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Keel’s base point free theorem and
quotients in mixed characteristic

By JAKUB WITASZEK

Abstract

We develop techniques of mimicking the Frobenius action in the study
of universal homeomorphisms in mixed characteristic. As a consequence,
we show a mixed characteristic Keel’s base point free theorem obtaining
applications towards the mixed characteristic Minimal Model Program, we
generalise Kollar’s theorem on the existence of quotients by finite equiva-
lence relations to mixed characteristic, and we provide a new proof of the
existence of quotients by affine group schemes.

1. Introduction

There are three natural classes of algebraic varieties: of characteristic zero,
of positive characteristic, and of mixed characteristic. In trying to understand
characteristic zero varieties one can apply a wide range of techniques coming
from analytic methods like vanishing theorems. More complicated though they
are, positive characteristic varieties come naturally with the Frobenius action
which often allows for imitating analytic proofs or sometimes even showing
results which are false over C. Of all the three classes, the mixed characteristic
varieties are the most difficult to understand as they represent the worst of both
worlds; one lacks the analytic methods and the Frobenius action when working
with them. Recent years have seen a surge of interest in the study of geom-
etry and commutative algebra of mixed characteristic varieties (cf. [And18],
[Bhal8], [MS18], [MS21], [Tanl8|, [EH21]) as they bridge the gap between
positive and zero characteristics and play a central role in number theory.

What allows for many of the applications of Frobenius is the following ob-
servation: if f: X — Y is a universal homeomorphism of positive characteristic
schemes (for example, a thickening), then its perfection fperr: Xpert = Yperf is
an isomorphism. The goal of this article is to introduce analogues of this fact
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in mixed characteristic and employ them to generalise many positive charac-
teristic results, with focus on two main sources of applications: the study of
base point freeness and constructing quotients.

Before moving on to mixed characteristics, let us give one prominent ex-
ample of the efficacy of the Frobenius action in positive characteristic: Keel’s
base point free theorem.

THEOREM 1.1 ([Kee99]). Let L be a nef line bundle on a projective scheme
X defined over a positive characteristic field k. Let E(L) be the union of all
integral subschemes on which L is not big. Then L is semiample if and only if
Llg(z) is so.

Here, a line bundle L is nef if L - C > 0 for every proper curve C' C X, it
is semiample if some multiple of it is base point free, and it is big (in the case
of the scheme being integral) if L&™ ® A~! admits a section for some ample
line bundle A and some m € N.

This seminal result plays a vital role in the study of positive character-
istic geometry as it allows for showing base point freeness by an inductive
argument. It is indispensable in the positive characteristic Minimal Model Pro-
gram ([HX15]), but has many other applications: to birational geometry (e.g.,
[CMM14], [Birl7], [CT20], [MNW15]), moduli spaces of curves (e.g., [Kee99],
[Kee03]), arithmetic moduli ([BS17]), or Mumford’s conjecture ([SS11]) to men-
tion a few. Surprisingly, this result is false in characteristic zero.

In this article, we generalise Keel’s theorem to mixed characteristics. In
particular, this provides a positive answer to a problem posed by Seshadri
([Ses05, Rem. 2]).

THEOREM 1.2 (Theorem 6.1). Let L be a nef line bundle on a scheme X
projective over an excellent base scheme S. Then L is semiample over S if and
only if both L|g(ry and L|x, are so.

Here Xg := X Xgpecz SpecQ. Note that the assumption that L|XQ is
semiample is necessary, because Keel’s result by itself is false in characteristic
zero. Further, we prove an analogous result for semiampleness replaced by
EWM (endowed-with-a-map; see Section 2).

As a corollary of Theorem 1.2, we show that contractions exist in the
mixed characteristic Minimal Model Program (see Corollary 6.5) and prove
the following base point free theorem.

COROLLARY 1.3 (Corollary 6.7). Let S be a spectrum of a mized charac-
teristic Dedekind domain with residue fields of closed points being locally finite.
Let (X, A) be a klt pair on a normal integral scheme X of (absolute) dimen-
sion three which is projective and surjective over S, and let L be a nef and
big Cartier divisor on X such that L — (Kx + A) is nef and big. Then L is
semiample.
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A field is locally finite if it is a subfield of F,, for some prime number p > 0.
When the residue fields of S are not locally finite, we prove that L is EWM.

We move on to constructing quotients of schemes. The following result in
positive characteristic has been shown by Kollar (see [Kol12]).

THEOREM 1.4. Let X be a separated algebraic space of finite type over an
excellent base scheme S. Let o: FE =3 X be a finite, set theoretical equivalence
relation, and assume that the geometric quotient Xqo/Eq exists as a separated
algebraic space of finite type over S. Then the geometric quotient X/E exists
as a separated algebraic space of finite type over S.

Note that as with Keel’s theorem, the quotients by set theoretical finite
equivalence relations need not exist in characteristic zero. However, one can
construct them in many important cases (see [Kol12], [Kol13]).

Lastly, we provide a new proof of the following result (cf. [Kol97, Conj. 1.1]).

THEOREM 1.5 ([KM97, Th. 1.1 and Cor. 1.2]). Let G be an affine algebraic
group scheme of finite type and smooth over an excellent base scheme S, and let
X be a separated algebraic space of finite type over S. Further, let m: GxX — X
be a proper G-action on X. Then a geometric quotient X/G exists and is a
separated algebraic space of finite type over S.

The assumption on the smoothness of G can be weakened (cf. Remark 6.4).
Over C the above fundamental theorem was proved in [Pop74]. Building on the
results of Seshadri ([Ses72]), Kollar showed this theorem for algebraic spaces
over positive characteristic fields, and also for mixed characteristic ones when
the group scheme is reductive ([Kol97]). Finally, the conjecture has been set-
tled in [KM97], where it was shown that quotients by flat groupoids with finite
stabilisers exist. Although the above result is known to hold for the last two
decades, we believe it is interesting to provide a new proof of it, one which
follows Kollar’s original strategy.

We finish this part of the introduction by explaining an important recur-
ring theme in the proofs of all the above results: constructing pushouts of
diagrams X LY %y where g is a universal homeomorphism. In order to
prove his remarkable result ([Kol97]), Kollar showed that such pushouts exist
in positive characteristic, and in mixed characteristic as well if g is, in addi-
tion, an isomorphism over Q and p is finite. The following generalisation of his
result plays a vital role in the proofs of the above theorems, and we believe it
is interesting in itself.

THEOREM 1.6 (cf. Theorem 4.4). Let X & Y % Y’ be a diagram of
schemes or algebraic spaces such that p is representable, quasi-compact, and
separated, and g is a representable universal homeomorphism. Assume that a
pushout of Xq < Yg — Yy ewists. Then so does a pushout of X =Y — Y.
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An important case of this theorem is constructing pushouts of X & Xo EN
X@, where g is a representable universal homeomorphism, in other words, ex-
tending a universal homeomorphism from characteristic zero to mixed charac-
teristic.

Having constructed such pushouts, we need to study their properties, and
the following theorem allows for finding line bundles on them. Here, Picx
denotes the groupoid of line bundles on X.

THEOREM 1.7. Let f: X — Y be a finite universal homeomorphism of
Noetherian schemes over Z,). Then the diagram

Picy (L] —— Picx[}]

| |

PiCYQ [%] E— P’ZCXQ [1%]

is Cartesian in the 2-category of groupoids.

1.1. Further discussion. In this subsection we summarise other topics re-
lated to our study of Keel’s theorem and quotients in mixed characteristic. In
order to prevent this paper from becoming too long, we decided not to pursue
them in detail here. Instead, we hope to address some of them in forthcoming
articles (e.g., [Wit]).

Mumford conjecture (Haboush’s theorem). Given an affine scheme Spec A
which is finitely generated over a characteristic zero field, and a reductive group
G acting on Spec A, it is easy to show using the averaging operator that A% is
finitely generated as well. However, in general this has been an open problem
for many years (known as Mumford’s conjecture), eventually settled in positive
characteristic by Haboush using Steinberg’s representations ([Hab75]), and ex-
tended to mixed characteristic using similar methods by Seshadri ([Ses77]).
Before Haboush’s seminal paper, Seshadri set up a program for showing Mum-
ford’s conjecture by geometric means (cf. [Ses72]). After the announcement of
[Kee99], Seshadri realised ([Ses05]) that Keel’s base point free theorem is ex-
actly what is needed to conclude his program in positive characteristic and yield
a geometric proof of Mumford’s conjecture in this setting. (This was eventually
proven together with Sastry in [SS11].) As remarked by Seshadri, the missing
component for concluding his program in full generality is a mixed character-
istic variant of Keel’s theorem. Hence, the results of our paper should possibly
allow for a geometric proof of Mumford’s conjecture in this general setting.

Mized characteristic Minimal Model Program. We were motivated to seek
a mixed characteristic variant of Keel’s theorem by our study of the higher
dimensional mixed characteristic Minimal Model Program; see [Tan18] for the
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two-dimensional case. The recent breakthrough proof of the validity of the
Minimal Model Program for positive characteristic threefolds by Hacon and
Xu (see [HX15]) is based on two main components: Keel’s theorem used to
construct contractions, and the Frobenius regularity used to construct flips.
Our mixed characteristic Keel’s theorem provides exactly what is needed to
generalise the former component to mixed characteristic. Note that, recently,
Schwede and Ma ([MS18]), motivated by the work of André, Bhatt, and Scholze
([And18], [Bhal8], [Sch12]), introduced a mixed characteristic analogue of
F-regularity. We hope that this could be used to mimick Hacon-and-Xu’s
proof of the existence of flips (see [MST 19 for the first step in this direction)
which combined with our results would yield the validity of the MMP for mixed
characteristic threefolds.

Relative semiampleness. Cascini and Tanaka have shown that given a pro-
jective morphism f: X — Y of positive characteristic Noetherian schemes, the
relative semi-ampleness of a line bundle L on X may be verified fibrewise
([CT20]; see [BS17, Th. 1.3] for a similar result). The three main components
of their proof are Keel’s base point free theorem, Kollar’s existence of quo-
tients by finite equivalence relations, and “gluing” of semiampleness of line
bundles. In this article we generalise these components to mixed characteristic
(Theorems 1.2, 1.4, and Section 5.1) and, as far as we understand, this will be
enough to extend the result of Cascini and Tanaka to morphisms over Z. As a
corollary, one gets the following.

WORK IN PROGRESS 1.8. Let L be a nef line bundle on a scheme X
projective over a Noetherian base scheme S. Assume that L’me and L|x, are
semiample over S. Then L is semiample over S.

Due to the amount of technical details, we do not sort out the proof here,
but instead postpone it to a separate article ([Wit]).

Moduli spaces of curves. One of the consequences of Keel’s seminal pa-
per was the proof that the relative canonical divisor on the universal family
of curves over Mg,n is always semiample in positive characteristic ([Kee99,
Th. 0.4]). In [Kee03] it was shown that many other nef line bundles on M,
in positive characteristic are semiample, and the results of our paper should
allow for proving that some of these line bundles (for example, corresponding
to Kx-negative extremal rays—cf. [Gib09, §7]) are semiample in mixed char-
acteristics as well. Theorem 1.8 will reduce this problem to the independent
study of the characteristic zero and the positive characteristic cases, thus we
postpone writing any proofs to [Wit].

In general, Keel conjectured that every nef line bundle on M, in positive
characteristic is semiample. If this is true, then Theorem 1.8 will imply the
following.
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CONJECTURE 1.9. Let M, be the moduli space of genus g curves with
n marked points over SpecZ, and let L be a nef line bundle on it. If L is
semiample on My, x SpecQ, then it is semiample.

K-theory. It is natural to enquire if the constructions of this paper can
be extended to a more general framework. In fact, motivated by some of the
ideas contained here, one can provide results towards the study of mixed char-
acteristic K-theory ([AEMW]). This, as well as Theorem 1.7 and Lemma 1.11,
suggests to explore ind-objects of the form hi>n W, where W is a (derived)
Zy,-stack endowed with a lift F of Frobenius. Such objects are in some sense
complementary to perfectoid spaces, which often come from a similar construc-
tion but with the direct limit replaced by the inverse limit. We hope this and
other related problems, such as the behaviour of derived Brauer stacks un-
der universal homeomorphisms in mixed characteristic, to be addressed in a
separate article.

1.2. The idea of the proof of Theorem 1.2. The key components in the
proofs of the main results are Theorems 1.6, 1.7, and the “mixed character-
istic multiplicative perfection.” In what follows we explain the last concept
by giving a sketch of the proof of Theorem 1.2. Note that [BS19] defined a
mixed characteristic perfection in the category of derived schemes; however,
their theory seems useful for a different type of geometric applications (see,
e.g., [IMST*19, App.]).

Using Keel’s strategy and Theorem 1.7, we can deduce Theorem 1.2 from
the following result.

THEOREM 1.10. Let L be a nef line bundle on a scheme X projective over
a Noetherian base scheme S. Then L is semiample (or EWM) if and only if
both L|xrea and L|x, are so, where X is the reduction of X.

In fact, Birkar showed that for varieties over a field, there exists a thicken-
ing E(L)™ of E(L) such that L is semiample if and only if Llg(rym is so ([Birl7,
Th. 1.5]). However, the main difficulty with applying this result in practice is
that it is usually difficult to verify that a line bundle on a non-reduced scheme
is semiample.

