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We present a numerical-relativity simulation of a black hole - neutron star merger in scalar-tensor
(ST) gravity with binary parameters consistent with the gravitational wave event GW200115. In this
exploratory simulation, we consider the Damour-Esposito-Farèse extension to Brans-Dicke theory, and
maximize the e�ect of spontaneous scalarization by choosing a soft equation of state and ST theory
parameters at the edge of known constraints. We extrapolate the gravitational waves, including
tensor and scalar (breathing) modes, to future null-infinity. The numerical waveforms undergo ≥ 22
wave cycles before the merger, and are in good agreement with predictions from post-Newtonian
theory during the inspiral. We find the ST system evolves faster than its general-relativity (GR)
counterpart due to dipole radiation, merging a full gravitational-wave cycle before the GR counterpart.
This enables easy di�erentiation between the ST waveforms and GR in the context of parameter
estimation. However, we find that dipole radiation’s e�ect may be partially degenerate with the NS
tidal deformability during the late inspiral stage, and a full Bayesian analysis is necessary to fully
understand the degeneracies between ST and binary parameters in GR.

I. INTRODUCTION

Increasing numbers of gravitational-wave (GW)
events [1–4] have allowed us to probe the extreme gravity
environment near the coalescence of a compact binary
system, which opens up a new chapter for tests of general
relativity (GR) [1, 5–25]. To robustly test GR, there
is a need for accurate GW predictions both in GR and
beyond-GR theories, so that one can use Bayesian model
selection to ascertain which theory better agrees with GW
observations.

Scalar-tensor (ST) theory [26–29] is the simplest alter-
native theory of gravity, where the strength of gravity is
modulated by scalar field(s). The original formulation of
ST theory was due to Jordan [26], Fierz [27], Brans and
Dicke [28, 29] (JFBD), and was generalized by Bergmann
[30] and Wagoner [31] to capture more general conformal
factors, and by Damour and Esposito-Farèse [32] to mul-
tiple scalar fields. An important feature of ST theory is
scalar radiation, an extra energy dissipation channel in
addition to the usual tensor radiation in GR. The leading
scalar radiation is dipolar, and thus more important at
low frequencies than the quadrupolar waves that control
a GR inspiral [13, 32–46]. Under this e�ect, the evolu-
tion of some strong-gravity systems can deviate from the
prediction of GR and leave imprints on observables. For
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instance, binary-pulsar systems have been shown to be a
good laboratory [33, 34, 39, 47–59] (see also Refs. [6, 60–
66] for reviews) since the celebrated Hulse-Taylor PSR
B1913+16 [67]. By measuring the orbital decay rate of the
systems, one can examine and constrain ST theory via the
parametrized post-Keplerian formalism [47, 48, 66, 68].
The strength of the dipole radiation depends on the

scalar charge –NS [32, 57, 69, 70], which characterizes
the ability of an object to condense the scalar field. The
scalar charge of a black hole (BH) vanishes as the no-hair
theorems have been shown to apply in ST [23, 71–74]. For
a binary system, the dipole radiation power is proportional
to its charge di�erence squared [33]: (–A ≠ –B)2, where
A and B refer to the two objects in the binary system.
Consequently, if two objects possess similar scalar charges,
such as in near equal-mass binary neutron star (BNS)
systems where both stars are similarly scalarized, the
dipole radiation is suppressed. Conversely, the best tests
of ST can come from a mixed system that consists of a
neutron star (NS) and a BH, as only one of them carries
scalar charge.
While ST theory is strongly constrained in some envi-

ronments, deviations from GR could also be amplified if
a NS undergoes spontaneous scalarization1 in certain con-
ditions [75–84], as pointed out by Damour and Esposito-
Farèse [48, 69]. At some critical central density, the equi-

1 See Refs. [75–80] for two related phenomena: induced and dy-
namical scalarization.
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librium solutions for NSs’ structures bifurcate into several
branches, and the GR branch becomes unstable [85, 86].
The most stable solution corresponds to a scalarized NS
with a much larger scalar charge [32, 57, 69, 70]. There-
fore, the dipole radiation and consequential deviations
from GR are significantly amplified in such scalarized
BHNS systems, which makes them, if they exist, ideal
environments for studying ST theory.

The LIGO-Virgo detectors [87, 88] recently made the
landmark observations of the first BHNS binaries via
GWs, GW200105 and GW200115 [89]. With the upcom-
ing improvement in GW detector sensitivity [90], including
future third-generation detectors [91–94], we can look for
e�ects of gravitational dipole radiation at ever-increasing
precision. Therefore, it is timely and vital to give a precise
prediction of the evolution of the scalarized BHNS bina-
ries in ST, especially accurate modeling of their dipole
GW waveforms. Although there have been significant
post-Newtonian (PN) e�orts dedicated toward construct-
ing waveforms in ST theory2 [13, 32–46, 97], PN theory
breaks down as one approaches the merger, or for strongly
scalarized NSs. To date, numerical relativity (NR) still re-
mains the only ab initio method to investigate ST theory
near the merger [74–76, 98–104]. For compact binaries,
NR has been used to simulate binary black holes (BBHs)
[74] and BNSs [75, 76, 104] in ST. A numerical simula-
tion of a scalarized BHNS system is still missing. In this
work, we aim to fill this gap by performing fully nonlinear
NR simulations of a BHNS merger in ST theory, with
a particular focus on how GW emission is impacted by
spontaneous scalarization. Motivated by the LIGO-Virgo
observations, we consider a GW200115-like system [89].

This paper is organized as follows. In Sec. II we give
a brief introduction to ST theory and our simulation
algorithm. Section III concentrates on our numerical
setup and strategy to maximize the e�ect of spontaneous
scalarization. Section IV provides our major simulation
results. Next in Sec. V we investigate distinguishability
between waveforms in GR and ST, with a particular focus
on to what extent the ST waveform can be mimicked
by tidal e�ects predicted by GR. Finally in Sec. VI we
provide some concluding remarks.

Throughout this paper we use the geometric units with
c = Gú = 1, where Gú is the bare gravitational constant
in the Jordan frame. We use the total Jordan-frame mass
to normalize all dimensional quantities (e.g., time and
distance). Meanwhile, we use the Latin letters a, b, c . . .
for spacetime indices, and i, j, k . . . to represent spatial
indices.

2 See also Refs. [95, 96] for an e�ective-field-theory approach.

II. EQUATIONS OF MOTION AND
NUMERICAL METHODS

In this work we consider a ST theory with a single
massless scalar field „. We first provide some basic fea-
tures and equations of motion of this theory in Sec. II A.
Then in Sec. II B we introduce our numerical algorithm
to perform the NR simulation. Finally in Sec. II C we
provide our method for extrapolating the waveform to
future null infinity.

A. The Jordan and Einstein frames

The ST theory is governed by the action [30, 31]

S =
⁄
d
4
x

Ô
≠g

16fi

5
„R ≠

Ê(„)
„

Òc„ Ò
c
„

6
+SM [gab,�m],

(1)

where gab is the metric, g is the metric determinant, R is
the Ricci scalar, SM is the action for all matter fields �m,
and Ê(„) is an arbitrary function of „ that parameterizes
the coupling between the scalar field and metric. The
action in Eq. (1) is written in the Jordan frame in which „

is nonminimally coupled with the metric gab, whereas the
matter fields are minimally coupled to the metric and not
coupled with the scalar field „, as required by the weak
equivalence principle. Therefore, test particles follow the
geodesics of the Jordan frame metric. NSs are treated as
perfect fluids and are governed by the law of conservation
of baryon number and energy momentum:

Òa(fl0 u
a) = 0, (2a)

ÒaT
ab = 0, (2b)

where T
ab is the stress-energy tensor in the Jordan frame.

