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Keel’s base point free theorem and
quotients in mixed characteristic

By Jakub Witaszek

Abstract

We develop techniques of mimicking the Frobenius action in the study

of universal homeomorphisms in mixed characteristic. As a consequence,

we show a mixed characteristic Keel’s base point free theorem obtaining

applications towards the mixed characteristic Minimal Model Program, we

generalise Kollár’s theorem on the existence of quotients by finite equiva-

lence relations to mixed characteristic, and we provide a new proof of the

existence of quotients by affine group schemes.

1. Introduction

There are three natural classes of algebraic varieties: of characteristic zero,

of positive characteristic, and of mixed characteristic. In trying to understand

characteristic zero varieties one can apply a wide range of techniques coming

from analytic methods like vanishing theorems. More complicated though they

are, positive characteristic varieties come naturally with the Frobenius action

which often allows for imitating analytic proofs or sometimes even showing

results which are false over C. Of all the three classes, the mixed characteristic

varieties are the most difficult to understand as they represent the worst of both

worlds; one lacks the analytic methods and the Frobenius action when working

with them. Recent years have seen a surge of interest in the study of geom-

etry and commutative algebra of mixed characteristic varieties (cf. [And18],

[Bha18], [MS18], [MS21], [Tan18], [EH21]) as they bridge the gap between

positive and zero characteristics and play a central role in number theory.

What allows for many of the applications of Frobenius is the following ob-

servation: if f : X → Y is a universal homeomorphism of positive characteristic

schemes (for example, a thickening), then its perfection fperf : Xperf → Yperf is

an isomorphism. The goal of this article is to introduce analogues of this fact
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in mixed characteristic and employ them to generalise many positive charac-

teristic results, with focus on two main sources of applications: the study of

base point freeness and constructing quotients.

Before moving on to mixed characteristics, let us give one prominent ex-

ample of the efficacy of the Frobenius action in positive characteristic: Keel’s

base point free theorem.

Theorem 1.1 ([Kee99]). Let L be a nef line bundle on a projective scheme

X defined over a positive characteristic field k. Let E(L) be the union of all

integral subschemes on which L is not big. Then L is semiample if and only if

L|E(L) is so.

Here, a line bundle L is nef if L · C ≥ 0 for every proper curve C ⊆ X, it

is semiample if some multiple of it is base point free, and it is big (in the case

of the scheme being integral) if L⊗m ⊗ A−1 admits a section for some ample

line bundle A and some m ∈ N.

This seminal result plays a vital role in the study of positive character-

istic geometry as it allows for showing base point freeness by an inductive

argument. It is indispensable in the positive characteristic Minimal Model Pro-

gram ([HX15]), but has many other applications: to birational geometry (e.g.,

[CMM14], [Bir17], [CT20], [MNW15]), moduli spaces of curves (e.g., [Kee99],

[Kee03]), arithmetic moduli ([BS17]), or Mumford’s conjecture ([SS11]) to men-

tion a few. Surprisingly, this result is false in characteristic zero.

In this article, we generalise Keel’s theorem to mixed characteristics. In

particular, this provides a positive answer to a problem posed by Seshadri

([Ses05, Rem. 2]).

Theorem 1.2 (Theorem 6.1). Let L be a nef line bundle on a scheme X

projective over an excellent base scheme S. Then L is semiample over S if and

only if both L|E(L) and L|XQ are so.

Here XQ := X ×SpecZ SpecQ. Note that the assumption that L|XQ is

semiample is necessary, because Keel’s result by itself is false in characteristic

zero. Further, we prove an analogous result for semiampleness replaced by

EWM (endowed-with-a-map; see Section 2).

As a corollary of Theorem 1.2, we show that contractions exist in the

mixed characteristic Minimal Model Program (see Corollary 6.5) and prove

the following base point free theorem.

Corollary 1.3 (Corollary 6.7). Let S be a spectrum of a mixed charac-

teristic Dedekind domain with residue fields of closed points being locally finite.

Let (X,∆) be a klt pair on a normal integral scheme X of (absolute) dimen-

sion three which is projective and surjective over S, and let L be a nef and

big Cartier divisor on X such that L − (KX + ∆) is nef and big. Then L is

semiample.
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A field is locally finite if it is a subfield of Fp for some prime number p > 0.

When the residue fields of S are not locally finite, we prove that L is EWM.

We move on to constructing quotients of schemes. The following result in

positive characteristic has been shown by Kollár (see [Kol12]).

Theorem 1.4. Let X be a separated algebraic space of finite type over an

excellent base scheme S. Let σ : E ⇒ X be a finite, set theoretical equivalence

relation, and assume that the geometric quotient XQ/EQ exists as a separated

algebraic space of finite type over S. Then the geometric quotient X/E exists

as a separated algebraic space of finite type over S.

Note that as with Keel’s theorem, the quotients by set theoretical finite

equivalence relations need not exist in characteristic zero. However, one can

construct them in many important cases (see [Kol12], [Kol13]).

Lastly, we provide a new proof of the following result (cf. [Kol97, Conj. 1.1]).

Theorem 1.5 ([KM97, Th. 1.1 and Cor. 1.2]). Let G be an affine algebraic

group scheme of finite type and smooth over an excellent base scheme S, and let

X be a separated algebraic space of finite type over S. Further, let m : G×X→X

be a proper G-action on X . Then a geometric quotient X/G exists and is a

separated algebraic space of finite type over S.

The assumption on the smoothness of G can be weakened (cf. Remark 6.4).

Over C the above fundamental theorem was proved in [Pop74]. Building on the

results of Seshadri ([Ses72]), Kollár showed this theorem for algebraic spaces

over positive characteristic fields, and also for mixed characteristic ones when

the group scheme is reductive ([Kol97]). Finally, the conjecture has been set-

tled in [KM97], where it was shown that quotients by flat groupoids with finite

stabilisers exist. Although the above result is known to hold for the last two

decades, we believe it is interesting to provide a new proof of it, one which

follows Kollár’s original strategy.

We finish this part of the introduction by explaining an important recur-

ring theme in the proofs of all the above results: constructing pushouts of

diagrams X
p←− Y

g−→ Y ′ where g is a universal homeomorphism. In order to

prove his remarkable result ([Kol97]), Kollár showed that such pushouts exist

in positive characteristic, and in mixed characteristic as well if g is, in addi-

tion, an isomorphism over Q and p is finite. The following generalisation of his

result plays a vital role in the proofs of the above theorems, and we believe it

is interesting in itself.

Theorem 1.6 (cf. Theorem 4.4). Let X
p←− Y

g−→ Y ′ be a diagram of

schemes or algebraic spaces such that p is representable, quasi-compact, and

separated, and g is a representable universal homeomorphism. Assume that a

pushout of XQ ← YQ → Y ′Q exists. Then so does a pushout of X ← Y → Y ′.
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An important case of this theorem is constructing pushouts of X
p←− XQ

g−→
X ′Q, where g is a representable universal homeomorphism, in other words, ex-

tending a universal homeomorphism from characteristic zero to mixed charac-

teristic.

Having constructed such pushouts, we need to study their properties, and

the following theorem allows for finding line bundles on them. Here, PicX
denotes the groupoid of line bundles on X.

Theorem 1.7. Let f : X → Y be a finite universal homeomorphism of

Noetherian schemes over Z(p). Then the diagram

PicY [1p ] PicX [1p ]

PicYQ [1p ] PicXQ [1p ]

f∗

is Cartesian in the 2-category of groupoids.

1.1. Further discussion. In this subsection we summarise other topics re-

lated to our study of Keel’s theorem and quotients in mixed characteristic. In

order to prevent this paper from becoming too long, we decided not to pursue

them in detail here. Instead, we hope to address some of them in forthcoming

articles (e.g., [Wit]).

Mumford conjecture (Haboush’s theorem). Given an affine scheme SpecA

which is finitely generated over a characteristic zero field, and a reductive group

G acting on SpecA, it is easy to show using the averaging operator that AG is

finitely generated as well. However, in general this has been an open problem

for many years (known as Mumford’s conjecture), eventually settled in positive

characteristic by Haboush using Steinberg’s representations ([Hab75]), and ex-

tended to mixed characteristic using similar methods by Seshadri ([Ses77]).

Before Haboush’s seminal paper, Seshadri set up a program for showing Mum-

ford’s conjecture by geometric means (cf. [Ses72]). After the announcement of

[Kee99], Seshadri realised ([Ses05]) that Keel’s base point free theorem is ex-

actly what is needed to conclude his program in positive characteristic and yield

a geometric proof of Mumford’s conjecture in this setting. (This was eventually

proven together with Sastry in [SS11].) As remarked by Seshadri, the missing

component for concluding his program in full generality is a mixed character-

istic variant of Keel’s theorem. Hence, the results of our paper should possibly

allow for a geometric proof of Mumford’s conjecture in this general setting.

Mixed characteristic Minimal Model Program. We were motivated to seek

a mixed characteristic variant of Keel’s theorem by our study of the higher

dimensional mixed characteristic Minimal Model Program; see [Tan18] for the
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two-dimensional case. The recent breakthrough proof of the validity of the

Minimal Model Program for positive characteristic threefolds by Hacon and

Xu (see [HX15]) is based on two main components: Keel’s theorem used to

construct contractions, and the Frobenius regularity used to construct flips.

Our mixed characteristic Keel’s theorem provides exactly what is needed to

generalise the former component to mixed characteristic. Note that, recently,

Schwede and Ma ([MS18]), motivated by the work of André, Bhatt, and Scholze

([And18], [Bha18], [Sch12]), introduced a mixed characteristic analogue of

F -regularity. We hope that this could be used to mimick Hacon-and-Xu’s

proof of the existence of flips (see [MST+19] for the first step in this direction)

which combined with our results would yield the validity of the MMP for mixed

characteristic threefolds.

Relative semiampleness. Cascini and Tanaka have shown that given a pro-

jective morphism f : X → Y of positive characteristic Noetherian schemes, the

relative semi-ampleness of a line bundle L on X may be verified fibrewise

([CT20]; see [BS17, Th. 1.3] for a similar result). The three main components

of their proof are Keel’s base point free theorem, Kollár’s existence of quo-

tients by finite equivalence relations, and “gluing” of semiampleness of line

bundles. In this article we generalise these components to mixed characteristic

(Theorems 1.2, 1.4, and Section 5.1) and, as far as we understand, this will be

enough to extend the result of Cascini and Tanaka to morphisms over Z. As a

corollary, one gets the following.

Work in progress 1.8. Let L be a nef line bundle on a scheme X

projective over a Noetherian base scheme S. Assume that L|XFp and L|XQ are

semiample over S. Then L is semiample over S.

Due to the amount of technical details, we do not sort out the proof here,

but instead postpone it to a separate article ([Wit]).

Moduli spaces of curves. One of the consequences of Keel’s seminal pa-

per was the proof that the relative canonical divisor on the universal family

of curves over Mg,n is always semiample in positive characteristic ([Kee99,

Th. 0.4]). In [Kee03] it was shown that many other nef line bundles on Mg,n

in positive characteristic are semiample, and the results of our paper should

allow for proving that some of these line bundles (for example, corresponding

to KX -negative extremal rays—cf. [Gib09, §7]) are semiample in mixed char-

acteristics as well. Theorem 1.8 will reduce this problem to the independent

study of the characteristic zero and the positive characteristic cases, thus we

postpone writing any proofs to [Wit].

In general, Keel conjectured that every nef line bundle on Mg,n in positive

characteristic is semiample. If this is true, then Theorem 1.8 will imply the

following.
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Conjecture 1.9. Let Mg,n be the moduli space of genus g curves with

n marked points over SpecZ, and let L be a nef line bundle on it. If L is

semiample on Mg,n × SpecQ, then it is semiample.

K-theory. It is natural to enquire if the constructions of this paper can

be extended to a more general framework. In fact, motivated by some of the

ideas contained here, one can provide results towards the study of mixed char-

acteristic K-theory ([AEMW]). This, as well as Theorem 1.7 and Lemma 1.11,

suggests to explore ind-objects of the form lim−→F̃
W , where W is a (derived)

Zp-stack endowed with a lift F̃ of Frobenius. Such objects are in some sense

complementary to perfectoid spaces, which often come from a similar construc-

tion but with the direct limit replaced by the inverse limit. We hope this and

other related problems, such as the behaviour of derived Brauer stacks un-

der universal homeomorphisms in mixed characteristic, to be addressed in a

separate article.

1.2. The idea of the proof of Theorem 1.2. The key components in the

proofs of the main results are Theorems 1.6, 1.7, and the “mixed character-

istic multiplicative perfection.” In what follows we explain the last concept

by giving a sketch of the proof of Theorem 1.2. Note that [BS19] defined a

mixed characteristic perfection in the category of derived schemes; however,

their theory seems useful for a different type of geometric applications (see,

e.g., [MST+19, App.]).

Using Keel’s strategy and Theorem 1.7, we can deduce Theorem 1.2 from

the following result.

Theorem 1.10. Let L be a nef line bundle on a scheme X projective over

a Noetherian base scheme S. Then L is semiample (or EWM ) if and only if

both L|Xred and L|XQ are so, where Xred is the reduction of X .

In fact, Birkar showed that for varieties over a field, there exists a thicken-

ing E(L)th of E(L) such that L is semiample if and only if L|E(L)th is so ([Bir17,

Th. 1.5]). However, the main difficulty with applying this result in practice is

that it is usually difficult to verify that a line bundle on a non-reduced scheme

is semiample.

By localising at primes p ∈ SpecZ, we can assume that X is defined

over Z(p). Let us explain the proof of Theorem 1.10 under the assumption that

XQ = ∅, that is, X is defined over Z/pmZ for some m > 0. Therewith, we

claim that OX → OXred is an isomorphism up to raising the sections to the

pn-th power for some n� 0. In particular, when k is divisible by high enough

power of p, the same holds for

H0(X,Lk)→ H0(Xred, Lk|Xred),

and so L is semiample if and only if L|Xred is so. (The idea is that we lift sections

locally but then these different local lifts glue up to pn-th power by the claim.)
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To prove the claim, we can work affine locally. Let π : R → R/I be a

morphism of rings such that I is a locally nilpotent ideal and R[1p ] = 0, that

is, pm = 0 for some m > 0. Since π is clearly surjective, it is enough to check

that it is injective up to raising the sections to some pn-th power; that is,

for every r1, r2 ∈ R such that π(r1) = π(r2), we have rp
n

1 = rp
n

2

for some n > 0 depending on r1 and r2.

The first condition stipulates that r2 = r1 + t for some t ∈ I. Since I is locally

nilpotent, tr+1 = 0 for some r > 0, and so

rp
n

2 = rp
n

1 +
r∑
i=1

Ç
pn

i

å
rp
n−i

1 ti.

By taking n � 0 we can assume that pm |
(pn
i

)
for i ≤ r, and so rp

n

2 = rp
n

1 ,

concluding the proof of the claim and the theorem when XQ = ∅.
We can formalise the concept of the validity “up to some pn-th power” by

introducing a handy notion of a perfection of the sheaf OX ; we set

Operf
X := lim−→

s7→sp
OX .

Since the p-th power map is not additive, this object is only a sheaf of multi-

plicative monoids.

Given a universal homeomorphism f : X → Y such that fQ is an isomor-

phism, we show that Operf
Y → f∗Operf

X is an isomorphism (see Lemma 3.4),

from which we infer the following.

