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Deformation theory of perfect complexes and traces

Max Lieblich and Martin Olsson

We show that the deformation theory of a perfect complex and that of its determi-
nant are related by the trace map, in a general setting of sheaves on a site. The key
technical step, in passing from the setting of modules over a ring where one has
global resolutions to the general setting, is achieved using K-theory and higher
category theory.

1. Introduction

1.1. Our goal in this article is to prove the following piece of folklore.

Theorem 1.2 (folk theorem, informally stated). If E is a perfect complex on an
algebraic stack X with a first-order thickening X ↪→ X ′, then the trace of the
obstruction class of E , with respect to the thickening, is the obstruction class for the
determinant det E of E. Moreover, the trace map from the torsor of deformations
of E to the torsor of deformations of det E coincides with the determinant map.

This is a geometric generalization of something familiar from a first multivariable
analysis course: the derivative of the determinant map on the space of matrices is
the trace function.

In our earlier work [Honigs et al. 2021; Lieblich and Olsson 2015; 2017], we
needed this result in a level of generality not explicitly available in the literature.
Indeed, as we discuss in 1.7, there are many incarnations of Theorem 1.2, in the
context of both classical and derived algebraic geometry. However, no source of
which we are aware treats the crucial case of a scheme over a mixed characteristic
base ring, or a gerbe over such a scheme. Some of the classical arguments written
over the complex numbers generalize easily to our needs, while others do not.
Moreover, the literature discussing this result in derived algebraic geometry generally
starts with a blanket characteristic 0 assumption, and it is not apparent to us which
results generalize as written. At the very least, the literature as written is inadequate
for the applications that presently exist.

In this article we prove this folk theorem for deformations of perfect complexes
in a ringed topos, which suffices for all applications of which we know.
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1.3. Let S be a site and let O′
→ O be a surjective morphism of rings on S with

square-zero kernel K .
Let E ∈ Db(O) be a perfect complex of O-modules on S [Stacks, Tag 08G4].

A deformation of E to O′ is a pair (E ′, σ ), where E ′
∈ D−(O′) is a complex and

σ : E ′
⊗

L
O′ O ∼

−→ E is an isomorphism in D(O). Such a complex E ′ is automatically
perfect (see, for example, [Lieblich 2006, Lemma 3.2.4]). It is well-known, and
documented in various levels of generality in the literature, that the following
then hold:

(i) There is an obstruction ω(E) ∈ Ext2O(E, E ⊗
L
O K ) which vanishes if and only

if there exists a deformation of E to O′.

(ii) If ω(E) = 0 then the set of deformations of E to O′ form a torsor under
Ext1O(E, E ⊗

L
O K ). We denote this action by

(E ′, σ ) 7→ α ∗ (E ′, σ )

for a deformation (E ′, σ ) of E and a class α ∈ Ext1O(E, E ⊗
L
O K ).

(iii) If furthermore Ext−1
O (E, E) = 0 then the set of automorphisms of any defor-

mation of E to O′ is canonically isomorphic to Ext0O(E, E ⊗
L
O K ).

The purpose of this article is to elucidate the compatibility of these three facts
with traces. In the course of the article we also review the construction of the
obstruction ω(E) in the required degree of generality, as well as points (ii) and (iii).
We furthermore explain how to modify (iii) in the case when the vanishing of
negative Ext-groups does not hold.

Remark 1.4. One can generalize the definition of the obstruction to bounded
above complexes, which are not necessarily perfect. This can be done using the
construction of Gabber, discussed in Section 9.14, or in the more general context
of spectral algebraic geometry as discussed in [Lurie 2018, §16.2].

1.5. For a perfect complex E as above we can consider its determinant det(E),
which is an invertible O-module. This is again documented in various levels of
generality in the literature, for example in [Knudsen 2002]. We explain in this
article how to define the determinant in our general setting. On the other hand we
can also consider the trace map

tr : ExtiO(E, E ⊗
L
O K ) → H i (S, K ),

defined in [Illusie 1971, Chapter V, (3.7.3)]. The main result of this article is the
compatibility of determinants and traces in the following sense:

Theorem 1.6. (i) tr(ω(E)) = ω(det(E)) in H 2(S, K ).

https://stacks.math.columbia.edu/tag/08G4
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(ii) If (E ′, σ ) is a deformation of E and α ∈ Ext1O(E, E ⊗
L
O K ) is a class, then

det(α ∗ (E ′, σ )) = tr(α) ∗ (det(E ′), det(σ )).

(iii) If furthermore we have Ext−1(E, E) = 0, then for a deformation (E ′, σ ) the
map on automorphism groups

Ext0O(E, E ⊗
L
O K ) → Ext0O(det(E), det(E)⊗L

O K ) ≃ H 0(S, K )

induced by the determinant agrees with the trace map.

1.7. This compatibility seems to be well-known to experts and appears in the
literature in the case of complexes of coherent sheaves admitting a global resolution
in [Huybrechts and Thomas 2010; Langholf 2013; Thomas 2000]. The case of
perfect complexes on quasiprojective schemes over a field of characteristic 0 (which
themselves always admit global resolutions) also appears in [Schürg et al. 2015,
Proposition 3.2]. As we explain in Section 11, these cases of complexes admitting
global resolutions also follow from the additivity of traces for morphisms in the
filtered derived category [Illusie 1971, Chapter V, 3.7.7]. The results in [Gaitsgory
and Rozenblyum 2017, Chapter 7, §3.3], which concern the cotangent complex of
the stack of perfect complexes for derived schemes over fields of characteristic 0,
are also closely related to the work in this article. Our approach in this article is
close in spirit to [Gaitsgory and Rozenblyum 2017; Schürg et al. 2015].

1.8. Fundamentally, Theorem 1.6 is a reflection of a more basic statement in the
context of “formal moduli problems” in the sense of [Lurie 2018, Chapter IV]. Both
perfect complexes and line bundles form such moduli problems and the determinant
map defines a morphism between them for which the induced map on tangent
complexes is the trace map. While we do not use the language of formal moduli
problems, this framework captures the approach taken here.

There are two main issues to be dealt with in proving Theorem 1.6. The first
is the definition of the determinant of a perfect complex. In classical treatments,
such as [Knudsen 2002], one presents a complex locally using a resolution, takes
the alternating tensor product of the determinants of the sheaves in the complex,
and then has to argue that this globalizes and enjoys various good properties. This
approach to defining the determinant is difficult to work with in the general context
of this article. The second issue is that the deformation problem we are concerned
with is fundamentally higher-categorical in nature. We should consider not only
complexes and isomorphisms between them, but homotopies and higher homotopies.
Both these issues are addressed by considering the problem from an ∞-categorical
perspective.

1.9. In order to understand the obstruction class ω(E) we employ the following
basic idea, discussed at length in [Lurie 2018, Proposition 0.1.3.5 and surrounding
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text]. For a map of O-modules ρ : K → J one can pushout O′ along ρ to get a new
surjection

O′

ρ → O

with kernel J , and equipped with a morphism O′
→O′

ρ . If we could find an inclusion
ρ : K ↪→ J of K into an injective J such that E lifts to a perfect complex E ′

ρ

over O′
ρ , then the obstruction class can be understood as follows. The pushout of O′

along the composition
K → J → J/K

is isomorphic to O[J/K ] (the ring of dual numbers on J/K ), and we get by pushing
out E ′

ρ along O′
ρ → O[J/K ] a class in

Ext1O(E, E ⊗
L J/K ).

The image of this class under the boundary map

Ext1O(E, E ⊗
L J/K ) → Ext2O(E, E ⊗

L K )

arising from the short exact sequence

0 → K → J → J/K → 0

is then the obstruction ω(E). Unfortunately it is not always possible to find such an
inclusion ρ. However, we can always choose an inclusion K ↪→ J into an injective
O-module and consider the induced inclusion

K ↪→ I := (J id
−→ J ),

where the complex I on the right is concentrated in degrees −1 and 0.
Applying the Dold–Kan correspondence to I we obtain an inclusion of simplicial

O-modules K ↪→ I•, and we can form the pushout of O′ along K → I• in the
category of simplicial rings. This leads us to consider perfect complexes over
simplicial rings and their determinants, which is the context for our discussion of
the determinant.