The stress-energy tensor for an perfect fluid reads

Tab = fl0huaub + Pgab, (3)

with fl0 the rest mass density of the fluid, h the specific
enthalpy, P the pressure, and ua the 4-velocity.
The equations of motion for the metric and the scalar

field take complicated forms in the Jordan frame [see
Eq. (2.6) of Ref. [9] for example]. In particular, the
principal symbols of the PDE system is not diagonal in
the (gab,„) field space, so it is not manifestly symmetric-
hyperbolic.3 Consequently, the Jordan frame sometimes
is not ideally suited for simulating the metric and scalar
fields. A standard approach to get around this issue is to
apply a conformal transformation [32]: ḡab = „ gab. Then

3 Nevertheless, well-posed formulations of ST theories have been
found by Salgado et al. [105, 106].
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Einstein Frame

Ḡab = 8fi(T̄Â
ab + T̄ab)

⇤̄Â = 1
2
d log „

dÂ
T̄

Gravity Sector

Pseudospectral

Jordan Frame

Òa(fl0u
a) = 0

ÒaT
ab = 0

Matter Sector

Finite Di�erence

gab = ḡab/„

T̄ab = Tab/„

FIG. 1. The algorithm of our numerical simulations. We use pseudospectral methods to evolve the Einstein-frame metric and
scalar field, while we use shock-capturing finite di�erence to simulate the Jordan-frame matter fields. In practice, we convert
the Einstein-frame metric ḡab to the Jordan-frame one via gab = ḡab/„, and then send gab to the finite di�erence domain for
hydrodynamics simulations. Similarly, we transfer the Jordan-frame stress-energy tensor Tab from the finite di�erence grid to
the pseudospectral grid, convert it to the Einstein-frame stress-energy tensor through T̄ab = Tab/„, and then insert T̄ab into the
Einstein equations in Eqs. (6).

the action becomes:

S =
⁄
d
4
x


≠ḡ

5
R̄

16fi
≠
1
2ÒcÂ Ò

c
Â

6
+SM

5
ḡab

„
,�m

6
,

(4)

where R̄ is the Ricci scalar derived from ḡab, and

dÂ =
Ú

3 + 2Ê

16fi

d„

„
. (5)

The integration of Eq. (5) depends on the form of Ê(„),
and we will explain more details below in Eqs. (17) and
(18). The transformed metric ḡab defines a new frame,
called the Einstein frame; and the scalar field Â is mini-
mally coupled in the gravitational sector. The correspond-
ing equations of motion become manifestly symmetric-
hyperbolic:

Ḡab = 8fi (T̄Â
ab + T̄ab), (6a)

⇤̄Â = 1
2
d log „

dÂ
T̄ . (6b)

Note that the principal part of the gravitational sector
is now identical to its GR counterpart. Here Ḡab is the
Einstein tensor obtained from ḡab, T̄ab = Tab/„ is the
matter stress-energy tensor in the Einstein frame, T̄ =
ḡ
ab

T̄ab is its trace, and T̄
Â
ab is the stress-energy tensor of

the scalar field, given by

T̄
Â
ab = ÒaÂ ÒbÂ ≠

1
2 ḡab ÒcÂ Ò

c
Â. (7)

On the other hand, a complication of the Einstein frame
is that the hydrodynamic equations gain additional source

terms:

Ò̄aT̄
ab = ≠

1
2
d log „

dÂ
T̄ Ò

b
Â, (8a)

Ò̄a(fl̄0 ū
a) = ≠

1
2
d log „

dÂ
fl̄0 ū

a
ÒaÂ . (8b)

The scalar field Â is now directly coupled with the matter
fields. Because of the source terms on the RHS, particles
do not follow geodesics of ḡab.

B. Numerical algorithm

The single-scalar-field ST theory has been solved nu-
merically for BBHs [74] and BNSs [75, 76], with the pure
Einstein frame [74, 75], and the pure Jordan frame [76].
In our case, we simulate the BHNS system using the
Spectral Einstein Code (SpEC) [107], developed by the
Simulating eXtreme Spacetimes (SXS) collaboration [108].
SpEC adopts the generalized harmonic formalism [109],
where the Einstein equations are cast into a first-order
symmetric hyperbolic (FOSH) form. It is ideal to use
SpEC to evolve the metric and the scalar field sectors in
the Einstein frame [Eqs. (6)]. The reason is twofold. (a)
The equations of motion in the Einstein frame are man-
ifestly symmetric-hyperbolic, as mentioned in Sec. IIA.
Therefore the well-posedness of the Cauchy problem is
straightforwardly established. (b) The principal parts
of Eqs. (6) are identical to that of GR with a Klein-
Gordon field. Consequently, we can utilize the existing
GR FOSH system [109] and the FOSH system for scalar
fields [110, 111] to perform the simulations.

For the hydrodynamics, one could in principle approach
the problem in the same Einstein frame by evolving
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Eqs. (8). But this will complicate the problem because the
extra source terms in Eqs. (8), which depend on the scalar
field, need to be added to the existing hydrodynamic code
infrastructure in SpEC [112]. Furthermore, any routine in
SpEC that assumes the simple form of energy-momentum
and Baryon number conservation in Eq. (2) will need to
be revisited. To save the amount of code changes required,
here we propose a simpler algorithm to fulfill the goal.
We adopt a hybrid scheme, illustrated in Fig. 1. We

evolve the hydrodynamic system in the Jordan frame,
where the corresponding equations [Eq. (2)] are the same
as their GR counterparts due to the weak equivalence
principle. This lets us use the entire relativistic hydro-
dynamics module without modification. Meanwhile, we
use the FOSH systems to treat the metric and the scalar
field in the Einstein frame. Since the Jordan and Ein-
stein frames are related, a proper data flow needs to be
established to evolve them together. An essential step
is to pass the Jordan-frame metric gab and stress-energy
tensor Tab back and forth (see App. A for details): The
Einstein-frame metric ḡab is converted to its Jordan-frame
version gab via gab = ḡab/„, then gab is sent to the Jor-
dan frame for evolving the hydrodynamics. Similarly, the
Jordan-frame stress-energy tensor Tab is converted to the
Einstein-frame one through T̄ab = Tab/„, and inserted
into the Einstein equations in Eqs. (6).
Within SpEC, this communication is made easier by

the two-grid method already used in hydrodynamics sim-
ulations [112], wherein the metric sector is evolved on a
pseudospectral grid, while the hydrodynamic equations
are evolved on a finite di�erence grid that can handle
shocks. At each time step, the metric from the pseu-
dospectral grid is already interpolated onto the finite
di�erence grid and is fed to the hydrodynamic equations,
and the matter fields are passed by interpolation from the
finite di�erence grid to the pseudospectral grid and are
fed to the stress-energy tensor in the Einstein equations.
For the ST simulations, the metric and the scalar field
are evolved in the Einstein frame [see Eqs. (6)] on the
pseudospectral grid, but before the metric is interpolated
to the finite di�erence grid, it is first converted to the
Jordan frame. Similarly, the hydrodynamics equations
[see Eqs. (2)] are evolved in the Jordan frame, but before
the matter terms are transformed to the Einstein frame,
they are first interpolated to the pseudospectral grid.

C. Waveform extrapolation

One of the most important tasks of our numerical sim-
ulations is to compute GWs at future null infinity, where
we approximate GW detectors to reside. Methods have
been developed, including wave extrapolation [113, 114]
and Cauchy-Characteristic Extraction (CCE) [115, 116],
to extract the GWs from simulations with finite domains.
This paper adopts the extrapolation method and leaves
CCE for future work.