Lemma 1.11. Let f : X → Y be a universal homeomorphism of schemes

over Z(p). Then the diagram

Operf
Y Operf

X

Operf
YQ

Operf
XQ

f∗

is Cartesian in the category of sheaves of monoids.

This shows that in mixed characteristic the p-th power map behaves to

some extent as if it were additive.

Theorem 1.10 can be proved using Lemma 1.11 and Theorems 1.6 and 1.7.

2. Preliminaries

We refer to [Sta] for basic definitions in scheme theory and to [KM98]

for basic definitions in birational geometry (see also [Kol13], [Tan18], [CT20]).

We say that (X,B) is a log pair if X is a normal excellent scheme of finite

dimension admitting a dualising complex, B is an effective Q-divisor, and
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KX +B is Q-Cartier. Given a scheme X, we write XQ := X×SpecZSpecQ and

XFp := X ×SpecZ SpecFp for a prime number p > 0. We say that a connected

schemeX is of mixed characteristic ifXQ 6= ∅ andXFp 6= ∅ for some prime num-

ber p > 0. Note that every mixed characteristic Dedekind domain (Noetherian

normal domain of dimension at most one) is excellent ([Sta, Tag 07QW]). Fur-

thermore, schemes of finite type over Noetherian (resp. excellent) base schemes

are Noetherian (resp. excellent), [Sta, Tag 01T6] (resp. [Sta, Tag 07QU]), and

hence quasi-compact and quasi-separated, [Sta, Tag 01OY,01T7]. If a scheme

is excellent, then its normalisation is finite ([Sta, Tag 0BB5]). Recall that

excellent schemes are Noetherian by definition.

We say that a morphism of schemes f : X → Y is a contraction if it

is proper, surjective, and f∗OX = OY . Let X be a proper scheme over a

Noetherian base scheme S, let π : X → S be the projection, and let L be a line

bundle on X. If the base scheme is fixed, we drop the prefix “relatively” when

referring to notions below. We say that L is relatively nef if deg(L|C) ≥ 0 for

every proper curve C ⊆ X over S, it is relatively base point free if the natural

map π∗π∗L → L is surjective, it is relatively semiample if some multiple of it

is base point free, and it is relatively big if L|Xη is big for some generic point

η ∈ f(X) and the fibre Xη over η (that is, h0(Xη, L
k|Xη) > ckdimXη for some

constant c and all k divisible enough). The notion of bigness is subtle for non-

irreducible schemes and so we will essentially use it only when X is integral.

We make a few observations. By definition, L is relatively nef if and

only if L|Xy is nef for every closed point y ∈ Y and the fibre Xy over y. By

[CT20, Lemma 2.6], this is equivalent to L|Xy being nef for every point y ∈ Y .

Semiampleness of L may be verified Zariski locally (cf. [CT20, Lemma 2.12]).

If π is projective and X is integral, then L is relatively big if and only if

π∗(L
⊗m ⊗A−1) 6= 0 for a relatively ample line bundle A and some m > 0.

Lemma 2.1. Let f : X → Y be a finite map of integral proper schemes

over a Noetherian base scheme S. Let L be a relatively nef line bundle on Y .

Then L is relatively big over S if and only if f∗L is relatively big over S.

Proof. By restricting to the generic point of the image of X (and Y ) in S,

we may assume that X and Y are defined over a field. Since Y is irreducible,

L is big if and only if LdimY > 0 (cf. [Laz04, Th. 2.2.16]), and analogously for

f∗L. Since (f∗L)dimX = (deg f)LdimY , the lemma follows. �

Further, following [Kee99] (cf. [CT20, p. 7]), we say that L is relatively

EWM if there exists a proper S-morphism f : X → Y to an algebraic space Y

proper over S such that an integral closed subscheme V ⊆ X is contracted (that

is, dimV < dim f(V )) if and only if L|V is not relatively big. In particular, f

satisfies this condition if and only if its restriction to Xy satisfies this condition

for every point y ∈ Y .
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Note that the property of L being EWM can be checked affine locally on S.

Indeed, given a surjective contraction f : X → Y and a morphism h : X → Z

contracting all the geometric fibres of f , where X, Y , Z are proper algebraic

spaces over S, there exists a unique map g : Y → Z such that g ◦ f = h

(cf. the proof of Proposition 2.13). In particular, if f : X → Y is a contraction

associated to L, then f and Y are uniquely determined up to a canonical iso-

morphism, so any local constructions of maps associated to a line bundle must

glue. The same argument shows that the Stein factorisation of f is unique.

For a relatively nef line bundle L on X as above, we define E(L) to be the

union of all closed integral subschemes V ⊆ X such that L|V is not relatively

big over S.

Lemma 2.2. Let X be a projective scheme over a Noetherian base scheme S.

Then E(L) is a closed subset of X .

In particular, this endows E(L) with a scheme structure of a reduced

subscheme of X.

Proof. The proof is exactly the same as in [CT20, Lemma 2.18]. We may

assume that X is reduced and, since the problem is local, that S is affine. If

E(L) = X, then there is nothing to prove. Thus, we may assume that there

exists an irreducible component X ′ ⊆ X such that L|X′ is big. Hence, there

exists a relatively ample line bundle A and a line bundle E on X ′ such that

H0(X ′, E) 6= 0 and L⊗m|X′ ' A ⊗ E. Let Z be a reduced closed subscheme

equal to the reduction of the zero set of a section 0 6= s ∈ H0(X ′, E). Then

E(L) ⊆ Z ∪ X ′′, where X = X ′ ∪ X ′′ and X ′ 6⊆ X ′′. Indeed, if V ⊆ X ′ is a

closed integral subscheme of X ′ such that V 6⊆ Z, then L⊗m|V ' A|V ⊗E|V is

big as s|V ∈ H0(V,E|V ) is non-zero.

In particular, E(L) = E(L|Z∪X′′) is closed by Noetherian induction. �

Let us recall the following pinching result.

Theorem 2.3 ([Art70, Th. 3.1] and [Kol12, Th. 38]). Let X be a Noe-

therian algebraic space over a Noetherian base scheme S, let Z ⊆ X be a closed

subspace, and let g : Z → V be a finite surjection of Noetherian algebraic spaces

over S. Then there exists a universal pushout diagram of algebraic spaces

Z X

V Y,

g π

such that Y is a Noetherian algebraic space over S, V → Y is a closed em-

bedding, and Z = π−1(V ). Further, the diagram is a pushout square on the

level of topological spaces and π is a finite map which is an isomorphism over

Y \ V . If X , Z , and V are of finite type over S, then so is Y .
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Proof. The pushout exists by [Kol12, Th. 38]. After an étale base change

of Y , we can assume that the spaces in question are schemes, and so the di-

agram is a topological pushout and π is an isomorphism over Y \ V by [Sta,

Tag 0E25]. Further, Y is of finite type, provided that so are X,Z, and V , by

[Sta, Tag 0E27]. �

2.1. Universal homeomorphisms. We say that a morphism of schemes (or

algebraic spaces) f : X → Y is a universal homeomorphism if all of its base

changes are homeomorphisms. In the case of schemes, this is equivalent, by

[Sta, Tag 04DF], to being integral, universally injective, and surjective. How-

ever, for algebraic spaces, a universal homeomorphism need not be integral

(e.g., A1/{x∼−x |x 6= 0} → A1/{x∼−x} ' A1; cf. [Sta, Tag 05Z6]). In

this setting, being integral, universally injective, and surjective is equivalent

to being a representable universal homeomorphism.

To verify that a representable universally closed (for example, integral)

morphism f of schemes or algebraic spaces is a universal homeomorphism, it

is enough to check that Mor(SpecK,X) → Mor(SpecK,Y ) is a bijection for

every algebraically closed field K (cf. [Sta, Tag 01S4 and 03MH]).

We call an extension of rings A ⊆ B elementary if there exists b ∈ B such

that A[b] = B and b2, b3 ∈ A. The following proposition states that universal

homeomorphisms in characteristic zero decompose into thickenings and ele-

mentary extensions. Indeed, when f : A → B is a universal homeomorphism

of Q-algebras, then f automatically induces isomorphisms on residue fields.

(By base change this reduces to checking that a finite extension of character-

istic zero fields SpecK → SpecL is a universal homeomorphism if and only if

K ' L; this follows from the fact that K ⊗L K = K⊕ degL/K as the fields are

of characteristic zero.)

Proposition 2.4 ([Sta, Tag 0CND]). An extension of rings A ⊆ B is a

universal homeomorphism inducing isomorphisms on residue fields if and only

if every finite subset E ⊆ B is contained in an extension A[b1, . . . , bk] ⊆ B

such that for every 1 ≤ i ≤ k, we have that b2i , b
3
i ∈ A[b1, . . . , bi−1].

Proposition 2.5 ([Sta, Tag 0CNE]). An extension of rings A ⊆ B is a

universal homeomorphism if and only if every finite subset E ⊆ B is contained

in an extension A[b1, . . . , bk] ⊆ B such that for every 1 ≤ i ≤ k, we have that

b2i , b
3
i ∈ A[b1, . . . , bi−1] or pbi, b

p
i ∈ A[b1, . . . , bi−1] for some prime number p,

which depends on i.

In characteristic p > 0, universal homeomorphisms may also be described

in the following way.

Proposition 2.6 (cf. [Sta, Tag 0CNF], Lemma 3.4). Let f : X → Y be

an affine morphism of schemes of characteristic p > 0. Then f is a universal

homeomorphism if and only if f∗ : Operf
Y → Operf

X is an isomorphism.
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Here, Operf
X = lim−→(OX

F−→ OX
F−→ · · · ) denotes the structure sheaf of the

perfection Xperf of X.

Remark 2.7. For the convenience of the reader, we recall a few basic

scheme theoretic facts which we will often use later on. Here, S is a scheme or

an algebraic space (over a scheme) and f : Y → X is a morphism of schemes

or algebraic spaces, respectively.

(1) Assume that Y is quasi-compact and X is quasi-separated over S. Then

f is quasi-compact ([Sta, Tag 03KS]).

(2) Assume that Y is quasi-compact over S and f is surjective. Then X is

quasi-compact over S (cf. [Sta, Tag 03E4]).

(3) Assume that Y is quasi-separated or separated over S. Then so is f ([Sta,

Tag 03KR]).

(4) Assume that f is surjective and universally closed. If Y is quasi-separated

or separated over S, then so is X ([Sta, Tag 05Z2]).

(5) Assume that Y is locally of finite type over S. Then f is locally of finite

type ([Sta, Tag 0462]).

(6) The morphism f is integral if and only if it is affine and universally closed

([Sta, Tag 01WM, 0415]).

(7) Assume that f is surjective. If Y is universally closed over S, then so is X.

In particular, if also X is separated and of finite type over S, then it is

proper ([Sta, Tag 03GN, 08AJ]).

(8) Assume that Y is proper and X is separated over S. Then f is proper

([Sta, Tag 04NX]).

(9) Assume that Y is finite (integral, resp.) and X is separated over S. Then

f is finite (integral, resp.) ([Sta, Tag 035D]).

(10) Assume that f is of finite type with finite fibres and that the algebraic

spaces Y and X are quasi-separated over S. Then f is quasi-finite ([Sta,

Tag 06RW, 0ACK]).

(11) Assume that f is proper with finite fibres and X is quasi-separated over S.

Then f is finite ([Sta, Tag 0A4X]).

(12) Assume that Y is affine and f is surjective and integral. Then X is affine

([Sta, Tag 05YU, 07VT]).

(13) Assume that f is integral and induces a bijection |Y | = |X|. Then Y is a

scheme if and only if X is a scheme ([Sta, Tag 07VV]).

(14) Assume that f is a representable universal homeomorphism. Then pulling

back induces an equivalence of categories of étale or affine étale schemes

or algebraic spaces over X and Y ([Sta, Tag 04DZ, 05ZH, 07VW]).

Lemma 2.8. Let f : X
g−→ Y

h−→ Z be morphisms of schemes such that f is

a universal homeomorphism. Further, assume that g is surjective, or g is dom-

inant and h is separated. Then both g and h are universal homeomorphisms.
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Proof. First, we show that g is surjective. To this end, we can assume

that g is dominant and h is separated. Then, g is integral (Remark 2.7(9)),

hence closed and surjective.

Since g is surjective, Remark 2.7(7) implies that h is universally closed.

Moreover, h is surjective as f is surjective, and it is universally injective as f is

universally injective and g is surjective. Therefore, h is a universal homeomor-

phism. In particular, it is separated, and as above we get that g is integral.

Since f is universally injective, g is also universally injective, and so it is a

universal homeomorphism. �

Lemma 2.9. An affine morphism of schemes f : Y → X is a universal

homeomorphism if and only if fZ(p)
: YZ(p)

→ XZ(p)
is a universal homeomor-

phism for every prime number p.

Here XZ(p)
:= X ×SpecZ SpecZ(p).

Proof. If fZ(p)
is a universal homeomorphism for every p, then f is uni-

versally injective and surjective. To verify integrality, we can assume that X

and Y are affine, in which case this follows by [Sta, Tag 034K]. �

The following lemma allows us to descend finite generatedness under uni-

versal homeomorphisms f : Y → X. However, when f∗ : OX → f∗OY is not

injective, the statement is false (cf. Remark 2.21).

Lemma 2.10 (Eakin-Nagata). Let f : Y → X be an integral morphism of

algebraic spaces over a Noetherian base scheme S such that Y is of finite type

over S and f∗ : OX → f∗OY is injective. Then X is of finite type over S.

Moreover, if Y is separated or proper over S, then so is X .

Note that f is automatically finite when X is of finite type.

Proof. Since f is dominant and closed, it is surjective. Thus, by Re-

mark 2.7(2), X is quasi-compact over S. To check that X is locally of finite

type, we can assume that X, Y , and S are affine, in which case the statement

follows from [Kol12, Th. 41]. The separatedness or properness of X provided

that of Y is a consequence of Remark 2.7(4) and (7). �

2.2. Quotients by finite equivalence relations. In this subsection we review

definitions and basic results on quotients by set theoretic equivalence relations

following [Kol12].

Even in the case of a finite group G acting on a scheme X, we cannot

expect the quotient X/G to be a scheme unless X is quasi-projective or, more

generally, Chevalley-Kleiman (cf. [Kol12, Def. 47]). Therefore, we need to work

in the category of algebraic spaces.
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Definition 2.11. Let X be a separated algebraic space of finite type over

a Noetherian base scheme S. A morphism σ : E → X ×S X (equivalently

σ1, σ2 : E ⇒ X over S) is a set theoretic equivalence relation on X over S if

for every geometric point SpecK → S, the map

σ(K) : MorS(SpecK,E) ↪→ MorS(SpecK,X)×MorS(SpecK,X)

yields an equivalence relation on K-points of X. We say that σ : E → X ×SX
is finite if σi are finite.

See [Kol12, Def. 2] for another equivalent definition.

Definition 2.12. Let σ1, σ2 : E ⇒ X be a set theoretic finite equivalence

relation of separated algebraic spaces of finite type over a Noetherian base

scheme S. We call q : X → Y , for a separated algebraic space Y of finite type

over S, a categorical quotient if q ◦ σ1 = q ◦ σ2 and q is universal with this

property (in the category of separated algebraic spaces of finite type over S).