1.10. The article is organized as follows.
In Section 2 we review the basic definitions pertaining to the ∞-category of

modules over a sheaf of simplicial rings. We then explain how to understand
the fiber, in the sense of ∞-categories, of the reduction functor obtained from a
surjection of simplicial algebras with square-zero kernel, such as that which arises
in our deformation problem for complexes.

Section 3 contains a brief review of the various approaches to K-theory and
comparisons between them that play a role in this article.

Sections 4 and 5 are devoted to a discussion of the determinant functor from
perfect complexes to a suitable Picard category of line bundles. While classically one
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defines the determinant using resolutions and gluing, the ∞-categorical approach
to the determinant is easier to work with in our context (in fact, we do not know
how to define the determinant in the necessary generality without it). The key point
is that the (connective) K-theory of the category of perfect complexes is realized as
the universal map to a grouplike E∞-monoid from the E∞-monoid of projective
modules. We can then use variants of Quillen’s plus construction to describe the
K-theory of perfect complexes in more explicit ways that allow us to define the
determinant directly. We then globalize the discussion by taking global sections in
the ∞-categorical sense (homotopy limits).

As pointed out to us by Bhargav Bhatt, the construction of the determinant used in
this article also enables us to prove a compatibility with ring structure on K-theory.
We explain this in Section 6. The reader may wish to omit this section as it is not
used in the rest of the article.

Section 7 gives a description of the trace map of [Illusie 1971, Chapter V, (3.7.3)]
from an ∞-categorical perspective, which plays a role in comparing it with the
determinant map.

In Section 8 we prove the fundamental compatibility of the determinant and
trace maps. The main result is Proposition 8.9. In Sections 9 and 10 we then apply
the theory to the deformation theory of perfect complexes and prove the theorems
discussed in this introduction. In Section 9 we also verify the equivalence of the
definition of the obstruction to deforming a perfect complex to one due to Gabber.

Finally in Section 11 we give an alternate proof of Theorem 1.6(i) in the case
when one has global resolutions. The approach in this section does not use ∞-
categories but rather the filtered derived category and the compatibility of the trace
map with passing to the associated graded proven in [Illusie 1971, Chapter V,
Corollary 3.7.7].

We have also included an Appendix wherein we establish the basic relationship
between sheaves of dg-modules over the normalization of a simplicial ring and the
∞-category of modules in the sense of Section 2. This result seems well-known to
experts but we include it here for lack of a suitable reference.

1.11. Conventions. We use the language of ∞-categories as developed by Lurie
[2009; 2017; 2018], and differential graded (dg) categories as in [Toën 2007].

We often pass from a stable ∞-category C to its underlying ∞-groupoid, which
we denote by C≃. This is the ∞-category obtained from C by considering only
morphisms which induce isomorphisms in the homotopy category (see [Lurie 2009,
Proposition 1.2.5.3]).

Throughout this article all simplicial rings considered are commutative, and we
usually omit the adjective “commutative”.
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For a ring A and simplicial A-module I• we often consider the simplicial ring
A[I•] of dual numbers given by A⊕ I• and multiplication

(a, i) · (b, j) = (ab, aj + bi).

There is a surjection π : A[I•] → A sending I• to 0, and a retraction A → A[I•]
given by a 7→ (a, 0).

We write Sp for the ∞-category of spectra and Sp≥0 for the ∞-category of
connective spectra (see [Lurie 2018, Construction 0.2.3.10 and Definition 0.2.3.12]).

2. The ∞-category of perfect complexes

2.1. Animated rings. For a commutative ring R we follow [Lurie 2018, Defini-
tion 25.1.1.1] and consider an ∞-category CAlg1

R . In [Lurie 2018] this is referred
to as the ∞-category of simplicial commutative rings, but we prefer to reserve
this term for simplicial commutative rings in the classical sense, and use the
terminology of [Česnavičius and Scholze 2019, Example 5.1.6(3)] and refer to
CAlg1

R as the ∞-category of animated rings. As noted in [loc. cit.] the ∞-category
CAlg1

R can be viewed as the ∞-category obtained from simplicial commutative
R-algebras by inverting weak equivalences. The category of animated rings can also
be viewed as the ∞-category obtained by starting with the category of simplicial
commutative R-algebras, endowing this category with the simplicial model category
structure described in [Lurie 2009, Proposition 5.5.9.1], and applying the nerve to
the subcategory of cofibrant-fibrant objects [Lurie 2018, Remark 25.1.1.3]. Because
of these descriptions of CAlg1

R , we use simplicial notation in describing objects of
CAlg1

R (e.g., A• ∈ CAlg1
R ).

2.2. Modules over animated rings. For an animated R-algebra A• ∈ CAlg1
R we

have the associated stable ∞-category of R-modules [Lurie 2018, Notation 25.2.1.1],
which we denote by D(A•) (in [loc. cit.] this category is denoted ModA•

).
By [Illusie 1971, Chapter I, 3.1.3], for a simplicial R-algebra A• the normalization

N (A•) is a strictly commutative differential graded algebra, and normalization
defines a functor from A•-modules to differential graded N (A•)-modules. As
noted in [Kerz et al. 2018, Remark 2.5], by an argument similar to [Lurie 2017,
proof of Theorem 7.1.2.13], this defines an equivalence between D(A•) and the
∞-category obtained from the category of dg-modules over N (A•) by inverting
quasi-isomorphisms (this is the approach taken for example in [Toën 2014, §3.1];
see also [Shipley 2007, Theorem 1.1]).

2.3. Topology. Let 3 be a ring and let S be a site.

2.4. As in [Lurie 2018, §1.3.5] we can consider sheaves of animated 3-algebras,
defined as sheaves on S taking values in the ∞-category CAlg1

3. For a sheaf of
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animated 3-algebras A• we can consider, as in [Lurie 2018, Definition 2.1.0.1],
the associated sheaf of E∞-algebras and the associated module category, which
we denote Mod(S,A•). If A• is a simplicial object in the category of sheaves of
3-algebras then we also denote by Mod(S,A•) the module category of the associated
sheaf of E∞-algebras.

As discussed in the Appendix, for a simplicial sheaf of 3-algebras A• we
can also consider its normalized complex N (A•), which is a sheaf of strictly
commutative differential graded algebras, and its associated category of sheaves of
differential graded modules Moddg

(S,N (A•))
, viewed as a model category with the flat

model category structure. This is a differential graded category and by the general
construction of [Lurie 2017, Construction 1.3.1.6] we get an ∞-category

D(S, A•) := Ndg(Moddg,◦

(S,N (A•))
),

where Moddg,◦

(S,N (A•))
⊂ Moddg

(S,N (A•))
denotes the subcategory of fibrant-cofibrant

objects. We write D(S, A•) for the associated homotopy category. As noted in
Theorem A.9 (in the case of a discrete ring A this is [Lurie 2018, Corollary 2.1.2.3])
the ∞-category D(S, A•) is naturally identified with the hypercomplete objects
in Mod(S,A•). For our purposes studying perfect complexes, this distinction between
D(S, A•) and Mod(S,A•) is not important, and it is a matter of preference as to which
∞-categorical version of the derived category one works with.

Remark 2.5. For two objects M, N ∈ Moddg,◦

(S,N (A•))
defining objects of D(S, A•),

a description of the mapping space

MapD(S,A•)
(M, N )

is provided by [Lurie 2017, Remark 1.3.1.12], which shows that

MapD(S,A•)
(M, N ) ≃ DK(τ≤0 Hom•

N (A•)
(M, N )),

where on the right we consider truncation of the mapping complex followed
by the Dold–Kan functor (see for example [Lurie 2017, Construction 1.2.3.5]).
Note furthermore that since any object of Moddg,◦

(S,N (A•))
is fibrant the complex

Hom•

N (A•)
(M, N ) is calculating the internal Hom-complex in the homotopy cate-

gory Ho(Moddg
(S,N (A•))

).

