is line-
arly related to the wing crack propagation velocity v. Indeed, let us assume
instead that ¢ is an arbitrary (monotonically increasing) function g of v. The
experimental strain rate versus time curves (e.g., Figure 10) should then be
compared to curves of g(V) versus 7, which should have similar shapes to
the curves shown in Figure 8 but yield very different values of m. These
changes would likely produce a very different Figure 11. They could signif-
icantly distort the region in (mm; T,/T,) space allowed by the model and thus
reduce or even destroy any agreement of model and experiments.

Although we cannot exclude that other functions besides (L/A)? may
yield similarly satisfactory results, we can definitely eliminate the func-
tion A(L) = (1 + L/A)? (or L) = (1 + L/A)? — 1), which only generated
values of T,/T, greater than 2 that are not consistent with more than half
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the experimental data. We surmise that the unfitness of the function A(L) = (1 + L/A)4 is shared by all polyno-
mial functions combining terms of widely variable degrees in L/A, including linear and quadratic terms, which
produce values of T,/T, significantly greater than 2. If this is true, we can, hereafter, safely limit our discussion
to the simple power laws f(L) = (L/A)4.

If the functions f{L) = (L/A)? are indeed the appropriate functions for interpreting rock data, we can infer the
values of g and A corresponding to each creep experiment. For example, g = 4 fits both Inada granite and Thala
limestone although a larger A is associated to the granite than the limestone (A ~ 0.5 and 0.1, respectively). It is
tempting to interpret this result as indicating that the granite, whose low porosity (0.45%) presumably consists
of long, thin microcracks, has a lower flaw density than a strongly heterogeneous, porous (17.5%) carbonate.
However, this interpretation is uncertain because A is normalized by /;, an unknown quantity that could take very
different values in these two rocks. The only other observation in support of taking large A’s as an indication of
low flaw density is the fact that even larger values of A (>1.5) correspond to the two thermally cracked glass
samples. Their microstructure, indeed, exclusively consists of cm-scale rather thin and smooth microcracks with
intersections distant from each other by a few to tens of millimeters (Mallet et al., 2014).

Even though the absolute values of A are practically impossible to interpret, relative variations can be amenable
to quantitative analysis. As mentioned earlier, creep experiments at different stress levels were carried in four
samples of Etna basalt 1 extracted from the same block and a similar procedure was applied to three samples of
Darley Dale sandstone (Heap, 2009). We therefore expect g to be constant in each rock, which is indeed observed
for three of the Etna basalt 1 samples (¢ = 2) and all the Darley Dale sandstone ones (¢ = 7 or 8). We also note
that the inverse of A can be expressed as a second-degree polynomial in o,

%:co—zcm + Coo? (13)

Indeed, combining Equations 1-3 yields the linear expression, Iz | = ac,—b, where the positive constants are
given by a = (1 — p)/2 and b = o, (1 + p)/2. By definition [, is proportional to Iz,¢)* = a’c,? — 2abs, + b? and so
is 1/A = Iy/A, hence demonstrating Equation 13. The positive constants C,, C,, and C, are proportional to b%/A,
ab/), and a?/), respectively, and therefore obey the equality C,/C, = C,/C, = alb.

We graphically estimated A ~ 0.40, 1.15, and 1.89 for the three Etna Basalt 1 samples with 6,/6,,.,, = 0.97, 0.86,
and 0.80, respectively. Using the values above, the curve of 1/A versus 6,/6,,, is indeed very well fitted with a
second-degree polynomial of the same form as in Equation 13. The estimated constants Cy = 32.9, C, = 41.8, and
C, =53.8yield ratios C,/C,=1.27 and C,/C, = 1.29 within 1.5% of the theoretical equality. We applied the same
analysis to the Darley Dale sandstone data. A value of g greater than 6 was needed, which posed some numerical
problems because we had to use a much smaller increment dL of 3 X 10~ to maintain an acceptable accuracy.
Using g = 8, we obtained A = 0.27, 0.19, and 0.059 for the creep stress levels o,/6,,,, = 0.84, 0.88, and 0.93,
respectively, which yielded C, = 1,560, C, = 1,930, and C, = 2,270, corresponding to ratios C,/C, = 1.170 and
C,/C, = 1.174 in excellent agreement with the theoretical equality. Thus, the values of A fitting the Etna basalt 1
and Darley Dale sandstone experiments are quantitatively consistent with the creep stresses used in them.