We call q a geometric quotient if

• it is a categorical quotient;

• it is finite; and

• for every geometric point SpecK → S, the fibres of qK : XK(K)→ YK(K)

are the σ(EK(K))-equivalence classes of XK(K).

Note that in contrast to Kollár we do not require the spaces to be reduced

in the definition of set theoretic finite equivalence relations. The following

proposition shows that the assumption on being a categorical quotient can be

replaced by saying that OY is the kernel of σ∗1 − σ∗2.

Proposition 2.13 ([Kol12, Lemma 17]). Let X be a separated algebraic

space of finite type over a Noetherian base scheme S, let Y be an algebraic space

over S, let π : X → Y be an integral morphism over S, and let E ⇒ X be a

finite set theoretic equivalence relation over Y . Then the geometric quotient

X/E exists as a separated algebraic space of finite type over S.

Proof. Note that X → Y is automatically finite as X is of finite type

over S. We claim that Z = SpecY ker(σ∗1−σ∗2 : π∗OX → π∗OE) is the geometric

quotient, where the projection from E to Y is by abuse of notation denoted

by π. Let q : X → Z be the induced map. By construction, q is finite and

OZ → q∗OX is injective, hence Z is separated and of finite type over S by

Lemma 2.10. Moreover, q is a quotient on geometric points (by the same

argument as in [Kol12, Lemma 17]) and q ◦ σ1 = q ◦ σ2. Thus, it is enough to

show that it is a categorical quotient.

To this end, consider a map f : X → W to a separated algebraic space

of finite type over S which equalises σ. Let Z∗ be the image of (q, f) : X →
Z ×S W . Since Z ×S W is separated and of finite type over S, so is Z∗. It is
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enough to show that the induced map h : Z∗ → Z is an isomorphism. Since

q : X → Z is a quotient on geometric points and the induced map q∗ : X → Z∗

equalises σ, we get that h : Z∗ → Z is a bijection on geometric points. By

Remark 2.7(7), h : Z∗ → Z is proper, and so by Remark 2.7(11) it is a finite

universal homeomorphism. By construction, h∗OZ∗ → ker(σ∗1 − σ∗2 : q∗OX →
q∗OE) = OZ is an injection of OZ-sheaves, thus h∗OZ∗ = OZ and h : Z∗ → Z

is an isomorphism. �

2.3. Quotients by group schemes. The following definitions are taken from

[Kol97, Def. 2.7].

Definition 2.14. Let X be an algebraic space over a Noetherian scheme S,

and let G be a group scheme over S acting on X. We say that q : X → Z is

a topological quotient of X by G if q is a G-morphism (with Z admitting a

trivial action), it is locally of finite type, it is universally submersive, and it is

a set quotient on the level of geometric points. If in addition OZ = (q∗OX)G,

then we call q a geometric quotient.

We say that an action of G on X is proper if ψX : G×SX
(mX ,p2)−−−−−→ X×SX

is proper, where mX : G×SX → X is the morphism underlying the action of G,

and p2 : G×S X → X is the projection on the second factor. Since G is affine,

this condition ensures that the stabilisers are finite.

We state an analogue of Theorem 2.13.

Theorem 2.15 ([Kol97, Th. 3.13]). Let G be an affine algebraic group

scheme, flat and locally of finite type over S. Let m : G×X → X be a proper

G-action on an algebraic space X over S. Let f : X → Z be a topological

quotient. Then a geometric quotient g : X → X/G exists and is defined by the

formula X/G := SpecZ(f∗OX)G. Moreover, the induced map X/G → Z is a

finite universal homeomorphism.

Remark 2.16. With notation as above, suppose that X is a separated

algebraic space and G is an affine algebraic group scheme, flat and of finite type

over S and which acts properly on X. Note thatG is of finite presentation ([Sta,

Tag 01TX]) and universally open over S ([Sta, Tag 01UA]). Let q : X → Z be

a finite type topological quotient. Then

(1) m : G×X → X is affine and of finite type.

(2) q is affine and Z is separated.

(3) If X is of finite type over S, then so is Z.

(4) A geometric quotient is automatically a categorical quotient.

(5) If f : X → Y is a finite surjective G-morphism of separated algebraic spaces

of finite type admitting a proper G-action and the geometric quotients X/G

and Y/G exist, then the induced map fG : X/G→ Y/G is finite. Moreover,

if f is a finite universal homeomorphism, then so is fG.
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The morphism m : G×X → X may be identified with p2 : G×X → X via the

isomorphism (p1,mX) : G×X → G×X, so (1) holds. The morphism q is affine

by [Kol97, Th. 3.12]. The quotient Z is separated by [Kol97, Prop. 2.9] and of

finite type over S (provided so is X) by [Kol97, Th. 3.12]. A geometric quo-

tient is categorical by [Kol97, Cor. 2.15]. Last, for (5), consider the following

diagram:

X Y

X/G Y/G.

f

q qY

fG

By the above, both X/G and Y/G are separated and of finite type, hence

so is fG. Let Z ⊆ X/G be a closed subset. Then f(q−1(Z)) = q−1Y (fG(Z))

is closed, and hence so is fG(Z) as qY is submersive. The same holds after

any base change by a morphism to Y/G, thus fG is universally closed, and so

proper. By Remark 2.7(11), it is finite and the last assertion can be checked

on geometric points.

2.4. Pushouts of universal homeomorphisms. In this subsection we discuss

some preliminary results on pushouts of universal homeomorphisms. The case

of pushouts of thickenings by affine morphisms is well understood and described

in [Sta, Tag 07RT, 07VX].

Definition 2.17 (cf. [Kol97, §8]). Consider the following commutative di-

agram of schemes or algebraic spaces over a scheme S:

X Y

X ′ Y ′,

f

p

g

q

where Y
p−→ X is representable, quasi-compact, and quasi-separated, and Y

g−→
Y ′ is a representable universal homeomorphism. We say that this diagram is

a topological pushout square if f is a representable universal homeomorphism

and a geometric pushout square if, in addition,

OX′ = f∗OX ×(f◦p)∗OY q∗OY ′ .
We write X ′ = XtY Y ′ and say that X ′ is a topological or a geometric pushout.

If X is a scheme, then so is X ′ by Remark 2.7(13).

The assumption on the representability of p may not be necessary. In any

case, we are mostly interested in the case of p being affine or a morphism from

a scheme Y to an algebraic space X.

Lemma 2.18. Let A → B ← B′ be maps of rings such that B′ → B is a

universal homeomorphism, and let A′ = A ×B B′. Suppose that A′ → A is a

universal homeomorphism. Then SpecA′ is a geometric pushout of SpecA←
SpecB → SpecB′.
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Proof. This follows by the same proof as [Sta, Tag 0ET0] (see also [Sta,

Tag 07RT and 01Z8]). �

Remark 2.19. Consider a topological pushout square of schemes or alge-

braic spaces as above. Then

(1) The morphism q is representable, quasi-compact, and quasi-separated.

(2) If p is separated, affine, universally closed, or integral, then so is q.

(3) If X is quasi-compact, quasi-separated, or separated, then so is X ′.

(4) If the pushout is geometric and g∗ : OY ′ → g∗OY is injective, then f∗ : OX′
→ f∗OX is injective as well.

To prove (1) and (2), we can assume that X ′ is an affine scheme, and so

that X is affine and Y is a quasi-compact quasi-separated scheme. Then Y ′

is also a scheme (Remark 2.7(13)), it is quasi-compact (Remark 2.7(2)), and

quasi-separated (Remark 2.7(4)). Thus q is representable, quasi-compact, and

quasi-separated. If p is separated or affine, then we can assume that Y is

separated or affine, respectively, and then so is Y ′ (Remark 2.7(4) and (12)).

Thus q is separated or affine, respectively. If p is universally closed, then so is

q by Remark 2.7(7) applied to q ◦ g. Since being integral is equivalent to being

affine and universally closed (Remark 2.7(6)), the integrality of p implies the

integrality of q.

The quasi-compactness, quasi-separatedness, or separatedness of X ′, pro-

vided X has these properties, respectively, follows from Remark 2.7(4) and (2),

as above. The injectivity of f∗ provided the injectivity of g∗ follows by defini-

tion.

Lemma 2.20 (cf. [Kol97, (8.1.3)]). Let X ← Y → Y ′ be a diagram of

schemes (algebraic spaces, resp.) satisfying the assumptions of Definition 2.17

and which admits a topological pushout Z . Then the geometric pushout X ′ :=

X tY Y ′ exists as a scheme (an algebraic space, resp.). Moreover, the induced

map X ′ → Z is a representable universal homeomorphism.

Proof. Define X ′ := SpecZ
(
(fZ)∗OX ×(fZ◦p)∗OY (qZ)∗OY ′

)
sitting inside

X Y

X ′ Y ′.

Z

f
fZ

p

g

q

qZ

Here we used quasi-compactness and quasi-separatedness of morphisms (Re-

mark 2.19(1)) to guarantee that the pushforwards of structure sheaves are

quasi-coherent (see [Sta, Tag 03M9]).
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Now, by means of étale base change, we can assume that the spaces in

question are schemes. By construction, ker(OX′ → f∗OX) ' ker(q∗OY ′ →
q∗g∗OY ), and so the kernel of O′X → f∗OX is locally nilpotent and, in particu-

lar, X → X ′ is dominant. Moreover, X ′ → Z is separated as it is affine. Thus,

both X → X ′ and X ′ → Z are universal homeomorphisms by Lemma 2.8, and

so X ′ is a geometric pushout. �

Remark 2.21. Even if X ← Y → Y ′ are of finite type over a field k,

the geometric pushout need not be Noetherian (see [Kol97, Exam. 8.5]). A

pertinent example which is relevant to us is the following pushout diagram:

SpecZ SpecQ

SpecZ⊕ xQ SpecQ[x]/x2.

To rectify the problem laid down in the above remark, we use Noetherian

approximation.

Lemma 2.22. Let X
p←− Y

g−→ Y ′ be a diagram of schemes (or algebraic

spaces) over a Noetherian base scheme S, satisfying the assumptions of Defi-

nition 2.17 and admitting a topological pushout X ′. Assume that X is of finite

type over S. Then there exists a topological pushout X ′top of X ←− Y −→ Y ′,

which is of finite type over S. Moreover, if X is proper over S, then so is X ′top.

Proof. By Lemma 2.20 we can assume that X ′ is a geometric pushout.

Note that X, X ′, and S are quasi-compact and quasi-separated (compare with

Remark 2.19(3)). Thus, we can apply [Sta, Tag 09MV] ([Sta, Tag 09NR], resp.)

to get an inverse system of schemes (algebraic spaces, resp.) X ′i, of finite type

over S, over a directed set I with affine transition maps such that X ′ = lim←−X
′
i.

Since f : X → X ′ is a representable universal homeomorphism, the in-

duced map f(X) → X ′ is a thickening and f : X → f(X) is a representable

universal homeomorphism (cf. Remark 2.7(14)). Moreover, f(X) is of finite

type over S by Lemma 2.10 as Of(X) → f∗OX is injective by definition. Thus,

by [Sta, Tag 081B] ([Sta, Tag 0828], resp.), there exists X ′i such that the com-

position f(X)→ X ′ → X ′i is a closed immersion. By replacing X ′i by the image

of X ′ in it, we can assume that OX′i → OX′ is injective, and hence the kernel

of OX′i → Of(X) is locally nilpotent. Therefore, f(X) → X ′i is a thickening,

thus X → X ′i is a representable universal homeomorphism and X ′top := X ′i is

a topological pushout of X
p←− Y g−→ Y ′.

To show the last statement, we note that the properness of X implies that

X ′top is separated over S (Remark 2.7(4)), and hence proper by Remark 2.7(7).

�
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Lemma 2.23 (cf. [Kol97, Lemma 8.2]). A base change of a geometric

pushout square by a flat morphism is a geometric pushout square.

Proof. A geometric pushout square as in Definition 2.17 is uniquely de-

termined by the exact sequence

0→ OX′ → f∗OX ⊕ q∗OY ′ → (f ◦ p)∗OY

and the fact that X → X ′ is a representable universal homeomorphism. These

properties are preserved under flat base change. �

Further, we study étale morphisms under geometric pushouts.

Proposition 2.24 (cf. [Kol12, Lemma 44]). Let

X1 Y1 Y ′1

X2 Y2 Y ′2

p1 g1

p2 g2

be a commutative diagram of schemes such that both squares are Cartesian

and Xi ← Yi → Y ′i satisfy the assumptions of Definition 2.17 for i ∈ {1, 2}.
Further, suppose that the vertical maps are étale and the geometric pushout X ′2
of the second row (p2, g2) exists. Then a geometric pushout X ′1 of the first row

(p1, g1) exists and the induced map X ′1 → X ′2 is étale.

Proof. By Remark 2.7(14) applied to the universal homeomorphism X2 →
X ′2 we can find a scheme X ′1 and an étale morphism X ′1 → X ′2 the pullback

of which is X1 → X2. Moreover, the pullback of X ′1 → X ′2 to Y ′2 agrees

with Y ′1 → Y ′2 by applying Remark 2.7(14) to the universal homeomorphism

Y2 → Y ′2 . In particular, we get the following commutative diagram:

X1 X2 Y2 Y1

X ′1 X ′2 Y ′2 Y ′1 ,

where the bigger square is a pull-back of the smaller square via X ′1 → X ′2. By

Lemma 2.23 the bigger square is thus a geometric pushout. �

Lemma 2.25. Let X ′ be a geometric pushout of a diagram X ← Y → Y ′ of

schemes (algebraic spaces, resp.) satisfying the assumptions of Definition 2.17.

Then X ′ is a categorical pushout in the category of schemes (algebraic spaces,

resp.).
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Proof. Since algebraic spaces are quotients of schemes, one can reduce to

the case of X, X ′, Y , and Y ′ being schemes; see the end of [Sta, Tag 07VX].

By [Sta, Tag 07SX], it is enough to show that X ′ is a pushout in the cate-

gory of schemes. (Assumptions (3) and (4) are satisfied by Lemma 2.23 and

Proposition 2.24, respectively.)

We argue as in [Sta, Tag 0ET0]. Suppose there are a scheme Z and maps

fZ : X → Z and qZ : Y ′ → Z agreeing on Y . We can define h : X ′ → Z as

equal to fZ on the level of topological spaces. Moreover, h is a map of ringed

spaces via OZ → (fZ)∗OX ×(fZ◦p)∗OY (qZ)∗OY ′ = h∗OX′ . In fact, it is a map

of locally ringed spaces (and hence of schemes) as f : X → X ′ is a universal

homeomorphism and fZ is a map of schemes; cf. the last paragraph of [Sta,

Tag 0ET0]. �

Last, we prove that it is enough to construct geometric pushouts locally.

Lemma 2.26. Let X
p←− Y

g−→ Y ′ be a diagram of schemes (algebraic

spaces, resp.) satisfying the assumptions of Definition 2.17. Then a geometric

pushout of this diagram exists as a scheme (an algebraic space, resp.) if and

only if it exists after pulling back by every open immersion (étale morphism,

resp.) U → X with U an affine scheme.