By localising at primes p € SpecZ, we can assume that X is defined
over Z,. Let us explain the proof of Theorem 1.10 under the assumption that
Xg = 0, that is, X is defined over Z/p™Z for some m > 0. Therewith, we
claim that Ox — Oxrea is an isomorphism up to raising the sections to the
p"-th power for some n > 0. In particular, when k is divisible by high enough
power of p, the same holds for

HO(X, L) — HO(X™ LF|yrea),
and so L is semiample if and only if L| yrea is so. (The idea is that we lift sections
locally but then these different local lifts glue up to p™-th power by the claim.)



KEEL’S THEOREM AND QUOTIENTS IN MIXED CHARACTERISTIC 661

To prove the claim, we can work affine locally. Let m: R — R/I be a
morphism of rings such that [ is a locally nilpotent ideal and R[%] = 0, that
is, p"* = 0 for some m > 0. Since 7 is clearly surjective, it is enough to check
that it is injective up to raising the sections to some p"-th power; that is,

Jor every r1,r9 € R such that w(r1) = 7(ry), we have " =1L
for some n > 0 depending on r1 and rs.
The first condition stipulates that ro = rq +¢ for some t € I. Since [ is locally

nilpotent, "1 = 0 for some r > 0, and so

T pn
n n n__; -
rh =rl + I FE A
2 1 i
i=1
p'rL

By taking n > 0 we can assume that p" | (p:) for ¢ < r, and so 'r’gn =7,
concluding the proof of the claim and the theorem when Xg = 0.

We can formalise the concept of the validity “up to some p”-th power” by
introducing a handy notion of a perfection of the sheaf Ox; we set

O™ = lim Ox.
s sP

Since the p-th power map is not additive, this object is only a sheaf of multi-
plicative monoids.

Given a universal homeomorphism f: X — Y such that fg is an isomor-
phism, we show that Og,erf — f*(’)g)(erf is an isomorphism (see Lemma 3.4),
from which we infer the following.

LEMMA 1.11. Let f: X = Y be a universal homeomorphism of schemes
over Zp. Then the diagram

perf I perf
OY OX

! !

perf perf
oyt —— Of

is Cartesian in the category of sheaves of monoids.

This shows that in mixed characteristic the p-th power map behaves to
some extent as if it were additive.
Theorem 1.10 can be proved using Lemma 1.11 and Theorems 1.6 and 1.7.

2. Preliminaries

We refer to [Sta] for basic definitions in scheme theory and to [KM98]
for basic definitions in birational geometry (see also [Koll13], [Tan18], [CT20]).
We say that (X, B) is a log pair if X is a normal excellent scheme of finite
dimension admitting a dualising complex, B is an effective Q-divisor, and
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Kx + B is Q-Cartier. Given a scheme X, we write Xg := X Xgpecz Spec Q and
XF, := X Xgpecz Spec ) for a prime number p > 0. We say that a connected
scheme X is of mized characteristic if Xg # () and Xp, # () for some prime num-
ber p > 0. Note that every mixed characteristic Dedekind domain (Noetherian
normal domain of dimension at most one) is excellent ([Sta, Tag 07QW]). Fur-
thermore, schemes of finite type over Noetherian (resp. excellent) base schemes
are Noetherian (resp. excellent), [Sta, Tag 01T6] (resp. [Sta, Tag 07QU]), and
hence quasi-compact and quasi-separated, [Sta, Tag 010Y,01T7]. If a scheme
is excellent, then its normalisation is finite ([Sta, Tag 0BB5]). Recall that
excellent schemes are Noetherian by definition.

We say that a morphism of schemes f: X — Y is a contraction if it
is proper, surjective, and f,Ox = Oy. Let X be a proper scheme over a
Noetherian base scheme S, let m: X — S be the projection, and let L be a line
bundle on X. If the base scheme is fixed, we drop the prefix “relatively” when
referring to notions below. We say that L is relatively nef if deg(L|c) > 0 for
every proper curve C' C X over S, it is relatively base point free if the natural
map 7*m, L — L is surjective, it is relatively semiample if some multiple of it
is base point free, and it is relatively big if L|x, is big for some generic point
n € f(X) and the fibre X,, over n (that is, h°(X,, L¥|x,) > ck%™*n for some
constant ¢ and all k divisible enough). The notion of bigness is subtle for non-
irreducible schemes and so we will essentially use it only when X is integral.

We make a few observations. By definition, L is relatively nef if and
only if L|y, is nef for every closed point y € Y and the fibre X, over y. By
[CT20, Lemma 2.6], this is equivalent to L|x, being nef for every point y € Y.
Semiampleness of L may be verified Zariski locally (cf. [CT20, Lemma 2.12]).
If 7 is projective and X is integral, then L is relatively big if and only if
T (L¥™ @ A7) # 0 for a relatively ample line bundle A and some m > 0.

LEMMA 2.1. Let f: X — Y be a finite map of integral proper schemes
over a Noetherian base scheme S. Let L be a relatively nef line bundle on Y.
Then L is relatively big over S if and only if f*L is relatively big over S.

Proof. By restricting to the generic point of the image of X (and Y') in S,
we may assume that X and Y are defined over a field. Since Y is irreducible,
L is big if and only if L4™Y > 0 (cf. [Laz04, Th. 2.2.16]), and analogously for
f*L. Since (f*L)4mX = (deg f)LY™Y | the lemma follows. O

Further, following [Kee99] (cf. [CT20, p. 7]), we say that L is relatively
EWM if there exists a proper S-morphism f: X — Y to an algebraic space Y
proper over S such that an integral closed subscheme V' C X is contracted (that
is, dim V' < dim f(V)) if and only if L|y is not relatively big. In particular, f
satisfies this condition if and only if its restriction to X, satisfies this condition
for every point y € Y.
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Note that the property of L being EWM can be checked affine locally on S.
Indeed, given a surjective contraction f: X — Y and a morphism h: X — Z
contracting all the geometric fibres of f, where X, Y, Z are proper algebraic
spaces over S, there exists a unique map ¢g: ¥ — Z such that go f = h
(cf. the proof of Proposition 2.13). In particular, if f: X — Y is a contraction
associated to L, then f and Y are uniquely determined up to a canonical iso-
morphism, so any local constructions of maps associated to a line bundle must
glue. The same argument shows that the Stein factorisation of f is unique.

For a relatively nef line bundle L on X as above, we define E(L) to be the
union of all closed integral subschemes V' C X such that L|y is not relatively
big over S.

LEMMA 2.2. Let X be a projective scheme over a Noetherian base scheme S.
Then E(L) is a closed subset of X.

In particular, this endows E(L) with a scheme structure of a reduced
subscheme of X.

Proof. The proof is exactly the same as in [CT20, Lemma 2.18]. We may
assume that X is reduced and, since the problem is local, that S is affine. If
E(L) = X, then there is nothing to prove. Thus, we may assume that there
exists an irreducible component X’ C X such that L|xs is big. Hence, there
exists a relatively ample line bundle A and a line bundle £ on X’ such that
HY(X' E) # 0 and L®"|xs ~ A® E. Let Z be a reduced closed subscheme
equal to the reduction of the zero set of a section 0 # s € H(X’, E). Then
E(L) € ZU X", where X = X’ U X" and X' € X”. Indeed, if V C X' is a
closed integral subscheme of X’ such that V ¢ Z, then L®™|,, ~ A|y ® E|y is
big as sy € H(V, E|y) is non-zero.

In particular, E(L) = E(L|zux») is closed by Noetherian induction. O

Let us recall the following pinching result.

THEOREM 2.3 ([Art70, Th. 3.1] and [Koll2, Th. 38]). Let X be a Noe-
therian algebraic space over a Noetherian base scheme S, let Z C X be a closed
subspace, and let g: Z — V be a finite surjection of Noetherian algebraic spaces
over S. Then there exists a universal pushout diagram of algebraic spaces

Z — X

bl

V——Y,

such that Y is a Noetherian algebraic space over S, V. — Y 1is a closed em-
bedding, and Z = 7~ (V). Further, the diagram is a pushout square on the
level of topological spaces and 7 is a finite map which is an isomorphism over
Y\V. If X, Z, and V are of finite type over S, then so is Y.
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Proof. The pushout exists by [Kol12, Th. 38]. After an étale base change
of Y, we can assume that the spaces in question are schemes, and so the di-
agram is a topological pushout and 7 is an isomorphism over Y \ V' by [Sta,
Tag 0E25]. Further, Y is of finite type, provided that so are X,Z, and V, by
[Sta, Tag 0E27]. O

2.1. Universal homeomorphisms. We say that a morphism of schemes (or
algebraic spaces) f: X — Y is a universal homeomorphism if all of its base
changes are homeomorphisms. In the case of schemes, this is equivalent, by
[Sta, Tag 04DF], to being integral, universally injective, and surjective. How-
ever, for algebraic spaces, a universal homeomorphism need not be integral
(e.g., Al {z~—z|x # 0} - A'/{z~—2} ~ Al; cf. [Sta, Tag 05Z6]). In
this setting, being integral, universally injective, and surjective is equivalent
to being a representable universal homeomorphism.

To verify that a representable universally closed (for example, integral)
morphism f of schemes or algebraic spaces is a universal homeomorphism, it
is enough to check that Mor(Spec K, X) — Mor(Spec K,Y") is a bijection for
every algebraically closed field K (cf. [Sta, Tag 01S4 and 03MH)).

We call an extension of rings A C B elementary if there exists b € B such
that A[b] = B and b?,b® € A. The following proposition states that universal
homeomorphisms in characteristic zero decompose into thickenings and ele-
mentary extensions. Indeed, when f: A — B is a universal homeomorphism
of (Q-algebras, then f automatically induces isomorphisms on residue fields.
(By base change this reduces to checking that a finite extension of character-
istic zero fields Spec K — Spec L is a universal homeomorphism if and only if
K ~ L; this follows from the fact that K @ K = K®degL/K a5 the fields are
of characteristic zero.)

PROPOSITION 2.4 ([Sta, Tag OCND]). An extension of rings A C B is a
universal homeomorphism inducing isomorphisms on residue fields if and only
if every finite subset E C B is contained in an extension Alby,...,bx] C B
such that for every 1 < i < k, we have that b?,b3 € A[by, ..., b;_1].

1771

ProPOSITION 2.5 ([Sta, Tag OCNE]). An extension of rings A C B is a
universal homeomorphism if and only if every finite subset E C B is contained
in an extension Alby,...,bx] C B such that for every 1 <i < k, we have that
b2,b3 € Alby,...,bi—1] or pb, Y € Alby,...,bi_1] for some prime number p,
which depends on 1.

In characteristic p > 0, universal homeomorphisms may also be described
in the following way.

PROPOSITION 2.6 (cf. [Sta, Tag OCNF], Lemma 3.4). Let f: X — Y be

an affine morphism of schemes of characteristic p > 0. Then f is a universal

homeomorphism if and only if f*: O%’,erf — (’)E}erf is an isomorphism.
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Here, Og(erf = %ﬂ(@x Loy 5 -++) denotes the structure sheaf of the
perfection XPerf of X

Remark 2.7. For the convenience of the reader, we recall a few basic
scheme theoretic facts which we will often use later on. Here, S is a scheme or
an algebraic space (over a scheme) and f: Y — X is a morphism of schemes
or algebraic spaces, respectively.

(1) Assume that Y is quasi-compact and X is quasi-separated over S. Then
f is quasi-compact ([Sta, Tag 03KS]).

(2) Assume that Y is quasi-compact over S and f is surjective. Then X is
quasi-compact over S (cf. [Sta, Tag 03E4]).

(3) Assume that Y is quasi-separated or separated over S. Then so is f ([Sta,
Tag 03KR]).

(4) Assume that f is surjective and universally closed. If Y is quasi-separated
or separated over S, then so is X ([Sta, Tag 05Z2]).

(5) Assume that Y is locally of finite type over S. Then f is locally of finite
type ([Sta, Tag 0462]).

(6) The morphism f is integral if and only if it is affine and universally closed
([Sta, Tag 01WM, 0415]).

(7) Assume that f is surjective. If Y is universally closed over S, then so is X.
In particular, if also X is separated and of finite type over S, then it is
proper ([Sta, Tag 03GN, 08AJ]).

(8) Assume that Y is proper and X is separated over S. Then f is proper
([Sta, Tag 04NX]).

(9) Assume that Y is finite (integral, resp.) and X is separated over S. Then
f is finite (integral, resp.) ([Sta, Tag 035D]).

(10) Assume that f is of finite type with finite fibres and that the algebraic
spaces Y and X are quasi-separated over S. Then f is quasi-finite ([Sta,
Tag 06RW, 0ACK]).

(11) Assume that f is proper with finite fibres and X is quasi-separated over S.
Then f is finite ([Sta, Tag 0A4X]).

(12) Assume that Y is affine and f is surjective and integral. Then X is affine
([Sta, Tag 05YU, 07VT]).

(13) Assume that f is integral and induces a bijection |Y| = |X|. Then Y is a
scheme if and only if X is a scheme ([Sta, Tag 07VV]).

(14) Assume that f is a representable universal homeomorphism. Then pulling
back induces an equivalence of categories of étale or affine étale schemes
or algebraic spaces over X and Y ([Sta, Tag 04DZ, 05ZH, 07VW]).

LEMMA 2.8. Let f: X Ly M 7 be morphisms of schemes such that f is
a universal homeomorphism. Further, assume that g is surjective, or g is dom-
inant and h is separated. Then both g and h are universal homeomorphisms.
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Proof. First, we show that ¢ is surjective. To this end, we can assume
that ¢ is dominant and h is separated. Then, g is integral (Remark 2.7(9)),
hence closed and surjective.