3.2. Comparison With Experimental Data: Brittle Failure in Constant Strain Rate Experiments

Since f(L) = (L/A)? appears to yield an appropriate description of experimental creep data in a large variety of
rocks, it is worth incorporating it in the failure model. Equation 6 thus becomes

—1.15 (|zest | — 7c) 4/ mao <1+(%>q>+63 xl/2=0 (14)

Equation 14 can be written in dimensionless form using t* = (Iz,¢l-7,)/0;, I* = I/(1.15? 2a,), and A* = A/(1.152
2a,) (note that the previously used normalization of / and A to [ is not possible here because the remotely applied
stresses are not constant in constant strain rate experiments). Solving it for z*, yields
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Figure 12. Examples of curves of normalized resolved shear stress z* versus normalized wing crack length /* for the
function (/*/A*)? with ¢ = 2 and various values of the dimensionless flaw separation A* as indicated in matching colors (left
diagram). Curves of 7* versus /* normalized to their peak values 7¥ ., and I* ., respectively, for various values of g as
indicated in matching colors (right diagram). Importantly, these curves are independent of the values of 1* used to calculate
them (in other words, variations of 1* at constant ¢ yield exactly coincident curves).

Equation 15 can be used to model constant strain rate tests by calculating the variations of 7* associated to a
constant rate of increase of [*. We thus determined the 7* versus [* curves for g varying from 2 to 12 and A* from
0.1to 16. All curves go through a maximum, 7* = 7%, analogous to rock peak strength at [* = [* _, (see exam-
ples in Figure 12). The right-hand side of Equation 15 is sufficiently simple to allow determining the coordinates
of the peak analytically, yielding

Do = 4"/(@ =1 (16)

g-1

q

* A*
and T, = ;(q—l) , an

which implies r;ea = 4/I%...(a—1)/q (see derivation in Appendix B). Thus, I* ., is proportional to 4* (the

k eak

pre-factor decreasing frompl to ~0.757 and then slightly increasing to ~0.784, when q is increased from 2 to ~4.6
and finally 8). In the same range of g, 7*,,, varies as the square root of 1* (the pre-factor gradually increasing
from ~0.707 to ~0.828). Although the definitions of A* and A are not identical, these two parameters are both
related to the separation distance between microcracks and/or flaws, or in other words, inversely related to the
flaw density. As intuitively expected, the model predicts that strength increases with decreasing flaw density (left

diagram, Figure 12).

Interestingly, normalizing the shear stress and wing crack length to their values at the peak (i.e., /7%, and
P¥IT¥ ) produced exactly coincident curves for a given value of g, independent of * (right diagram, Figure 12).
Thus, 4* (equivalently, the flaw density) affects the values of 7* , and I* , but not the shape of the curves.
Instead, it is the power law exponent ¢ which appears to control the shape of the z* versus [* curves, particularly
the post-peak softening stage. Increasing values of g produce an increasingly sharp softening post-peak behavior
(right diagram, Figure 12). Note that, in the softening stage, 7* asymptotically approaches zero while /* increases
to infinity (Figure 12). This implies that formation of new larger shear bands continues indefinitely at shear
stresses (I7,4l) closer and closer to 7, the shear stress, below which wing crack growth was not initially allowed.
This property is due to the fact that the model does not include an upper scale limit and therefore does not allow
formation of a through-going shear band like those ultimately occurring in (finite size) rock samples deformed
to brittle failure.