Here U
p←− V

g−→ V ′ is a pullback of X
p←− Y

g−→ Y ′ by an étale morphism

U → X if V = U ×X Y and V ′ → Y ′ is the unique étale map with the

pullback via g being V → Y (see Remark 2.7(14)). If U is a scheme, then

so are V and V ′ (Remark 2.7(13)). If U → X is an open immersion, then

V = p−1(U) and V ′ = g(V ). Note that U ← V → V ′ satisfies the assumptions

of Definition 2.17.

Proof. If a geometric pushout of X ← Y → Y ′ exists, then it exists after

the pullbacks by Proposition 2.24. As for the implication in the other direction,

we first deal with the case of schemes arguing as in [Sta, Tag 07RT]. Let

X Y

X ′ Y ′

f

p

g

q

be a push-out diagram of topological spaces such that X ′ = X, f = id, and

q : Y ′ = Y
p−→ X = X ′ is the natural map induced by p (that is, topologically,

q = g−1 ◦ p).
We make f into a map of ringed spaces by setting

OX′ := f∗OX ×(f◦p)∗OY q∗OY ′ .

The fact that f is a map of schemes and is a universal homeomorphism can be

checked locally on X and hence follows from the assumptions and Lemma 2.18.
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Now, we move to the case of algebraic spaces (cf. [Sta, Tag 07VX]). Pick

a surjective étale map U → X with U a scheme, and construct pushouts U ′

and E′ of the pullbacks of X
p←− Y

g−→ Y ′ by U → X and E := U ×X U ⇒
U → X, respectively. (They exist by the above paragraph.) Then the maps

σ′1, σ
′
2 : E′ ⇒ U ′ are étale by Proposition 2.24. Moreover, they induce an

equivalence relation on U ′; indeed, E → E′ is a universal homeomorphism, and

so by [Sta, Tag 0DT7] it is enough to construct the identity e : U ′ → E′, the

inversion i : E′ → E′, and the composition map c′ : E′×σ′2,U ′,σ′1 E
′ → E′ which

follow by functoriality of pushouts. (We leave details to the reader.) Thus,

we can take a quotient X ′ := U ′/E′ as an algebraic space ([Sta, Tag 02WW])

sitting inside the following diagram:

E U X

E′ U ′ X ′.

Since the left diagram is Cartesian, X → X ′ is injective (cf. [Sta, Tag 045Z]).

We claim that the right diagram is Cartesian (and so X → X ′ is a representable

universal homeomorphism). Indeed, the morphism U → U ′ factorises as

U → U ′ ×X′ X → U ′,

and so U → U ′ ×X′ X is universally injective. Since X → X ′ is injective, so

is U ′ ×X′ X → U ′. Thus U → U ′ ×X′ X is surjective. Moreover, it is étale by

[Sta, Tag 03FV] as U ′ ×X′ X → X and U → X are étale, and hence it is an

isomorphism as U → U ′ ×X′ X is representable (see [Sta, Tag 02LC]). �

2.5. Generalised conductor squares.

Definition 2.27. We call a commutative diagram

X D

Y C

f g
i

j

a generalised conductor square when f : X → Y is a finite surjective map of

reduced Noetherian schemes and D → C is the induced map of the conductors

of f .

We define conductors affine locally exactly as in [Wei13, I.2.6]. Precisely,

given a finite extension of rings R ⊆ S, we set I = {s ∈ S | sS ⊆ R}. The

ideals I ⊆ R and I = IS ⊆ S define the conductors C and D. Note that

R ' S ×S/I R/I; this is an example of a Milnor square.

When f is finite of degree greater than one over each irreducible compo-

nent, then C = Y and D = X. We called the above diagram a generalised
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conductor square, as conductors are often defined only when f is birational

(that is, an isomorphism over a dense open subset); cf. [CT20, Def. 2.25].

Later on, we consider finite universal homeomorphisms f : X → Y which are

isomorphisms over an open subset only (and so, on some irreducible compo-

nents, may be equal to, say, Frobenius).

Lemma 2.28. Consider a generalised conductor square as above. Then

the diagram

PicX PicD

PicY PicC

i∗

f∗

j∗
g∗

is Cartesian in the 2-category of groupoids.

This stipulates that there exists a functorial one-to-one correspondence

between line bundles LY on Y and triples (LX , LC , φ), where LX and LC are

line bundles on X and C, respectively, and φ : g∗LC → i∗LX is an isomorphism.

Proof. Given a line bundle L on Y , we get an induced triple (f∗L, j∗L, φ),

where φ : g∗j∗L
'−→ i∗f∗L.

In the opposite direction, let (LX , LC , φ) be a triple as above and set

LD := i∗LX . Therewith one can define a sheaf LY on Y by the formula

LY := ker(f∗LX × j∗LC
i∗−φ◦g∗−−−−−→ (f ◦ i)∗LD).

To conclude the proof, we need to verify two things: first, that LY is a

line bundle, and second that given a line bundle L on Y and an induced triple

(f∗L, j∗L, φ), the natural map L → LY of sheaves to the induced line bundle

on Y is an isomorphism. Both statements can be verified locally, and hence the

proof follows by [Wei13, Milnor Patching Theorem 2.7] (or [Sta, Tag 0D2J]) as

generalised conductor squares of affine schemes are Milnor squares and finite

rank one projective modules are line bundles ([Sta, Tag 00NX]). �

3. Multiplicative perfection in mixed characteristic

Throughout this section, we fix a prime number p > 0 and work over the

base ring Z(p).

3.1. Multiplicative perfection. The key advantage of working in positive

characteristic is the existence of the Frobenius morphism. In mixed character-

istic we shall approximate it by raising to a pn-th power for big n > 0.

Definition 3.1. Let A be a ring over Z(p). We call the commutative monoid

Aperf := lim−→
x7→xp

A

the (multiplicative) perfection of A.
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Note that the multiplicative perfection does not preserve the additive

structure.

Remark 3.2. The natural map A → Aperf induces an inclusion A/∼ ↪→
Aperf of monoids, where a ∼ b if and only if ap

n
= bp

n
for some n� 0.

Further, note that for any rings A, B, C over Z(p), the natural morphism

of commutative monoids

(A×B C)perf → Aperf ×Bperf Cperf

is a bijection of sets (and so an isomorphism of commutative monoids). This

can be easily checked by hand or by recalling that filtered colimits commute

with finite products ([Sta, Tag 002W]).

Definition 3.3. Let L be a line bundle on a scheme X over Z(p). We call

the sheaf of sets
Lperf := lim−→

φn

Lp
n
,

where φn : Lp
n → Lp

n+1
with φn(x) = xp, the perfection of L.

Explicitly, Lperf is the sheafification of the colimit taken in the category

of presheaves.

If SpecA = U ⊆ X is an affine subscheme such that L|U ' OU , then we

get a sequence of compatible isomorphisms (Lp
n
)|U ' OU for every n ≥ 0, thus

Lperf(U) ' Aperf .

Define
H0(X,L)perf := lim−→

φn

H0(X,Lp
n
),

where φn : H0(X,Lp
n
) → H0(X,Lp

n+1
) with φn(x) = xp. When X is quasi-

compact and quasi-separated, H0(X,Lperf)=H0(X,L)perf by [Sta, Tag 009F(4)

and Tag 0069(3)].

3.2. Infinitesimal site up to perfection. The following lemma is vital in

the proofs of the main results of this section.

Lemma 3.4. Let f : X → Y be an affine morphism of schemes over

SpecZ(p) such that f |XQ : XQ → YQ is an isomorphism. Then f∗ : Operf
Y →

f∗Operf
X is an isomorphism if and only if f is a universal homeomorphism.

The key to the results of this article is the local injectivity of f∗ as it

allows for gluing sections and lifting them globally under thickenings. Note

that the other parts of the lemma have been shown in [Kol97, Lemma 8.7] (see

also [Sta, Tag 0CNF]).

Proof. If f∗ : Operf
Y → Operf

X is an isomorphism, then f is a universal home-

omorphism as well by [Sta, Tag 0CNF]. Thus, it is enough to show the converse.

For the convenience of the reader, we also show local surjectivity of f∗.
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Since f is affine, the lemma can be reduced to showing that πperf : Bperf →
Aperf is an isomorphism, when π : B → A is a universal homeomorphism such

that the localisation πQ : B[1p ]→ A[1p ] is an isomorphism.

Pick any element a ∈ A. Since π is a universal homeomorphism, so is its

reduction πp : B/p→ A/p modulo p. Thus, Proposition 2.6 implies that

ap
l

= π(b) + pt

for some l� 0, b ∈ B, and t ∈ A.

As π is integral, the B-subalgebra A0 ⊆ A generated by t is a finite

B-module. Given that πQ is an isomorphism, we get pnA0 ⊆ π(B) for some

n > 0 and hence pnti ∈ π(B) for every i ≥ 0.

Write

ap
k+l

= π(b)p
k

+

pk∑
i=1

Ç
pk

i

å
π(b)p

k−i(pt)i

for k � 0. Since pn | pi
(pk
i

)
for every 0 ≤ i ≤ pk and k � 0, the right-hand side

is contained in π(B), and hence so is ap
k+l

. In particular, πperf is surjective.

Now, assume that there exist b, b′ ∈ B satisfying π(b) = π(b′). Write

b = b′ + s for some s ∈ B. Since πQ is an isomorphism and π(s) = 0, there

exists n > 0 such that pns = 0. Since πp is a universal homeomorphism,

Proposition 2.6 implies that sp
k

= pt for some k > 0 and t ∈ B. In particular,

snp
k+1 = (pt)ns = 0 and we get

bp
m

= (b′)p
m

+

npk∑
i=1

Ç
pm

i

å
(b′)p

m−isi = (b′)p
m

for m � 0. Here we used that pn |
(pm
i

)
for 1 ≤ i ≤ npk and m � 0. As a

consequence, πperf is injective, which concludes the proof. �

Now, we can prove Lemma 1.11.

Proof of Lemma 1.11. Note that XQ → X is quasi-compact and quasi-

separated, as so is SpecQ → SpecZ(p). Thus, by Lemma 2.20, there exists

a pushout scheme Z := X tXQ YQ sitting inside the following commutative

diagram:

Y

Z X

YQ XQ,

h

g

f
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with g and h being universal homeomorphisms. By construction, h|ZQ : ZQ→YQ

is an isomorphism, and so Lemma 3.4 implies that h∗ : Operf
Y → h∗Operf

Z is an

isomorphism as well. We can conclude the proof as

Operf
Z = Operf

YQ
×Operf

XQ
Operf
X . �

The following proposition is a direct consequence of Lemma 1.11.

Proposition 3.5. Let f : X → Y be a universal homeomorphism of

quasi-compact quasi-separated schemes over Z(p), and let L be a line bundle

on Y . Then the following diagram is Cartesian :

H0(Y,L)perf H0(X, f∗L)perf

H0(YQ, L|YQ)perf H0(XQ, f
∗L|XQ)perf .

f∗

Proof. By Lemma 1.11, we get the following Cartesian diagram:

Lperf (f∗L)perf

(L|YQ)perf (f∗L|XQ)perf .

f∗

Now, by applying H0 to this diagram, we can conclude the proof. �

3.3. Descending line bundles. The goal of this subsection is to show The-

orem 1.7. Here, PicX denotes the groupoid of line bundles on X, and PicX [1p ]

denotes the groupoid of line bundles on X up to inverting p. Informally, this

is a groupoid of line bundles and their “formal pn-th roots.” Precisely, the ob-

jects of the category PicX [1p ] are pairs (L, n) consisting of a line bundle L on

X and a number n ∈ N, and the morphisms being isomorphisms up to pN -th

power, that is, Hom((L, n), (L′, n′)) = lim−→N
Isom(LpN−n ,L′pN−n

′
); cf. [Sta, Tag

0EXA].

Proof of Theorem 1.7. We proceed by Noetherian induction on X.

Step 1. The theorem holds when X and Y are defined over Fp. Indeed,

we have then that O∗Y [1p ]→ O∗X [1p ] is an isomorphism (cf. the proof of [CT20,

Lemma 2.1]), and so PicY [1p ]→ PicX [1p ] is an isomorphism as well.

Step 2. The theorem holds when f : X → Y is a thickening (that is, a

surjective closed immersion). Indeed, by Lemma 2.20 (or [Sta, Tag 07RT]),

there exists a pushout scheme Z := X tXQ YQ sitting inside the following

commutative diagram:
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Y

Z X

YQ XQ.

h

g

f

As in the proof of Lemma 1.11, we get that h∗ : Operf
Y → Operf

Z is an iso-

morphism. Since both g and f are thickenings, h induces an isomorphism of

reductions Zred → Yred. Invertibility of sections does not depend on the infini-

tesimal structure, and so h∗ : O∗Y [1p ]→ O∗Z [1p ] is an isomorphism as well. As a

consequence, h∗ : PicY [1p ]→ PicZ [1p ] is an isomorphism.

Since flat finitely presented coherent sheaves of rank one are line bundles

([Sta, Tag 00NX]), [Sta, Tag 08KU] (cf. Lemma 2.28) implies

PicZ = PicYQ ×PicXQ
PicX .

By inverting p, we can conclude Step 1.

Step 3. We reduce to the case when both X and Y are reduced. In this

step we assume that the proposition is true for f : X → Y being replaced by

its reduction f red : Xred → Y red. We have the following spacial commutative

diagram:

PicY red PicXred

PicY PicX

PicY red
Q

PicXred
Q

PicYQ PicXQ .

The left and the right facets are 2-pullback squares up to inverting p by

Step 2, and the back one is a 2-pullback square up to inverting p by assump-

tion. A composition of two 2-pullback squares stays a 2-pullback square ([Sta,

Tag 02XD]), and so we have the following diagram, in which the big square

and the right square are 2-pullback squares up to inverting p:

PicY PicX PicXred

PicYQ PicXQ PicXred
Q
.
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Thus the left square is a 2-pullback square up to inverting p as well ([Sta,

Tag 02XD]).

Step 4. We show the proposition under the assumption that X and Y

are reduced and the proposition holds for every universal homeomorphism

f |W : W → f(W ), where W is a closed proper subset of X.

By Step 1, we may assume that XQ 6= ∅. Since f : X → Y is a finite

surjective map of reduced schemes, it sits in the following generalised conductor

square (cf. Section 2.5, [Wei13, I.2.6], [CT20, §2.6.1]):

Y X

C D,

f

fD

where C and D are conductors of f . Since f : X → Y is a finite universal

homeomorphism, so is fD : D → C. (It is finite by Remark 2.7(9) applied to

D → C → Y .) Note that D is a strict closed subset of X, as XQ 6= ∅, and so

f is an isomorphism over an open subset of Y .

As above, we can construct the following spatial diagram:

PicC PicD

PicY PicX

PicCQ PicDQ

PicYQ PicXQ .

The top and the bottom facets are 2-pullback squares by Lemma 2.28 and the

back one is a 2-pullback square up to inverting p by the inductive assumption.

By the same argument as in Step 3, the front facet is a 2-pullback square up

to inverting p, too. �

Remark 3.6. An analogous argument shows that

O∗Y [1p ] O∗X [1p ]

O∗YQ [1p ] O∗XQ
[1p ]

f∗

is a pullback square. Other types of functors with this property will be dis-

cussed in [AEMW].
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Corollary 3.7. Let X ′ be a Noetherian topological pushout of a diagram

X ← Y → Y ′ of Noetherian algebraic spaces over Z(p) satisfying the assump-

tions of Definition 2.17 and such that both f : Y → Y ′ and X → X ′ are finite

universal homeomorphisms. Then

PicX′ PicX ×PicY PicY ′

PicX′Q PicXQ ×PicYQ PicY ′Q

is a 2-pullback square up to inverting p.