Following the standard treatment in PN theory [36, 42,

43, 45], we define a new conformally transformed metric
g̃ab by

g̃ab = („/„0)gab = ḡab/„0, (9)

which di�ers from the Einstein frame metric ḡab by a
factor of „0, the asymptotic value of the scalar field.
The factor is introduced so that the metric g̃ab takes
its Minkowski form ÷ab © diag(≠1, 1, 1, 1) far from the
system. In our simulations, we find that the value of „0

is always close to 1, and the di�erence is negligible, so we
will not distinguish g̃ab from ḡab below. The gravitational
perturbation h̃ab associated with g̃ab is given by

h̃
ab = ÷

ab
≠


≠g̃ g̃

ab
, (10)

whose indices are raised and lowered by ÷
ab. Then the

Jordan-frame metric can be written as [42]

gab = ÷ab + h̃ab ≠
1
2 h̃÷ab ≠ �÷ab +O

3
1
r2

4
, (11)

where

� = „ ≠ „0

„0

. (12)

Due to the equation of geodesic deviation [117], the GW
measured by a detector corresponds to the components
of the Riemann curvature tensor,

R0i0j = ≠
1
2
¨̃
h
TT

ij ≠
1
2 �̈(N̂iN̂j ≠ ”ij), (13)

where “TT” refers to the transverse-traceless projection
of h̃ij , and N̂i is GW’s propagation direction. As a result,
the tensor field h̃

TT

ij contributes to the + and ◊ polariza-
tions of the GW signal as in GR, while the scalar field �
corresponds to a transverse breathing mode.4

To extract the three GW polarizations from our numer-
ical simulations, we notice that the gravitational pertur-
bation h̃ab is associated with the Einstein-frame metric
ḡab, so we can restrict ourselves to this frame during the
extrapolation. On the scalar sector side, Â [defined in
Eq. (5)] is our evolved variable in the Einstein frame. We
can convert it to the observable � by integrating Eq. (5)
and then inserting the result into Eq. (12). Note that
the integration depends on the form of Ê(„) and we will
provide more details in Eq. (17). In practice, we first
measure the values of h̃ and Â at multiple extraction radii
at each timestep, and then extrapolate their values to null
infinity I +. For each radius, we decompose h̃ = h̃+≠ih̃◊
and Â into a sum over a set of (spin-weighted) spherical
harmonics sYlm(ÿ,Ï),

rh̃/M =
ÿ

l,m

Ylm≠2
(ÿ,Ï)h̃lm +O(r≠1), (14a)

rÂ/M =
ÿ

l,m

Ylm(ÿ,Ï)Âlm +O(r≠1), (14b)

4 Longitudinal and vector polarizations vanish in ST gravity [117].
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TABLE I. Summary of the parameters of the GW200115-like BHNS system we consider. The NS has a baryonic mass mB and
a Jordan-frame mass mJ

NS. Its radius in the Jordan frame is RJ

ST. In the absence of the scalar field, its radius is RGR, and
CGR = mJ

NS/RGR is its compactness. The GR tidal Love number of the NS is kGR

2 ; �GR

2 is the corresponding tidal deformability;
–NS is its scalar charge. To maximize the e�ect of spontaneous scalarization, we choose (—0,–0) = (≠4.5,≠3.5 ◊ 10≠3). The BH
has a Jordan-frame mass mJ

BH. Its dimensionless spin along is denoted by ‰BH

init and is anti-aligned with the Newtonian angular
momentum direction L̂N . The mass-weighted tidal deformability of the BNHS system is �̃GR

2 . Rbdry indicates the radius of
the simulation domain, in the unit of total mass M = 7.2M§, and Ncycle is the number of orbital cycles before merger. The
remnant is a BH with mass mf and spin ‰f , where mf is in the unit of M .

mB/M§ mJ

NS/M§ ‰NS

init RJ

ST/km RGR/km CGR kGR

2 �GR

2

1.71 1.5 0.0 10.58 10.55 0.21 0.0803 131.1

–NS mJ

BH/M§ ‰BH

init �̃GR

2 Rbdry/M Ncycle mf/M ‰f

0.18 5.7 ≠0.19L̂N 2.95 500 12 0.98 0.38

where we used the fact that h̃,Â ≥ 1/r in the wave zone.
Each field h̃lm and Âlm is extrapolated to I + following
the algorithm outlined in Refs. [114, 118–120], with the
PYTHON package scri [121, 122]. In particular, the null
rays are parameterized by an approximate retarded time
u, given by

u = tcorr ≠ rú, (15)

with

rú = r + 2ME log
1

r

2ME
≠ 1

2
, (16)

where ME = m
E

NS
+m

E

BH
is the total Einstein-frame mass,

and we refer to Refs. [113, 114] for the expression of the
corrected time tcorr. Finally these fields are interpolated
to common sets of u and fit in powers of 1/r, allowing to
approximate the r æ Œ limit.

III. BINARY AND SCALAR PARAMETERS

In Sec. IIIA, we provide the binary parameters we
consider for the BHNS system, which are chosen to be
consistent with GW200115 [89]. Then in Sec. III B, we
introduce our strategy for choosing the parameters of the
scalar field and the NS. As mentioned in Introduction,
a NS can undergo significant scalarization under certain
conditions, leading to nonnegligible dipole radiation while
the scalarized NS orbits in the binary system. This extra
energy dissipation channel accelerates the evolution of the
BHNS system and thus makes the emitted GWs distin-
guishable from their GR counterparts. In our simulations,
we want to highlight such distinctions by optimally picking
the ST theory parameters and the EOS of the NS.

A. The binary parameters

We summarize the parameters of the GW200115-like
BHNS system [89] we consider in Table I. The binary

system consists of a nonrotating NS with a Jordan-frame
mass m

J

NS
of 1.5M§, and a spinning BH with m

J

BH
=

5.7M§. The dimensionless spin of the BH ‰
BH

init
is ≠0.19,

i.e. it is anti-aligned with the orbital angular momentum.
We set the initial separation between the BH and the NS
Dinit to 11.7M , where M © m

J

BH
+m

J

NS
= 7.2M§ is the

total Jordan-frame mass; and place the outer boundary
of the system at Rbdry = 500M . The system undergoes
Ncycle ≥ 12 cycles prior to the merger. The orbital eccen-
tricity is reduced iteratively to eorb ≥ 1.6 ◊ 10≠4 [123].
Due to our two-grid method described in Fig. 1, the

NS resides in the Jordan frame while the BH is in the
Einstein frame. So in practice one needs to specify the
Einstein-frame mass of the BH m

E

BH
instead, which is

related to the Jordan-frame mass mJ

BH
through [32]

m
E

BH
= m

J

BH
Ô

„
,

where „ is evaluated at the position of the BH. We find
that |„ ≠ 1| . 5 ◊ 10≠5 in the vicinity of the BH, during
the inspiral stage, therefore the di�erence between m

J

BH

and m
E

BH
is negligible; thus we simply set mE

BH
= 5.7M§.