2.6. Deformations.

2.7. For a simplicial sheaf of 3-algebras A• we can also (by Lemma A.5) describe
D(S, A•) as the ∞-category

Ndg(Moddg,cof
(S,N (A•))

)[W−1
],

obtained by localizing the dg-nerve of cofibrant objects in Moddg
(S,N (A•))

along weak
equivalences.
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2.8. If A• → B• is a map of sheaves of simplicial 3-algebras then there is an
induced functor

B•⊗
L
A•

( – ) : D(S, A•) → D(S, B•).

This functor is induced by the tensor product

N (B•)⊗N (A•) ( – ) : Modcof
(S,N (A•))

→ Modcof
(S,N (B•))

.

To prove that this gives a well-defined functor on localizations, we must show that
if a : M → N is an equivalence in Modcof

(S,N (B•))
then

N (B•)⊗N (A•) M → N (B•)⊗N (A•) N

is an equivalence in Modcof
(S,N (B•))

. For this it suffices to show that the adjoint
forgetful functor

Mod(S,N (B•)) → Mod(S,N (A•))

preserves fibrations and trivial fibrations — this is immediate from the definitions.
Note also that this functor induces the usual derived tensor product on the homotopy
categories.

2.9. Let A′
•
→ A• be a surjective map of simplicial 3-algebras with kernel I•

satisfying I 2
•
= 0. Let E ∈ D(S, A•) be an object. We denote by Def∞(E) the

homotopy fiber product of the diagram

D(S, A′
•
)

A•⊗
L
A′•

(–)

��

⋆
E

// D(S, A•)

(2.10)

2.11. Let Def(E) denote the category whose objects are pairs (E ′, σ ), where
E ′

∈ D(S, A′
•
) is an object and

σ : E ′
⊗

L
N (A′

•)
N (A•) → E

is an isomorphism in D(S, A•). A morphism

q : (E ′

1, σ1) → (E ′

2, σ2) (2.12)

in Def(E) is given by a morphism ρ : E ′

1 → E ′

2 in D(S, A′
•
) such that the diagram

in D(S, A•)

E ′

1 ⊗
L
N (A′

•)
N (A•)

ρ
//

σ1
&&

E ′

2 ⊗
L
N (A′

•)
N (A•)

σ2
xx

E
commutes.
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There is a natural map

Ho(Def∞(E)) → Def(E). (2.13)

Indeed the category Def(E) is the categorical fiber product of the diagram

Ho(D(S, A′
•
))

A•⊗
L
A′•

(–)

��

⋆
E

// Ho(D(S, A•))

(2.14)

Now by general adjunction properties of passing to the homotopy category [Lurie
2009, Proposition 1.2.3.1], the diagram (2.10) maps to the diagram obtained by
applying the nerve to (2.14). By passing to the homotopy categories of the associated
homotopy fibers we get the map (2.13).

We can understand the ∞-category Def∞(E) and its relationship with Def(E)

as follows.

2.15. Note first of all that Def∞(E) is a groupoid in the sense of [Lurie 2009,
§1.2.5] (that is, its homotopy category is a groupoid). This follows from observing
that if E ′

∈ D(S, A′
•
) is an object with an equivalence σ : E ′

⊗
L
N (A′

•)
N (A•) → E

then tensoring the sequence of N (A′
•
)-modules

0 → N (I•) → N (A′

•
) → N (A•) → 0

with E ′ we get a distinguished triangle

E ⊗
L
N (A•)

N (I•) → E ′
→ E → E ⊗

L
N (A•)

N (I•)[1]

in the triangulated category D(S, A′
•
) := Ho(D(S, A′

•
)).

It follows that for a morphism

ρ : (E ′

1, σ1) → (E ′

2, σ2)

of pairs (that is, a morphism in D(S, A′
•
) compatible with the identifications with E

in D(S, A•)) we get an induced morphism of distinguished triangles in D(S, A′
•
)

E ⊗
L
N (A•)

N (I•) // E ′

1
//

ρ

��

E // E ⊗
L
N (A•)

N (I•)[1]

E ⊗
L
N (A•)

N (I•) // E ′

2
// E // E ⊗

L
N (A•)

N (I•)[1]

and therefore ρ is an equivalence.



660 MAX LIEBLICH AND MARTIN OLSSON

It follows that Def∞(E) can also be described as the fiber product of the under-
lying ∞-groupoids

D(S, A′
•
)≃

A•⊗
L
A′•

(–)

��

⋆
E

// D(S, A•)
≃

(2.16)

From this, and looking at the associated long exact sequences of homotopy
groups associated to (2.14) and (2.16) one also gets that (2.12) induces a bijection
on isomorphism classes of objects, so we can think of objects of Def∞(E) as pairs
(E ′, ρ) as above.

Remark 2.17. The above argument shows, in fact, that a morphism in D(S, A′
•
) is

an equivalence if and only if its image in D(S, A•) is an equivalence.

2.18. This remark implies that for an object (E ′, ρ) ∈ Def∞(E) the derived auto-
morphism group

Aut∞(E ′, ρ) = �(E ′,ρ)(Def∞(E))

can be described as the homotopy fiber over 0 of the map

DK(τ≤0 RHomN (A′
•)
(E ′, E ′)) → DK(τ≤0 RHomN (A•)(E•, E•)).

Applying RHomN (A′
•)
(E ′, – ) to the distinguished triangle

E ⊗
L
N (A•)

N (I•) → E ′
→ E → E ⊗

L
N (A•)

N (I•)[1]

we see that

Aut∞(E ′, ρ) ≃ DK(τ≤0 RHomN (A•)(E, E ⊗
L N (I•))).

From this we conclude that the ∞-groupoid Def∞(E) is equivalent to

DK
(
τ≤0 RHomN (A•)(E, E ⊗

L N (I•))[1]
)
×π0(Def(E)). (2.19)

2.20. In the case when Def∞(E) is nonempty we can describe the set of isomor-
phism classes as follows. Fix one lifting (E ′

0, ρ0) ∈ Def(E), and define a map

π0(Def(E)) → Ext1N (A•)
(E, E ⊗

L N (I•)) (2.21)

by sending an object (E ′, ρ) to the image of ρ−1
◦ ρ0 under the map

HomN (A•)(E ′

0 ⊗
L N (A•), E ′

⊗
L N (A•)) ≃ HomN (A′

•)
(E ′

0, E ′
⊗

L N (A•))

→ Ext1N (A•)
(E, E ⊗

L N (I•))

obtained from the distinguished triangle

E ⊗
L N (I•) → E ′

→ E → E ⊗
L N (I•)[1]
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by applying
HomN (A′

•)
(E ′

0, – ).

The image of the class of (E ′, ρ) under (2.21) is by construction zero if and only if
the morphism ρ−1

0 ◦ ι lifts to N (A′
•
), which implies that (2.21) is injective.

The map is also surjective. This can be seen as follows. For a class

α ∈ Ext1N (A•)
(E, E ⊗

L N (I•))

we can represent α by a map of N (A•)-modules

α̃ : E ′•

0 ⊗N (A′
•)

N (A•) → E ⊗ N (I•)[1].

Viewing this as a map of N (A′
•
)-modules and taking cones we get a short exact

sequence of N (A′
•
)-modules

0 → E ⊗ N (I•) → Tα → E ′

0 ⊗N (A′
•)

N (A•) → 0.

Taking the direct sum with E ′

0 we get a short exact sequence

0 → (E ⊗ N (I•))⊕2
→ Tα ⊕ E ′

0 → E ′

0 ⊗ N (A•)⊕ E → 0.