Inverting p commutes with products in the above diagram. Using the

language of 2-categories makes the statement and the proof of this result in-

comparably easier and cleaner.

Proof. Construct the following spatial diagram:

PicX PicY

PicX ×PicY PicY ′ PicY ′

PicXQ PicYQ

PicXQ ×PicYQ PicY ′Q PicY ′Q .

The top and the bottom facets are 2-pullback squares by definition and the

right one is a 2-pullback square up to inverting p by Theorem 1.7. By the same

argument as in Step 3 of the above proof, the left facet is a 2-pullback square

up to inverting p, too.

By Theorem 1.7 and the above paragraph, the big square, and the right

square in the following diagram are 2-pullbacks up to inverting p, hence so is

the left one ([Sta, Tag 02XD]):

PicX′ PicX ×PicY PicY ′ PicX

PicX′Q PicXQ ×PicYQ PicY ′Q PicXQ . �

4. Pushouts of universal homeomorphisms in mixed characteristic

The goal of this section is to prove Theorem 1.6. The following proposition

is a key component of its proof.
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Proposition 4.1. Let B be a ring, and let A′ → B′ be a universal home-

omorphism of Q-algebras, where B′ := B ⊗Z Q. Then A → B is a universal

homeomorphism where A := B ×B′ A′ is the pullback of the diagram

B B′

A A′.

i

j

Therefore, SpecA is the geometric pushout of SpecB ← SpecB′ → SpecA′.

Proof. Note that A ⊗Z Q = A′. By Lemma 2.9, it is enough to check

that A → B is a universal homeomorphism after tensoring by Z(p) for every

prime p. Since tensoring by Z(p) is equivalent to inverting all prime numbers

q 6= p, we have that A ⊗ Z(p) ' (B ⊗ Z(p)) ×B′ A′. Hence, by replacing B by

B ⊗ Z(p), we may assume that A and B are defined over Z(p). In particular,

A′ = A[1p ] and B′ = B[1p ].

First, we reduce to the case of A′ → B′ being a finite universal home-

omorphism. By Proposition 2.4, we can find A′-subalgebras B′λ ⊆ B′ such

that B′ = lim−→B′λ and A′ → B′λ are finite universal homeomorphisms. For

Bλ := i−1(B′λ) ⊆ B, we have Bλ[1p ] = B′λ. Assume that

Aλ := Bλ ×B′λ A
′ → Bλ

are universal homeomorphisms where Aλ ⊆ A. Then A = lim−→Aλ → B =

lim−→Bλ has a locally nilpotent kernel and is a universal homeomorphism by

Proposition 2.5.

As of now, we can assume that A′ → B′ is finite. Thus, by Proposition 2.4,

the morphism A′ → B′ can be factorised as

A′ → A′/I ′ =: B′0 ↪→ B′1 ↪→ · · · ↪→ B′k := B′,

where I ′ is a locally nilpotent ideal, and B′i−1 ⊆ B′i is an elementary extension

for 1 ≤ i ≤ k. It is enough to prove the proposition for each subsequent

morphism separately, so we may assume that A′ → B′ is either a surjection

with a locally nilpotent ideal, or A′ ↪→ B′ is an elementary extension.

First, assume A′ → B′ is surjective with locally nilpotent ideal I ′. Then

A = B ×B′ A′ → B

is also surjective with the kernel 0×B′I ′ ⊆ A being locally nilpotent. Therefore,

A→ B is a universal homeomorphism.

Thus, we can assume that A′ ⊆ B′ is an elementary extension; i.e., there

exists f ′ ∈ B′ such that A′[f ′] = B′ and f ′2, f ′3 ∈ A′. In particular, A → B

is an inclusion. Since A is constructed as a product, it is saturated inside B;

that is, if b ∈ B is such that plb ∈ A for some l > 0, then b ∈ A. Indeed, the

image of b in B′ is, by assumption, contained in the image of A′.
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Now, by multiplying f ′ ∈ B′ by a power of p, we may assume that f ′ is

the image of an element f ∈ B such that f2, f3 ∈ A. Therefore, for every

b ∈ B, we have f2b ∈ B and plf2b ∈ A for some l > 0, hence f2b ∈ A, and so

f2B ⊆ A.

Consider A/(fB∩A) ⊆ B/fB. We claim that given [b] ∈ B/fB, we have

[bp
k
] ∈ A/(fB ∩ A) for some k > 0. In other words, for b ∈ B, there exists

k > 0, a ∈ A, and b′ ∈ B such that bp
k

= a+ b′f .

Since A′ ⊆ B′ is an elementary extension,

pkb = a1 + a2f

for some k > 0 and a1, a2 ∈ A. Write

ap
k

1 = (pkb− a2f)p
k

= pkp
k
bp
k −
Ç
pk

1

å
p(p

k−1)kbp
k−1a2f + f2q

= pkp
k

(bp
k − bpk−1a2f)︸ ︷︷ ︸

=: a

+f2q

for some q ∈ B. Since ap
k

1 ∈ A and f2q ∈ A, we have that pkp
k
a ∈ A, and so

a ∈ A. Write
bp
k

= a+ bp
k−1a2f.

Thus, the claim holds for b′ := bp
k−1a2 ∈ B.

Now, we will show that bp
k+l ∈ A[f ] ⊆ B for some l > 0. To this end,

take l > 0 such that plb′ = a′1 + a′2f for a′1, a
′
2 ∈ A and write

bp
k+l

= (a+ b′f)p
l

= ap
l
+ plap

l−1b′f + f2q′

= ap
l
+ ap

l−1(a′1 + a′2f)f + f2q′

= (ap
l
+ (ap

l−1a′2 + q′)f2)︸ ︷︷ ︸
∈A

+ ap
l−1a′1︸ ︷︷ ︸
∈A

f,

where q′ ∈ B.
By Proposition 2.4 and Lemma 3.4, respectively, A ↪→ A[f ] and A[f ] ↪→ B

are universal homeomorphisms. Hence A ↪→ B is a universal homeomorphism.

The last assertion of the proposition follows by Lemma 2.18. �

Note that the morphism A → B need not be finite even when A′ → B′

is so.

Corollary 4.2. Let X be a scheme, and let XQ → X ′Q be a universal

homeomorphism of schemes. Then a geometric pushout X ′ of X ← XQ → X ′Q
exists as a scheme. The same statement holds for algebraic spaces if XQ → X ′Q
is representable.
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Proof. The morphism XQ → X is a base change of SpecQ → SpecZ,

hence it is affine, quasi-compact, and quasi-separated. By Lemma 2.26 it is

enough to construct the pushout locally, hence we can assume that X and

XQ are affine. Then X ′Q is affine by Remark 2.7(12). Now, the corollary is a

consequence of Proposition 4.1. �

Example 4.3. By [Kol97, Lemma 8.4], Corollary 4.2 holds when Z and

Q are replaced by k[t] and k(t) for a positive characteristic field k. However,

when k is of characteristic zero, Corollary 4.2 is false. To see this, take

R := C[t],

B := C[t][x, y],

B′ := C(t)[x, y], and

A′ := C(t)[x2, x3, x+ ty].

Assume that SpecB′ → SpecA′ extends to a universal homeomorphism SpecB

→ SpecC. Then this morphism must factorise as SpecB → SpecA→ SpecC,

where A := B ×B′ A′ ⊆ B. Thus SpecB → SpecA is a universal homeomor-

phism as well and, by Lemma 2.10, A is finitely generated over R. We shall

show that this is not true.

First, xn ∈ A′ for all n ≥ 2 as it is generated by x2 and x3. Moreover,

xnyk ∈ A′ for all n ≥ 2 and k ≥ 0, by induction on k and the formula

xn(x+ ty)k = xnf(x, y) + tkxnyk,

where f(x, y) ∈ B′ and degy f(x, y) < k. Thus

x2B′ ⊆ A′

is an ideal and A′/x2B′ ' C(t)[x + ty]. Therefore, given b′ ∈ B′, we have

b′ ∈ A′ if and only if

b′ = x2f(x, y) + a0 + a1(x+ ty) + · · ·+ am(mx(ty)m−1 + (ty)m)

for m ∈ N, f(x, y) ∈ B′, and ak ∈ C(t), where 0 ≤ k ≤ m.

This implies that given b ∈ B, we have b ∈ A if and only if

b = x2f(x, y) + a0 + a1(x+ ty) + · · ·+ am(mxym−1 + tym)

for m ∈ N, f(x, y) ∈ B, and ak ∈ C[t]. In particular, we see that

A/(xB ∩A) ' C[t][ty, . . . , tyk, . . .],

which is not finitely generated over R, and so neither is A. The same holds

true for C[t](t) instead of C[t].

This argument does not provide a counterexample to Corollary 4.2, with t,

from above, replaced by a prime number p, i.e., for

A′ = Q[x2, x3, x+ py] ⊆ Q[x, y] =: B′ and B = Z(p)[x, y].
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What is different is that xyp−1 + yp ∈ A as

(x+ py)p ≡ pp(xyp−1 + yp) mod x2.

It is not difficult to see that, in this setting, A is generated by x2yi for 0 ≤ i < p,

x3yj for 0 ≤ j < p, mxym−1 + pym for 1 ≤ m < p, and xyp−1 + yp.

We are ready to give a proof of Theorem 1.6.

Theorem 4.4 (cf. Theorem 1.6). Let X
p←− Y

g−→ Y ′ be a diagram of

schemes or algebraic spaces such that p is representable, quasi-compact, and

separated, and g is a representable universal homeomorphism. Assume that

a topological pushout of XQ ← YQ → Y ′Q exists as a scheme or an algebraic

space, respectively. Then a geometric pushout of X ← Y → Y ′ exists as a

scheme or an algebraic space, respectively.

Proof. By Lemma 2.20 a geometric pushout of XQ ← YQ → Y ′Q exists, and

by Lemma 2.26 we can assume that X, Y , Y ′ are schemes, while preserving the

fact that a geometric pushout of XQ ← YQ → Y ′Q exists. By Remark 2.7(13)

the geometric pushout Z of XQ ← YQ → Y ′Q is then also a scheme. We split

the proof into four steps.

Step 1. We reduce to the case when YQ → Y ′Q is an isomorphism.

Let X̃ be the geometric pushout of Z ← XQ → X which exists by Corol-

lary 4.2. Let Ỹ ⊆ X̃ × Y ′ be the image of the map Y → X̃ × Y ′ induced by

Y → X → X̃ and Y → Y ′:

YQ XQ X Y

Y ′Q Z X̃ Ỹ Y ′.
p p

p̃

g̃

By construction, Y → Ỹ is surjective, and so both Y → Ỹ and Ỹ → Y ′

are universal homeomorphisms by Lemma 2.8. Moreover, YQ → X̃Q factorises

through Y ′Q → Z ' X̃Q, thus

ỸQ = im(YQ → X̃Q × Y ′Q) ' Y ′Q.

By Lemma 2.20 it is enough to construct a geometric pushout X̃ ′of X̃← Ỹ →Y ′.

Therefore, by replacing X ← Y → Y ′ by this diagram, we can assume that

YQ → Y ′Q is an isomorphism. Note that p̃ is quasi-compact and separated by

Remark 2.7(2) and (4), and so the assumptions of Theorem 4.4 are preserved.

Step 2. We reduce to the case of p being affine or a contraction.

By Lemma 2.26 we can assume that X is affine, while preserving the fact

that p is quasi-compact separated and YQ → Y ′Q is an isomorphism. Since X is
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affine, both X and Y are quasi-compact and separated. Thus, by the Zariski-

Nagata compactification and the Stein factorisation (cf. [Tem11, Th. 1.1.3],

[Sta, Tag 03H2]), the separated morphism Y → X can be factored as Y →
X1 → X0 → X, where the first and the third map are affine, and the second

one is a contraction. Then, using Steps 3 and 4, we can construct geometric

pushouts X ′1, X
′
0, and X ′ of X1 ← Y → Y ′, X0 ← X1 → X ′1, and X←X0→

X ′0, respectively. Note that these pushouts are trivial over Q:

X X0 X1 Y

X ′ X ′0 X ′1 Y ′.

By standard diagram chase, X ′ is the geometric pushout of X ← Y → Y ′.

Step 3. We assume that p is affine (cf. [Kol97, Lemma 8.9]).

By Lemma 2.26 we can assume that X is affine, while preserving the

fact that p is affine and YQ → Y ′Q is an isomorphism. In particular, Y and

Y ′ are affine as well (see Remark 2.7(12)). Let X ′ = SpecA ×B B′, where

X ← Y → Y ′ corresponds to A→ B ← B′. By Lemma 2.18, the diagram

X = SpecA SpecB = Y

X ′ = SpecA×B B′ SpecB′ = Y ′

is a geometric pushout provided that X → X ′ is a universal homeomorphism.

To show that this is the case, we can assume that X and X ′ are defined over

Z(p) by Lemma 2.9. Then Lemma 3.4 shows that Bperf ' B′perf . Thus

Aperf ← (A×B B′)perf = Aperf ×Bperf B′perf ' Aperf

is an isomorphism, and so by Lemma 3.4 again, X → X ′ is a universal home-

omorphism.

Step 4. We assume that p is a contraction.

By Lemma 2.26 we can assume that X is affine, while preserving the fact

that p is a contraction and YQ → Y ′Q is an isomorphism. In particular, Y and Y ′

are quasi-compact and quasi-separated (see Remark 2.7(2) and (4)). Set X ′ :=

SpecH0(Y ′,OY ′). Since H0(Y,OY ) = H0(X,OX), we get a commutative

diagram (cf. [Sta, Tag 01I1]):

X Y

X ′ Y ′.

f

p

g

q
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We have that

X ′Q = SpecH0(Y ′,OY ′)⊗Q ' SpecH0(Y ′Q,OY ′Q)

' SpecH0(YQ,OYQ) ' SpecH0(XQ,OXQ) = XQ,

where XQ ' X ′Q is induced by f |XQ and the first isomorphism follows from

quasi-compactness of Y ′.

To show that f : X → X ′ is a universal homeomorphism, we can assume

the spaces are defined over Z(p) by Lemma 2.9. Then we have H0(X,OX)perf =

H0(Y,OY )perf = H0(Y ′,OY ′)perf (by Lemma 3.4 and quasi-compactness and

quasi-separatedness of Y and Y ′). Hence, by Lemma 3.4, X → X ′ is a universal

homeomorphism, and the geometric pushout exists by Lemma 2.20. �

Using Corollary 4.2, we also show the following lemma (generalising [Kee99,

Lemma 2.1]), which is essential in the proof of Theorem 1.5.

Lemma 4.5. Let X be a quasi-compact quasi-separated algebraic space,

and let

R
f−→ E

p
−−⇒
q
X

be maps of algebraic spaces such that p, q are representable quasi-compact

quasi-separated, f is a representable universal homeomorphism, and p ◦ f =

q◦f . Assume that there exists a representable universal homeomorphism XQ →
X ′Q such that the two composite morphisms EQ ⇒ XQ → X ′Q are identical.

Then there exists a representable universal homeomorphism X → X ′ such that

the two composite morphisms E ⇒ X → X ′ are identical.