Stress-strain curves measured in brittle materials are similar to the theoretical curves shown in Figure 12.
However, unlike the 7* versus /* curves, which represent the results of exclusively inelastic processes, exper-
imental stress-strain curves include both elastic and inelastic strains. For the purpose of comparison with the
model, the axial strain, € = ¢, + €,, measured in a constant strain rate test must be corrected of its elastic compo-
nent ¢, so that only the inelastic strain ¢; remains. Elastic strains must obviously be dominant during the early
stage of a constant strain rate test when the applied stress is too low to produce significant inelastic deformation.
This elastic stage is usually identified as the upwardly curved segment, commonly observed at the beginning of
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the stress-strain curve (e.g., Heap & Faulkner, 2008). Along this segment,
the slope of the stress-strain curve (i.e., the tangent axial Young's modu-
lus E) increases gradually owing to the closure of cracks normal to &, and
reaches a maximum at ¢, = o, that is generally assumed to mark the onset
of inelastic deformation. The interpretation of the upwardly curved segment
as purely elastic has generally been considered satisfactory in many studies
where dilatancy was measured and/or acoustic emissions recorded (among
others, Lockner et al., 1992; Lockner, 1993; Stanchits et al., 2006; Fortin
et al., 2009; Fortin et al., 2010). However, even if the purely elastic stage of
a given laboratory test is accurately identified, determining ¢, along the rest
of the stress-strain curve cannot be done without extrapolation unless the
elastic properties were actually measured at regular intervals, for example,
by running small cyclic stress excursions (e.g., Bernabé et al., 1994). The use

Figure 13. Three examples of Mohr-Coulomb envelope for various values of of such techniques, however, is extremely rare in practice. Here, we manu-

the model material parameters.

ally digitized the stress-strain curves reported for Etna basalt 1 and Darley
Dale sandstone by Heap (2009), since we had previously determined suitable
values of ¢ for these rocks, and attempted to construct models of the rocks

Young's modulus as a function of stress and total axial strain. Our first attempt yielded values of (¢, — 6.)/c,

peak

(i.e., the equivalent of z* ) that did not scale as the square root of €pear the inelastic strain at the peak of the

peak
stress-strain curve, as predicted by the model. However, fine-tuning the elastic model brought the results closer
to the model prediction. Since the validity of the elasticity models cannot be checked independently, these efforts

do not produce truly meaningful results and this approach was not pursued further.

3.3. Correspondence to the Mohr-Coulomb Criterion

Despite decades of intensive work on micromechanical models, the most successful and, therefore, most
commonly used brittle failure model is still the simple Mohr-Coulomb criterion, which totally ignores microme-
chanics. The Mohr-Coulomb criterion states that failure occurs when the Mohr circle corresponding to the state
of stress applied to a rock sample becomes tangent to a straight line of equation ¢ = #, + o, tan¢, where 7, is the
cohesion and ¢ the internal friction angle. Since only the externally applied principal stresses ¢, and o, are readily
known in triaxial tests, the Mohr-Coulomb criterion is best expressed as (Labuz & Zang, 2012):

T = O SIN @ + Ty COS P, (18)

where 7, = 1/2(6,—0;) is the radius of the Mohr circle depicting the state of stress at failure and o,

=1/2(6, + 0;)
represents the coordinate of the Mohr circle center on the oy axis. To check whether or not the Mohr-Coulomb
behavior emerges within our model, we need to construct the Mohr circles of failure states predicted by the model
for constant values of the material input parameters. Using Equation 17 and the definition of 7*, we can express
the theoretical failure shear stress as