Since ¢ is surjective, Remark 2.7(7) implies that A is universally closed.
Moreover, h is surjective as f is surjective, and it is universally injective as f is
universally injective and g is surjective. Therefore, h is a universal homeomor-
phism. In particular, it is separated, and as above we get that ¢ is integral.
Since f is universally injective, g is also universally injective, and so it is a
universal homeomorphism. O

LEMMA 2.9. An affine morphism of schemes f: Y — X is a universal
homeomorphism if and only if fz(p)! Yz, — Xz, isa universal homeomor-
phism for every prime number p.

Here XZ(p) = X Xgpecz SpecZ(y).

Proof. 1f fz(p) is a universal homeomorphism for every p, then f is uni-
versally injective and surjective. To verify integrality, we can assume that X
and Y are affine, in which case this follows by [Sta, Tag 034K]. O

The following lemma allows us to descend finite generatedness under uni-
versal homeomorphisms f: Y — X. However, when f*: Ox — f.Oy is not
injective, the statement is false (cf. Remark 2.21).

LeEmMA 2.10 (Eakin-Nagata). Let f: Y — X be an integral morphism of
algebraic spaces over a Noetherian base scheme S such that'Y is of finite type
over S and f*: Ox — f«Oy is injective. Then X is of finite type over S.
Moreover, if Y is separated or proper over S, then so is X.

Note that f is automatically finite when X is of finite type.

Proof. Since f is dominant and closed, it is surjective. Thus, by Re-
mark 2.7(2), X is quasi-compact over S. To check that X is locally of finite
type, we can assume that X, Y, and S are affine, in which case the statement
follows from [Kol12, Th. 41]. The separatedness or properness of X provided
that of Y is a consequence of Remark 2.7(4) and (7). O

2.2. Quotients by finite equivalence relations. In this subsection we review
definitions and basic results on quotients by set theoretic equivalence relations
following [Kol12].

Even in the case of a finite group G acting on a scheme X, we cannot
expect the quotient X/G to be a scheme unless X is quasi-projective or, more
generally, Chevalley-Kleiman (cf. [Kol12, Def. 47]). Therefore, we need to work
in the category of algebraic spaces.
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Definition 2.11. Let X be a separated algebraic space of finite type over
a Noetherian base scheme S. A morphism o: F — X xg X (equivalently
o1,09: E = X over S) is a set theoretic equivalence relation on X over S if
for every geometric point Spec K — .S, the map

o(K): Morg(Spec K, E) — Morg(Spec K, X) x Morg(Spec K, X)

yields an equivalence relation on K-points of X. We say that o0: E — X xg X
is finite if o; are finite.

See [Kol12, Def. 2] for another equivalent definition.

Definition 2.12. Let 01,09: E = X be a set theoretic finite equivalence
relation of separated algebraic spaces of finite type over a Noetherian base
scheme S. We call ¢: X — Y, for a separated algebraic space Y of finite type
over S, a categorical quotient if g o 01 = q o o9 and ¢ is universal with this
property (in the category of separated algebraic spaces of finite type over 5).
We call q a geometric quotient if

e it is a categorical quotient;

e it is finite; and

e for every geometric point Spec K — S, the fibres of qx: Xg(K) — Yi(K)
are the o(Ek (K))-equivalence classes of X (K).

Note that in contrast to Kollar we do not require the spaces to be reduced
in the definition of set theoretic finite equivalence relations. The following
proposition shows that the assumption on being a categorical quotient can be
replaced by saying that Oy is the kernel of o} — 03.

ProposITION 2.13 ([Koll2, Lemma 17]). Let X be a separated algebraic
space of finite type over a Noetherian base scheme S, let Y be an algebraic space
over S, let m: X — Y be an integral morphism over S, and let E = X be a
finite set theoretic equivalence relation over Y. Then the geometric quotient
X/E ezists as a separated algebraic space of finite type over S.

Proof. Note that X — Y is automatically finite as X is of finite type
over S. We claim that Z = Specy ker(of—o3: m.Ox — 7.0Op) is the geometric
quotient, where the projection from FE to Y is by abuse of notation denoted
by w. Let q: X — Z be the induced map. By construction, ¢ is finite and
Oz — ¢.Ox is injective, hence Z is separated and of finite type over S by
Lemma 2.10. Moreover, ¢ is a quotient on geometric points (by the same
argument as in [Kol12, Lemma 17]) and g o 01 = q 0 09. Thus, it is enough to
show that it is a categorical quotient.

To this end, consider a map f: X — W to a separated algebraic space
of finite type over S which equalises 0. Let Z* be the image of (¢, f): X —
Z xg W. Since Z xg W is separated and of finite type over S, so is Z*. It is
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enough to show that the induced map h: Z* — Z is an isomorphism. Since
q: X — Z is a quotient on geometric points and the induced map ¢*: X — Z*
equalises o, we get that h: Z* — Z is a bijection on geometric points. By
Remark 2.7(7), h: Z* — Z is proper, and so by Remark 2.7(11) it is a finite
universal homeomorphism. By construction, h,Oz« — ker(o} — 03: ¢.Ox —
¢+Op) = Oy is an injection of Ogz-sheaves, thus h,Oz« = Oz and h: Z* — Z
is an isomorphism. O

2.3. Quotients by group schemes. The following definitions are taken from
[Kol97, Def. 2.7].

Definition 2.14. Let X be an algebraic space over a Noetherian scheme S,
and let G be a group scheme over S acting on X. We say that ¢: X — Z is
a topological quotient of X by G if ¢ is a G-morphism (with Z admitting a
trivial action), it is locally of finite type, it is universally submersive, and it is
a set quotient on the level of geometric points. If in addition Oz = (¢.O0x)%,
then we call ¢ a geometric quotient.

We say that an action of G on X is proper if ¥x: GxgX M X xgX
is proper, where mx : GxgX — X is the morphism underlying the action of G,
and po: G xg X — X is the projection on the second factor. Since G is affine,
this condition ensures that the stabilisers are finite.

We state an analogue of Theorem 2.13.

THEOREM 2.15 ([Kol97, Th. 3.13]). Let G be an affine algebraic group
scheme, flat and locally of finite type over S. Let m: G x X — X be a proper
G-action on an algebraic space X over S. Let f: X — Z be a topological
quotient. Then a geometric quotient g: X — X/G exists and is defined by the
formula X/G := Spec,(f.Ox). Moreover, the induced map X/G — Z is a
finite universal homeomorphism.

Remark 2.16. With notation as above, suppose that X is a separated
algebraic space and G is an affine algebraic group scheme, flat and of finite type
over S and which acts properly on X. Note that G is of finite presentation ([Sta,
Tag 01TX]) and universally open over S ([Sta, Tag 01UA]). Let ¢: X — Z be
a finite type topological quotient. Then

(1) m: G x X — X is affine and of finite type.
(2) ¢ is affine and Z is separated.

(3) If X is of finite type over S, then so is Z.

(4) A geometric quotient is automatically a categorical quotient.

(5) If f: X — Y is a finite surjective G-morphism of separated algebraic spaces
of finite type admitting a proper G-action and the geometric quotients X/G
and Y/G exist, then the induced map fg: X/G — Y/G is finite. Moreover,

if f is a finite universal homeomorphism, then so is fq.
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The morphism m: G x X — X may be identified with ps: G x X — X via the
isomorphism (p1,mx): GxX — G x X, so (1) holds. The morphism ¢ is affine
by [Kol97, Th. 3.12]. The quotient Z is separated by [Kol97, Prop. 2.9] and of
finite type over S (provided so is X) by [Kol97, Th. 3.12]. A geometric quo-
tient is categorical by [Kol97, Cor. 2.15]. Last, for (5), consider the following
diagram:

x 1 .y

o
X/G 19 vya.

By the above, both X/G and Y/G are separated and of finite type, hence
so is fg. Let Z C X/G be a closed subset. Then f(¢~'(2)) = ¢y (fa(Z))
is closed, and hence so is fg(Z) as gy is submersive. The same holds after
any base change by a morphism to Y/G, thus f¢ is universally closed, and so
proper. By Remark 2.7(11), it is finite and the last assertion can be checked
on geometric points.

2.4. Pushouts of universal homeomorphisms. In this subsection we discuss
some preliminary results on pushouts of universal homeomorphisms. The case
of pushouts of thickenings by affine morphisms is well understood and described
in [Sta, Tag O7RT, 07VX].

Definition 2.17 (cf. [Kol97, §8]). Consider the following commutative di-
agram of schemes or algebraic spaces over a scheme S:

X +——Y
b
X —— Y,

where Y 2 X is representable, quasi-compact, and quasi-separated, and Y EN
Y’ is a representable universal homeomorphism. We say that this diagram is
a topological pushout square if f is a representable universal homeomorphism
and a geometric pushout square if, in addition,

Ox: = fxOx X(fop),0y ¢:Oy-
We write X' = X Ly Y’ and say that X' is a topological or a geometric pushout.
If X is a scheme, then so is X’ by Remark 2.7(13).

The assumption on the representability of p may not be necessary. In any
case, we are mostly interested in the case of p being affine or a morphism from
a scheme Y to an algebraic space X.

LEMMA 2.18. Let A — B < B’ be maps of rings such that B' — B is a
universal homeomorphism, and let A’ = A xg B'. Suppose that A’ — A is a
universal homeomorphism. Then Spec A’ is a geometric pushout of Spec A <
Spec B — Spec B'.
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Proof. This follows by the same proof as [Sta, Tag OETO] (see also [Sta,
Tag O7RT and 01Z8)). O

Remark 2.19. Consider a topological pushout square of schemes or alge-
braic spaces as above. Then
(1) The morphism ¢ is representable, quasi-compact, and quasi-separated.
(2) If p is separated, affine, universally closed, or integral, then so is q.
(3) If X is quasi-compact, quasi-separated, or separated, then so is X’.
(4) If the pushout is geometric and g*: Oy — ¢.Oy is injective, then f*: Ox/
— f«Ox is injective as well.

To prove (1) and (2), we can assume that X’ is an affine scheme, and so
that X is affine and Y is a quasi-compact quasi-separated scheme. Then Y’
is also a scheme (Remark 2.7(13)), it is quasi-compact (Remark 2.7(2)), and
quasi-separated (Remark 2.7(4)). Thus ¢ is representable, quasi-compact, and
quasi-separated. If p is separated or affine, then we can assume that Y is
separated or affine, respectively, and then so is Y’ (Remark 2.7(4) and (12)).
Thus ¢ is separated or affine, respectively. If p is universally closed, then so is
g by Remark 2.7(7) applied to gog. Since being integral is equivalent to being
affine and universally closed (Remark 2.7(6)), the integrality of p implies the
integrality of q.

The quasi-compactness, quasi-separatedness, or separatedness of X', pro-
vided X has these properties, respectively, follows from Remark 2.7(4) and (2),
as above. The injectivity of f* provided the injectivity of g* follows by defini-
tion.

LEMMA 2.20 (cf. [Kol97, (8.1.3)]). Let X < Y — Y’ be a diagram of
schemes (algebraic spaces, resp.) satisfying the assumptions of Definition 2.17
and which admits a topological pushout Z. Then the geometric pushout X' :=
X Uy Y’ exists as a scheme (an algebraic space, resp.). Moreover, the induced
map X' — Z is a representable universal homeomorphism.

Proof. Define X' := Specy ((f2)+Ox X (t,0p).0y (42)+Oy") sitting inside

X <+———Y

]

9z

Here we used quasi-compactness and quasi-separatedness of morphisms (Re-
mark 2.19(1)) to guarantee that the pushforwards of structure sheaves are
quasi-coherent (see [Sta, Tag 03M9]).
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Now, by means of étale base change, we can assume that the spaces in
question are schemes. By construction, ker(Oxs — f.Ox) ~ ker(¢.Oy —
¢+9+Oy ), and so the kernel of Oy — f,Ox is locally nilpotent and, in particu-
lar, X — X’ is dominant. Moreover, X’ — Z is separated as it is affine. Thus,
both X — X’ and X’ — Z are universal homeomorphisms by Lemma 2.8, and
so X' is a geometric pushout. ([

Remark 2.21. Even if X + Y — Y’ are of finite type over a field k,
the geometric pushout need not be Noetherian (see [Kol97, Exam. 8.5]). A
pertinent example which is relevant to us is the following pushout diagram:

SpecZ <———— SpecQ

! !

SpecZ @ xQ +—— Spec Q[x]/z>.

To rectify the problem laid down in the above remark, we use Noetherian
approximation.

LEMMA 2.22. Let X £ Y L Y be a diagram of schemes (or algebraic
spaces) over a Noetherian base scheme S, satisfying the assumptions of Defi-
nition 2.17 and admitting a topological pushout X'. Assume that X is of finite
type over S. Then there exists a topological pushout X{Op of X <Y =Y/,
which is of finite type over S. Moreover, if X is proper over S, then so is Xt'op.

Proof. By Lemma 2.20 we can assume that X’ is a geometric pushout.
Note that X, X’ and S are quasi-compact and quasi-separated (compare with
Remark 2.19(3)). Thus, we can apply [Sta, Tag 09MV] ([Sta, Tag 09NR], resp.)
to get an inverse system of schemes (algebraic spaces, resp.) X/, of finite type
over S, over a directed set I with affine transition maps such that X’ = @X{ .