The lemma also holds in the category of schemes in which case the assump-

tion on the quasi-compactness and quasi-separatedness of X is not necessary.

Proof. By replacing X by the geometric pushout of X ← XQ → X ′Q,

which exists by Corollary 4.2, we can assume that p|EQ = q|EQ .

First, we deal with the case when the spaces in question are schemes. To

this end, we reduce the lemma to when fQ:RQ→EQ is an isomorphism. Let E′

be the geometric pushout (and hence a categorical pushout) of R←RQ→EQ.

Then the induced map f ′ : E′ → E is a universal homeomorphism and an

isomorphism over Q (see Lemma 2.20). Moreover, p ◦ f ′ = q ◦ f ′ by the

universal property of categorical pushouts as p ◦ f = q ◦ f and pQ = qQ. Thus,

we can conclude the reduction process by replacing R by E′.

Set X ′ = X as topological spaces and endow X ′ with a structure of a

ringed space by setting OX′ := ker(p∗ − q∗ : OX −→ p∗OE). Note that since

R = E topologically, we have a natural identification p∗OE = q∗OE . We

claim that OX′(U) → OX(U) is a universal homeomorphism for every affine

open subset U ⊂ X. To show the claim we can assume that our spaces are
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defined over Z(p) by Lemma 2.9. Then, by Lemma 3.4, Operf
E = Operf

R , and so

Operf
X′ = Operf

X . The claim follows by Lemma 3.4 again.

Now, we claim that X ′|U = SpecOX′(U), and so X ′ is a scheme with the

induced map g : X → X ′ being a universal homeomorphism. By the above

paragraph, U = X ′|U = SpecOX′(U) topologically. Now, by quasi-coherence

of p∗OE and exactness of localisation, we get that

OX′(D(f)) = OX′(U)f ′ ,

where f ′ ∈ OX′(U), its image in OX(U) is denoted by f , and D(f) ⊆ U is the

complement of the locus where f = 0 (cf. [Sta, Tag 01Z8]). This concludes the

proof of the claim. It follows by construction that g ◦ p = g ◦ q.
Now we show the lemma for algebraic spaces. Let U → X be a surjective

étale morphism from an affine scheme U (which exists by [Sta, Tag 03H6] as

X is quasi-compact), and let RU , EpU , and EqU be its pullbacks via p ◦ f , p,

and q, respectively. Since the pullbacks of EpU and EqU under f are isomorphic

to RU , we have a natural isomorphism EpU ' EqU =: EU by Remark 2.7(14),

and so two maps pU , qU : EU ⇒ U . Moreover, (pU )Q = (qU )Q.

Therefore, by the above paragraph, we can construct a universal homeo-

morphism gU : U → U ′ equalising pU and qU , and such that UQ ' U ′Q. Since

U is affine and X is quasi-separated, the morphism U → X is representable

quasi-compact and separated (Remark 2.7(1) and (3)). By Theorem 4.4, we

can construct a geometric pushout X ′ of X ← U → U ′ sitting inside the

following diagram:

R E X X ′

RU EU U U ′.

f

q

p g

fU

qU

pU gU

In particular, the two compositions EU → E ⇒ X → X ′ are identical, and

since EU → E is faithfully flat (and thus OE → OEU is injective by [Sta,

Tag 08WP]), the two compositions E ⇒ X → X ′ are identical, too. �

5. Gluing of semiampleness

In order to prove Theorem 1.2 and Corollary 1.3 we need to understand

semiampleness on non-irreducible schemes.

5.1. Gluing. The following propositions follow by the strategy of Keel

given our Theorem 4.4 and Corollary 3.7.

Proposition 5.1 (cf. [Kee99, Cor. 2.9]). Let X be a reduced scheme pro-

jective over a Noetherian base scheme S and such that X = X1 ∪X2 for two

reduced closed subschemes X1 and X2. Let L be a line bundle on X such
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that L|X1 , L|X2 , and L|XQ are semiample (EWM, resp.). Let g2 : X2 → Z2

be a morphism associated to L|X2 . Assume that g2|X1∩X2 has geometrically

connected fibres. Then L is semiample (EWM, resp.).

Proof. We can assume that S is affine. Let X1,2 := X1 ∩ X2 be the

scheme theoretic intersection. (In particular, it need not be reduced.) Let

g1 : X1 → Z1, g2 : X2 → Z2, and g1,2 : X1,2 → V1,2 be the morphisms associated

to L|X1 , L|X2 , and L|X1,2 , respectively. Let

V1,2
fi−→ Vi ↪→ Zi

be factorisations through the images Vi of V1,2 in Zi. Note that fi are proper

(Remark 2.7(8)) with finite fibres, hence they are finite (Remark 2.7(11)).

Moreover, since g2|X1,2 has geometrically connected fibres, we get that f2 is a

finite universal homeomorphism.

We claim that a topological pushout of (V1)Q ← (V1,2)Q → (V2)Q ex-

ists. Indeed, let gQ : XQ → Z ′ be a map associated to L|XQ , and let V ′ ⊆ Z ′

be the image of (X1,2)Q. By construction, we get maps (V1)Q, (V2)Q → V ′

such that (V1)Q → V ′ is proper (Remark 2.7(8)) and a bijection on points

(as g2|(X1,2)Q has geometrically connected fibres), hence it is a finite universal

homeomorphism (Remark 2.7(11)). In particular, V ′ is the sought-for topo-

logical pushout.

Therefore, by Theorem 4.4, there exists a geometric pushout V of V1 ←
V1,2 → V2 sitting in the following diagram:

X1 X1,2 X2

V1,2

Z1 V1 V2 Z2

V.

g1

g1,2

g2

f1 f2

h1 h2

By definition, f∗2 : OV2 → (f2)∗OV1,2 is injective, and hence so is h∗1 : OV →
(h1)∗OV1 (Remark 2.19(4)). Thus, by Lemma 2.10, V is proper over S. Since V1
and V2 are of finite type, the morphisms h1 and h2 are finite (cf. Remark 2.19).

First, we consider the EWM case. To this end, let Z ′1, Z
′
2, and Z be the

pushouts of Z1 ←↩ V1 → V , V ← V2 ↪→ Z2, and Z ′1 ←↩ V ↪→ Z ′2 (equivalently

V ← V t V ↪→ Z ′1 tZ ′2), respectively, which exist and are of finite type over S

by Theorem 2.3. By Remark 2.7(4) and (7), Z ′1, Z
′
2, and Z are proper. Since

X is a categorical pushout of X1 ←↩ X1,2 ↪→ X2 ([Sta, Tag 0C4J]) and the

constructed maps X1 → Z, X2 → Z agree on X1,2, we get an induced map
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g : X → Z, which is proper (as it is a map between proper spaces). Note that

g : X → Z is associated to L; indeed, its restriction to Xi agrees with gi for

i ∈ {1, 2} up to a finite map, and so a closed integral subscheme V ⊆ Xi is

contracted by g if and only if it is contracted by gi if and only if L|V is not big.

Now, we move on to the semiample case of the proposition in which case

V is a scheme. Up to replacing L by some power, the line bundles L|X1 , L|X1,2 ,

and L|X2 induce ample line bundles AZ1 , AZ2 , AV1,2 on Z1, Z2, and V1,2, re-

spectively. Let AV1 := AZ1 |V1 , and let AV2 := AZ2 |V2 . By construction, these

line bundles induce an element (AV1 , AV2 , φ) ∈ PicV1 ×PicV1,2 PicV2 , where φ

is an isomorphism of their restriction to V1,2. Now let AVQ ∈ PicVQ be a line

bundle on VQ given as a pullback via VQ → V ′ ⊆ Z ′ of the line bundle in-

duced by the semiample fibration gQ : XQ → Z ′ of L|XQ . These constructions

provide an isomorphism between the restrictions of (AV1 , AV2 , φ) and AVQ to

Pic(V1)Q ×Pic(V1,2)Q Pic(V2)Q . Therefore, Corollary 3.7 implies the existence of

a compatible line bundle AV ∈ PicV up to replacing L by some power. In

particular, there is a map

AV → (h1)∗AV1 ×(h1◦f1)∗AV1,2 (h2)∗AV2

of quasi-coherent sheaves. In fact, this is an isomorphism as can be checked

locally, in which case this is equivalent to V being a geometric pushout. More-

over, AV is ample by [Sta, Tag 0B5V].

We get the following diagram:

H0(Z1, AZ1) H0(V1,2, AV1,2) H0(Z2, AZ2)

H0(V1, AV1) H0(V1,2, AV1,2) H0(V2, AV2),

=

where the vertical arrows, up to replacing L by a multiple, are surjective by

Serre vanishing. The fibre product of the bottom row is H0(V,AV ) (as proved

in the above paragraph), and since

H0(Xi, L|Xi) = H0(Zi, AZi), H0(X1,2, L|X1,2) = H0(V1,2, AV1,2),

the fibre product of the upper row is H0(X,L) (cf. [Sta, Tag 0B7M]). Hence,

we get a surjective map between the fibre products of both rows

H0(X,L)→ H0(V,AV ),

and so the base locus of L is disjoint from X1,2. When lifting sections via

H0(Xi, L|Xi) = H0(Zi, AZi) → H0(Vi, AVi) we can assume that they do not

vanish at any given point disjoint from X1,2, and hence L is semiample. �

Proposition 5.2 (cf. [Kee99, Lemma 2.10]). Let X be a reduced scheme

projective over an excellent base scheme S. Let π : Y → X be its normalisation
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with C ⊆ X and D ⊆ Y being the conductors. Let L be a line bundle on X such

that π∗L, L|C , and L|XQ are semiample (EWM, resp.), and let g : Y → Z be

the morphism associated to π∗L. Assume that g|D has geometrically connected

fibres. Then L is semiample (EWM, resp.).

Proof. Note that X is a categorical pushout of Y ←↩ D → C (see [CT20,

Prop. 2.29] and [Sta, Tag 0E25]).

Let gD : D → V and gC : C → V2 be the morphisms associated to π∗L|D
and L|C , respectively. These morphisms lie in the following diagram:

D

Y V C

Z V1 V2 V2,

gD
π|D

g
f1 f2 gC

=

where V1 is the image of D under g. Since g|D has geometrically connected

fibres, we get that f1 is a universal homeomorphism.

Arguing as in the proof of the above proposition, we can construct pushouts

V ′ and Z ′ of V1 ← V → V2 and Z ← V1 → V ′, respectively. We get an induced

map X → Z ′, and it is associated to L in the EWM case. Indeed, Y → X → Z ′

factorises into Y → Z and the finite map Z → Z ′; in particular, an integral

subscheme V ⊆ X is contracted by X → Z ′ if and only if a surjective-onto-V

integral component V ′ ⊆ π−1(V ) is contracted by Y → Z if and only if π∗L|V ′
is not big if and only if L|V is not big (cf. Lemma 2.1).

In the semiample case, we proceed mutatis mutandis as in the proof of

the above proposition. �

For the proof of Corollary 1.3, we also need the following result.

Proposition 5.3 (cf. [Kee99, Cor. 2.12 and 2.14]). Propositions 5.1 and

5.2 hold true when g2|X1∩X2 and g|D, respectively, have all geometric fibres,

except for a finite number over closed points, being connected, provided we

assume in the semiample case that positive characteristic closed points have

locally finite residue fields.

Proof. We focus on the case of Proposition 5.1 as the case of Proposi-

tion 5.2 is analogous. Let T ⊆ V2 be the finite set of closed points over which

the fibres of g2|X1,2 are not connected, and set G := g−12 (T ). We would like to

apply Proposition 5.1 to (X1 ∪ G) ∪ X2. To this end, we need to verify that

L|X1∪G is semiample (EWM, resp.).

Let g1 : X1 → Z1 be the morphism associated to L|X1 . Since g1(X1∩G) is

a finite number of closed points, we have that L|G′ is numerically trivial where

G′ := g−11 (g1(X1 ∩G)). Now, we apply Proposition 5.1 again to X1 ∪ (G∪G′),
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wherein L|G∪G′ is numerically trivial, and hence semiample (EWM, resp.) as

each connected component of G ∪G′ is of finite type over a locally finite field

or a field of characteristic zero in the semiample case; cf. [Kee99, Lemma 2.16].

This concludes the proof. �

6. Proofs of the main theorems

6.1. Keel ’s base point free theorem in mixed characteristic. As pointed out

in the introduction, the key to the proof of Theorem 1.2 is Theorem 1.10.

In what follows, we consider a category of pairs (X,LX) consisting of a

scheme with a line bundle LX on it, and we denote by f : (X,LX) → (Y,LY )

a data of a morphism f : X → Y together with an isomorphism f∗LY ' LX .

Proof of Theorem 1.10. We start with the EWM case of the theorem. Let

g : Xred → Z be a map associated to L|Xred . We claim that there exists a topo-

logical pushout Z ′ of X ← Xred → Z which is proper over S. To this end, let

XQ → Z ′Q be a contraction associated to L|XQ . The induced map ZQ → Z ′Q is

proper (Remark 2.7(8)) and a bijection on geometric points, hence a finite uni-

versal homeomorphism (Remark 2.7(11)). Thus, Z ′Q is a topological pushout of

XQ←Xred
Q →ZQ, and hence the claim follows by Theorem 4.4 and Lemma 2.22.

Now, the induced map X → Z ′ is one associated to L. (The condition of being

a map associated to a line bundle depends on the reduction only.)

We move on to the semiample case. We can assume that S is an affine

Noetherian scheme over Z(p), where p is a prime number. The semiample line

bundles L|Xred , L|Xred
Q

, and L|XQ , up to replacing L by some power, induce

the following commutative diagram (in the category of pairs as stated above

which enforces compatiblity of line bundles and their isomorphisms):

(X,L) (XQ, L|XQ)

(Xred, L|Xred) (Xred
Q , L|Xred

Q
)

(Z,A) (ZQ, AQ)

(Z ′Q, A
′
Q),

where A, AQ, and A′Q are ample line bundles. Furthermore, since Xred
Q → XQ

is a universal homeomorphism, so is ZQ → Z ′Q; indeed, |Xred
Q | = |XQ| and

XQ → Z ′Q has geometrically connected fibres, and so Xred
Q → Z ′Q and the finite

part ZQ → Z ′Q of its Stein factorisation must have geometrically connected
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fibres as well. (However, ZQ → Z ′Q need not necessary be a thickening.) By

Corollary 4.2 and Lemma 2.22 we can construct a topological pushout Z ′ of

Z ← ZQ → Z ′Q which is proper over S. Since Z is of finite type, the induced

map Z → Z ′ is a finite universal homeomorphism. Thus, by Theorem 1.7, up

to replacing L by some power, we can extend the bottom left corner of the

above diagram to a commutative square

(Z,A) (ZQ, AQ)

(Z ′, A′) (Z ′Q, A
′
Q),

such that A′ is ample (see [Sta, Tag 0B5V]). Applying (H0)perf , we get a

diagram

H0(X,L)perf H0(XQ, L|XQ)perf

H0(Xred, L|Xred)perf H0(Xred
Q , L|Xred

Q
)perf

H0(Z ′, A′)perf H0(Z ′Q, A
′
Q)perf ,

where the left bent arrow exists by the Cartesianity of the upper square (see

Proposition 3.5) and the fact that H0(Z ′, A′)perf maps compatibly to all other

spaces in the above diagram. Since A′ is ample and Z ′ is of finite type over S,

we get that A′ is semiample (cf. [Sta, Tag 01VS]), and thus so is L. �

One could also tackle the semiample case of Theorem 1.10 by Theorem 4.4

and Corollary 3.7, but we believe that the above proof shows better what is

really happening.