Pulling this back along the graph

E ′

0 ⊗ N (A•) → E ′

0 ⊗ N (A•)⊕ E

of ρ and pushing out along the summation map

(E ⊗ N (I•))⊕2
→ E ⊗ N (I•)

we get an extension of N (A′
•
)-modules

0 → E ⊗ N (I•) → E ′

α → E ′

0 ⊗ N (A•) → 0.

We leave it to the reader to check that this defines an object of Def(E) with class α.

2.22. Combining this with (2.19) we find that in the case when Def∞(E) is
nonempty the pullback of (2.10) can be described as

DK
(
τ≤0(HomN (A•)(E, E ⊗

L N (I•))[1])
)
.

2.23. In what follows we also consider the subcategory

Dperf(S, A•) ⊂ D(S, A•)

of perfect A•-modules [Lurie 2017, Definition 7.2.4.1]. This is again a stable
∞-category.

We consider this as a symmetric monoidal stable ∞-category with the monoidal
structure given by direct sums.
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In the case when the site S is trivial (e.g., one object and one morphism) we
write simply D(A•) for D(S, A•) and Dperf(A•) for Dperf(S, A•).

Remark 2.24. In many cases the notion of perfect complex coincides with the
notion of dualizable object but we do not know the relationship between the two
notions in general.1

3. Various descriptions of K-theory

In this section we summarize for the convenience of the reader a few basic ap-
proaches to and results about algebraic K-theory that we will need.

3.1. K-theory as group completion. In this approach to K-theory one starts with the
∞-category of E∞-monoids and its subcategory of grouplike E∞-monoids [Lurie
2017, Definition 5.2.6.6]. By [Lurie 2017, Remark 5.2.6.26], this ∞-subcategory
is equivalent to the ∞-category of connective spectra Sp≥0. We can then consider
the group completion functor

(E∞-monoids) → (grouplike E∞-monoids) ≃ Sp≥0 .

If P is a symmetric monoidal category the nerve of the underlying groupoid P≃ is
an E∞-monoid and the K-theory of P, denoted K (P), is defined as the associated
group completion.

Example 3.2. For a ring R the category Proj(R) of projective R-modules is sym-
metric monoidal under ⊕ and K (R) is defined to be the group completion of the
nerve of the underlying groupoid of Proj(R).

3.3. K-theory as universal additive invariant. The main reference for this approach
is [Blumberg et al. 2013]. Let Catex

∞
denote the ∞-category of small, idempotent

complete, stable ∞-categories, with morphisms given by exact functors (see [Blum-
berg et al. 2013, Definition 2.12]). The main result of [Blumberg et al. 2013] is
then that there is a universal “additive” invariant

U : Catex
∞

→ Madd,

where the target is again a presentable stable ∞-category. In fact, Madd is monoidal
with unit object 1Madd given by applying U to the compact objects in the stable ∞-
category of spectra. Given an object D ∈ Catex

∞
we can form the mapping spectrum

(see [Blumberg et al. 2013, Definition 2.15])

Map(1Madd, U (D)).

1This question was earlier asked by Daniel Bergh; see https://mathoverflow.net/questions/313318/
are-dualizable-objects-in-the-derived-category-of-a-ringed-topos-perfect.

https://mathoverflow.net/questions/313318/are-dualizable-objects-in-the-derived-category-of-a-ringed-topos-perfect
https://mathoverflow.net/questions/313318/are-dualizable-objects-in-the-derived-category-of-a-ringed-topos-perfect
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By [Blumberg et al. 2013, Theorem 7.13] this defines connective algebraic K-theory

K (D) := Map(1Madd, U (D)).

Because the functor U is monoidal we have an induced map of spectra

MapCatex
∞
(1Catex

∞
, D) → Map(1Madd, U (D)).

This induces a map
D≃

→ K (D),

from the underlying ∞-groupoid D≃ of D.
One can also describe the algebraic K-theory of a small, idempotent complete,

stable ∞-category using an appropriate version of the Waldhausen construction.
This is discussed in [Blumberg et al. 2013, §7.1 and §7.2]. See also [Barwick
2016]. This explicit construction makes the functoriality of K-theory clear, and in
particular enables us to consider presheaves of small, idempotent complete, stable
∞-categories and their associated K-theory.

Example 3.4. If A• is a simplicial ring then K (A•) is defined to be the K-theory
of the stable ∞-category Dperf(A•) defined in 2.23.

If A• = R is a ring, then this recovers the K-theory defined in Example 3.2.
Namely, the inclusion Proj(R)≃ ↪→ Dperf(R)≃ induces a monoidal map

Proj(R)≃ → K (Dperf(R))

(where the target is defined using the definition in [Blumberg et al. 2013]). By the
universal property of group completion this induces a map

K (R) → K (Dperf(R))

(where the left side is defined using group completion). That this map is an
equivalence follows, for example, by comparison with Waldhausen K-theory.

3.5. K-theory and Picard groupoids. The relationship between K-theory and de-
terminants in the setting of functors to Picard categories as developed in [Knudsen
2002] is discussed in [Muro et al. 2015].

The setting here is that of a Waldhausen category W [Waldhausen 1985, §1.2].
Let w(W) denote the category with the same objects as W but morphisms the weak
equivalences of W, and let cof(W) denote the category whose objects are cofiber
sequences

A ↪→ B ↠ C
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and whose morphisms are commutative diagrams

A1
� � //

��

B1

��

// // C1

��

A2
� � // B2 // // C2

where the vertical morphisms are weak equivalences. For a commutative Picard
category P (see for example [Deligne 1987, §4]) a notion of determinant functor
from W to P is defined in [Muro et al. 2015, §1.2]. This is a functor

δ : w(W) → P

together with an isomorphism σ between the two induced functors

cof(W) → P

given by
(A ↪→ B ↠ C) 7→ δ(B)

and
(A ↪→ B ↠ C) 7→ δ(A)+P δ(C).

The data (δ, σ ) are required to satisfy various natural compatibilities detailed in
[Muro et al. 2015, Definition 1.2.3].

A Picard category P defines a grouplike E∞-monoid. This is explained in [Bhatt
and Scholze 2017, Construction 12.5 and Proposition 12.15]. By [Patel 2012,
Theorem 5.3] this defines an equivalence between homotopy categories of Picard
categories and 1-truncated connective spectra.

On the other hand, we can consider the 1-truncation τ≤1K (W) of the Waldhausen
K-theory of W, which comes with a map

δ : w(W) → τ≤1K (W).

It is shown in [Muro et al. 2015, Theorem 1.6.3] that this functor has the structure
of a universal determinant functor.

The relationship between this approach and the perspective on K-theory as a
universal additive invariant is discussed in [Blumberg et al. 2013, §7.2].

We do not need to develop the full theory here. In order to have the appropriate
functoriality, however, it is important to note that the comparison map is induced
by an explicit map of ∞-categories in our context. Namely, let A be a ring and
let Perf(A) denote the Waldhausen category of perfect complexes of A-modules,
which is also a dg-category. Then there is an induced functor of ∞-categories

N (Perf(A)) → Ndg(Perf(A))
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and the comparison between the two approaches is obtained by then applying
the ∞-categorical version of the Waldhausen S-construction. In particular, the
comparison map is functorial in A.

Remark 3.6. We have an inclusion Proj(A)⊂ Perf(A) of the category of projective
modules, which induces an isomorphism on K-theory. It follows from this that
restriction defines an equivalence of categories between the category of determinant
functors on Perf(A) and determinant functors on Proj(A).

3.7. K-theory and left Kan extension. The K-theory of animated rings can be
described using the K-theory of ordinary rings as a Kan extension from smooth
Z-algebras. This result is due to Bhatt and Lurie (see [Elmanto et al. 2020, Exam-
ple A.0.6]).

Let AlgZ denote the category of commutative rings. Algebraic K-theory defines
a functor

K : AlgZ → Sp≥0 .

We can then consider the left Kan extension of this functor to get a functor

CAlg1
Z → Sp≥0

from animated rings to spaces. The result of Bhatt and Lurie states that this gives
K-theory of animated rings, defined as a universal additive invariant.