Tpeak — Te = 03 —(q -1 " =3V ), (19)

q-1
q

which can be recast in terms of the externally applied principal stresses as

A*
Opeak — Oc = 263& =037, (20)
—H

where o, = 2|kr|/ ((1 - ul.15 \/7?0 ) is the axial stress corresponding to 7. It follows then that
= 112(c405(¥ — 1)) and 6,, = 1/2(c, + o,(¥ + 1)). Plots of Mobhr circles calculated for increasing values of
o, at constant 6, ¢, and 1*, indeed, appeared to satisfy the Mohr-Coulomb criterion graphically (Figure 13). This
result can also be demonstrated rigorously as follows. We form two independent equations by plugging the above
expressions of 7, and o,, into Equation 18 for two values of o, differing by an arbitrary factor « (i.e., o, and ao;).
Subtracting the first equation from the second, all terms that do not contain o, get removed and we obtain
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Figure 14. The coefficient of internal friction, tand, as a function of ¢ and y for three values of the normalized flaw
separation A*. The gray area in the top-left diagram shows a region where the values of A* are below the lower limit A* . (see
text for more details).

N
_r-1 21
Sing = G @D

¥Y—1
or tangp = ——.
Zﬁ 22)

Returning to the first equation mentioned above, we use Equation 21 to eliminate sind and cos¢, and after some
algebraic manipulations, we obtain

70 =0/ (2‘1"/2). (23)

These results demonstrate that the Mohr-Coulomb criterion is recovered from our model because the predicted
friction angle and cohesion do not depend on the stress conditions but only on the material constants, o, g, and
A* (note that, unlike A, the normalization factor in A* does not contain the principal stresses). Given the remark-
ably wide applicability of the Mohr-Coulomb criterion to rocks, its emergence in our model is a very important
supporting factor and strongly suggests that brittle deformation of rocks is controlled in majority by wing crack
growth and related processes. Baud et al. (2014) obtained a similar result using a very different model, albeit one
also based on the wing crack model.

We note that Equation 22 predicts an internal friction angle vanishing and becoming negative for ¥ < 1, indicat-
ing that the model yields unphysical results for values of A* below a lower limit A* . = (1 — u)%/(4 £(q)). Based on
the definition of W, it appears that the modeled internal friction angle is mostly affected by the friction coefficient

min

w1 and the normalized flaw separation A*, while the exponent g has a rather limited effect. Indeed, the function &(q)
only increases from 0.5 to 0.72 when ¢ varies from 2 to 10. The coefficient of internal friction, tan¢, nonlinearly
increases with A* and u (Figure 14).
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Among the rocks previously discussed in the context of brittle creep, Etna basalt and Darley Dale sandstone
were also submitted to a series of dry, constant strain rate tests at different confining pressures (Hackston &
Rutter, 2016; Heap, 2009; Zhu et al., 2016). We calculated the failure Mohr circles for each set of experiments and
observed that they defined approximately linear envelopes, in good agreement with the Mohr-Coulomb criterion.
We then applied Equation 18 to each set of mechanical data to calculate the coefficient of internal friction and the
cohesion. From these values and Equations 20, 21 and 23, we computed finally ¥, ¢, and A* (g is known for both
rocks from the previous creep analysis summarized in Figure 11 and values of u are reported in Baud et al. (2014)
and Hackston & Rutter (2016)).

In the case of etna basalt we obtained the following results:

tand) 1.06 0.91 0.91
7, (MPa) 46.4 56.2 457
W 6.3 5.1 5.1
o, (MPa) 234, 255. 207.
2% 3.6 33 1.6
Heap (2009) (EB_I) Zhu et al. (2016) (EB_III) Zhu et al. (2016)

The values of tand and 7, are somewhat similar to those reported by Baud et al. (2014) for EB_I and EB_III,
tand ~ 0.91 and 7, ~ 46.4 MPa, and tan¢ ~ 0.81 and 7, ~ 68.0 MPa, respectively. Using Equations 21 and 23, we
calculated ¥ = 6.3 and o, ~ 234. MPa. The values of 1* vary from 1.6 to 3.6, with an average of 2.8, indicating
a characteristic flaw separation larger than the size of the dominant cracks from which the initial wing cracks
emanate. A large flaw separation appears consistent with the microstructure of the intact rocks as revealed from
SEM images shown in Zhu et al. (2016). Indeed, the rock consists mainly of a glassy matrix densely speckled
with micron-scale inclusions. The glassy matrix also contains few microcracks (most likely the dominant cracks
responsible for wing crack formation) and widely separated, large phenocrystals and quasi-spherical vugs (sizes
on the order of 200 pm or more). Microcracks are visible inside the phenocrystals but they did not initially
extend outside. SEM images of deformed samples reveal very long (several hundred of microns), approximately
axially oriented cracks often emanating from (or ending at) vugs but largely avoiding the micron-scale inclusions
and phenocrystals (Zhu et al., 2016). It thus appears that these apparent wing cracks were generally able to travel
over large distances without clear perturbations, consistent with large values of A*. In the case of Darley Dale
sandstone the results are:

tand 0.56 0.69
7, (MPa) 25.6 222
v 2.9 3.6
o, (MPa) 87. 84.
A* 0.37 0.58
Heap (2009) Hackston and Rutter (2016)

The values of 7, obtained here are comparable to 22.1 MPa reported for Wertheim sandstone (a rock with nearly
identical porosity and friction coefficient to those of Darley Dale sandstone; Baud et al., 2014). However, tand
tends to be slightly smaller than 0.86 observed for Wertheim sandstone. The inferred values of P, o, and espe-
cially 2* appear significantly lower in Darley Dale sandstone than Etna basalt. SEM images of undeformed and
deformed Darley Dale sandstone samples, indeed, suggest that grain boundaries were generally partially open
and acted as the dominant cracks of the wing crack model (Wu et al., 2000). The characteristic length a, is there-
fore roughly equal to the mean grain size. Although intra-granular cracks are relatively rare in the intact rock,
the SEM images reveal the ubiquitous presence of a dense population of asperities along the grain boundaries
and irregularities within the inter-granular cement and clays. These defects appear to play an important role in
the formation of quasi-axial cracks in samples deformed in the dilatant regime (i.e., at relatively low confining
pressures). Under high confining pressures, pore collapse and grain crushing become the prominent deformation
mechanisms in porous rocks, implying that our model is not applicable in these conditions. In summary, we found
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that, applied to experimental values of the coefficient of internal friction and cohesion of a given rock, our model
predicted normalized flaw separations A* consistent with the observed microstructure of the rock. The model also
infers the onset of inelastic deformation, ¢, from 7. However, the validity of the predicted values of ¢, is hard
to assess since (a) the onset of inelastic deformation is not accurately identifiable from stress-strain curves alone
(auxiliary techniques such as acoustic emissions monitoring are necessary) and (b) the definition of o, involves
the critical stress intensity factor k., a quantity generally unknown in rocks.

4. Implications

We developed a brittle creep and brittle failure model recognizing that flaws in rocks exist over a broad range of
length-scales. Our assumption behind the model is motivated by the fact that self-similarity is one of the charac-
teristics of brittle systems; grain size distributions in fault rocks (e.g., Keulen et al., 2007), roughness of frictional
interfaces (e.g., Candela et al., 2012), acoustic emissions recorded during experiments (e.g., Goebel et al., 2017),
as well as moment-magnitude scaling of crustal earthquakes (Gutenberg & Richter, 1944) are all suggesting that
cracking is a process that is self-similar over many orders of magnitude in length scale. The interactions of the
dominant microcracks with smaller flaws in their vicinity lead to their coalescence, formation of micro shear
bands, and eventually to shear failure when the growing dominant shear band reaches the sample boundaries as
typically observed in rocks deformed under confining pressure.

In our model, both the inclined dominant microcracks as well as their associated wing cracks are allowed to
grow in contrast to traditional models of brittle creep where only wing crack growth is assumed (e.g., Ashby &
Sammis, 1990; Brantut et al., 2012). Comparison of our model to experimental data suggests that the complex
and non-tractable interactions of the rock microcracks and flaws can be adequately expressed by the simple
power law functions, f{L) = (L/A)%, where L is the normalized wing crack length and A represents the normalized
distance over which a wing crack must propagate to interact with other flaws.