Theorem 6.1 (Theorem 1.2). Let L be a nef line bundle on a scheme X

projective over an excellent base scheme S. Then L is semiample over S if

and only if both L|E(L) and L|XQ are so. If S is of finite type over a mixed

characteristic Dedekind domain, then L is EWM if and only if L|E(L) and L|XQ

are EWM.

Proof. We can assume that S is affine. We proceed by Noetherian induc-

tion on X as in [Kee99]. By Theorem 1.10, we can assume that X is reduced.

First, we reduce to the case of X being irreducible. If E(L) = X, then

we are done, so we may assume that there exists an irreducible component

X1 ⊆ X such that L|X1 is big. Let X2 ⊆ X be the union of all the other
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irreducible components. Write

X = X1 ∪ (X2 ∪ E(L)).

Assume that L|X1 is semiample (EWM, resp.), and let g1 : X1 → Z1 be an

associated morphism. The exceptional locus of g1 is contained in E(L), and

hence g1 has geometrically connected fibres on X1 ∩ (X2 ∪ E(L)). Thus L is

semiample (EWM, resp.) if L|X2∪E(L) is semiample (EWM, resp.) by Propo-

sition 5.1. Repeating this process for X2 ∪ E(L), we see that it is enough to

show the theorem for X being irreducible. In particular, we can assume that

S is integral.

Since L is big, we have that Lr ' A ⊗ E for some r ∈ N, where A is an

ample line bundle and E is a line bundle for which H0(X,E) 6= 0. Let D be a

zero locus of some section 0 6= s ∈ H0(X,E). By definition, E(L|mD) ⊆ E(L);

hence L|E(L|mD) is semiample (EWM, resp.), and so by Noetherian induction,

L|mD is semiample (EWM, resp.) for every m ∈ N as well.

In the semiample case, pick k � m� 0 divisible enough so that Lk|mD is

base point free and Ak is very ample. Consider the following exact sequence,

H0(X,Lk)→ H0(mD,Lk|mD)→ H1(X,Lk(−mD)) = 0,

wherein the last cohomology group is zero by the Fujita vanishing ([Kee03,

Th. 1.5] and [Kee18]) as Lk(−mD) ' Am ⊗ Lk−mr. Thus Lk has no base

points along D and hence is base point free as Lk ' Ak/r ⊗ Ek/r and Ak/r is

very ample.

The EWM case follows from [Art70, Ths. 3.1 and 6.2] as in [Kee99,

Prop. 1.6]. Here, we need to assume that S is of finite type over an excel-

lent Dedekind domain to apply [Art70]. �

6.2. Quotients by finite equivalence relations in mixed characteristic. As

in Section 2.2, all geometric quotients are assumed to be separated and of

finite type over a Noetherian base scheme S. The following lemma allows for

constructing quotients of non-reduced schemes.

Lemma 6.2. Let X be a separated algebraic space of finite type over a

Noetherian base scheme S. Let E ⇒ X be a finite, set theoretical equiva-

lence relation, and assume that the quotients XQ/EQ and Xred/Ered exist as

separated algebraic spaces of finite type over S, where Xred and Ered are reduc-

tions of X and E, respectively. Then the geometric quotient X/E exists as a

separated algebraic space of finite type over S.

Proof. Consider the following commutative diagram:
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Ered Xred Xred/Ered

E X Y,

where Y is the geometric pushout of X ← Xred → Xred/Ered. Such a pushout

exists by Theorem 4.4 as XQ ← XQ,red → XQ,red/EQ,red admits a topological

pushout in the form of XQ/EQ. Here, the map

XQ,red/EQ,red → XQ/EQ

is proper (Remark 2.7(7)), and a bijection on geometric points, hence a finite

universal homeomorphism (Remark 2.7(11)). Moreover, the map X → Y

is integral (Remark 2.19(2)) and the map YQ → XQ/EQ is a representable

universal homeomorphism (Lemma 2.20).

We know that two compositions Ered → E ⇒ Y coincide. Moreover,

the compositions EQ ⇒ YQ → XQ/EQ coincide as well and Y is quasi-compact

quasi-separated (Remark 2.19(3)), so by Lemma 4.5 there exists a representable

universal homeomorphism Y → Y ′ such that the compositions E ⇒ X → Y

→ Y ′ coincide. Thus a geometric quotient X/E exists by Theorem 2.13. �

Our proof of Theorem 1.4 follows closely the strategy of Kollár from

[Kol12, §4] with the new component being Theorem 4.4.

Proof of Theorem 1.4. We prove the theorem by induction on dimension.

Set d = dimX. By Lemma 6.2, we can assume that X and E are reduced.

First we show the theorem under the assumption that X is normal. To this

end, we set Ed ⊆ E and Xd ⊆ X to be the unions of d-dimensional irreducible

components of E and X, respectively. Write X = Xd t X<d, where X<d is

the union of all the other components of X. By [Kol12, Lemma 28], Ed ⇒ Xd

is a set theoretic finite equivalence relation and the geometric quotient Xd/Ed

exists by [Kol12, Lemma 21]. Define X/Ed := Xd/Ed tX<d.

Let Z ⊆ X be a reduced closed subscheme of dimension lower than d such

that Z is closed under E and the equivalences E|X\Z and Ed|X\Z coincide. For

example, set Z = σ2(σ
−1
1 (X<d ∪ σ2(E<d))), where σ1, σ2 : E ⇒ X gives the

equivalence relation and E = Ed ∪E<d for E<d being the union of irreducible

components of E of dimension at most d−1. Since σ2(σ
−1
1 (T )) is stable under

E for any subset T of X by transitivity of equivalence relations, Z is stable

under E. Consider the following diagram:

Z X

Z ′ X/Ed,
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where Z ′ is the image of Z in X/Ed, and Z → Z ′ is finite. We have that

E|Z ⇒ Z is a finite set theoretic equivalence relation on Z, and since the

geometric fibres of Z → Z ′ are subsets of E-equivalence classes, we get an

induced equivalence relation EZ′ ⇒ Z ′ (see [Kol12, Def. 26]).

Since XQ/EQ exists, [Kol12, Cor. 18] implies that Z ′Q/EZ′,Q exists too

and, by induction, so does the geometric quotient Z ′/EZ′ . By Theorem 2.3,

there exists a pushout

Z ′ X/Ed

Z ′/EZ′ Y,

with X/Ed → Y finite and Y being an algebraic space of finite type over S

(and separated by Remark 2.7(4)). Since X/Ed → Y equalises E ⇒ X/Ed,

Theorem 2.13 implies the existence of X/E, which, in fact, coincides with Y

as being a categorical pushout of the above diagram is equivalent to being a

categorical quotient of X/Ed by E (see [Kol12, Prop. 25]).

We move to the case when X is not necessarily normal. Let g : X̃ → X

be its normalisation (which is finite by [Sta, Tag 0BB5]), let Ẽ be the pullback

of E (see [Kol12, Def. 26]), and let q : X̃ → X̃/Ẽ be the geometric quotient

which exists by the above paragraphs. Set X∗ to be the image of X̃ under the

diagonal map (q, g) : X̃ → (X̃/Ẽ)×S X.

Since X̃ is separated (as so is X), the diagonal map X̃ → X̃ ×S X̃ is a

closed immersion and (q, g) is finite. Thus X̃ → X∗ is proper (Remark 2.7(8)),

and so X∗ → X̃/Ẽ and X∗ → X are proper as well (Remark 2.7(7) and (4)).

Since the fibres of X̃ → X are contained in the equivalence classes of Ẽ, the

map X∗ → X is a bijection on geometric points, and so a finite universal

homeomorphism (Remark 2.7(11)).

The diagram X̃Q/ẼQ ← X∗Q → XQ admits a topological pushout in the

form of XQ/EQ. Indeed, the composite map X̃Q → X̃Q/ẼQ → XQ/EQ is

finite, and so X̃Q/ẼQ → XQ/EQ is proper (Remark 2.7(7)); as it is also a

bijection on geometric points, it must be a finite universal homeomorphism

(Remark 2.7(11)). Thus Theorem 4.4 implies that the geometric pushout, say

W , of X̃/Ẽ ← X∗ → X exists:

X̃

X∗ X

X̃/Ẽ W.
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Moreover, E is a set theoretic equivalence relation over W (as OE → OẼ
is injective due to X and E being reduced), and so the geometric quotient

X/E exists by Theorem 2.13. Note that X → W is integral by Remark 2.19.

�

6.3. Quotients by affine algebraic groups in mixed characteristic. Now, we

move on to the proof of Theorem 1.5. To this end, we need the following lemma.

Lemma 6.3. Let G be an affine algebraic group scheme, flat and of finite

type over a Noetherian base scheme S, let X and Y be separated algebraic

spaces of finite type over S admitting a proper action of G, and let f : X → Y

be a finite and universal G-homeomorphism. If the geometric quotient Y/G

exists, then so does X/G. Conversely, if both X/G and YQ/GQ exist, then so

does Y/G.

Proof. If the geometric quotient Y/G exists, then X/G exists by applying

Theorem 2.15 to X → Y → Y/G.

Thus, we can assume that X/G and YQ/GQ exist. Since YQ/GQ is a

topological pushout of XQ/GQ ← XQ → YQ (see Remark 2.16(5)), a geometric

pushout Z of X/G← X → Y exists by Theorem 4.4.

We claim that there exists a representable universal homeomorphism Z→Z ′

such that the composite map Y →Z→Z ′ is a G-morphism with Z endowed

with a trivial G-action. To this end, we consider the following commutative

diagram:

X/G×G X ×G Y ×G

X/G X Y,

mX/G mX mY

where the vertical arrows are given by G-actions. In particular, we get an

induced map mZ : Z × G between the pushouts of both rows, such that the

diagram

X/G×G Z ×G

X/G Z

mX/G mZ

is commutative. Since mX/G is a projection, the two composite maps

X/G×G→ Z ×G
π
−−−−⇒
mZ

Z

are identical, where π is a projection.

By Lemma 2.20, there exists a representable universal homeomorphism

ZQ → YQ/GQ. Further, the two composite maps

ZQ ×GQ
π
−−−−⇒
mZ

ZQ → YQ/GQ
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are identical. (Here we used that mZQ : ZQ × GQ → ZQ is compatible with

mYQ/GQ : YQ/GQ ×GQ → YQ/GQ.) Hence, we can invoke Lemma 4.5 to get a

representable universal homeomorphism Z → Z ′ such that the two composite

maps Z ×G⇒ Z → Z ′ are identical. This concludes the proof of the claim.

Given the claim, the geometric quotient Y/G exists by Theorem 2.15

applied to Y → Z ′. �

Note that a normalisation of an excellent scheme is finite ([Sta, Tag 07QV

and 035S]).

Proof of Theorem 1.5. Note that XQ/GQ exists by the characteristic zero

case of the theorem. (See [Vie95, Th. 9.16] for when SQ is of finite type over

a field.)

We follow the strategy described in [Kol97, 5.7]. By [Kol97, Th. 5.6], the

action of G on X lifts to the seminormalisation Xsn of the reduction of X.

By Lemma 6.3, it is enough to show that a geometric quotient Xsn/G exists.

Hence we can assume that X is seminormal and reduced.

By [Kol97, Prop. 4.1], the action of G on X lifts to the normalisation

Xn of X and, by [Kol97, Th. 4.3], the geometric quotient Xn/G exists. Let

C ⊆ X and D ⊆ Xn be the conductor schemes. We must have that C is

G-invariant, and so D admits a proper action of G. Moreover, it admits a

topological quotient D → DXn/G, where DXn/G is the image of D in Xn/G.

Hence the geometric quotient D/G exists by Theorem 2.15 and the induced

map D/G → DXn/G is a finite universal homeomorphism. We can assume

that the geometric quotient C/G exists by Noetherian induction. The induced

map D/G→ C/G is finite by Remark 2.16.

In [Kol97, Th. 5.8], it is shown that the geometric quotient X/G exists

provided that the geometric quotients Xn/G, C/G, and a topological pushout

of C/G ← D/G → DXn/G (with the maps from C/G and DXn/G to the

pushout being finite) exist. Note that the image CXQ/GQ of CQ in XQ/GQ is a

topological pushout of CQ/GQ ← DQ/GQ → (DXn/G)Q, as CQ/GQ → CXQ/GQ

is a finite universal homeomorphism (Theorem 2.15). Hence, we can invoke

Theorem 4.4 to get a geometric pushout and Lemma 2.22 to get a topological

pushout Z of C/G ← D/G → DXn/G of finite type over S. Then C/G → Z

and DXn/G → Z are integral (Remark 2.19) and hence finite as C/G and

DXn/G are of finite type over S. �

Remark 6.4. Let h : G′ → G be a universal homeomorphism of flat group

schemes of finite type over a Noetherian base scheme S. By the same argument

as in Lemma 6.3, one can show that a geometric quotient by a proper action

of G exists if and only if a geometric quotient by a proper action of G′ exists,

provided that both quotients exist over Q. This allows for weakening the

assumptions of Theorem 1.5.
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6.4. Base point free theorem in mixed characteristic. Throughout this

subsection, we assume that S is a quasi-projective scheme defined over a mixed

characteristic Dedekind domain. Theorem 6.1 immediately implies the exis-

tence of plt contractions for mixed characteristic threefolds.

Corollary 6.5. Let (X,D+B) be a plt pair on a normal integral mixed

characteristic scheme X of (absolute) dimension three which is projective over

S, with D being a normal irreducible divisor and B being an effective Q-divisor.

Let L be a nef Cartier divisor on X such that L− (KX +D+B) is ample and

E(L) ⊆ D. Then L is semiample.

Proof. By adjunction, [Tan18, Th. 4.2], and [Tan20, Th. 1.1], L|D is semi-

ample, and so L|E(L) is semiample as well. Moreover, L|XQ is semiample by

the base point free theorem in characteristic zero (cf. [BCHM10, Th. 3.9.1] or

[HK10, Th. 5.1]). Hence, L is semiample by Theorem 6.1. �

We move on to the proof of Corollary 1.3. To this end, we need the

following result. Here, X can be of positive characteristic.

Proposition 6.6. Let L be a nef line bundle on a normal integral scheme

X admitting a projective morphism π : X → S. Assume that the (absolute)

dimension of X is two, dimπ(X) ≥ 1 and L|Xη is semiample, where η is the

generic point of π(X). Then L is EWM, and if positive characteristic closed

points of S are locally finite fields, then L semiample.

Proof. By Stein factorisation, we can assume that π is surjective and

π∗OX = OS , where π : X → S is the projection. In particular, we may assume

that S is integral and normal. We divide the proof into two cases depending

on whether L is big or not.

In the former case, we can apply Theorem 6.1 and reduce to showing that

L|E(L) is EWM (semiample, resp.). But E(L) is a scheme of dimension at most

one, and so L|E(L) is EWM (semiample if positive characteristic closed points

of S are locally finite fields). Here, we used that L|XQ is semiample as either

XQ = ∅, or L|XQ is big and XQ is an integral normal scheme of dimension at

most one.