4. Determinants: punctual case

We are ultimately interested in studying determinants and traces for complexes
on a general site, but as a first step in that direction we develop some preliminary
material in this section in the case of the punctual site.

4.1. Let A• be a simplicial ring with associated K-theory K (A•).
Define GLn(A•) to be the fiber product of simplicial monoids of the diagram

Mn(A•)

��

GLn(π0(A•)) // Mn(π0(A•))

and let ĜL(A•) denote the colimit of the GLn(A•) along the standard inclusions

GLn(A•) ↪→ GLn+1(A•).

The free modules A⊕n
•

define a map of E∞-monoids∐
n≥0

BGLn(A•) → Dperf(A•)
≃.
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Here the monoidal structure on the left is induced by the natural isomorphisms

A⊕n
•

⊕ A⊕m
•

≃ A⊕(n+m).

Lemma 4.2. The induced map on K-theory

K
(∐

n≥0

BGLn(A•)

)
→ K (A•)

induces an isomorphism after Zariski sheafification on Spec(π0(A•)).

Remark 4.3. The notion of a sheaf taking values in the ∞-category of spaces is
introduced in [Lurie 2009, Definition 6.2.2.6]. In [Lurie 2009, Proposition 6.2.2.7]
it is shown that the ∞-category of sheaves can be viewed as a localization of
the ∞-category of presheaves, which implies that the inclusion of sheaves into
presheaves has a left adjoint — this is what we refer to as sheafification.

Proof. As in [Blumberg et al. 2013, Lemma 9.39] the infinite loop space associated
to K

(∐
n BGLn(A•)

)
is isomorphic to

Z ×BĜL(A•)
+,

where BĜL(A•)
+ denotes Quillen’s plus construction. In particular, we get a map

Z ×BĜL(A•)
+
→ Z ×K0(A•) K (A•).

By [Blumberg et al. 2013, Proposition 9.40] this map is an equivalence. To prove the
lemma it therefore suffices to observe that every object of K0(A•) = K0(π0(A•))

(isomorphism given as in [Kerz et al. 2018, Theorem 2.16]) is locally in the image
of Z, which is immediate. □

Remark 4.4. Note that the functors GLn( – ) and ĜL( – ) reflect weak equivalence
and therefore induce functors

CAlg1
Z → (E∞-monoids).

By [Elmanto et al. 2020, Proposition A.0.4] these functors are equal to the Kan
extensions of their restrictions to smooth algebras.

4.5. Let PicZ(A•) denote the Zariski sheafification of the grouplike E∞-monoid
given by

Z ×BGL1(A•)

with monoidal structure given by addition on Z and multiplication on BGL1(A•)

but with signed commutativity constraint as in [Bhatt and Scholze 2017, Exam-
ple 12.2(iii)].

There is a projection map

PicZ(A•) → Z
with fiber BGL1(A•).
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Here Z should be understood as the global sections of the Zariski sheaf associated
to the constant sheaf on Spec(π0(A•)).

Note that with this definition PicZ(A•) forms a Zariski sheaf on Spec(π0(A•)).
One can also describe PicZ(A•) as the Picard spectrum associated to the symmetric
monoidal ∞-category of finitely generated projective A•-modules (see Lemma 6.5
below). Note also that PicZ( – ) extends to a functor on CAlg1

Z .

4.6. The determinant map on GLn(A•) defines a map of symmetric monoidal
∞-groupoids

det :
∐
n≥0

BGLn(A•) → PicZ(A•).

For A• an ordinary ring this is immediate, and since both sides are left Kan exten-
sions of their restrictions to smooth algebras we get the map also for simplicial
rings. Since the target is grouplike this induces a map

K
(∐

n≥0

BGLn(A•)

)
→ PicZ(A•).

Passing to the associated sheafifications we get a map

det : K (A•) → PicZ(A•).

We call this map, as well as the corresponding map

det : Dperf(A•)
≃
→ PicZ(A•), (4.7)

the determinant map.

5. Perfect complexes on ringed sites

5.1. Let (S, O) be a ringed site. For a simplicial O-algebra A• we have the corre-
sponding stable ∞-category D(S, A•). Let

Dstrict
perf (S, A•) ⊂ D(S, A•)

denote the smallest stable ∞-subcategory containing A• and which is closed under
retracts, and define

Dperf(S, A•) ⊂ D(S, A•)

to be the ∞-subcategory of objects M for which there exists a collection of objects
{Ui }i∈I covering the final object of the topos associated to S such that the restriction
of M to each Ui lies in Dstrict

perf (S|Ui , A•|Ui ) ⊂ D(S|Ui , A•|Ui ). So we have

Dstrict
perf (S, A•) ⊂ Dperf(S, A•) ⊂ D(S, A•).
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5.2. Let
Dstrict

perf , Dperf, D′

perf (5.3)

be the presheaves of symmetric monoidal ∞-categories which to any U ∈ S associate

Dstrict
perf (S|U , A•|U ), Dperf(S|U , A•|U ), Dperf(A•(U )),

respectively. There are natural maps

D′

perf → Dstrict
perf → Dperf. (5.4)

Remark 5.5. In the case when A• = O is a sheaf of (ordinary) rings, the sheaf
Dperf is equivalent to the sheaf that associates to any U the ∞-category of perfect
complexes of O-modules on U in the sense of [Stacks, Tag 08FL].

Lemma 5.6. The presheaf Dperf is a sheaf , and both the maps

D′

perf → Dperf, Dstrict
perf → Dperf

induce equivalences upon sheafification.

Proof. The statements that Dperf is a sheaf and that

Dstrict
perf → Dperf

induces an equivalence upon sheafification follow immediately from the definition
of Dperf.

To prove the lemma we therefore show that the map

D′

perf → Dperf

induces an equivalence upon sheafification. Let D′a
perf denote the sheaf associated

to D′

perf.
Since sheafification commutes with finite limits (see [Lurie 2009, Proposi-

tion 6.2.2.7]), for two objects x, y ∈ D′

perf(U ) with associated objects xa, ya
∈ D′a

perf
and Fx , Fy ∈ Dperf(U ), the sheaf

MapD′a
perf

(xa, ya)

is equal to the sheaf associated to the presheaf

V 7→ MapDperf(A•(V ))(x ⊗A•(U ) A•(V ), y ⊗A•(U ) A•(V )). (5.7)

Let S denote the subcategory of D′

perf(U ) of those objects x ∈ D′

perf(U ) for which
the map

MapD′a
perf

(xa, ya) → MapDperf(Fx , Fy)

is an equivalence for all y ∈ D′

perf(U ). Then S is a stable subcategory closed under
retracts, so to show that S is equal to all of D′

perf(U ) it suffices to show that A•(U )

is in S.

https://stacks.math.columbia.edu/tag/08FL
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For y ∈ D′

perf(U ) with associated object Fy ∈ Dperf(U ) and x = A•(U ) the
presheaf (5.7) is given by sending V to

τ≤0(y ⊗A•(U ) A•(V )),

where y ⊗A•(U ) A•(V ) is viewed as an object of D(Ab) (the derived ∞-category
of abelian groups). On the other hand, the sheaf

MapDperf(Aa
•
, Fy)

is given by applying τ≤0 to the sheafification of

V 7→ y ⊗A•(U ) A•(V ).

Thus the statement that A•(U ) ∈ S amounts to the observation that sheafification
commutes with the functor τ≤0. We conclude that S = D′

perf(U ).
It follows that

D′a
perf → Dperf

induces an equivalence on mapping spaces, and since locally every object is evidently
in the image we conclude that this map is an equivalence. □

5.8. The ∞-category Dperf(S, A•) is given by the global sections

0(S, Dperf).

Let PicZ
(S,A•)

denote the global sections of the sheaf associated to the presheaf
PicZ

A•
given by

U 7→ PicZ(A•(U )).