Since f: X — X’ is a representable universal homeomorphism, the in-
duced map f(X) — X’ is a thickening and f: X — f(X) is a representable
universal homeomorphism (cf. Remark 2.7(14)). Moreover, f(X) is of finite
type over S by Lemma 2.10 as Of(x) — f«Ox is injective by definition. Thus,
by [Sta, Tag 081B] ([Sta, Tag 0828], resp.), there exists X/ such that the com-
position f(X) — X’ — X! is a closed immersion. By replacing X/ by the image
of X’ in it, we can assume that O x; — Ox is injective, and hence the kernel
of Ox: = Oy(x) is locally nilpotent. Therefore, f (X) — X! is a thickening,
thus X — X is a representable universal homeomorphism and Xj,, := X/ is

a topological pushout of X 2y Ly
To show the last statement, we note that the properness of X implies that

X/

top 15 separated over S (Remark 2.7(4)), and hence proper by Remark 2.7(7).

O
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LEMMA 2.23 (cf. [Kol97, Lemma 8.2]). A base change of a geometric
pushout square by a flat morphism is a geometric pushout square.

Proof. A geometric pushout square as in Definition 2.17 is uniquely de-
termined by the exact sequence

0— OX’ — f*OX ¥ Q*OY’ — (f op)*OY

and the fact that X — X' is a representable universal homeomorphism. These
properties are preserved under flat base change. O

Further, we study étale morphisms under geometric pushouts.

PROPOSITION 2.24 (cf. [Kol12, Lemma 44]). Let

p1 g1
X1 < Y1 }/1,

A

p2 g2
X 92 < Y2 YQI

be a commutative diagram of schemes such that both squares are Cartesian
and X; < Y; — Y/ satisfy the assumptions of Definition 2.17 for i € {1,2}.
Further, suppose that the vertical maps are étale and the geometric pushout X}
of the second row (p2, g2) exists. Then a geometric pushout X/ of the first row

1,91) exists and the induced map X| — X, is étale.
p1,9 D Aq 2

Proof. By Remark 2.7(14) applied to the universal homeomorphism Xy —
X} we can find a scheme X{ and an étale morphism X{| — X} the pullback
of which is X7 — Xs. Moreover, the pullback of X — X/ to Y] agrees
with Y{ — Y by applying Remark 2.7(14) to the universal homeomorphism
Ys — Y. In particular, we get the following commutative diagram:

X1 X2 < Yé Yl

N

!/ / / /
X| - > Xg < Y, Yy,

where the bigger square is a pull-back of the smaller square via X{ — X}. By
Lemma 2.23 the bigger square is thus a geometric pushout. O

LEMMA 2.25. Let X’ be a geometric pushout of a diagram X <Y — Y’ of
schemes (algebraic spaces, resp.) satisfying the assumptions of Definition 2.17.
Then X' is a categorical pushout in the category of schemes (algebraic spaces,
resp.).
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Proof. Since algebraic spaces are quotients of schemes, one can reduce to
the case of X, X', Y, and Y’ being schemes; see the end of [Sta, Tag 07VX].
By [Sta, Tag 07SX], it is enough to show that X’ is a pushout in the cate-
gory of schemes. (Assumptions (3) and (4) are satisfied by Lemma 2.23 and
Proposition 2.24, respectively.)

We argue as in [Sta, Tag OET0]. Suppose there are a scheme Z and maps
fz: X — Z and qz: Y' — Z agreeing on Y. We can define h: X' — Z as
equal to fz on the level of topological spaces. Moreover, h is a map of ringed
spaces via Oz = (f2)xOx X(f,0p).0y (q2)+Oyr = hOx:. In fact, it is a map
of locally ringed spaces (and hence of schemes) as f: X — X’ is a universal
homeomorphism and f7 is a map of schemes; cf. the last paragraph of [Sta,
Tag OETO). O

Last, we prove that it is enough to construct geometric pushouts locally.

LEMMA 2.26. Let X £ Y L Y be a diagram of schemes (algebraic
spaces, resp.) satisfying the assumptions of Definition 2.17. Then a geometric
pushout of this diagram exists as a scheme (an algebraic space, resp.) if and
only if it exists after pulling back by every open immersion (étale morphism,
resp.) U — X with U an affine scheme.

Here U £V % V' is a pullback of X £ Y % Y’ by an étale morphism
U— XifV =UxxY and V! — Y’ is the unique étale map with the
pullback via g being V' — Y (see Remark 2.7(14)). If U is a scheme, then
so are V and V' (Remark 2.7(13)). If U — X is an open immersion, then
V =p Y(U) and V' = g(V). Note that U < V — V' satisfies the assumptions
of Definition 2.17.

Proof. If a geometric pushout of X < Y — Y exists, then it exists after
the pullbacks by Proposition 2.24. As for the implication in the other direction,
we first deal with the case of schemes arguing as in [Sta, Tag 07RT]. Let

X«—F—Y
ol
X Y
be a push-out diagram of topological spaces such that X’ = X, f = id, and
¢:Y' =Y & X = X’ is the natural map induced by p (that is, topologically,
qg=g "op).
We make f into a map of ringed spaces by setting
OX’ = f*OX X(fop)*Oy q*Oy/.

The fact that f is a map of schemes and is a universal homeomorphism can be
checked locally on X and hence follows from the assumptions and Lemma 2.18.
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Now, we move to the case of algebraic spaces (cf. [Sta, Tag 07VX]). Pick
a surjective étale map U — X with U a scheme, and construct pushouts U’
and E’ of the pullbacks of X &V L V' by U - X and E := U xx U =
U — X, respectively. (They exist by the above paragraph.) Then the maps
oj,0h: E' = U’ are étale by Proposition 2.24. Moreover, they induce an
equivalence relation on U’; indeed, E — E’ is a universal homeomorphism, and
so by [Sta, Tag 0DT7] it is enough to construct the identity e: U" — E’; the
inversion i: E' — E', and the composition map ¢’: E' X, pr o+ ' — E' which
follow by functoriality of pushouts. (We leave details to the reader.) Thus,
we can take a quotient X’ := U’/E’ as an algebraic space ([Sta, Tag 02WW])
sitting inside the following diagram:

EFE—U —— X

L]

E——U —— X'

Since the left diagram is Cartesian, X — X’ is injective (cf. [Sta, Tag 0457Z]).
We claim that the right diagram is Cartesian (and so X — X' is a representable
universal homeomorphism). Indeed, the morphism U — U’ factorises as

U—>U/XX/X—>U/,

and so U — U’ x x» X is universally injective. Since X — X’ is injective, so
isU' xx X = U'. Thus U — U’ xxs X is surjective. Moreover, it is étale by
[Sta, Tag 03FV] as U’ xx» X — X and U — X are étale, and hence it is an
isomorphism as U — U’ x xs X is representable (see [Sta, Tag 02LC]). O

2.5. Generalised conductor squares.

Definition 2.27. We call a commutative diagram

X <+—D

"
Y<TC

a generalised conductor square when f: X — Y is a finite surjective map of
reduced Noetherian schemes and D — (' is the induced map of the conductors

of f.

We define conductors affine locally exactly as in [Weil3, 1.2.6]. Precisely,
given a finite extension of rings R C S, we set I = {s € S | sS C R}. The
ideals I € R and I = IS C S define the conductors C' and D. Note that
R~ S xg/r R/I; this is an example of a Milnor square.

When f is finite of degree greater than one over each irreducible compo-
nent, then C =Y and D = X. We called the above diagram a generalised
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conductor square, as conductors are often defined only when f is birational
(that is, an isomorphism over a dense open subset); cf. [CT20, Def. 2.25].
Later on, we consider finite universal homeomorphisms f: X — Y which are
isomorphisms over an open subset only (and so, on some irreducible compo-
nents, may be equal to, say, Frobenius).

LEMMA 2.28. Consider a generalised conductor square as above. Then
the diagram

5k
Picx — Picp

ol o]
Picy L Pico
is Cartesian in the 2-category of groupoids.
This stipulates that there exists a functorial one-to-one correspondence

between line bundles Ly on Y and triples (Lx, L¢, ¢), where Lx and L¢ are
line bundles on X and C, respectively, and ¢: ¢g* Lo — ¢*Lx is an isomorphism.

Proof. Given a line bundle L on Y, we get an induced triple (f*L, j*L, ¢),
where ¢: ¢*j*L =5 i* f*L.

In the opposite direction, let (Lx, L, ¢) be a triple as above and set
Lp :=1i*Lx. Therewith one can define a sheaf Ly on Y by the formula

Ly :=ker(fiLx % jiLc ~—2°% (f 04).Lp).

To conclude the proof, we need to verify two things: first, that Ly is a
line bundle, and second that given a line bundle L on Y and an induced triple
(f*L,5*L, ¢), the natural map L — Ly of sheaves to the induced line bundle
on Y is an isomorphism. Both statements can be verified locally, and hence the
proof follows by [Weil3, Milnor Patching Theorem 2.7] (or [Sta, Tag 0D2J]) as
generalised conductor squares of affine schemes are Milnor squares and finite
rank one projective modules are line bundles ([Sta, Tag 00NX]). O

3. Multiplicative perfection in mixed characteristic

Throughout this section, we fix a prime number p > 0 and work over the
base ring Z,).

3.1. Multiplicative perfection. The key advantage of working in positive
characteristic is the existence of the Frobenius morphism. In mixed character-
istic we shall approximate it by raising to a p™-th power for big n > 0.

Definition 3.1. Let A be aring over Z,). We call the commutative monoid

APt = lim A
mﬁp

the (multiplicative) perfection of A.



676 JAKUB WITASZEK

Note that the multiplicative perfection does not preserve the additive
structure.

Remark 3.2. The natural map A — AP induces an inclusion Al~ —
APt of monoids, where a ~ b if and only if a?”" = b" for some n > 0.

Further, note that for any rings A, B, C over Z,), the natural morphism
of commutative monoids

(A xp C)pert — gpert o . overf

is a bijection of sets (and so an isomorphism of commutative monoids). This
can be easily checked by hand or by recalling that filtered colimits commute
with finite products ([Sta, Tag 002W]).

Definition 3.3. Let L be a line bundle on a scheme X over Z,). We call
the sheaf of sets .
pert .— hg’l Lpn’
én

n+1

where ¢,,: LP" — LP"" with ¢, (x) = 2P, the perfection of L.

Explicitly, LP* is the sheafification of the colimit taken in the category
of presheaves.

If Spec A = U C X is an affine subscheme such that L|y ~ Oy, then we
get a sequence of compatible isomorphisms (LP" )|y ~ Oy for every n > 0, thus
Lperf(U) ~ Aperf'

Define

HO(X, L)P" o= lim HO(X, LP"),
on

where ¢,,: HO(X,LP") — HO(X,LP""") with ¢,(z) = 2P. When X is quasi-
compact and quasi-separated, HY(X, LPe'!) = HO(X, L)Pef by [Sta, Tag 009F(4)
and Tag 0069(3)].

3.2. Infinitesimal site up to perfection. The following lemma is vital in
the proofs of the main results of this section.

LEMMA 3.4. Let f: X — Y be an affine morphism of schemes over
SpecZy,) such that f|x,: Xqo — Yg is an isomorphism. Then f*: Og)/erf N

f*(’)g(erf is an isomorphism if and only if f is a universal homeomorphism.

The key to the results of this article is the local injectivity of f* as it
allows for gluing sections and lifting them globally under thickenings. Note
that the other parts of the lemma have been shown in [Kol97, Lemma 8.7] (see
also [Sta, Tag OCNF]).

Proof. If f*: O?,erf — (’)E}erf is an isomorphism, then f is a universal home-
omorphism as well by [Sta, Tag OCNF]. Thus, it is enough to show the converse.
For the convenience of the reader, we also show local surjectivity of f*.
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Since f is affine, the lemma can be reduced to showing that 7Pef: prerf
APt is an isomorphism, when 7: B — A is a universal homeomorphism such
that the localisation mg: B []%] — A[%} is an isomorphism.

Pick any element a € A. Since 7 is a universal homeomorphism, so is its
reduction m,: B/p — A/p modulo p. Thus, Proposition 2.6 implies that

a® = 7(b) + pt

for some [ > 0, b€ B, and t € A.

As 7 is integral, the B-subalgebra A% C A generated by t is a finite
B-module. Given that mg is an isomorphism, we get p"AY C 7(B) for some
n > 0 and hence p"t' € m(B) for every i > 0.

Write

k+1 k pk pk k- .
a? =x(b)P + E (Z >7r(b)p “(pt)'
i=1

for k > 0. Since p" | p’ (p:) for every 0 < i < p¥ and k >> 0, the right-hand side
is contained in 7(B), and hence so is a?**'. In particular, 7P is surjective.
Now, assume that there exist b,b € B satisfying 7(b) = =(b'). Write
b="b+s for some s € B. Since mgp is an isomorphism and 7(s) = 0, there
exists n > 0 such that p"s = 0. Since 7, is a universal homeomorphism,
Proposition 2.6 implies that P = pt for some k > 0 and t € B. In particular,

s+l = (pt)"s = 0 and we get

npk pm
" = (pP" No" =i i (P
) *Z(J“’) $ = ()
=1
for m > 0. Here we used that p" | (p;n) for 1 <i < np® and m > 0. As a
consequence, 7P is injective, which concludes the proof. O

Now, we can prove Lemma 1.11.

Proof of Lemma 1.11. Note that Xg — X is quasi-compact and quasi-
separated, as so is SpecQ — SpecZ,). Thus, by Lemma 2.20, there exists
a pushout scheme Z := X Lx, Yg sitting inside the following commutative
diagram:
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with g and h being universal homeomorphisms. By construction, h|z,: Zg— Yg

is an isomorphism, and so Lemma 3.4 implies that h*: Ogerf — h*O%erf is an
isomorphism as well. We can conclude the proof as

perf _ Aperf perf
OZ - OYQ Xog)(e(éf OX . l:‘

The following proposition is a direct consequence of Lemma 1.11.