In the latter case, dimS = 1, and since S is normal, it is regular by [Sta,

Tag 0BX2]. Moreover, L|Xη ∼Q 0, so we can apply [CT20, Lemma 2.17] to

deduce that in fact L is relatively torsion. �

The proof of Corollary 6.7 follows exactly the same strategy as in [Kee99].

For the convenience of the reader, we attach a sketch of the proof below,

following a slight reformulation of it as written in [MNW15].

Corollary 6.7 (Corollary 1.3). Let (X,∆) be a klt pair on a normal in-

tegral scheme X of (absolute) dimension three which is projective and surjec-

tive over a spectrum S of a mixed characteristic Dedekind domain with perfect
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residue fields of closed points. Let L be a nef and big Cartier divisor on X

such that L−(KX +∆) is nef and big. Then L is EWM. If the residue fields of

positive characteristic closed points of S are locally finite, then L is semiample.

Proof. We prove that L is semiample (resp. EWM). In the semiample case,

we assume that positive characteristic closed points of S (and so also of X as

it is projective over S) are locally finite. By taking a Stein factorisation, we

can assume that π∗OX = OS , where π : X → S is the projection. By the

base point free theorem in characteristic zero, we have that L|XQ is semiample.

Since L is a big Cartier divisor, up to multiplying L by some number, we can

decompose it as L ∼Q A+D, where A is an ample and D is an effective Cartier

divisor. By Theorem 6.1, it is enough to show that L|Dred
is semiample, where

Dred is the reduction of D.

Write Dred =
∑m

i=1Di, where Di are prime divisors, and define λi ∈ Q so

that ∆ + λiD contains Di with coefficient one. In particular, there exists an

effective Q-divisor Γi such that

∆ + λiD = Di + Γi

and Di 6⊂ Supp(Γi). Since (X,∆) is klt, it follows that λi > 0. By rearranging

indices, we may assume without loss of generality that λ1 ≤ λ2 ≤ · · · ≤ λm, so

we have ∑
1≤j≤i−1

Dj ≤ Γi

for each i. We define U0 := ∅ and Ui := Ui−1 ∪ Di for i > 0. We prove that

L|Ui is semiample (resp. EWM) by induction on i. By adjunction, there exists

an effective Q-divisor ∆Di
such that (KX + Di + Γi)|Di ∼ KDi

+ ∆Di
, where

Di → Di is the normalisation. Note that (1 + λi)L|Di = KDi
+ ∆Di

+ A′ for

A′ ample (see, e.g., the proof of Lemma 6.8).

Let us assume that L|Ui−1 is semiample (resp. EWM). We first prove that

L|Di is semiample (resp. EWM). If Di is of mixed characteristic, then L|Di is

semiample (resp. EWM) by Proposition 6.6. If Di is of positive characteristic

but dimπ(Di) ≥ 1, then L|(Di)η = K(Di)η
+ ∆(Di)η

+ A′|(Di)η is semiample

for the generic point η of π(Di) by the base point free theorem for curves

(equiv. classification of curves), and so L|Di is semiample (resp. EWM) by

Proposition 6.6. If Di is projective over a positive characteristic field, then L|Di
is semiample (resp. EWM) by an analogous argument to that in [Kee99, p. 279].

For the convenience of the reader, we summarise this argument briefly. When

L|Di has numerical dimension zero, we are done by assumptions. When the

numerical dimension is two, this follows by Theorem 6.1. When the numerical

dimension is one, a Riemann-Roch calculation as in [Kee99, p. 280] shows that

χ(ODi(mL|Di)) grows linearly with m. Up to a base change, we can assume

that Di is defined over an algebraically closed field. Thus, L|Di is semiample

(in both cases) by [Kee99, Lemmas 5.2 and 5.4]. (The latter reference gives a



KEEL’S THEOREM AND QUOTIENTS IN MIXED CHARACTERISTIC 701

bound on H2(Di,ODi(mL|Di)), which then implies that some multiple of L|Di
is linearly equivalent to an effective divisor; the former reference states that

Q-effective nef line bundles of numerical dimension one on normal projective

surfaces over algebraically closed fields are semiample.)

Assume κ(L|Di) is equal to 0 or 2. Then the assumptions of Proposi-

tion 5.3 are satisfied, and so L|Di is semiample (resp. EWM). Using the same

proposition again for X1 = Ui−1 and X2 = Di, we get that L|Ui is semiample

(resp. EWM).

In what follows, we assume κ(L|Di) = 1.

Lemma 6.8. Let πi : Di → Zi be the map associated to the semiample line

bundle L|Di , and let F be the generic fibre of πi. Further, let Ci ⊂ Di be the

the reduction of the conductor of the normalisation pi : Di → Di. Then Ci|F
is a geometrically connected zero-dimensional scheme.

In what follows the degrees of line bundles on F are taken with respect to

L = H0(F,OF ).

Proof. For Mi := (1 + λi)L− (KX + ∆ + λiD), it holds that

Mi = L− (KX + ∆) + λi(L−D)

∼Q (L− (KX + ∆)) + λiA,

and so Mi is ample, because L−(KX+∆) is nef and λiA is ample. In particular,

degMi|F > 0. Since degL|F = 0, we get deg(KDi
+ ∆Di

)|F < 0. Hence,

deg ∆Di
|F < − degKDi

|F = − degKF = 2,

where the last equality follows from the fact that F is a conic over L (cf. [Liu02,

Ch. 9, Prop. 3.16]). By the adjunction formula, the one-dimensional part of

Ci is contained in Supp(b∆Di
c). Hence, we get degCi|F ≤deg ∆Di

|F <2. �

By this lemma, the assumptions of Proposition 5.3 are satisfied, and so

L|Di is semiample (resp. EWM). Let ρi : Di → Z ′i be the map associated to

L|Di , and let G be a generic fibre of ρi. We get the following commutative

diagram, where πi : Di → Zi is the map associated to L|Di :

Di Di

Zi Z ′i.

πi

pi

ρi

We want to apply Proposition 5.3 to X1 = Ui−1 and X2 = Di to show

that L|Ui is semiample (resp. EWM). It is sufficient to prove that G intersects

Ui−1 ∩Di in at most one point.

By definition of Ui and the adjunction formula, the one-dimensional part

Λ of p−1i (Ui−1 ∩Di) is contained in Supp(b∆Di
c). By the proof of Lemma 6.8,
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we can conclude

deg Λ|G ≤ deg ∆Di
|F < 2,

which completes the proof. �
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[And18] Y. André, La conjecture du facteur direct, Publ. Math. Inst. Hautes
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by Reinie Erné, Oxford Sci. Publ. MR 1917232. Zbl 0996.14005.

[MS18] L. Ma and K. Schwede, Perfectoid multiplier/test ideals in regu-

lar rings and bounds on symbolic powers, Invent. Math. 214 no. 2

(2018), 913–955. MR 3867632. Zbl 1436.13009. https://doi.org/10.1007/

s00222-018-0813-1.

[MS21] L. Ma and K. Schwede, Singularities in mixed characteristic via

perfectoid big Cohen-Macaulay algebras, Duke Math. J. 170 no. 13

(2021), 2815–2890. MR 4312190. Zbl 7433911. https://doi.org/10.1215/

00127094-2020-0082.

[MST+19] L. Ma, K. Schwede, K. Tucker, J. Waldron, and J. Witaszek,

An analog of adjoint ideals and PLT singularities in mixed characteristic,

2019, J. Algebraic Geom., to appear. arXiv 1910.14665.

[MNW15] D. Martinelli, Y. Nakamura, and J. Witaszek, On the basepoint-

free theorem for log canonical threefolds over the algebraic closure of a

finite field, Algebra Number Theory 9 no. 3 (2015), 725–747. MR 3340549.

Zbl 1317.14035. https://doi.org/10.2140/ant.2015.9.725.

http://www.ams.org/mathscinet-getitem?mr=3807062
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1388.14014
https://doi.org/10.1016/j.jalgebra.2018.03.024
https://doi.org/10.1016/j.jalgebra.2018.03.024
http://www.ams.org/mathscinet-getitem?mr=1432036
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0881.14017
https://doi.org/10.2307/2951823
https://doi.org/10.2307/2951823
http://www.ams.org/mathscinet-getitem?mr=2931872
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1271.14002
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1282.14028
https://doi.org/10.1017/CBO9781139547895
https://doi.org/10.1017/CBO9781139547895
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0926.14003
https://doi.org/10.1017/CBO9780511662560
https://doi.org/10.1017/CBO9780511662560
http://www.ams.org/mathscinet-getitem?mr=2095471
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1093.14501
https://doi.org/10.1007/978-3-642-18808-4
https://doi.org/10.1007/978-3-642-18808-4
http://www.ams.org/mathscinet-getitem?mr=1917232
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0996.14005
http://www.ams.org/mathscinet-getitem?mr=3867632
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1436.13009
https://doi.org/10.1007/s00222-018-0813-1
https://doi.org/10.1007/s00222-018-0813-1
http://www.ams.org/mathscinet-getitem?mr=4312190
http://www.zentralblatt-math.org/zmath/en/search/?q=an:7433911
https://doi.org/10.1215/00127094-2020-0082
https://doi.org/10.1215/00127094-2020-0082
http://www.arxiv.org/abs/1910.14665
http://www.ams.org/mathscinet-getitem?mr=3340549
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1317.14035
https://doi.org/10.2140/ant.2015.9.725


KEEL’S THEOREM AND QUOTIENTS IN MIXED CHARACTERISTIC 705

[Pop74] H. Popp, On moduli of algebraic varieties. I, Invent. Math. 22

(1973/74), 1–40. MR 0379495. Zbl 0281.14011. https://doi.org/10.1007/

BF01425571.

[SS11] P. Sastry and C. S. Seshadri, Geometric reductivity—a quotient

space approach, J. Ramanujan Math. Soc. 26 no. 4 (2011), 415–477.

MR 2895564. Zbl 1360.14119.

[Sch12] P. Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116

(2012), 245–313. MR 3090258. Zbl 1263.14022. https://doi.org/10.1007/

s10240-012-0042-x.

[Ses72] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups,

Ann. of Math. (2) 95 (1972), 511–556; errata, ibid. (2) 96 (1972), 599.

MR 0309940. Zbl 0241.14024. https://doi.org/10.2307/1970870.

[Ses77] C. S. Seshadri, Geometric reductivity over arbitrary base, Advances in

Math. 26 no. 3 (1977), 225–274. MR 0466154. Zbl 0371.14009. https:

//doi.org/10.1016/0001-8708(77)90041-X.

[Ses05] C. S. Seshadri, Geometric reductivity (Mumford’s conjecture)—

revisited, in Commutative Algebra and Algebraic Geometry, Contemp.

Math. 390, Amer. Math. Soc., Providence, RI, 2005, pp. 137–145.

MR 2187331. Zbl 1191.14058. https://doi.org/10.1090/conm/390/07300.

[Sta] Stacks Project Authors, The Stacks Project authors, 2018. Available

at https://stacks.math.columbia.edu.

[Tan18] H. Tanaka, Minimal model program for excellent surfaces, Ann. Inst.

Fourier (Grenoble) 68 no. 1 (2018), 345–376. MR 3795482. Zbl 1403.

14044. https://doi.org/10.5802/aif.3163.

[Tan20] H. Tanaka, Abundance theorem for surfaces over imperfect fields, Math.

Z. 295 no. 1-2 (2020), 595–622. MR 4100010. Zbl 1445.14029. https:

//doi.org/10.1007/s00209-019-02345-2.

[Tem11] M. Temkin, Relative Riemann-Zariski spaces, Israel J. Math. 185

(2011), 1–42. MR 2837126. Zbl 1273.14007. https://doi.org/10.1007/

s11856-011-0099-0.

[Vie95] E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, Ergeb.

Math. 30, Springer-Verlag, Berlin, 1995. MR 1368632. Zbl 0844.14004.

https://doi.org/10.1007/978-3-642-79745-3.

[Wei13] C. A. Weibel, The K-book, Graduate Studies in Mathematics 145,

American Mathematical Society, Providence, RI, 2013, An introduction

to algebraic K-theory. MR 3076731. Zbl 1273.19001. https://doi.org/10.

1090/gsm/145.

[Wit] J. Witaszek, Relative semi-ampleness in mixed characteristics, work in

progress. arXiv 2106.06088.

(Received: March 11, 2020)

(Revised: July 9, 2021)

University of Michigan, Ann Arbor, MI

E-mail : jakubw@umich.edu

http://www.ams.org/mathscinet-getitem?mr=0379495
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0281.14011
https://doi.org/10.1007/BF01425571
https://doi.org/10.1007/BF01425571
http://www.ams.org/mathscinet-getitem?mr=2895564
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1360.14119
http://www.ams.org/mathscinet-getitem?mr=3090258
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1263.14022
https://doi.org/10.1007/s10240-012-0042-x
https://doi.org/10.1007/s10240-012-0042-x
http://www.ams.org/mathscinet-getitem?mr=0309940
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0241.14024
https://doi.org/10.2307/1970870
http://www.ams.org/mathscinet-getitem?mr=0466154
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0371.14009
https://doi.org/10.1016/0001-8708(77)90041-X
https://doi.org/10.1016/0001-8708(77)90041-X
http://www.ams.org/mathscinet-getitem?mr=2187331
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1191.14058
https://doi.org/10.1090/conm/390/07300
https://stacks.math.columbia.edu
http://www.ams.org/mathscinet-getitem?mr=3795482
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1403.14044
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1403.14044
https://doi.org/10.5802/aif.3163
http://www.ams.org/mathscinet-getitem?mr=4100010
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1445.14029
https://doi.org/10.1007/s00209-019-02345-2
https://doi.org/10.1007/s00209-019-02345-2
http://www.ams.org/mathscinet-getitem?mr=2837126
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1273.14007
https://doi.org/10.1007/s11856-011-0099-0
https://doi.org/10.1007/s11856-011-0099-0
http://www.ams.org/mathscinet-getitem?mr=1368632
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0844.14004
https://doi.org/10.1007/978-3-642-79745-3
http://www.ams.org/mathscinet-getitem?mr=3076731
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1273.19001
https://doi.org/10.1090/gsm/145
https://doi.org/10.1090/gsm/145
http://www.arxiv.org/abs/2106.06088
mailto:jakubw@umich.edu

	1. Introduction
	1.1. Further discussion
	1.2. The idea of the proof of [theorem:mainintro]Theorem 1.2

	2. Preliminaries
	2.1. Universal homeomorphisms
	2.2. Quotients by finite equivalence relations
	2.3. Quotients by group schemes
	2.4. Pushouts of universal homeomorphisms
	2.5. Generalised conductor squares

	3. Multiplicative perfection in mixed characteristic
	3.1. Multiplicative perfection
	3.2. Infinitesimal site up to perfection
	3.3. Descending line bundles

	4. Pushouts of universal homeomorphisms in mixed characteristic
	5. Gluing of semiampleness
	5.1. Gluing

	6. Proofs of the main theorems
	6.1. Keel's base point free theorem in mixed characteristic
	6.2. Quotients by finite equivalence relations in mixed characteristic
	6.3. Quotients by affine algebraic groups in mixed characteristic
	6.4. Base point free theorem in mixed characteristic
	Acknowledgements

	References