Using (4.7) we then obtain a diagram

D′,≃
perf

//

det
��

D≃

perf

PicZ
O

Passing to the associated sheaves and using Lemma 5.6 we get an induced map

det : Dperf(S, A•)
≃
→ PicZ

(S,A•)
. (5.9)

By functoriality of K-theory this map factors through the K-theory of Dperf(S, A•),
which we denote by K (S, A•).

5.10. In the case when A• = O we can describe PicZ
(S,O) more explicitly as follows.

Let Z(S,O) be the sheaf associated to the presheaf which to any U ∈ S associated
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the set of locally constant Z-valued functions on Spec(O(U )). Note that for any
section r ∈ Z(S,O)(U ) the expression

(−1)r
∈ O∗(U )

makes sense. Then the sheaf PicZ
(S,O) associated to the presheaf PicZ

O can be
described as the stack in groupoids which to any U associates the groupoid of
pairs (r, L), where r ∈ Z(S,O)(U ) and L is an invertible module on (S|U , O), in the
sense of [Stacks, Tag 0408]. The monoidal structure is given by

(r, L) ∗ (r ′, L′) := (r + r ′, L⊗L′)

and the commutativity constraint

(r, L) ∗ (r ′, L′) ≃ (r ′, L′) ∗ (r, L)

is given by the isomorphism

L⊗L′
≃ L′

⊗L

obtained by multiplying the isomorphism switching the factors with (−1)rr ′ .
In particular, for any perfect complex E on (S, O) we can speak about its deter-

minant det(E), an invertible O-module.

5.11. It is useful to have a variant description of D′

perf.
Let Szar denote the category whose objects are pairs (U, V ), where U ∈ S and

V ⊂ Spec(O(U )) is an affine open set. A morphism

(U ′, V ′) → (U, V )

is defined to be a morphism f : U ′
→ U in S such that the induced morphism

Spec(O(U ′)) → Spec(O(U ))

sends V ′ to V . The Zariski topology on Szar is defined by declaring a collection of
morphisms

{ fi : (Ui , Vi ) → (U, V )}

a covering if each fi : Ui → U is an isomorphism, and the collection of maps

{Vi → V }

is an open covering of V . With this definition the category of sheaves on Szar is
equivalent to the category of collections of sheaves {FU }U∈S, where FU is a sheaf
on Spec(O(U )), together with transition morphisms θ f : f −1 FU → FU ′ for each
morphism f : U ′

→ U in S, satisfying the natural cocycle condition.

https://stacks.math.columbia.edu/tag/0408
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A presheaf F (of sets, ∞-categories, etc.) on Szar induces a presheaf on S by
composing F with the functor

S → Szar, U 7→ (U, Spec(O(U ))).

We denote this presheaf on S by γ (F).
The presheaves of symmetric monoidal ∞-categories on S

D′

perf, PicZ
O

then extend to presheaves
D′zar

perf, PicZ,zar
O

on Szar, where D′zar
perf sends (U, V ) to the category of strictly perfect complexes of

OSpec(O(U ))(V )-modules and PicZ,zar
O sends (U, V ) to the groupoid of Z-graded line

bundles on the scheme V . Observe that we have

D′

perf = γ (D′zar
perf), PicZ

O = γ (PicZ,zar
O ).

Note also that O extends to a presheaf of rings on Szar, which we denote by Ozar,
given by

Ozar(U, V ) = 0(V, OSpec(O(U ))(V )).

Similarly, any complex I • of presheaves of O-modules extends to a complex of
Ozar-modules, which we denote by I zar,•, given by

I zar,•(U, V ) = Ĩ (U )(V ),

where Ĩ (U ) denotes the complex of quasicoherent sheaves on Spec(O(U )) associ-
ated to the complex of O(U )-modules I (U ).

Define BGLn(O
zar) to be the presheaf on Szar which to any (U, V ) associates

BGLn(O
zar(U, V )). We then have a natural map∐

n

BGLn(O
zar) → D′zar,≃

perf

of presheaves of symmetric monoidal ∞-categories. The determinant map also
extends to a map

detzar
: D′zar,≃

perf → PicZ,zar
O

inducing the previously defined determinant map after applying γ . The advantage
of working with presheaves on Szar is that by Lemma 4.2 the map detzar, and hence
also the determinant map (5.9), is determined by the induced map∐

n

BGLn(O
zar) → PicZ,zar

O .
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More generally, for a complex I • of presheaves of O-modules we can consider
Ozar

[I zar,•
] on Szar and the determinant defines a map

detzar
: D′zar,≃

perf,O[I •] → PicZ,zar
O[I •] .

6. Ring structure

As pointed out to us by Bhargav Bhatt, the results of the previous section can
profitably be upgraded to include statements about the ring structure on algebraic
K-theory. The following is a modification of an argument communicated to us by
Bhatt, which answers, in particular, a question of Rössler2 which was also discussed
in the Stacks Project3. The results of this section are not used in what follows.

6.1. The ring structure on algebraic K-theory can be described in a few ways.
Most convenient for us is the description in [Gepner et al. 2015, Theorem 8.6]
(see also [Blumberg et al. 2013]). This result is obtained from [Gepner et al. 2015,
Theorem 5.1], which gives that the group completion functor

(E∞-monoids) → (grouplike E∞-monoids) ≃ Sp≥0

extends to a symmetric monoidal functor. Here the monoidal structure on Sp≥0 is
given by the smash product of spectra (see [Gepner et al. 2015, Example 5.3(ii)]).

For a ringed site (S, O) the underlying groupoids of the objects (5.3) have the
structure of presheaves of E∞-semirings (see [Gepner et al. 2015, page 2, (iii)]),
and the diagram (5.4) is compatible with this structure.

This implies, in particular, that the K-theory K (S, O) has the structure of an
E∞-ring spectrum [Gepner et al. 2015, Example 8.11(i) and Corollary 8.12].

6.2. The Picard category PicZ
(S,O) also has a multiplicative structure given by

(r, L)⊗ (r ′, L′) := (rr ′, L⊗r ′
⊗L′⊗r ). (6.3)

Note here that L⊗r ′ and L′⊗r are defined by first defining them on the level of
modules over rings and then globalizing.

This multiplicative structure can be upgraded to a structure of an E∞-ring
spectrum as follows.

6.4. Let Szar be as in 5.11, and consider again the functors∐
n

BGLn : Szar,op
→ (E∞-monoids), (U, V ) 7→

∐
n

BGLn(O
zar(U, V )),

2See https://mathoverflow.net/questions/354214/determinantal-identities-for-perfect-complexes.
3See https://www.math.columbia.edu/ dejong/wordpress/?p=4474.

https://mathoverflow.net/questions/354214/determinantal-identities-for-perfect-complexes
https://www.math.columbia.edu/~dejong/wordpress/?p=4474
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and

Z ×BGL1 : Szar,op
→ (E∞-monoids), (U, V ) 7→ Z ×BGL1(O

zar(U, V )).

Let
Kzar

: Szar,op
→ (E∞-monoids)

be the sheafification of the group completion of
∐

n BGLn and note that PicZ,zar
O is

the sheafification of Z ×BGL1. Then the determinant defines a map of sheaves of
E∞-monoids

det : Kzar
→ PicZ,zar

O .

Lemma 6.5. The determinant map induces an equivalence

τ≤1Kzar
≃ PicZ,zar

O .

Proof. It suffices to show that for a given U ∈ S the induced map of sheaves on
Spec(O(U )) is an equivalence. This reduces the proof of the lemma to the case
of the Zariski topology of an affine scheme. The verification in this case reduces
immediately to the calculation of K0 and K1 for a local ring, and for such a ring R
we have K0(R) = Z and K1(R) = R∗. □

6.6. Now observe that Kzar has the structure of a sheaf of E∞-rings, and therefore so
does τ≤1Kzar. In this way, PicZ,zar

O , and therefore also PicZ
O and PicZ

(S,O), are given
E∞-ring structures. Note also that the underlying multiplication map is induced
by the natural maps on

∐
n BGLn and

∐
n BGL1, and therefore the underlying

multiplicative structure on PicZ
(S,O) is given by (6.3).