B. The parameters of the scalar field and the NS

For a given Jordan-frame mass m
J

NS
, the strength of

spontaneous scalarization for the NS depends on Ê(„),
as well as the EOS and compactness [70, 124]. To
look for the optimal choices to maximize the scalariza-
tion in our BHNS simulation, we consider a single Tol-
man–Oppenheimer–Volko� (TOV) NS in an isolated grav-
ity environment and investigate the impact of the scalar
field on the stellar internal structure.
The function Ê(„) characterizes the coupling between

the scalar field and gravity. In this work we follow
Ref. [125], whose idea was to Taylor expand the coupling
function ln„ in Â,

„ = exp
#
≠4

Ô
fi–0 (Â ≠ Â0) ≠ 4fi —0 (Â ≠ Â0)2

$
. (17)
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Using Eq. (5), we obtain

Ê = 1
2

1
[–0 +

Ô
4fi—0(Â ≠ Â0)]2

≠
3
2 . (18)

Here Â0 is the asymptotic value of Â that can also be
associated with cosmological expansion [126–128]. For
simplicity, we follow Ref. [75] and set Â0 = 0. The other
two constants –0 and —0 determine the features of the ST
theory. In particular, if —0 = 0 we get the JFBD theory
[26–29], which is parameterized by –0 = ≠(3+2ÊBD)≠1/2,
where ÊBD is the Brans-Dicke (BD) parameter. In the
low-density solar system environment, its value is severely
restricted to ÊBD > 40000 by the Cassini mission [6, 129],
which corresponds to |–0| . 3.5 ◊ 10≠3. In addition,
current binary pulsar measurements place a constraint
—0 & ≠4.5, because no spontaneous scalarization has been
detected yet [9]. See also Refs. [53–55, 58] for more recent
updates.
As pointed out by Damour and Esposito-Farèse [48,

125], even though a scalar-tensor theory with |–0| π 1
is indistinguishable from GR within the weak-gravity
regime, a negative value of —0 can lead to significant
relativistic deviations in a strong-gravity environment,
such as spontaneous scalarization of a NS. The size of the
scalarization is characterized by the scalar charge –NS

[32, 125]. In this paper, we adopt the definition of –NS

from Refs. [32, 125], which di�ers from the convention
used by the PN community by a minus sign (see App. A of
Ref. [43] for translating notation); consequently, we have
–NS < 0. For a Newtonian star, –NS reduces to –0; thus is
independent of its internal structure (a proof can be found
in App. B). For a strongly self-gravitating scalarized star,
its structure is governed by the TOV equation with an
extra scalar field, see e.g. Eqs. (7 ≠ 9) of Ref. [125]; we
provide a brief review in App. B. We numerically solve
the TOV equation, and the choice of the EOS will be
discussed shortly. Then we compute the corresponding
scalar charge –NS with Eq. (B5). Figure 2 shows –NS

as a function of the Jordan-frame mass m
J

NS
, using a

variety of —0 (the upper panel, with –0 being fixed to
≠3.5◊10≠3) and –0 (the lower panel, with —0 being fixed
to ≠4.5) values. Notice that sharp transitions develops at
m

J

NS
≥ 1.4M§ and 1.8M§ as –0 æ 0. The NSs between

these masses are spontaneously scalarized. In addition,
we see the scalar charge increases with the absolute value
of –0 and —0 for a fixed m

J

NS
(e.g. the vertical dashed

line). Therefore, we chose (—0,–0) = (≠4.5,≠3.5 ◊ 10≠3)
below to maximize the e�ect of scalarization.

On the other hand, we can also leverage the freedom of
choosing an EOS to magnify the scalarization. Here we
restrict ourselves to the spectral EOSs provided in [130],
which allows a broad range of cold and beta-equilibrium
EOSs (see Fig. 1 of Ref. [130]). The parametrization reads

P (fl) =
I

Ÿ0fl
�0 , fl < fl0,

P0 exp
#s x

0
�(x̃) dx̃

$
, fl > fl0,

(19)

with fl0 a reference density, P0 = P (fl0), �(x) = “2x
2 +

“3x
3 and x = ln(fl/fl0). Among the options, we find

FIG. 2. The scalar charge of a NS as a function of mJ

NS,
with a variety of –0,—0. Upper panel: varying —0 while –0 =
≠3.5◊10≠3; lower panel: varying –0 with —0 = ≠4.5. The EOS
is summarized in Table I, which has been selected to amplify
the scalarization. The vertical dashed lines correspond to the
NS in our simulation (mJ

NS = 1.5M§). We choose Â0 = 0 in
both panels.

the following soft EOS that gives rise to the strongest
scalarization e�ect (obtained from Table III of Ref. [130]):

�0 = 2, fl0 = 8.44019 ◊ 10≠5
, P0 = 1.20112 ◊ 10≠7

“2 = 0.475296, “3 = ≠0.117048.

Note that fl0 and P0 are in Gú = c = M§ = 1 units. This
specific EOS can produce macroscopic properties that
are compatible with current constraints, including the
mass-radius relation, tidal deformability, and maximum
NS mass [130]. However, it should be noted that this
EOS lacks composition and temperature dependence [130],
which makes it less realistic in those aspects.

For comparison, we also solve a NS with the same
Jordan-frame mass in GR, and summarize the correspond-
ing stellar properties in Table I. The compactness of the
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FIG. 3. The evolution of the volume-weighted constraint
energy for the metric, evolved with GR. The orange (blue)
curve corresponds to the low (high) resolution. The vertical
dashed line indicates the onset of the merger.

NS is CGR ≥ 0.22, with a tidal Love number k
GR

2
of

≥ 0.08 [131] and a tidal deformability �GR

2
= 2

3

kGR
2

C5
GR

of
≥ 131.1 [132] in the absence of the scalar field.

To end this section, we emphasize that our choices for
the EOS and the ST theory parameters are intentionally
made to produce a large scalar field: the values of (–0,—0)
lie on the edge of existing constraints [6, 9, 53–55, 129],
even though they may not be preferred in the actual astro-
physical environment. The current idealized configuration
is to justify our simulation code and to investigate the
maximum possible detectability of the dipole radiation
emitted by BHNS systems. Future work is being planned
to explore more moderate scenarios.

IV. NUMERICAL RESULTS

We present our main simulation results in this section.
For comparison, the BHNS system is evolved in both
GR and ST theory, and two numerical resolutions are
adopted for each case by specifying di�erent numerical
error tolerances to the adaptive mesh refinement (AMR)
algorithm in SpEC [133]. Below we first give a qualitative
panorama view of the GR system in Sec. IVA, and the
ST system in Sec. IVB. Then in Sec. IVC we compare
the GR and ST simulations. Finally in Sec. IVD, we
conduct more quantitative discussions by comparing our
numerical waveforms to existing PN predictions in ST.

A. The BHNS system in GR

We first evolve the system with GR, whose initial data
are built based on the method in Refs. [134, 135]. For
the GW200115-like binary parameters we consider (see

Table I), the NS is swallowed quickly by the BH during
the merger, and there is no tidal disruption. The remnant
BH has a mass of mf = 0.9785M , with M = 7.2M§
the total Jordan-frame mass defined in Sec. IIIA. The
remnant dimensionless spin is ‰f = 0.38. As a stan-
dard numerical diagnostic, we plot the volume-weighted
generalized harmonic constraint energy [see Eq. (53) of
Ref. [109]] in Fig. 3, where the orange (blue) curve refers
to the low (high) resolution run. As expected, the con-
straint energy decreases with increasing resolution, once
the initial transients (known as junk radiation) leave the
domain (t > Rbdry = 500M). Here Rbdry is the radius
of our simulation domain, as summarized in Table I. In
addition, we remark that the constraints jump drastically
near t = 1938M , when the NS starts to plunge into the
BH.