ProposITION 3.5. Let f: X — Y be a universal homeomorphism of

quasi-compact quasi-separated schemes over Zy, and let L be a line bundle

p)
on Y. Then the following diagram is Cartesian:

HO(Y, L)perf fr HO (X, f*L)perf

| |

H°(Yg, Llyy P —— H°(Xq, f*Llxy)P".

Proof. By Lemma 1.11, we get the following Cartesian diagram:

Lperf I (f* L)perf

l !

(L‘YQ)perf SN (f*L|X@)perf'

Now, by applying H° to this diagram, we can conclude the proof. ([

3.3. Descending line bundles. The goal of this subsection is to show The-
orem 1.7. Here, Picx denotes the groupoid of line bundles on X, and Pic X[%]
denotes the groupoid of line bundles on X up to inverting p. Informally, this
is a groupoid of line bundles and their “formal p™-th roots.” Precisely, the ob-
jects of the category Pic X[%] are pairs (L,n) consisting of a line bundle L on
X and a number n € N, and the morphisms being isomorphisms up to p¥-th
power, that is, Hom((£,n), (£',n')) = lim Isom(ﬁpN_n,ﬁ’pN_nl); cf. [Sta, Tag
0EXA].

Proof of Theorem 1.7. We proceed by Noetherian induction on X.

Step 1. The theorem holds when X and Y are defined over IF,,. Indeed,
we have then that O;[%] — O}[}%] is an isomorphism (cf. the proof of [CT20,
Lemma 2.1]), and so Pic;/[%] — Pz’cx[%] is an isomorphism as well.

Step 2. The theorem holds when f: X — Y is a thickening (that is, a
surjective closed immersion). Indeed, by Lemma 2.20 (or [Sta, Tag 07RT]),
there exists a pushout scheme Z := X Ux, Y sitting inside the following
commutative diagram:
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As in the proof of Lemma 1.11, we get that h*: (’)ip/erf — (’)%erf is an iso-
morphism. Since both g and f are thickenings, h induces an isomorphism of
reductions Zyeq — Yred. Invertibility of sections does not depend on the infini-
tesimal structure, and so h*: O;[%] — O}[%] is an isomorphism as well. As a
consequence, h*: Picﬂ%] — Pic Z[%] is an isomorphism.

Since flat finitely presented coherent sheaves of rank one are line bundles

([Sta, Tag 00NX]), [Sta, Tag 08KU] (cf. Lemma 2.28) implies
PiCZ = PiCYQ XPiCXQ PiCX.
By inverting p, we can conclude Step 1.

Step 3. We reduce to the case when both X and Y are reduced. In this
step we assume that the proposition is true for f: X — Y being replaced by
its reduction fred: Xred — yred  We have the following spacial commutative
diagram:

PiCYred PiCXred

e e

P’iCy PiCX

|

PiCYéed /P’]:CXéed

7 7

PiCyQ > P’iCXQ.

The left and the right facets are 2-pullback squares up to inverting p by
Step 2, and the back one is a 2-pullback square up to inverting p by assump-
tion. A composition of two 2-pullback squares stays a 2-pullback square ([Sta,
Tag 02XD]), and so we have the following diagram, in which the big square
and the right square are 2-pullback squares up to inverting p:

Picy — Picx —— Picyrea

| | !

Picy, — Picx, — Pic Xged-
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Thus the left square is a 2-pullback square up to inverting p as well ([Sta,
Tag 02XD]).

Step 4. We show the proposition under the assumption that X and Y
are reduced and the proposition holds for every universal homeomorphism
flw: W — f(W), where W is a closed proper subset of X.

By Step 1, we may assume that Xg # (). Since f: X — Y is a finite
surjective map of reduced schemes, it sits in the following generalised conductor
square (cf. Section 2.5, [Weil3, 1.2.6], [CT20, §2.6.1)):

Y A X
C +—— D,
/o
where C' and D are conductors of f. Since f: X — Y is a finite universal
homeomorphism, so is fp: D — C. (It is finite by Remark 2.7(9) applied to
D — C —Y.) Note that D is a strict closed subset of X, as Xqg # 0, and so
f is an isomorphism over an open subset of Y.
As above, we can construct the following spatial diagram:

e

PiCy PiCX

J

Piccy Picp,

7 e

Picy, Picxg-

Picc Picp

e

The top and the bottom facets are 2-pullback squares by Lemma 2.28 and the
back one is a 2-pullback square up to inverting p by the inductive assumption.
By the same argument as in Step 3, the front facet is a 2-pullback square up
to inverting p, too. [l

Remark 3.6. An analogous argument shows that
Oy 5] —— Ox[}]

| |

Op,[t] — O, [1]
is a pullback square. Other types of functors with this property will be dis-

cussed in [AEMW].
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COROLLARY 3.7. Let X' be a Noetherian topological pushout of a diagram

X <Y — Y’ of Noetherian algebraic spaces over Ly satisfying the assump-
tions of Definition 2.17 and such that both f:Y — Y’ and X — X' are finite
universal homeomorphisms. Then

PiCX/ —_— PiCX X Picy PiCy/

| !

'PiCX@ EE— PiCXQ Xpicy(@ 'PiCyé
1 a 2-pullback square up to inverting p.

Inverting p commutes with products in the above diagram. Using the
language of 2-categories makes the statement and the proof of this result in-
comparably easier and cleaner.

Proof. Construct the following spatial diagram:

Picx Picy

e

PiCX X Picy PiCyl PiCy/

J

’PiCXQ > PiCYQ

Picx, X Picy, PZCY@ > PZCyé.

The top and the bottom facets are 2-pullback squares by definition and the
right one is a 2-pullback square up to inverting p by Theorem 1.7. By the same
argument as in Step 3 of the above proof, the left facet is a 2-pullback square
up to inverting p, too.

By Theorem 1.7 and the above paragraph, the big square, and the right
square in the following diagram are 2-pullbacks up to inverting p, hence so is
the left one ([Sta, Tag 02XD]):

PicX/ —_— PiCX X Picy Pi0y/ e P’ZCX

| ! !

PiCXb —_— PiCXQ Xpicy@ 'PZ'Cyé —_— PiCXQ. O

4. Pushouts of universal homeomorphisms in mixed characteristic

The goal of this section is to prove Theorem 1.6. The following proposition
is a key component of its proof.
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PROPOSITION 4.1. Let B be a ring, and let A’ — B’ be a universal home-
omorphism of Q-algebras, where B’ := B ®7 Q. Then A — B is a universal
homeomorphism where A := B x g A’ is the pullback of the diagram

B—‘5 B
1
A—— A
Therefore, Spec A is the geometric pushout of Spec B < Spec B’ — Spec A’.

Proof. Note that A ®7 Q = A’. By Lemma 2.9, it is enough to check
that A — B is a universal homeomorphism after tensoring by Z,) for every
prime p. Since tensoring by Z, is equivalent to inverting all prime numbers
q # p, we have that A ® Z,) ~ (B ® Z,)) Xpr A’. Hence, by replacing B by
B ® Z,), we may assume that A and B are defined over Z,). In particular,
A= A[}] and B' = B[3].

First, we reduce to the case of A’ — B’ being a finite universal home-
omorphism. By Proposition 2.4, we can find A’-subalgebras B} C B’ such
that B’ = h_n}BS\ and A’ — B) are finite universal homeomorphisms. For

B, :=i"Y(B}) C B, we have BA[%] = B). Assume that
Ay = B, XB/A A/—>B)\

are universal homeomorphisms where Ay C A. Then A = ligAA — B =
@BA has a locally nilpotent kernel and is a universal homeomorphism by
Proposition 2.5.

As of now, we can assume that A’ — B’ is finite. Thus, by Proposition 2.4,
the morphism A’ — B’ can be factorised as

A" A)I'=Bj— By — -+ B}, := B,

where I’ is a locally nilpotent ideal, and B]_; C B} is an elementary extension
for 1 < i < k. It is enough to prove the proposition for each subsequent
morphism separately, so we may assume that A’ — B’ is either a surjection
with a locally nilpotent ideal, or A’ — B’ is an elementary extension.

First, assume A’ — B’ is surjective with locally nilpotent ideal I’. Then

A:BXB/AI%B

is also surjective with the kernel 0 x g/ I’ C A being locally nilpotent. Therefore,
A — B is a universal homeomorphism.

Thus, we can assume that A’ C B’ is an elementary extension; i.e., there
exists f' € B’ such that A'[f'] = B’ and f?, f® € A’. In particular, A — B
is an inclusion. Since A is constructed as a product, it is saturated inside B;
that is, if b € B is such that p'b € A for some [ > 0, then b € A. Indeed, the
image of b in B’ is, by assumption, contained in the image of A’.
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Now, by multiplying f’ € B’ by a power of p, we may assume that f’ is
the image of an element f € B such that f2, f2 € A. Therefore, for every
b € B, we have f2b € B and p'f2b € A for some [ > 0, hence f2b € A, and so
2B C A.

Consider A/(fBNA) C B/fB. We claim that given [b] € B/ fB, we have
"] € A/(fB N A) for some k > 0. In other words, for b € B, there exists
k>0,a€ A, and b € B such that b*" = a + V' f.

Since A’ C B’ is an elementary extension,

P =a1 +af
for some k > 0 and a1,as € A. Write

aﬁ)k = (b — as )"
k
= ph7 b — <pl )p(”k‘l)kbpk‘lazf + f*q
= " (07" — " lasf) + 1%

=:a

k
for some q € B. Since af € A and f?q € A, we have that pkpka € A, and so
a € A. Write

k

W =a+ bpk_lagf.
Thus, the claim holds for b’ := w'—lay € B.

Now, we will show that b7""' A[f] € B for some [ > 0. To this end,
take [ > 0 such that p't/ = a} + abf for a},a} € A and write

= (a+ V)Y
— apl —|—plapl_1b'f + f2q/
=¥ +a" N d} + dyf)f + f2d
= (@ + (@ dy + ¢) 2 +a d) f,
N——
cA cA

k41

where ¢’ € B.
By Proposition 2.4 and Lemma 3.4, respectively, A — A[f] and A[f] — B

are universal homeomorphisms. Hence A — B is a universal homeomorphism.
The last assertion of the proposition follows by Lemma 2.18. [l

Note that the morphism A — B need not be finite even when A" — B’
is so.

COROLLARY 4.2. Let X be a scheme, and let Xg — X(’@ be a universal
homeomorphism of schemes. Then a geometric pushout X' of X + Xg — X@
exists as a scheme. The same statement holds for algebraic spaces if Xg — X(.’@
1s representable.
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Proof. The morphism Xg — X is a base change of SpecQ — SpecZ,
hence it is affine, quasi-compact, and quasi-separated. By Lemma 2.26 it is
enough to construct the pushout locally, hence we can assume that X and
Xg are affine. Then X(’@ is affine by Remark 2.7(12). Now, the corollary is a
consequence of Proposition 4.1. [l

Ezample 4.3. By [Kol97, Lemma 8.4], Corollary 4.2 holds when Z and
Q are replaced by k[t] and k(t) for a positive characteristic field k. However,
when k is of characteristic zero, Corollary 4.2 is false. To see this, take

],

B := C[t][x, y],

B’ :=C(t)[x,y], and

A= C(t)[z?, 23,z + ty).
Assume that Spec B" — Spec A" extends to a universal homeomorphism Spec B
— Spec C. Then this morphism must factorise as Spec B — Spec A — SpecC,
where A := B xp A’ C B. Thus Spec B — Spec A is a universal homeomor-
phism as well and, by Lemma 2.10, A is finitely generated over R. We shall
show that this is not true.

First, 2 € A’ for all n > 2 as it is generated by 22 and 23. Moreover,
z™yF € A for all n > 2 and k > 0, by induction on k and the formula
2" (@ +ty)* = 2" f(z,y) + "2y,
where f(z,y) € B" and deg, f(z,y) < k. Thus
2B C A
is an ideal and A’/x?B’ ~ C(t)[z + ty]. Therefore, given V' € B’, we have
b € A" if and only if
O =2 f(x,y) + ao + ar(x + ty) + - + am(ma(ty)™ " + (ty)™)
for m € N, f(z,y) € B, and ay, € C(t), where 0 < k < m.
This implies that given b € B, we have b € A if and only if
b=a?f(x,y) + ao + ar(z +ty) + - + am(may™ " + ty™)
for m € N, f(x,y) € B, and a;, € C[t]. In particular, we see that
A/(zBNA) ~ C[t][ty, ..., ty*, .. ],

which is not finitely generated over R, and so neither is A. The same holds
true for C[t](, instead of C[t].

This argument does not provide a counterexample to Corollary 4.2, with ¢,
from above, replaced by a prime number p, i.e., for

A" =Q[2?, 2%,z + py] C Qlz,y] =: B' and B = Z, [z, y].
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What is different is that zy?~! 4+ y? € A as
(z + py)? = pP(xy”~" + y*) mod .

It is not difficult to see that, in this setting, A is generated by xy’ for 0 < i < p,
23yl for 0 < j < p, may™ 1 + py™ for 1 <m < p, and zyP~ ! + yP.

We are ready to give a proof of Theorem 1.6.