The model reproduces all three characteristic stages of creep and returns experimentally determinable quantities,
namely the ratio of the time to failure, #., to the time of minimum wing crack propagation velocity (i.e., minimum
strain rate, or center of the secondary creep segment), #,, and a power-law exponent, m, that characterizes the
mean deceleration rate of primary creep. The model successfully fits data from a broad range of rocks and—with
appropriate normalization and accounting for elastic deformation—can be also used to model brittle failure.
Furthermore, our model predicts that brittle creep can occur over a very broad range of flaw densities and/or
stress levels depending on the exact functional form. Tertiary, accelerating creep has typically been observed
only at a high percentage (>50%) of the ultimate failure strength (e.g., Brantut et al., 2012), however recent
experiments document primary and secondary brittle creep operating at stress levels as low as ~10% of the fail-
ure strength (Xing et al., 2022) providing evidence that brittle creep indeed occurs over a broad range of stress
levels—resolving whether creep at such low fractions of the failure strength will eventually enter the tertiary
creep stage is however impossible in the laboratory. As shown in Figure 8, the time to failure predicted by the
model varies by over 20 orders of magnitude for the variations of A explored in this work.

5. Conclusions

We reformulated the wing crack model of brittle creep and brittle failure to allow for the formation, growth and
coalescence of micro shear bands over a broad range of length scales and found that

¢ The model using a wide class of function A(L) properly returns classical trimodal creep curves for constant
stress boundary conditions and characteristic stress-strain curves under constant strain rate boundary conditions

¢ The model returns dimensionless parameters that can be experimentally measured. Key outputs are the ratio
of time to failure, 7., to the time of minimum strain rate, #,, and a power-law exponent, m, that characterizes
the mean deceleration rate of primary creep. The values of the model input parameters, g and A, can then be
inferred for each rock considered (see Figure 11).

e The function A(L) = 1 + f(L), where f(L) is a simple power law, f(L) = (L/A)4, produced values of the constants
A and g consistent with those estimated from the experimental data. The parameter A represents a normalized
distance over which a flaw must propagate to interact with other flaws and can be related to flaw density and
stress level.
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¢ Polynomial functions which combine the effect of multiple terms with different degrees, yielded results incon-
sistent with the experimental data, suggesting that brittle creep of rocks can be appropriately described using
the power law function, f(L) = (L/A)4.

Appendix A

The limit A, is the upper limit of A such that the curves of 4/1 + (L/A.)? and y/L versus L are tangent. As
discussed in Section 2.3, the two curves do not intersect when A is smaller than A and they intersect on two
separate points for A strictly larger than A . We now note that the curves produced by elevating the two functions
above to the power 2 are also tangent to each other for A = A . They therefore have a single common point, where
the derivatives of the functions with respect to L must be equal. We can therefore write the two obvious equalities
1+ (L/A)4=Land g (LY~ /A %) = 1. Eliminating L between these two equations yields A_ = (g1 = 9 — g¢
-9yt -9l

Appendix B

We wish to calculate the coordinates 7%, and [I* , of the maximum of the curve of 7* versus [* predicted
by Equation 15. For this, we only need to calculate the derivative with respect to [* of the right-hand side of
Equation 15:

Solving 7'(1*) = 0O for /* yields the solution l;eak =A/(q - 1)"/ and plugging this value in Equation 15 produces

R et . . _ I
Tk = 7(4 — 1) ¢ , which can be rewritten Toeak = A /lpcak(q -1)/q.

Data Availability Statement

Our model is analytical. Computer programming is therefore unnecessary in principle. However, certain param-
eters such as the power law exponent m are easier to determine numerically. To help interested readers, the
Mathematica script used to construct and interpret Figure 8 is available at Zenodo. Except for the Iceland and
Etna 2 basalts, we used published experimental data that can be obtained from the articles cited. The Iceland and
Etna 2 basalts data were produced in our laboratory and are available at https://doi.org/10.5281/zenodo.6812115.
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