The top panel of Fig. 4 shows the dominant l = m = 2
harmonic h̃22 emitted by the BHNS system, with low (in
orange) and high (in blue) resolution. We see that the two
waveforms manifest significant dephasing near the merger.
Our current waveforms are less accurate than other recent
BHNS SpEC simulations [136] even though we use the
same criteria to set the numerical error tolerances in
AMR. This is mainly because the NS we consider is softer,
which has a smaller radius and would require finer grids
to resolve its structure. However, as the main purpose of
this study is to get a first qualitative understanding of
BHNS binaries in ST, we expect the current accuracy to
be su�cient (see more details in Sec. IVC).
The leading tidal e�ect in the GW phase evolution

appears at 5PN order [132], and is captured by a mass-
weighted tidal parameter �̃GR

2
[137]

�̃GR

2
= 16

13
(M + 11mJ

BH
)

M5
m

J 4

NS
�GR

2
. (20)

After plugging in the values listed in Table I, we find �̃GR

2

is around 2.95, implying that the emitted GWs are almost
indistinguishable from that of a BBH system with the
same spins and mass ratio. To demonstrate this, we com-
pare the BHNS waveform to that of an equivalent BBH
system (black dashed line in the top panel of Fig. 4). The
data of the BBH binary are obtained from the NRSur7dq4
surrogate model [138]. We align the two waveforms h̃BHNS

22

and h̃
Sur

22
by minimizing their mismatch M:

M = 1 ≠
(h̃BHNS

22
|h̃

Sur

22
)Ò

(h̃BHNS

22
|h̃BHNS

22
)(h̃Sur

22
|h̃Sur

22
)
, (21)

over time and phase shifts. Here the time-domain inner
product between two signals a, b is given by

(a|b) = Re
⁄ t2

t1

a(t)ú
b(t) dt, (22)

where the star denotes complex conjugation, and
we choose the optimization window to be [t1, t2] =
[200M, 800M ]. We provide the phase evolution „22 of the
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FIG. 4. Upper panels: The GW harmonic h̃22 of the BHNS system evolved with GR, using a low (in orange) and high resolution
(in blue). Two BHNS waveforms are compared to that of the BBH system (in black) which has the same mass ratio and spins.
We align the three waveforms by minimizing their mismatch over time and phase shifts, with the optimization window chosen to
be [200M, 800M ]. Middle panels: the GW phases of the high-resolution BHNS binary (in blue) and the BBH binary (in black).
Lower panels: the GW phase di�erence between the BBH and the BHNS system (in black). It is compared to the numerical
resolution di�erence of the BHNS waveform (in blue).

aligned waveforms:

„22 © arg h̃22, (23)

in the middle panel of Fig. 4, as well as the corresponding
waveform phase di�erences �„22 in the bottom panel. We
see the phase di�erence between the BHNS and BBH (≥
0.4 rad) remains comparable to NR numerical resolution
di�erence up to ≥ 10M prior to the waveform peak, which
indicates that the tidal e�ect of this system is negligible.

B. The BHNS system in ST: Scalar Field

Let us then move on to the ST simulation. For simplic-
ity, we use the same initial data as its GR counterpart to
evolve the system, where the scalar field is absent;5 while
this means the initial data do not correctly capture a
snapshot of the binary system in ST gravity that started
at an infinite time in the past. This is also true for the
GR simulation presented in Sec. IVA, where Fig. 3 dis-

5 It is straightforward to check that the GR initial data satisfy the
ST constraint equations.
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FIG. 5. The evolution of the scalar field Â measured at the
center of the NS. The plot describes the growth of the scalar
field around the NS at the beginning of the simulation. The
horizontal dashed line corresponds to the prediction by solving
equations of motion for an isolated NS in Sec. III B.

plays the presence of spurious initial transients during
t < Rbdry = 500M . In our ST simulations, the system
undergoes an extra transient regime at the beginning of
the evolution, during which a scalar field cloud grows
dynamically around the NS. In Fig. 5, we plot the scalar
field value Âc measured at the stellar center as a function
of time. During the first 50M , the value of Âc increases
and asymptotes to the value predicted by the isolated
NS solver (the horizontal dashed line) that we used in
Sec. III B, which serves as a cross-check of our numerical
code. Note that the Âc growth time scale is much shorter
than the aforementioned initial transients (t ≥ 500M),
therefore we expect that our results are not impacted by
this additional transition from GR to ST.
We also provide the volume-weighted generalized har-

monic constraint energy [see Eq. (53) of Ref. [109]] in the
top panel of Fig. 6 and find that the additional scalar
field does not worsen the constraint violation compared
to the GR system (Fig. 3): the evolution of the constraint
is identical modulo a shift to an earlier time, due to the
hastened merger of the ST system. In addition, as for
the scalar field’s FOSH system [110, 111], we need to
introduce an auxiliary dynamical variable �i © ˆiÂ, and
its associated constraint energy:

EÂ =

......

ı̂ıÙ
3ÿ

i=1

Ë
C

(1)

i C
(1)

i + C
(2)

i C
(2)

i

È
......
, (24)

where Î·Î denotes L2 norm over the domain. The deriva-
tive constraint for Â, C(1)

i , reads

C
(1)

i = (ˆiÂ)num ≠ �i, (25)

where (ˆiÂ)num corresponds to the numerical spatial
derivative of Â. The second derivative constraint for

FIG. 6. The evolution of the volume-weighted constraint
energy for the metric (the upper panel) and the scalar field
(the lower panel), evolved with ST. The red (green) curve
corresponds to the low (high) resolution. The vertical dashed
line indicates the onset of the merger.

Â, C(2)

i , is given by

C
(2)

i = [ijk]ˆj�k (sum on j, k) (26)

with [ijk] being the Levi-Civita symbol, with [123] = +1.
We provide the evolution of EÂ in the lower panel of Fig. 6.
As expected, it also decreases with increasing resolution.

Finally, to close this subsection, we give a qualitative
description of the scalar field Â in Fig. 7 by taking a
snapshot of its distribution at t = 2062.3M across the
entire computational domain. In the wave zone, the
distribution of the scalar field in the x ≠ y plane (left
panel) is singly periodic in Ï like e

iÏ, where Ï is the
azimuthal angle defined in Eq. (14b); and in the y ≠ z

plane (right panel), we see vanishing on the z axis with a
single maximum at the equatorial plane (z = 0), like sin ÿ.
These patterns are consistent with the dipolar nature
Y11 ≥ sin ÿe

iÏ of the scalar field, and we will discuss this
in more detail in Sec. IVD.

C. Comparison between the GR and ST

Figure 8 displays the evolution of the coordinate sepa-
ration between the two compact objects for the GR and
the ST systems. We first see that the merger portions
of both systems can be aligned perfectly through a time
shift, namely, they have a similar Ṙ ≠R dependence near
the merger and thus a similar plunge dynamic, imply-
ing a similar orbital separation (and therefore similar
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(a) The x ≠ y plane (b) The y ≠ z plane

FIG. 7. A snapshot of the field log |Â| at t = 2062.3M across the entire computational domain, with the outer boundary being
at 500M . The orbital angular momentum is aligned with the z axis.

frequency) for the onset of the plunge. This feature is
di�erent from the BNS simulations in Ref. [75], where
ST binaries were found to merge at significantly larger
orbital separation (see their Fig. 1). The di�erence arises
from the size of the gravitational attraction. Recall that
the gravitational pull in ST gravity is characterized by
the e�ective gravitational constant Ge� = Gú(1 + –A–B)
[32], which is amplified for BNS systems when both the
NSs have a nonzero scalar charge. Consequently, their
plunges happen at larger orbital separations. By contrast,
the gravitational pull in our ST BHNS system is similar
to its GR counterpart because the BH’s scalar charge
vanishes, so the scalar sector has negligible impact on
the plunge separation. However, the ST simulation does
exhibit a nonnegligible deviation from its GR counter-
part over a longer timescale. As shown in Fig. 8, the
ST simulation has a shorter total duration than the GR
case, even though they both start at the same separation.
This is because the scalarized NS admits an additional
energy dissipation channel via scalar radiation; therefore
the system in ST gravity evolves faster during the inspiral.
A direct consequence of the hastened dynamics is a

shortening of the GW signal. Figure 9 provides the
l = m = 2 harmonic of the ST waveform for two dif-
ferent resolutions (solid curves). For reference, h̃22 in GR
is plotted as the blue dashed curve. Here we still align
the waveforms by minimizing the mismatch in Eq. (21)
over time and phase shifts. The same time window
[t1, t2] = [200M, 800M ] is used. After the peak of the ST
waveform, it takes the GR waveform an extra GW cycle,
�„22 ≥ 6.34 rad [Eq. (23)], to reach its peak, smaller
than GR’s numerical resolution di�erence at the peak
(≥ 0.6 rad). Therefore our simulations are able to capture
the e�ect of scalar radiation well above the numerical
resolution di�erence, even though our simulations are less

FIG. 8. The evolution of the orbital separation for the BHNS
system, in the ST gravity (green) and GR (blue).

accurate than other recent BHNS SpEC simulations [136],
as discussed in Sec. IVA.