THEOREM 4.4 (cf. Theorem 1.6). Let X & Y % Y’ be a diagram of
schemes or algebraic spaces such that p is representable, quasi-compact, and
separated, and g is a representable universal homeomorphism. Assume that
a topological pushout of Xq + Yo — Y(é exists as a scheme or an algebraic
space, respectively. Then a geometric pushout of X <+ Y — Y’ ewists as a
scheme or an algebraic space, respectively.

Proof. By Lemma 2.20 a geometric pushout of Xqg « Yg — Y@ exists, and
by Lemma 2.26 we can assume that X, Y, Y’/ are schemes, while preserving the
fact that a geometric pushout of Xg < Yp — Y(é exists. By Remark 2.7(13)
the geometric pushout Z of Xg < Yp — Y(é is then also a scheme. We split
the proof into four steps.

Step 1. We reduce to the case when Yg — Yé is an isomorphism.

Let X be the geometric pushout of Z « Xq — X which exists by Corol-
lary 4.2. Let Y C X x Y’ be the image of the map Y — X x Y’ induced by

Y X 3 XandY — Y

g
s Y.

&
&

i
<

e

i
<

p

<;

.

%

.
P —— <
~—— =

S
N

By construction, ¥ — Y is surjective, and so both Y — Y and ¥ — Y’
are universal homeomorphisms by Lemma 2.8. Moreover, Yp — Xg factorises
through Vg — Z ~ Xq, thus

Y/Q = im(Y@ — XQ X Y@) ~ Y(é.

By Lemma 2.20 it is enough to construct a geometric pushout X’of X <Y —Y".
Therefore, by replacing X <+ Y — Y’ by this diagram, we can assume that
Yo — Yé is an isomorphism. Note that p is quasi-compact and separated by
Remark 2.7(2) and (4), and so the assumptions of Theorem 4.4 are preserved.

Step 2. We reduce to the case of p being affine or a contraction.
By Lemma 2.26 we can assume that X is affine, while preserving the fact
that p is quasi-compact separated and Yo — Y@ is an isomorphism. Since X is
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affine, both X and Y are quasi-compact and separated. Thus, by the Zariski-
Nagata compactification and the Stein factorisation (cf. [Tem1l, Th. 1.1.3],
[Sta, Tag 03H2]), the separated morphism Y — X can be factored as ¥ —
X1 — Xo — X, where the first and the third map are affine, and the second
one is a contraction. Then, using Steps 3 and 4, we can construct geometric
pushouts X{, X{, and X" of X; + Y =Y’ Xy < X; — X{, and X < Xy —
X, respectively. Note that these pushouts are trivial over Q:

By standard diagram chase, X’ is the geometric pushout of X +~ Y — Y”.

Step 3. We assume that p is affine (cf. [Kol97, Lemma 8.9]).

By Lemma 2.26 we can assume that X is affine, while preserving the
fact that p is affine and Ygp — Y@ is an isomorphism. In particular, Y and
Y’ are affine as well (see Remark 2.7(12)). Let X’ = Spec A xp B’, where
X <Y — Y’ corresponds to A — B < B’. By Lemma 2.18, the diagram

X = SpecA «— SpecB =Y

| |

X' = SpecA xgp B +—— SpecB' =Y’

is a geometric pushout provided that X — X’ is a universal homeomorphism.
To show that this is the case, we can assume that X and X’ are defined over
Zpy by Lemma 2.9. Then Lemma 3.4 shows that Brerf ~ preert - Thys

Aperf — (A X g Bl)perf — Aperf X gpert B/perf ~ Aperf

is an isomorphism, and so by Lemma 3.4 again, X — X’ is a universal home-
omorphism.

Step 4. We assume that p is a contraction.

By Lemma 2.26 we can assume that X is affine, while preserving the fact
that p is a contraction and Ygp — Y is an isomorphism. In particular, ¥ and Y’
are quasi-compact and quasi-separated (see Remark 2.7(2) and (4)). Set X' :=
Spec HY(Y', Oy+). Since H(Y,0y) = H°(X,Ox), we get a commutative
diagram (cf. [Sta, Tag 01I1]):

X<TY
b

D¢ — Y’
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We have that
X = Spec H(Y',0y+) ® Q =~ Spec HO(YY, Oyy)
~ Spec HO(YQ,(’)YQ) ~ Spec HO(X@,OXQ) = X,

where Xg =~ Xg is induced by f|x, and the first isomorphism follows from
quasi-compactness of Y.

To show that f: X — X’ is a universal homeomorphism, we can assume
the spaces are defined over Z,) by Lemma 2.9. Then we have H O(X,0x)pert =
HO(Y, Oy )Pt = HO(Y!, Oy/)Pet (by Lemma 3.4 and quasi-compactness and
quasi-separatedness of Y and Y’). Hence, by Lemma 3.4, X — X' is a universal
homeomorphism, and the geometric pushout exists by Lemma 2.20. [l

Using Corollary 4.2, we also show the following lemma (generalising [Kee99,
Lemma 2.1]), which is essential in the proof of Theorem 1.5.

LEMMA 4.5. Let X be a quasi-compact quasi-separated algebraic space,
and let
f p
R=>=E=X
q
be maps of algebraic spaces such that p, q are representable quasi-compact
quasi-separated, f is a representable universal homeomorphism, and po f =
gof. Assume that there exists a representable universal homeomorphism Xg —
X(’@ such that the two composite morphisms Eg = Xg — X@ are identical.
Then there exists a representable universal homeomorphism X — X' such that
the two composite morphisms E = X — X' are identical.

The lemma also holds in the category of schemes in which case the assump-
tion on the quasi-compactness and quasi-separatedness of X is not necessary.

Proof. By replacing X by the geometric pushout of X «+ Xg — X{Q,
which exists by Corollary 4.2, we can assume that p|g, = q|g,-

First, we deal with the case when the spaces in question are schemes. To
this end, we reduce the lemma to when fg: Rg — Eq is an isomorphism. Let E’
be the geometric pushout (and hence a categorical pushout) of R+« Rg— Eq.
Then the induced map f': E' — E is a universal homeomorphism and an
isomorphism over Q (see Lemma 2.20). Moreover, p o f' = g o f’ by the
universal property of categorical pushouts as po f = go f and pg = qg. Thus,
we can conclude the reduction process by replacing R by E’.

Set X’ = X as topological spaces and endow X’ with a structure of a
ringed space by setting Ox/ = ker(p* — ¢*: Ox — p.Op). Note that since
R = FE topologically, we have a natural identification p,.Op = ¢.Op. We
claim that Ox/(U) — Ox(U) is a universal homeomorphism for every affine
open subset U C X. To show the claim we can assume that our spaces are
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defined over Z,) by Lemma 2.9. Then, by Lemma 3.4, O%erf = (’)%erf, and so

ng,rf = (’)I;(erf. The claim follows by Lemma 3.4 again.

Now, we claim that X'|;y = Spec Ox/(U), and so X’ is a scheme with the
induced map ¢g: X — X' being a universal homeomorphism. By the above
paragraph, U = X'|y = Spec Ox(U) topologically. Now, by quasi-coherence
of p,Op and exactness of localisation, we get that

Ox/(D(f)) = Ox:(U)y,

where " € Ox/(U), its image in Ox(U) is denoted by f, and D(f) C U is the
complement of the locus where f = 0 (cf. [Sta, Tag 01Z8]). This concludes the
proof of the claim. It follows by construction that gop =gogq.

Now we show the lemma for algebraic spaces. Let U — X be a surjective
étale morphism from an affine scheme U (which exists by [Sta, Tag 03H6] as
X is quasi-compact), and let Ry, E’[}, and Eg be its pullbacks via po f, p,
and ¢, respectively. Since the pullbacks of E}, and Ef; under f are isomorphic
to Ry, we have a natural isomorphism E?, ~ Elqj =: Ey by Remark 2.7(14),
and so two maps py, qu: Ey = U. Moreover, (pr)g = (qu)o-

Therefore, by the above paragraph, we can construct a universal homeo-
morphism gy : U — U’ equalising py and gy, and such that Ug ~ U@. Since
U is affine and X is quasi-separated, the morphism U — X is representable
quasi-compact and separated (Remark 2.7(1) and (3)). By Theorem 4.4, we
can construct a geometric pushout X’ of X < U — U’ sitting inside the
following diagram:

In particular, the two compositions By — E = X — X' are identical, and
since By — FE is faithfully flat (and thus Op — Op, is injective by [Sta,
Tag 08WP)), the two compositions E = X — X’ are identical, too. O

5. Gluing of semiampleness

In order to prove Theorem 1.2 and Corollary 1.3 we need to understand
semiampleness on non-irreducible schemes.

5.1. Gluing. The following propositions follow by the strategy of Keel
given our Theorem 4.4 and Corollary 3.7.

PROPOSITION 5.1 (cf. [Kee99, Cor. 2.9]). Let X be a reduced scheme pro-
jective over a Noetherian base scheme S and such that X = X1 U Xo for two
reduced closed subschemes X1 and Xo. Let L be a line bundle on X such
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that L|x,, L|x,, and L|x, are semiample (EWM, resp.). Let go: Xo — Z3
be a morphism associated to L|x,. Assume that ga|x,nx, has geometrically
connected fibres. Then L is semiample (EWM, resp.).

Proof. We can assume that S is affine. Let X192 := X; N Xy be the
scheme theoretic intersection. (In particular, it need not be reduced.) Let
g1: X1 — 21, 92: Xo — Zo,and g12: X712 — V1,2 be the morphisms associated
to L|x,, L|x,, and L|x, ,, respectively. Let

Vi 15 Vi 2,

be factorisations through the images V; of V2 in Z;. Note that f; are proper
(Remark 2.7(8)) with finite fibres, hence they are finite (Remark 2.7(11)).
Moreover, since ga|x, , has geometrically connected fibres, we get that fo is a
finite universal homeomorphism.

We claim that a topological pushout of (Vi)g + (Vi2)o — (V2)o ex-
ists. Indeed, let gg: Xg — Z’ be a map associated to L|x,, and let V' C Z
be the image of (Xj2)g. By construction, we get maps (V1)g, (V2)g — V'
such that (Vi)g — V' is proper (Remark 2.7(8)) and a bijection on points
(as 92]( X1.2)o has geometrically connected fibres), hence it is a finite universal
homeomorphism (Remark 2.7(11)). In particular, V' is the sought-for topo-
logical pushout.

Therefore, by Theorem 4.4, there exists a geometric pushout V of V; «+
V1,2 — Va sitting in the following diagram:

Xi¢———Xp——— Xy

L‘Jl,z

9 V1’2 g2
LN
Z1 — Vl V2 — ZQ
ha \\\x " b2
V.

By definition, f5: Oy, — (f2)+Ov;, is injective, and hence so is hy: Oy —
(h1)+Oy; (Remark 2.19(4)). Thus, by Lemma 2.10, V' is proper over S. Since V;
and V3 are of finite type, the morphisms h; and hy are finite (cf. Remark 2.19).

First, we consider the EWM case. To this end, let Z}, Z5, and Z be the
pushouts of Z; <= Vi — V|,V « Vo < Zy, and Z] <> V — Z} (equivalently
V VUV < Z] U Z,), respectively, which exist and are of finite type over S
by Theorem 2.3. By Remark 2.7(4) and (7), Z}, Z}, and Z are proper. Since
X is a categorical pushout of X; <= X2 — Xy ([Sta, Tag 0C4J]) and the
constructed maps X1 — Z, Xo — Z agree on Xj o, we get an induced map
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g: X — Z, which is proper (as it is a map between proper spaces). Note that
g: X — Z is associated to L; indeed, its restriction to X; agrees with g; for
i € {1,2} up to a finite map, and so a closed integral subscheme V C X; is
contracted by g if and only if it is contracted by g; if and only if L]y is not big.

Now, we move on to the semiample case of the proposition in which case
V is a scheme. Up to replacing L by some power, the line bundles L|x,, L|x, ,,
and L|x, induce ample line bundles Az, Az,, Ay, on Z1, Zs, and V2, re-
spectively. Let Ay, := Az |v,, and let Ay, := Ag,|v,. By construction, these
line bundles induce an element (Ay,, Ay,,¢) € Picy, XPicy, , Picy,, where ¢
is an isomorphism of their restriction to Vi 2. Now let Ay, € Picy, be a line
bundle on Vg given as a pullback via Vo — V' C Z’ of the line bundle in-
duced by the semiample fibration gg: Xg — Z’ of L| Xg- These constructions
provide an isomorphism between the restrictions of (Ay;, Ay,, ¢) and Ay, to
Pz'c(vl)(@ XPic(vy 5 Pz'c(v2)Q. Therefore, Corollary 3.7 implies the existence of
a compatible line bundle Ay € Picy up to replacing L by some power. In
particular, there is a map

Ay = (M) Avi X(hiof1). Ay, , (h2)<Av,

of quasi-coherent sheaves. In fact, this is an isomorphism as can be checked
locally, in which case this is equivalent to V' being a geometric pushout. More-
over, Ay is ample by [Sta, Tag 0B5V].

We get the following diagram:

HO(Zl7AZ1) — HO(‘/1727AV1’2) S HO(Z27AZQ)

! - !