Furthermore, if K denotes the sheaf on S associated to the presheaf γ (Kzar), we
then get an equivalence

τ≤1K ≃ PicZ
(S,O).

This discussion implies the following:

Theorem 6.7. The Picard category PicZ
(S,O) has the structure of an E∞-ring spec-

trum with multiplicative structure given by (6.3) and such that the map

K (S, O) → PicZ
(S,O) (6.8)

is a map of E∞-rings.

Proof. This follows from the preceding discussion, and the observation that the map

K (S, O) → R0(S, K)

is a map of E∞-rings, by the universal property of group completion and the fact
that the isomorphism

Dperf(S, O)≃ = R0(S, D≃

perf)

is an isomorphism of E∞-semirings. □
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7. The trace map

7.1. Let (S, O) be a ringed site and let E be a perfect complex of O-modules. In
this section we record some observations about the trace map

trI• : RHom(E, E ⊗
L N (I•)) → N (I•),

defined in [Illusie 1971, Chapter V, (3.7.3)], for a simplicial O-module I•. This map
is obtained as the composition of the inverse of the isomorphism

E∨
⊗

L (E ⊗
L N (I•)) → RHom(E, E ⊗

L N (I•))

(using the perfection of E) and the evaluation map

E∨
⊗

L (E ⊗
L N (I•)) → N (I•).

Observe that under the natural identification

RHom(E, E)⊗L N (I•) ≃ RHom(E, E ⊗
L N (I•))

the map trI• is identified with the map trO ⊗N (I•). We often drop the subscript and
write simply tr for trI• if no confusion seems likely to arise.

7.2. Fix a perfect complex E . Denote by ModO the category of sheaves of O-
modules, and by Mod1op

O the category of sheaves of simplicial O-modules. We then
have two functors

F1, F2 : Mod1op

O → (Sp-valued sheaves)

given by
F1(I•) := DK

(
RHom(E, E ⊗

L N (I•))[1]
)

and
F2(I•) := B I•.

The trace map defines a morphism of ∞-functors

tr : F1 → F2. (7.3)

Now observe that F1 is the left Kan extension of its restriction to ModO (this
follows from the observation that the normalization of a simplicial abelian group is
quasi-isomorphic to the homotopy colimit), and therefore tr is determined by the
restrictions of these functors to ModO.

In fact, from the perfection of E we get slightly more. Namely, note that since
E is perfect we have locally

RHom(E, E ⊗
L N (I•)[n + 1]) ≃ τ≤0RHom(E, E ⊗

L N (I•)[n + 1])
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for n sufficiently large. Therefore, if we write F≤0
1 for the functor

I• 7→ DK
(
τ≤0RHom(E, E ⊗

L N (I•))[1]
)

then F1 is isomorphic to the functor

I• 7→ colimn �n F≤0
1 (Bn I•),

where Bn I• is the n-fold delooping of I•, corresponding under the Dold–Kan
correspondence to N (I•)[n]. It follows that a morphism of ∞-functors F≤0

1 → F2

can be extended to a morphism F1 → F2, and therefore is determined by its
restriction to ModO.

7.4. To understand the map tr on modules, consider first the case of the punctual
topos, a ring A, and an A-module I . Let Perfstrict

A[I ] denote the category of strictly
perfect A[I ]-modules, viewed as a Waldhausen category as in [Thomason and
Trobaugh 1990, Definition 3.1], and let EXT(A, I ) be the Picard category of short
exact sequences of A-modules

0 → I → T → A → 0,

as in [SGA 41/2 1977, Exposé XVIII, 1.4.22]. Note that by [SGA 41/2 1977, Ex-
posé XVIII, 1.4.23] the object of Sp≥0 associated to EXT(A, I ) is B I .

There is a determinant map (in the sense of Section 3.5)

δ : Perfstrict
A[I ] → EXT(A, I ).

For an object E ′
∈ Perfstrict

A[I ] with reduction E ∈ Perfstrict
A we get an exact sequence

of complexes of A-modules

0 → E ⊗ I → E ′
→ E → 0.

Tensoring with E∨, pulling back along id : A → E ⊗ E∨ and pushing out along the
trace map we get an object of EXT(A, I ); in a diagram,

0 // I // T // A // 0

0 // E ⊗ E∨
⊗ I

tr

OO

// E′

OO

//

��

A //

id
��

0

0 // E ⊗ E∨ // E ′
⊗ E∨ // E ⊗ E∨ // 0

To extend this construction to a determinant functor, note that by [Knudsen 2002,
Theorem 2.3] it suffices to define a determinant functor on the category of projective
A[I ]-modules ProjA[I ] with appropriate properties.
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The preceding construction defines a functor

iso(ProjA[I ]) → EXT(A, I ).

Next consider a short exact sequence of projective A[I ]-modules

0 → E ′

1 → E ′
→ E ′

2 → 0
with reduction

0 → E1 → E → E2 → 0.

Set
6 := Ker(E ⊗ E∨

→ E2 ⊗ E∨

1 ).

Then the two maps

E ⊗ E∨
→ E2 ⊗ E∨, E ⊗ E∨

→ E ⊗ E∨

1

induce a map
ρ : 6 → E2 ⊗ E∨

2 ⊕ E1 ⊕ E∨

1 .

Furthermore, if
0 → E ⊗ E∨

⊗ I → E → A → 0

is the extension obtained from E ′ then the pushout of this extension along the map

E ⊗ E∨
→ E2 ⊗ E∨

1

is canonically trivialized, which implies that E is obtained from an extension

0 → 6 ⊗ I → E6 → A → 0.

Furthermore, this identifies the pushout of E6 along ρ with the sum of the extensions
obtained from E ′

1 and E ′

2. In this way we obtain a predeterminant functor in the
sense of [Knudsen 2002, Definition 1.2]. We leave it to the reader to verify that
this in fact defines a determinant.

7.5. Combining this with the discussion in Section 3.5 we obtain a map

t̄ : K (A[I ]) → B I

from which one can recover the trace map

trI [1] : DK(τ≤0RHom(E, E ⊗
L I )[1]) → B I

as the composition

DK(τ≤0RHom(E, E ⊗
L I )[1]) 2.22

−−→ Dstrict
perf (A[I ])≃ → K (A[I ]) t̄

−→ B I.

Combining 7.2 and Section 3.7 this also defines, by passing to left Kan extensions,
a map for every simplicial A-module I•

t̄ : K (A[I•]) → B I•

inducing the trace map trI•[1].
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7.6. In the case of a general ringed topos (S, O) and an O-module I we get by
functoriality of the preceding constructions a morphism of presheaves taking values
in Sp≥0

t̄ : KO[I ] → B I,

where KO[I ] is the presheaf sending U ∈ S to the K-theory of strictly perfect
complexes of O(U )[I (U )]-modules, such that the composition

DK(τ≤0RHom(E, E ⊗
L I [1])) → Dstrict,≃

perf,O[I ] → KO[I ]
t̄
−→ B I

is the trace map. Using the method of 7.2 we then also get a map for a simplicial
O-module I•

t̄ : KO[I•] → B I•

inducing the trace map on τ≤0RHom(E, E ⊗
L N (I•)[1]).

8. Determinants and traces

In this section we elucidate the relationship between the determinant map and the
trace map constructed in [Illusie 1971, Chapter V, (3.7.3)].

8.1. We begin the discussion in the punctual case. Let A be a ring and let I• be a
simplicial A-module with associated simplicial ring of dual numbers A[I•].

Note that π0(A[I•])≃ A[π0(I•)] and we have a short exact sequence of simplicial
monoids

1 → 1+ I• → GL1(A[I•]) → A∗
→ 1.