D. Comparing to post-Newtonian theory

We now carry out quantitative comparisons between
the simulated GW waveforms and existing PN waveform
predictions in ST. As pointed out in Refs. [43, 45], the
relative size of the leading scalar dipolar radiation and
leading tensor quadrupolar radiation is given by

Fnd

Fd

=
3

24
5’S2

≠

4
x, (27)
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FIG. 9. Upper panel: The ST waveforms with a low (in red) and high (in green) resolution. They are compared to the GR
waveform (in blue). Lower panel: the phase di�erence between the GR and ST waveforms (in orange). For reference, the
numerical resolution di�erences of the GR and the ST waveform are also presented in blue and green, respectively. In addition,
we summarize some of the binary parameters in the title.

with F being energy flux. In our simulation, we find the
factor above is greater than 25, i.e. quadrupolar radiation
dominates, so we are in the quadrupole-driven regime [43].
We first consider the gravitational modes h̃lm, whose

PN expressions read [43]

h̃lm = 2G̃(1 ≠ ’)÷x
Ú

16fi

5 Ĥlme
≠im„

, (28)

where ÷ = m
J

BH
m

J

NS
/(mJ

BH
+m

J

NS
)2 is the symmetric mass

ratio, x = (G̃M–�orb)2/3 is the PN expansion parameter,
�orb is the orbital frequency, and we give „ below. We
summarize the definition of ST parameters G̃, ’,– in
Table II. In Eq. (28), comparing with Eq. (65) of Ref. [43],
we removed an overall factor M/r which is already divided
out in Eq. (14a). The expressions for Ĥlm are long and
they can be found in Eqs. (67) of Ref. [43]. Because

the dipolar scalar radiation starts 1PN earlier than the
leading quadrupolar gravitational radiation, the inspiral
is separated into two parts: dipolar (D) or non-dipolar
(ND). The phase factor „ reads

„ = „nd + „d , (29a)

„nd = ≠
x

≠5/2

32÷›

5
1 + 5

3fl
nd

2
x+ 5

2fl
nd

3
x
3/2 + 5fl

nd

4
x
2

+5
2fl

spin

3
x
3/2 + 5fl

spin

4
x
2

6
, (29b)

„d =
25S2

≠’x
≠7/2

5376÷›2

5
1 + 7

5fl
d

2
x+ 7

4fl
d

3
x
3/2 + 7

3fl
d

4
x
2

6
,

(29c)

with the coe�cients fl
nd/d
i ’s being listed in Eqs. (B10)
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(a) ST

(b) GR

FIG. 10. Comparing the numerical waveforms (in green and blue) to the PN model (in magenta). Fig. 10a shows the ST tensor
harmonic h̃22 (top) and the scalar modes �11 (middle) and �22 (bottom). Note that the modes �lm are defined in Eq. (36).
Fig. 10b provides the GR tensor harmonic h̃22.

of Ref. [43]. The ST parameters › and S± are defined
in Table II, and we see that all of them depend on the
sensitivity of the NS

sNS =
3
d lnmJ

NS

d ln„

4

„0

. (30)

The relationship between sNS and the scalar charge –NS

reads [43]

sNS = 1
2 ≠

–NS

2–0

, (31)

where –0 is the ST parameter defined in Eq. (18). Equa-
tion (29b) is controlled by the quadrupolar radiation,

while Eq. (29c) is controlled by the dipolar radiation start-
ing at ≠1PN. Spin e�ects are not considered in Ref. [43];
here we simply add the spin contributions in GR, leading
to the second line in Eq. (29b), and we leave the rele-
vant ST corrections for future studies. The expressions of
fl
spin

i ’s can be found in Eq. (4.16) of Ref. [139],

fl
spin

3
= 1

12
ÿ

i=1,2

‰i(L̂N · ŝi)
3
113m

2

i

M2
+ 75÷

4
, (32)

fl
spin

4
= 1

48÷‰1‰2[247(ŝ1 · ŝ2) ≠ 721(L̂N · ŝ1)(L̂N · ŝ2)],
(33)

where L̂N and ŝi stand for the unit vector along the
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TABLE II. Summary of PN parameters used for ST gravity.
We have used the fact that a BH’s scalar charge vanishes:
–BH = 0, and thus sBH = 1/2 following Eq. (31). Note that –
is not to be confused with the scalar charge –NS.

Ê0 G̃ ’ – S≠ S+ ›

1≠3–2
0

2–2
0

1+–2
0

„0
–2
0

1+–2
0

1

1+–2
0

≠–1/2sNS –1/2(1 ≠ sNS) 1 +
’S2

+
6

orbital angular momentum and the individual spin si.
Furthermore, we note that tidal e�ects are ignored in
Eq. (29a), which formally enter into the phase evolution
at 5PN order [132]. This is reasonable for this study, as the
system’s mass-weighted tidal deformability �̃GR

2
≥ 2.95 is

very small and it has little impact on the binary dynamics,
as shown in Fig. 4. In the top panel of Fig. 10a, we com-
pare the ST numerical waveform h̃22 to the PN prediction,
finding good agreement until ≥ 500M before the merger.
For reference, we also plot the GR waveform h̃22 and the
corresponding PN prediction in Fig. 10b. Additionally,
in App. D, we present a more detailed comparison by
demonstrating the hierarchical contributions of each PN
term.

We then compare the scalar modes Âlm extracted from
our simulation with predictions from PN. The PN predic-
tion for the (l,m) harmonic of the transverse breathing
mode � [see Eq. (11)] is given by [45]

�lm = 2iG̃’
Ô

–S≠÷
Ô
x

Ú
8fi

3 �̂lme
≠im„

, (34)

where the expression of �̂lm can be found in Eqs. (6.10)
of Ref. [45]; and �lm is defined in parallel with Eq. (14b):

r�/M =
ÿ

l,m

Ylm(ÿ,Ï)�lm. (35)

Here �lm is related to our numerical extracted scalar
mode Âlm [Eq. (14b)] via

�lm = ≠4
Ô

fi–0Âlm, (36)

where Eq. (17) has been used. We compare our numerical
scalar modes �11 and �22 to the PN predictions in the
middle and bottom rows of Fig. 10a, and refer to App. C
for other (subdominant) modes. Similar to h̃22, the PN
predictions for the Âlm phase evolution are accurate until
≥ 500M before merger; however, their amplitudes do not
match as accurately as their phases.