HO(‘/laAvl) E— HO(‘/I,27AV1,2) A HO(V2>AV2)>

where the vertical arrows, up to replacing L by a multiple, are surjective by
Serre vanishing. The fibre product of the bottom row is H(V, Ay) (as proved
in the above paragraph), and since

H(X;,L|x,) = H*(Z;,Az,), H°(X12,L|x,,) =H’(Vi2,Av,),
the fibre product of the upper row is H°(X, L) (cf. [Sta, Tag 0B7M]). Hence,
we get a surjective map between the fibre products of both rows
HY(X,L) — H°(V, Ay),
and so the base locus of L is disjoint from Xj. When lifting sections via

HY(X;, L|x,) = H*(Z;,Az,) — H®(V;, Ay,) we can assume that they do not
vanish at any given point disjoint from X o, and hence L is semiample. O

PROPOSITION 5.2 (cf. [Kee99, Lemma 2.10]). Let X be a reduced scheme
projective over an excellent base scheme S. Let w:'Y — X be its normalisation
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with C C X and D CY being the conductors. Let L be a line bundle on X such
that 7L, L|c, and L|x, are semiample (EWM, resp.), and let g: Y — Z be
the morphism associated to m* L. Assume that g|p has geometrically connected
fibres. Then L is semiample (EWM, resp.).

Proof. Note that X is a categorical pushout of Y <= D — C (see [CT20,
Prop. 2.29] and [Sta, Tag 0E25]).

Let gp: D — V and gco: C — V4 be the morphisms associated to 7*L|p
and L|c, respectively. These morphisms lie in the following diagram:

Y ‘@N c
oy

Z%’Vvl V2 :}‘/27

where V; is the image of D under g. Since g|p has geometrically connected
fibres, we get that fi is a universal homeomorphism.

Arguing as in the proof of the above proposition, we can construct pushouts
V'iand Z/ of V1 + V — Vi and Z < Vi — V| respectively. We get an induced
map X — Z’, and it is associated to L in the EWM case. Indeed, Y — X — Z’
factorises into Y — Z and the finite map Z — Z’; in particular, an integral
subscheme V' C X is contracted by X — Z’ if and only if a surjective-onto-V
integral component V' C 7~1(V) is contracted by Y — Z if and only if 7*L|y
is not big if and only if L|y is not big (cf. Lemma 2.1).

In the semiample case, we proceed mutatis mutandis as in the proof of
the above proposition. O

For the proof of Corollary 1.3, we also need the following result.

PROPOSITION 5.3 (cf. [Kee99, Cor. 2.12 and 2.14]). Propositions 5.1 and
5.2 hold true when ga|x,nx, and g|p, respectively, have all geometric fibres,
except for a finite number over closed points, being connected, provided we
assume in the semiample case that positive characteristic closed points have
locally finite residue fields.

Proof. We focus on the case of Proposition 5.1 as the case of Proposi-
tion 5.2 is analogous. Let T C V5 be the finite set of closed points over which
the fibres of go|x, , are not connected, and set G := g, L(T). We would like to
apply Proposition 5.1 to (X; U G) U X,. To this end, we need to verify that
L|x,uc is semiample (EWM, resp.).

Let g1: X1 — Z; be the morphism associated to L|x,. Since ¢1(X1NG) is
a finite number of closed points, we have that L|gs is numerically trivial where
G = gfl(gl (X1N@G)). Now, we apply Proposition 5.1 again to X; U(GUG’),
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wherein L|gug is numerically trivial, and hence semiample (EWM, resp.) as
each connected component of G U G’ is of finite type over a locally finite field
or a field of characteristic zero in the semiample case; cf. [Kee99, Lemma 2.16].
This concludes the proof. O

6. Proofs of the main theorems

6.1. Keel’s base point free theorem in mized characteristic. As pointed out
in the introduction, the key to the proof of Theorem 1.2 is Theorem 1.10.

In what follows, we consider a category of pairs (X, Lx) consisting of a
scheme with a line bundle Lx on it, and we denote by f: (X,Lx) — (Y, Ly)
a data of a morphism f: X — Y together with an isomorphism f*Ly ~ Lx.

Proof of Theorem 1.10. We start with the EWM case of the theorem. Let
g: X™4 — Z be a map associated to L|ywa. We claim that there exists a topo-
logical pushout Z’ of X « X™ — Z which is proper over S. To this end, let
Xg — Z{Q be a contraction associated to L|x,. The induced map Zg — Z(’@ is
proper (Remark 2.7(8)) and a bijection on geometric points, hence a finite uni-
versal homeomorphism (Remark 2.7(11)). Thus, Z@ is a topological pushout of
Xg <+ X&d — Zg, and hence the claim follows by Theorem 4.4 and Lemma 2.22.
Now, the induced map X — Z’ is one associated to L. (The condition of being
a map associated to a line bundle depends on the reduction only.)

We move on to the semiample case. We can assume that S is an affine
Noetherian scheme over Z,), where p is a prime number. The semiample line
bundles L|xrea, L] Xged s and L|x,, up to replacing L by some power, induce
the following commutative diagram (in the category of pairs as stated above
which enforces compatiblity of line bundles and their isomorphisms):

(X, L) +—— (Xq, L|xg)

I

(X7, L goea) 4 (X, Ll )

| \,

(Z,A) «—— (Zg, Ag)

N

(Zg, Ag)

where A, Ag, and A{Q are ample line bundles. Furthermore, since X(rQ?d — Xg
is a universal homeomorphism, so is Zg — Z(); indeed, \X({fd| = |Xg| and
Xg — Z@ has geometrically connected fibres, and so X(r@ed — Z@ and the finite
part Zg — Z(’@ of its Stein factorisation must have geometrically connected
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fibres as well. (However, Zg — Z(’@ need not necessary be a thickening.) By
Corollary 4.2 and Lemma 2.22 we can construct a topological pushout Z’ of
Z <+ Zg — Z('@ which is proper over S. Since Z is of finite type, the induced
map Z — Z' is a finite universal homeomorphism. Thus, by Theorem 1.7, up
to replacing L by some power, we can extend the bottom left corner of the
above diagram to a commutative square

(Z,4) «— (Zg,4q)

| |

(2, A') «—— (Zg, AQ);

such that A’ is ample (see [Sta, Tag 0B5V]). Applying (H°)P°™f, we get a
diagram

-+ H(X, L)P" ———— H°(Xq, L|x, )P

S |

HO (Xred’ L|Xred )perf HO(ng, L‘X@ed )perf

1

I
|
|

|

\

\

\
\
\

~__ HO(z/’A/)perf HO(z(/@jAZQ)perf’

where the left bent arrow exists by the Cartesianity of the upper square (see
Proposition 3.5) and the fact that H°(Z’, A’ )perf maps compatibly to all other
spaces in the above diagram. Since A’ is ample and Z’ is of finite type over S,
we get that A’ is semiample (cf. [Sta, Tag 01VS]), and thus so is L. O

One could also tackle the semiample case of Theorem 1.10 by Theorem 4.4
and Corollary 3.7, but we believe that the above proof shows better what is
really happening.

THEOREM 6.1 (Theorem 1.2). Let L be a nef line bundle on a scheme X
projective over an excellent base scheme S. Then L is semiample over S if
and only if both Llgy and L|x, are so. If S is of finite type over a mived
characteristic Dedekind domain, then L is EWM if and only ifL\E(L) and L\XQ
are EWM.

Proof. We can assume that S is affine. We proceed by Noetherian induc-
tion on X as in [Kee99]. By Theorem 1.10, we can assume that X is reduced.
First, we reduce to the case of X being irreducible. If E(L) = X, then
we are done, so we may assume that there exists an irreducible component
X1 € X such that L|x, is big. Let Xo C X be the union of all the other
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irreducible components. Write
X=X U (Xg U E(L))

Assume that L|y, is semiample (EWM, resp.), and let g1: X; — Z; be an
associated morphism. The exceptional locus of ¢; is contained in E(L), and
hence g; has geometrically connected fibres on X; N (Xy UE(L)). Thus L is
semiample (EWM, resp.) if L|x,ug(r) is semiample (EWM, resp.) by Propo-
sition 5.1. Repeating this process for Xo UE(L), we see that it is enough to
show the theorem for X being irreducible. In particular, we can assume that
S is integral.

Since L is big, we have that L" ~ A ® E for some r € N, where A is an
ample line bundle and E is a line bundle for which H°(X, E) # 0. Let D be a
zero locus of some section 0 # s € H(X, E). By definition, E(L|,,p) C E(L);
hence Llg(r),,,) is semiample (EWM, resp.), and so by Noetherian induction,
L|,,p is semiample (EWM, resp.) for every m € N as well.

In the semiample case, pick k > m >> 0 divisible enough so that L*|,,p is
base point free and A* is very ample. Consider the following exact sequence,

H°(X,L¥) — H'(mD, L*|,.p) = HY (X, L*(—mD)) = 0,

wherein the last cohomology group is zero by the Fujita vanishing ([Kee03,
Th. 1.5] and [Keel8]) as LF(—mD) ~ A™ @ L*¥~™"  Thus L* has no base
points along D and hence is base point free as L* ~ Ak @ ER/T and AR/ is
very ample.

The EWM case follows from [Art70, Ths. 3.1 and 6.2] as in [Kee99,
Prop. 1.6]. Here, we need to assume that S is of finite type over an excel-
lent Dedekind domain to apply [Art70]. O

6.2. Quotients by finite equivalence relations in mized characteristic. As
in Section 2.2, all geometric quotients are assumed to be separated and of
finite type over a Noetherian base scheme S. The following lemma allows for
constructing quotients of non-reduced schemes.

LEMMA 6.2. Let X be a separated algebraic space of finite type over a
Noetherian base scheme S. Let E = X be a finite, set theoretical equiva-
lence relation, and assume that the quotients Xq/Eqg and Xyed/Ered ezist as
separated algebraic spaces of finite type over S, where X,eq and Eroq are reduc-
tions of X and E, respectively. Then the geometric quotient X/E exists as a
separated algebraic space of finite type over S.

Proof. Consider the following commutative diagram:



KEEL’S THEOREM AND QUOTIENTS IN MIXED CHARACTERISTIC 695

Ered —= Xiea —— Xred/Ered

]

where Y is the geometric pushout of X < Xioq — Xieq/FEred. Such a pushout
exists by Theorem 4.4 as Xq < Xqred = XQred/FEQred admits a topological
pushout in the form of Xg/Eqg. Here, the map

XQred/Eqrea = Xq/Eq

is proper (Remark 2.7(7)), and a bijection on geometric points, hence a finite
universal homeomorphism (Remark 2.7(11)). Moreover, the map X — Y
is integral (Remark 2.19(2)) and the map Yy — Xq/Eq is a representable
universal homeomorphism (Lemma 2.20).

We know that two compositions Freq — F == Y coincide. Moreover,
the compositions Eg = Yo — Xq/Eq coincide as well and Y is quasi-compact
quasi-separated (Remark 2.19(3)), so by Lemma 4.5 there exists a representable
universal homeomorphism Y — Y’ such that the compositions £ = X — Y
— Y coincide. Thus a geometric quotient X/F exists by Theorem 2.13. O

Our proof of Theorem 1.4 follows closely the strategy of Kollar from
[Kol12, §4] with the new component being Theorem 4.4.

Proof of Theorem 1.4. We prove the theorem by induction on dimension.
Set d = dim X. By Lemma 6.2, we can assume that X and E are reduced.

First we show the theorem under the assumption that X is normal. To this
end, we set E? C E and X% C X to be the unions of d-dimensional irreducible
components of E and X, respectively. Write X = XU X<¢ where X <% is
the union of all the other components of X. By [Kol12, Lemma 28], £¢ = X1
is a set theoretic finite equivalence relation and the geometric quotient X</ E?
exists by [Kol12, Lemma 21]. Define X/E? := X¢/E4 1 X <4,

Let Z C X be a reduced closed subscheme of dimension lower than d such
that Z is closed under E and the equivalences E|x\ 7 and B4 x\z coincide. For
example, set Z = o9(o] (X <? U 09(E<?))), where 01,09: E = X gives the
equivalence relation and F = E% U E<¢ for E<? being the union of irreducible
components of E of dimension at most d — 1. Since oo(o; *(T)) is stable under
E for any subset T of X by transitivity of equivalence relations, Z is stable
under E. Consider the following diagram:

Z —— X

o

Z' —— X/E¢,
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where Z’ is the image of Z in X/E? and Z — Z' is finite. We have that
E|z = Z is a finite set theoretic equivalence relation on Z, and since the
geometric fibres of Z — Z’ are subsets of E-equivalence classes, we get an
induced equivalence relation Ez = Z’ (see [Kol12, Def. 26]).

Since Xq/Eq exists, [Koll12, Cor. 18] implies that Zg/Ez g exists too
and, by induction, so does the geometric quotient Z’/Ez. By Theorem 2.3,
there exists a pushout

Z —— X/E¢

| |

Z'|Ey —— Y,

with X/E? — Y finite and Y being an algebraic space of finite type over S
(and separated by Remark 2.7(4)). Since X/E? — Y equalises E = X/E?,
Theorem 2.13 implies the existence of X/FE, which, in fact, coincides with Y
as being a categorical pushout of the above diagram is equivalent to being a
categorical quotient of X/E? by E (see [Kol12, Prop. 25]).

We move to the case when X is not necessarily normal. Let g: X — X
be its normalisation (which is finite by [Sta, Tag 0BB5]), let E be the pullback
of E (see [Koll2, Def. 26]), and let g: X — X/E be the geometric quotient
which exists by the above paragraphs. Set X* to be the image of X under the
diagonal map (¢,¢): X — ()E'/E) xg X.

Since X is separated (as so is X), the diagonal map X 53 XxgXisa
closed immersion and (g, g) is finite. Thus X — X* is proper (Remark 2.7(8)),
and so X* = X/F and X* — X are proper as well (Remark 2.7(7) and (4)).
Since the fibres of X — X are contained in the equivalence classes of E, the
map X* — X is a bijection on geometric points, and so a finite universal
homeomorphism (Remark 2.7(11)).