V. WAVEFORM DISTINGUISHABILITY

We have discussed features of the BHNSs in GR and
ST. Then in this section, we investigate how our numeri-
cal simulations can help place constraints on ST theory
with GW200115 and future BHNS observations. Specif-
ically, here we focus on whether a ST waveform can be

FIG. 11. The mismatch of the SEOBNRv4T model with the ST
waveform (green) and the GR result (blue), as a function of
tidal deformability �GR

2 . For the sake of comparison, we also
compute the mismatch between two resolutions for ST (green
dashed line) and GR (blue dashed line).

distinguished from a GR waveform. We estimate this by
computing the mismatch M between the two waveforms,
defined in Eq. (21). Note that in Eq. (22), we used a flat
noise curve for simplicity, namely assuming an idealized
detector.
We first compute the mismatch between the GR and

ST waveform h̃22 presented in Fig. 9 and find M = 0.38.
Since the error in our simulations is larger than other
BHNS SpEC simulations (see discussions around Figs. 4
and 9), we terminate the integration in Eq. (22) at the
peak of the ST waveform (t2 = 2102M) to avoid the
ringdown region. One criterion for the distinguishability
of two waveforms reads [140–144]

M >
D

2fl2
, (37)

where D = 5 is the number of free intrinsic parameters
(chirp mass, mass ratio, spin magnitudes on both compact
objects, and tidal deformability) of our nonprecessing
systems, and fl is the signal-to-noise ratio (SNR). After
inserting the numbers, we find fl > 2.56 is needed to
distinguish ST from GR. Such a low SNR threshold is not
surprising for this specific case with extreme scalarization
and an idealized detector, given the significant dephasing
between the two waveforms shown in Fig. 9. For more
moderate ST parameters and more realistic detectors, the
deviation is not expected to be as large, and we leave this
exploration for future work.
The subsequent question to consider is the extent to

which tidal e�ects within GR can replicate the ST wave-
form. To explore this question, we employ an e�ective-one-
body (EOB) model known as SEOBNRv4T [145, 146]. This
model includes tidal e�ects and is characterized by tidal
deformability coe�cients �l in its tidal sector, with l = 2
being the focus in this case. To generate the SEOBNRv4T
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FIG. 12. Comparing the ST waveform (black) with the SEOBNRv4T model, with a variety of �GR

2 , ranging from 0 to 6000. The
minimum mismatch M ≥ 0.023 happens at �GR

2 ≥ 4000.

waveforms with varying �GR

2
, we utilize LALSuite [147].

Figure 11 showcases the mismatch of these waveforms
with the ST waveform h̃22 as a function of �GR

2
while

fixing other intrinsic parameters at their NR values. The
mismatch first decreases when �GR

2
is small, and the best

match M ≥ 0.023 happens at �GR

2
≥ 4000. As a com-

parison, we repeat the same calculation for the mismatch
between the SEOBNRv4T model and the GR waveform.
The result is shown as the blue curve in Fig. 11, and
we can see the mismatch grows monotonically with �GR

2

(recall the tidal e�ect is negligible in the GR simulation).
To better understand the feature, in Fig. 12 we provide
the SEOBNRv4T waveforms with a variety of �GR

2
, ranging

from 0 to 6000. In particular, we mark the best-fit wave-
form (�GR

2
= 4000) with black crosses. With increasing

�GR

2
, we see the tidal waveforms gradually shift backward

in time, because the tidal e�ect accelerates the evolution
and shortens the length of waveforms. This behavior is
similar to the e�ect of the scalar field and dipole radi-
ation. Notably, as �GR

2
approaches 4000, the last two

wave cycles of the SEOBNRv4T waveforms (at t ≥ 2075M)

align more closely with ST’s phase evolution, resulting in
a smaller mismatch. Further increasing �GR

2
beyond this

point causes the tidal waveforms to deviate again from
the ST waveform. Therefore, the mismatch in Fig. 11
bounces back.

Our preliminary mismatch comparison shows that both
the tidal and scalar sectors could produce similar and
potentially degenerate imprints in GWs given the length
of our simulations (≥ 12 cycles before the merger). A
limitation of our analysis is that the NR waveforms are
relatively short and lacked low-frequency components —
the dipole radiation appears at ≠1PN whereas the tidal
e�ect at 5PN. A longer waveform with a broader frequency
span may break the degeneracy. A more comprehensive
analysis is therefore necessary to fully characterize these
features using longer waveforms with a broader frequency
span and Bayesian parameter estimation. We leave this
exploration to future research.
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VI. CONCLUSION

In this paper, we numerically simulate a fully rela-
tivistic BHNS binary system in ST theory, chosen to be
consistent with GW200115 [89]. To maximize the e�ect
of spontaneous scalarization, we set the ST parameters
(—0,–0) to be at the boundary of known constraints from
other observations [9]: (≠4.5,≠3.5 ◊ 10≠3). In addition,
we select a soft EOS for the NS so that it can generate a
large scalar charge, as summarized in Table I. Following
Refs. [134, 135], we construct the initial data without
including the scalar sector. Instead, the scalar field dy-
namically grows during the first ≥ 50M , and quickly
approaches the desired value predicted by the isolated NS
solver.
We evolve the BHNS system with both GR and ST.

For the GR binary, we find the soft EOS results in GW
emissions that are nearly identical to those of a BBH
system with the same spins and mass ratio. In contrast,
the ST binary exhibits dominant dipolar radiation due to
spontaneous scalarization, with the spatial distribution of
the scalar field Â matching the dipolar emission pattern
throughout the computational domain. As a result of this
additional dipolar radiation, the ST binary evolves faster
than its GR counterpart, and the ST binary reaches its
peak amplitude one whole GW cycle earlier than the GR
counterpart. We also compare our waveforms, including
the tensor mode h̃22 and scalar breathing modes �11,22,
with existing PN waveform predictions in ST [43, 45, 139],
and find reasonable agreement up to ≥ 500M before the
merger. Finally, we compute the mismatch between our
ST waveform and the SEOBNRv4T model as a function of
tidal deformability �GR

2
. We find the ST waveform could

be partially mimicked by a GR tidal waveform with a
large �GR

2
≥ 4000, due to the tidal e�ect accelerating the

evolution of the binary.
Throughout the analysis, we pick optimal choices for the

EOS and the ST theory parameters in order to produce
a significant scalarization e�ect, and thus strong dipolar
radiation. Under this idealized scenario, we find that the
GR and ST waveforms should be distinguishable for SNRs
above 2.56. To fully understand observational prospects
of constraining ST theory using BHNS systems, future
work should explore a wider range of EOSs and more
moderate ST parameters. Specifically, the scalar field’s
ability to alter the properties of NSs, such as compactness
and radius, may play a crucial role in determining whether
the NSs are disrupted or not [148], potentially leading
to rich phenomena in the corresponding GW and even
electromagnetic emissions for ST binary systems.
Our mismatch tests using the SEOBNRv4T model and

the GR waveforms indicate that the ST sector might
be partially degenerate with tidal e�ects during the late
inspiral stage (excluding low-frequency regime), which
can lead to parameter estimation biases. Here we restrict
ourselves to a single degree of freedom: �GR

2
, while holding

other parameters such as mass ratio and spins constant.
A possible avenue for future work is to carry out a more

systematic full Bayesian parameter estimation to better
account for these degeneracies.
Finally, our waveforms are obtained at null infinity

through extrapolation following Refs. [114, 118–120], with
the PYTHON package scri [121, 122]. The method is an
approximate approach that relies on the asymptotic be-
havior of several fields given by the peeling theorem [149].
While this approximate approach captures linear signals,
it does not accurately capture nonlinear features such as
the memory e�ect [150–155]. The more correct Cauchy-
Characteristic Extraction (CCE) [115, 116] method would
be required to fully account for these e�ects. Therefore,
another future avenue could be to evolve the coupled
metric-scalar system using a CCE framework adapted to
ST, and investigate the memory e�ect in ST gravity [150–
153, 156–158].
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Appendix A: The two-grid method and
transformations

In the Einstein frame, we adopt the 3+1 decomposition
of the metric [159]

ds
2 = ≠–̄

2
dt

2 + “̄ij(dxi + —̄
i
dt)(dxj + —̄

j
dt), (A1)

where –̄, —̄
i, “̄ij are the lapse, shift, and 3-metric in the

Einstein frame. They, their spatial derivatives, and the
extrinsic curvature Kij are transformed to the Jordan
frame via:

– = 1
Ô

„
–̄, —

i = —̄
i
, “ij =

1
„

“̄ij , “
ij = „ “̄

ij
,

Kij =
1

Ô
„

3
K̄ij +

“̄ij

2
d log „

dÂ
n̄
k

ˆkÂ

4
,

ˆk– = 1
Ô

„

3
ˆk–̄ ≠

–̄

2
d log „

dÂ
ˆkÂ

4
,

ˆk—
i = ˆk—̄

i
,

ˆk“
ij = „

3
ˆk“̄

ij + “̄
ij d log „

dÂ
ˆkÂ

4
,

(A2)
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where the future-directed unit timelike normal is given by

n̄
a = –̄

≠1(ˆa
t ≠ —̄

i
ˆ
a
i ). (A3)

On the other hand, the transformation of the stress-energy
tensor T̄ ab can be established from its definition

T̄
ab = 2

Ô
≠ḡ

”SM

”ḡab
. (A4)

After inserting
ḡab = „gab,

≠ḡ = „
2
Ô

≠g,
(A5)

into Eq. (A4), we obtain

T̄
ab = 2

Ô
≠ḡ

”SM

”ḡab
= 1

„3

2
Ô

≠g

”SM

”gab
= 1

„3
T

ab
, (A6)

which leads to T̄ab = Tab/„.

Appendix B: Structure of neutron stars in ST gravity

Following Ref. [125], the Einstein-frame metric of an
isolated, nonspinning NS can be written as

ds̄
2 = ≠e

‹(r)
dt

2 + dr
2

1 ≠ 2µ(r)/r + r
2(d◊

2 + sin2
◊d„

2).

(B1)

Then the equations of motion are given by

µ
Õ = 4fir

2
A

4(fl0h ≠ P ) + 1
2r(r ≠ 2µ)Ï2

, (B2a)

‹
Õ = 8fi

r
2
A

4
P

r ≠ 2µ + rÏ
2 + 2µ

r(r ≠ 2µ) , (B2b)

Â
Õ = 1

Ô
4fi

Ï, (B2c)

Ï
Õ = 4fi

rA
4

r ≠ 2µ

Ë
(–0 + —0

Ô
4fiÂ)(fl0h ≠ 4P )

+rÏ(fl0h ≠ 2P )] ≠
2(r ≠ µ)
r(r ≠ 2µ)Ï, (B2d)

P
Õ = ≠fl0h

5
1
2‹

Õ + (–0 + —0

Ô
4fiÂ)Ï

6
, (B2e)

with A = „
≠1/2. Note that P , fl0, and h are in the Jordan

frame. The system of coupled ordinary di�erential equa-
tions can be solved as an initial value problem integrating
out from r = ‘ > 0. The asymptotic expansion of the
solution near the stellar center r æ 0 is

µ(r) ≥
1
3!µ3r

3
,

‹(r) ≥
1
2!‹2r

2
,

Ï(r) ≥ Ï1r,

Â(r) ≥ Âc +
1
2!

1
Ô
4fi

Ï1r
2
,

P (r) ≥ Pc +
1
2!P2r

2
,

(B3)

where

µ3 = 8fiA
4

c(flchc ≠ Pc),

‹2 = 8fiA
4

cPc +
µ3

3 ,

Ï1 = 4fi

3 A
4

c(–0 + —0

Ô
4fiÂc)(flchc ≠ 4Pc),

P2 = ≠flchc

5
1
2‹2 + (–0 + —0

Ô
4fiÂc)Ï1

6
.

(B4)

We start the integration of Eqs. (B2) at ‘ = 10≠7
R

E

ST

away from the stellar center, and terminate at the stellar
surface. From surface values, we obtain the scalar charge
of the NS via [125]

–NS = 2Ï

‹Õ

----
surf.

, (B5)

and the Einstein-frame mass

m
E

NS
=exp

C
≠

1
1 + –

2

NS

arctanh
A 

1 + –
2

NS

1 + 2/(r‹Õ)

BD

◊
r
2
‹

Õ

2

3
1 ≠

2µ
r

41/2
-----
surf.

. (B6)

It is related to the Jordan-frame mass through [32]

m
J

NS
= m

E

NS
(1 + –0–NS). (B7)

For a Newtonian star, Eqs. (B2) reduce to

µ
Õ = 4fir

2
A

4(ÂŒ)fl0, (B8a)

P
Õ = ≠

fl0µ

r2
, (B8b)

where the scalar field Â decouples from the matter and
it becomes constant across the star. Here we denote its
(background) value as ÂŒ. Next we can compute the
baryonic mass mB and the Einstein-frame mass mE

NS
of

the NS:

m
B = A

3(ÂŒ)
⁄

4fifl0r
2
dr, (B9a)

m
E

NS
= A

4(ÂŒ)
⁄

4fifl0r
2
dr = m

B
A(ÂŒ). (B9b)

As shown in Refs. [32, 125], the scalar charge can be
computed alternatively through

–NS = 1
Ô
4fi

3
ˆ lnmE

NS

ˆÂŒ

4

mB

. (B10)

After plugging Eq. (B9b), we obtain –NS = –0 [see
Eq. (17)].

Appendix C: Some other scalar and tensor modes

Figure 13 displays additional scalar and tensor modes
of the ST simulation.
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(a) Scalar modes

(b) Tensor modes

FIG. 13. Same as Fig. 10, some other scalar and tensor modes. Note that the modes �lm are defined in Eq. (36).

Appendix D: Hierarchical contributions from PN
terms

In Fig. 10, we compared the ST waveforms with the
existing PN predictions that include all the PN orders.

Exploring the hierarchical contributions of each PN term
is also an interesting aspect to investigate. Here we focus
on the amplitude of h̃22 [Eq. (28)], �11 and �22 [Eq. (34)],
which are controlled by Ĥlm and �̂lm [43]. Table III out-
lines all the relevant PN orders of h̃22, �11, and �22. Our
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FIG. 14. Contributions of individual PN orders to the amplitude of h̃22 (top), �11 (middle), and �22 (bottom). It is important
to note that a PN curve only includes contributions from the specific PN order, not lower PN orders. The magenta dashed
curves refer to the ones that include all the PN terms.

TABLE III. Summary of all the PN orders in the amplitude
of h̃22, �11, and �22.

Modes Available PN orders References
h̃22 0PN, 1PN, 1.5PN, 2PN Eqs. (67) of [43]
�11 ≠0.5PN, 0.5PN, 1PN Eqs. (6.10b) of [45]
�22 0PN, 1PN Eqs. (6.10c) of [45]

convention considers the leading Newtonian quadrupole
approximation in GR, namely O(1) in Ĥlm, as 0PN. In
contrast, the prefactor of Eq. (34) is 0.5PN (x1/2) lower
than that of Eq. (28), thus the term O(1) in �̂lm repre-
sents ≠0.5PN.

We depict the size of each PN term as solid lines with
di�erent colors in Fig. 14. For reference, the dashed lines
represent the ones with all the PN contributions. The
lowest PN order contributes the most, while higher PN
corrections improve consistency. The amplitude of �22 is
the least accurate. Higher PN terms may be needed to
improve the agreement with numerical simulations.
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