The diagram XQ / EQ — X@ — X@ admits a topological pushout in the
form of Xgp/Eg. Indeed, the composite map X@ — X@/E@ — Xq/Eq is
finite, and so Xg/Eqg — Xgq/Eg is proper (Remark 2.7(7)); as it is also a
bijection on geometric points, it must be a finite universal homeomorphism
(Remark 2.7(11)). Thus Theorem 4.4 implies that the geometric pushout, say
W, of X/E + X* — X exists:

Ny

Xt —

X
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Moreover, E is a set theoretic equivalence relation over W (as Op — O
is injective due to X and F being reduced), and so the geometric quotient
X/E exists by Theorem 2.13. Note that X — W is integral by Remark 2.19.

O

6.3. Quotients by affine algebraic groups in mized characteristic. Now, we
move on to the proof of Theorem 1.5. To this end, we need the following lemma.

LEMMA 6.3. Let G be an affine algebraic group scheme, flat and of finite
type over a Noetherian base scheme S, let X and Y be separated algebraic
spaces of finite type over S admitting a proper action of G, and let f: X =Y
be a finite and universal G-homeomorphism. If the geometric quotient Y/G
exists, then so does X/G. Conversely, if both X/G and Yo/Gq exist, then so
does Y/G.

Proof. If the geometric quotient Y/G exists, then X/G exists by applying
Theorem 2.15 to X - Y — Y/G.

Thus, we can assume that X/G and Yp/Gg exist. Since Yp/Gg is a
topological pushout of Xq/Gg < Xq — Yp (see Remark 2.16(5)), a geometric
pushout Z of X/G < X — Y exists by Theorem 4.4.

We claim that there exists a representable universal homeomorphism Z — Z’
such that the composite map Y — Z — Z’ is a G-morphism with Z endowed
with a trivial G-action. To this end, we consider the following commutative
diagram:

X/GxG+— XxG—YxG

lmX/G lmx lmy
X/G X Y,
where the vertical arrows are given by G-actions. In particular, we get an

induced map mz: Z x G between the pushouts of both rows, such that the
diagram

X/GxG —— Zx G

lmX/G lmz

X/G —— 7
is commutative. Since m X/G 18 a projection, the two composite maps
X/GXxG = ZxG =7
mgz
are identical, where 7 is a projection.
By Lemma 2.20, there exists a representable universal homeomorphism
Zg — Ygp/Gq. Further, the two composite maps

Zg x Gog == Zg — Yo/Go
mz
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are identical. (Here we used that myz,: Zg X Gg — Zg is compatible with
My, /ot Yo/Ga X Gg — Yg/Gq.) Hence, we can invoke Lemma 4.5 to get a
representable universal homeomorphism Z — Z’ such that the two composite
maps Z x G = Z — Z' are identical. This concludes the proof of the claim.
Given the claim, the geometric quotient Y/G exists by Theorem 2.15
applied to Y — Z’. O

Note that a normalisation of an excellent scheme is finite ([Sta, Tag 07QV
and 0358]).

Proof of Theorem 1.5. Note that Xq/Gq exists by the characteristic zero
case of the theorem. (See [Vie95, Th. 9.16] for when Sg is of finite type over
a field.)

We follow the strategy described in [Kol97, 5.7]. By [Kol97, Th. 5.6], the
action of G on X lifts to the seminormalisation X*" of the reduction of X.
By Lemma 6.3, it is enough to show that a geometric quotient X*" /G exists.
Hence we can assume that X is seminormal and reduced.

By [Kol97, Prop. 4.1], the action of G on X lifts to the normalisation
X"™ of X and, by [Kol97, Th. 4.3], the geometric quotient X" /G exists. Let
C C X and D C X" be the conductor schemes. We must have that C is
G-invariant, and so D admits a proper action of G. Moreover, it admits a
topological quotient D — Dxn /g, where Dxn g is the image of D in X"/G.
Hence the geometric quotient D /G exists by Theorem 2.15 and the induced
map D/G — Dxn /g is a finite universal homeomorphism. We can assume
that the geometric quotient C'/G exists by Noetherian induction. The induced
map D/G — C/G is finite by Remark 2.16.

In [Kol97, Th. 5.8], it is shown that the geometric quotient X/G exists
provided that the geometric quotients X" /G, C'/G, and a topological pushout
of C/G «+ D/G — Dxnq (with the maps from C/G and Dxn /g to the
pushout being finite) exist. Note that the image Cxy/aq of Cg in Xg/Go is a
topological pushout of Cp/Gq < Do/Gg — (Dxn/q)q, as Cp/Gg — Cxy/ay
is a finite universal homeomorphism (Theorem 2.15). Hence, we can invoke
Theorem 4.4 to get a geometric pushout and Lemma 2.22 to get a topological
pushout Z of C/G <~ D/G — Dxn g of finite type over S. Then C/G — Z
and Dxn/g — Z are integral (Remark 2.19) and hence finite as C//G and
Dxn g are of finite type over S. O

Remark 6.4. Let h: G’ — G be a universal homeomorphism of flat group
schemes of finite type over a Noetherian base scheme S. By the same argument
as in Lemma 6.3, one can show that a geometric quotient by a proper action
of G exists if and only if a geometric quotient by a proper action of G’ exists,
provided that both quotients exist over Q. This allows for weakening the
assumptions of Theorem 1.5.
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6.4. Base point free theorem in mixed characteristic. Throughout this
subsection, we assume that .S is a quasi-projective scheme defined over a mixed
characteristic Dedekind domain. Theorem 6.1 immediately implies the exis-
tence of plt contractions for mixed characteristic threefolds.

COROLLARY 6.5. Let (X, D + B) be a plt pair on a normal integral mized
characteristic scheme X of (absolute) dimension three which is projective over
S, with D being a normal irreducible divisor and B being an effective Q-divisor.
Let L be a nef Cartier divisor on X such that L — (Kx + D + B) is ample and
E(L) € D. Then L is semiample.

Proof. By adjunction, [Tanl8, Th. 4.2], and [Tan20, Th. 1.1], L|p is semi-
ample, and so L|g(r) is semiample as well. Moreover, L|x, is semiample by
the base point free theorem in characteristic zero (cf. [BCHM10, Th. 3.9.1] or
[HK10, Th. 5.1]). Hence, L is semiample by Theorem 6.1. O

We move on to the proof of Corollary 1.3. To this end, we need the
following result. Here, X can be of positive characteristic.

PROPOSITION 6.6. Let L be a nef line bundle on a normal integral scheme
X admitting a projective morphism w: X — S. Assume that the (absolute)
dimension of X is two, dimm(X) > 1 and L|x, is semiample, where 1 is the
generic point of w(X). Then L is EWM, and if positive characteristic closed
points of S are locally finite fields, then L semiample.

Proof. By Stein factorisation, we can assume that 7 is surjective and
m.Ox = Og, where m: X — S is the projection. In particular, we may assume
that S is integral and normal. We divide the proof into two cases depending
on whether L is big or not.

In the former case, we can apply Theorem 6.1 and reduce to showing that
L|g(ry is EWM (semiample, resp.). But E(L) is a scheme of dimension at most
one, and so L|g(r) is EWM (semiample if positive characteristic closed points
of S are locally finite fields). Here, we used that L|y, is semiample as either
Xo =0, or Lj Xg 1s big and Xgq is an integral normal scheme of dimension at
most one.

In the latter case, dim S = 1, and since S is normal, it is regular by [Sta,
Tag 0BX2]. Moreover, L|x, ~gq 0, so we can apply [CT20, Lemma 2.17] to
deduce that in fact L is relatively torsion. O

The proof of Corollary 6.7 follows exactly the same strategy as in [Kee99].
For the convenience of the reader, we attach a sketch of the proof below,
following a slight reformulation of it as written in [MNW15].

COROLLARY 6.7 (Corollary 1.3). Let (X, A) be a klt pair on a normal in-
tegral scheme X of (absolute) dimension three which is projective and surjec-
tive over a spectrum S of a mized characteristic Dedekind domain with perfect
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residue fields of closed points. Let L be a nef and big Cartier divisor on X
such that L— (K x +A) is nef and big. Then L is EWM. If the residue fields of

positive characteristic closed points of S are locally finite, then L is semiample.

Proof. We prove that L is semiample (resp. EWM). In the semiample case,
we assume that positive characteristic closed points of S (and so also of X as
it is projective over S) are locally finite. By taking a Stein factorisation, we
can assume that m,Ox = Og, where 7: X — S is the projection. By the
base point free theorem in characteristic zero, we have that L|y, is semiample.
Since L is a big Cartier divisor, up to multiplying L by some number, we can
decompose it as L ~g A+ D, where A is an ample and D is an effective Cartier
divisor. By Theorem 6.1, it is enough to show that L|p,, is semiample, where
D,cq is the reduction of D.

Write Dyeq = > inq Dj, where D; are prime divisors, and define A\; € Q so
that A + \; D contains D; with coefficient one. In particular, there exists an
effective Q-divisor I'; such that

A+ND=D;,+T;
and D; ¢ Supp(l';). Since (X, A) is klt, it follows that A; > 0. By rearranging
indices, we may assume without loss of generality that A\ < Ay < -+ < A, S0

Z D; <Ty
1<j<i—1
for each 7. We define Uy := () and U; := U;_1 U D; for i > 0. We prove that
Ly, is semiample (resp. EWM) by induction on i. By adjunction, there exists
an effective Q-divisor Ag. such that (Kx + D; +1})|p, ~ K5, + Ap,, where
D; — D; is the normalisation. Note that (1 + \)L|p, = K5, + Ap, + A’ for
A" ample (see, e.g., the proof of Lemma 6.8).

Let us assume that L|y, , is semiample (resp. EWM). We first prove that
L|p, is semiample (resp. EWM). If D; is of mixed characteristic, then L|5, is
semiample (resp. EWM) by Proposition 6.6. If D; is of positive characteristic
but dim7(D;) > 1, then L|(—i)n = K5, + Aw,), + A’|(E)n is semiample
for the generic point 1 of 7(D;) by the base point free theorem for curves

we have

(equiv. classification of curves), and so L|p, is semiample (resp. EWM) by
Proposition 6.6. If D; is projective over a positive characteristic field, then L|E~
is semiample (resp. EWM) by an analogous argument to that in [Kee99, p. 279].
For the convenience of the reader, we summarise this argument briefly. When
L\Ei has numerical dimension zero, we are done by assumptions. When the
numerical dimension is two, this follows by Theorem 6.1. When the numerical
dimension is one, a Riemann-Roch calculation as in [Kee99, p. 280] shows that
x(Op,(mL|p,)) grows linearly with m. Up to a base change, we can assume
that D; is defined over an algebraically closed field. Thus, L|E is semiample
(in both cases) by [Kee99, Lemmas 5.2 and 5.4]. (The latter reference gives a



KEEL’S THEOREM AND QUOTIENTS IN MIXED CHARACTERISTIC 701

bound on H?(D;, Op,(mL|p,)), which then implies that some multiple of L|5,
is linearly equivalent to an effective divisor; the former reference states that
Q-effective nef line bundles of numerical dimension one on normal projective
surfaces over algebraically closed fields are semiample.)

Assume k(L|p,) is equal to 0 or 2. Then the assumptions of Proposi-
tion 5.3 are satisfied, and so L|p, is semiample (resp. EWM). Using the same
proposition again for X; = U;_; and X = D;, we get that L|y, is semiample
(resp. EWM).

In what follows, we assume x(L|5,) = 1.

LEMMA 6.8. Let m;: D; — Z; be the map associated to the semiample line
bundle L]E,, and let F be the generic fibre of m;. Further, let C; C D; be the
the reduction of the conductor of the normalisation p;: D; — D;. Then Cilr
1s a geometrically connected zero-dimensional scheme.

In what follows the degrees of line bundles on F' are taken with respect to
L =HF, Op).

Proof. For M; := (1+ X\;)L — (Kx + A+ \;D), it holds that
M; =L —(Kx +A)+ N(L—D)
~g (L — (Kx + A)) + Nid,

and so M; is ample, because L— (K x+A) is nef and A\; A is ample. In particular,

deg M;|r > 0. Since deg L|r = 0, we get deg(Kp, + Ap,)|r < 0. Hence,
deg Ap |p < —deg K5, |p = —deg KF = 2,

where the last equality follows from the fact that F is a conic over L (cf. [Liu02,

Ch. 9, Prop. 3.16]). By the adjunction formula, the one-dimensional part of

C; is contained in Supp(|Ap, |). Hence, we get deg Ci|p <deg Ap |[p<2. [

By this lemma, the assumptions of Proposition 5.3 are satisfied, and so
L|p, is semiample (resp. EWM). Let p;: D; — Z] be the map associated to
L|p,, and let G be a generic fibre of p;. We get the following commutative
diagram, where 7;: D; — Z; is the map associated to L|§i:

D; —— D;

bk

Zi — 7.

We want to apply Proposition 5.3 to X; = U;—; and X3 = D; to show
that L|y, is semiample (resp. EWM). It is sufficient to prove that G intersects
U;—1 N D; in at most one point.

By definition of U; and the adjunction formula, the one-dimensional part
A of p; H(U;—1 N D;) is contained in Supp( |Ap.]). By the proof of Lemma 6.8,
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we can conclude
degAlg < deg Ap. | < 2,
which completes the proof. U
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