In particular, GL1(A[I•]) is a simplicial group. Furthermore, the retraction r defines
a splitting of this sequence giving a homomorphism

GL1(A[I•]) → I•. (8.2)

Concretely this is given by writing an element α ∈ (A[In])
∗ as α(1 + x), where

α ∈ A∗ is the image of α in A∗, and then sending α to x .

8.3. Note that because −1 ∈ A∗
⊂ GL1(A[I•]), the projection map (8.2) induces a

map
PicZ(A[I•]) → B I•,

compatible with the symmetric monoidal structure. Furthermore, the induced map

PicZ(A[I•]) → PicZ(A)× B I• (8.4)

is an equivalence. The determinant map

detA[I•] : Dperf(A[I•])≃ → PicZ(A[I•])
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can therefore be written as

(detA, t) : Dperf(A[I•])≃ → PicZ(A)× B I•,

where the first component is given by the projection

Dperf(A[I•])≃ → Dperf(A)≃

followed by the determinant map for A-modules, and t is a symmetric monoidal
map

t : Dperf(A[I•])≃ → B I•.

8.5. Now consider a ringed site (S, O), and a simplicial O-module I•. Write R01(I )
for the simplicial object of the derived ∞-category obtained by taking derived
functors of the global section functor. In terms of the normalization functor from
simplicial modules to complexes we have

N (R01(I•)) ≃ τ≤0 R0(S, N (I•)),

where the right side denotes the usual derived functor cohomology [Illusie 1971,
Chapter I, 3.2.1.11].

Proceeding object by object and taking limits we get an equivalence

PicZ
(S,O[I•]) ≃ PicZ

(S,O) × R01B(I•),

which gives a description of the determinant map

det(S,O[I•]) = (det(S,O), t) : Dperf(S, O[I•])≃ → PicZ
(S,O) × R01B(I•),

where
t : Dperf(S, O[I•])≃ → R01B(I•)

is a map of symmetric monoidal E∞-categories.

8.6. Let
q : Dperf(S, O[I•]) → Dperf(S, O)

be the projection. By 2.22 the fiber of q over the point given by an object
E ∈ Dperf(S, O) is given by

DK(τ≤0 RHom(E, E ⊗
L N (I•)[1]).

Restricting t to the fiber of q and using the Dold–Kan correspondence we get a
map

τ≤0 RHom(E, E ⊗
L N (I•)) → τ≤0 R0(N (I•)) (8.7)

in the derived category.
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Remark 8.8. For n ≥ 0 write I•[n] for DK(N (I•)[n]). Then

τ≤0 RHom(E, E ⊗
L N (I•[n])) ≃ (τ≤n RHom(E, E ⊗

L N (I•)))[n],

and therefore by shifting we get a map

τ≤n RHom(E, E ⊗
L N (I•)) → R0(N (I•))

for all n. One can show directly that these maps are compatible and therefore by
taking colimits define a map

RHom(E, E ⊗
L N (I•)) → R0(N (I•)).

This compatibility follows, however, from Proposition 8.9 below so we do not
elaborate further on this point here.

Proposition 8.9. The map (8.7) agrees with the trace map defined in [Illusie 1971,
Chapter V, (3.7.3)].

Proof. The basic idea is to construct a second map

t ′ : K (S, O[I•]) → R01B(I•)

which induces the trace map on the fibers of q , and then show that t = t ′ using the
universal property of group completion.

For this we extend the preceding constructions to presheaves on Szar, defined as
in 5.11.

First of all, repeating the construction giving (8.4) we get an equivalence

PicZ,zar
O[I•] → PicZ,zar

O × B I zar
•

,

and the determinant map on D′zar,≃
perf,O[I•] breaks into two parts

(detzar
O , tzar) : D′zar,≃

perf,O[I•] → PicZ,zar
O × B I zar

•
.

Similarly, running through the construction of 7.6 we get a map

t ′zar
: D′zar,≃

perf,O[I•] → B I zar
•

inducing the trace map after applying γ , sheafifying, and taking global sections.
It therefore suffices to show that tzar and t ′zar agree. For this it suffices, in turn,

to show that the restrictions along∐
n

BGLn(O
zar
[I zar

•
]) → B I zar

•

agree. This is immediate from the constructions, and we get Proposition 8.9. □
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9. Deformations of complexes

9.1. Let S be a site and let O′
→ O be a surjection of sheaves of rings on S with

kernel K , a square-zero ideal.
Let E ∈ D(S, O) be a perfect complex of O-modules. As in 2.11 we can then

consider the category Def(E) of deformations of E to O′.
The following is well-known in many cases, e.g., [Illusie 1971, Chapter IV,

Proposition 3.1.5; Lieblich 2006, Theorem 3.1.1].

Theorem 9.2. Let E be a perfect complex of O-modules on S.

(i) There is a class ω(E) ∈ Ext2(E, E ⊗
L K ) which vanishes if and only if E lifts

to a perfect complex of O′-modules.

(ii) If ω(E) = 0 then the set of isomorphism classes of liftings form a torsor under
Ext1(E, E ⊗

L K ).

(iii) If Ext−1(E, E) = 0 then the set of automorphisms of any lifting is canonically
identified with Ext0(E, E ⊗

L K ).

Remark 9.3. If E ′ is a deformation of E to O′, then by applying RHomO′(E ′, – )

to the distinguished triangle

K ⊗
L
O E → E ′

→ E → K ⊗
L
O E[1]

we get a boundary map

∂E ′ : Ext−1
O (E, E) → Ext0(E, E ⊗

L
O K ).

If we don’t assume that Ext−1(E, E) = 0 then the group of automorphisms of
(E ′, σ ) is canonically isomorphic to the cokernel of ∂E ′ . Note that this group may
depend on E ′.

The proof of Theorem 9.2 occupies the remainder of this section.

9.4. Statements (ii) and (iii) follow from the discussion in 2.11. Indeed, if Def∞(E)

denotes the ∞-categorical fiber product of the diagram

Dperf(S, O′)

��

⋆
E

// Dperf(S, O)

then we constructed in 2.11 a functor

[Def∞(E)] → Def(E),
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where [Def∞(E)] denotes the underlying 1-category of Def∞(E), which induces a
bijection on isomorphism classes of objects, and if Ext−1(E, E) = 0 is an equiva-
lence of categories. On the other hand, if there exists a lifting of E then by 2.22 we
have

Def∞(E) ≃ DK(τ≤0 RHom(E, E ⊗
L K )[1]). (9.5)

This identification depends on the choice of a lifting of E to O′, but immediately
implies (iii).

9.6. To understand the dependence of (9.5) on the choice of a lifting we can use
classical techniques to get an action (suitably defined) of the right side of (9.5)
on Def∞(E).

For two surjections O′

i → O (i = 1, 2) with square-zero kernels Ki , the natural
functor

Def∞,O′×OO′′(E) → Def∞,O′(E)×Def∞,O′′(E) (9.7)

is an equivalence if both sides are nonempty, where in the subscripts we indicate
which square-zero surjection to O we are considering. Now observe that

O′
×O O′

≃ O′
[K ] ≃ O′

×O O[K ].

We therefore get a map

Def∞,O′(E)×Def∞,O[K ](E) → Def∞,O′(E). (9.8)

The retraction O → O[K ] induces a canonical lifting of E and therefore using (9.5)
we have a canonical isomorphism

Def∞,O[K ](E) ≃ DK(τ≤0 RHom(E, E ⊗
L K )[1]),

and (9.8) can be written as a map

Def∞,O′(E)×DK(τ≤0 RHom(E, E ⊗
L K )[1]) → Def∞,O′(E).

Passing to isomorphism classes we get an action of Ext1(E, E ⊗
L K ) on the set of

isomorphism classes in [Def∞(E)], and this action is simply transitive when there
exists a lifting in light of the isomorphism (9.5). This gives (ii).

9.9. To define the obstruction we use simplicial techniques. As noted in the intro-
duction, the work in this article is naturally viewed in the context of formal moduli
problems in the sense of [Lurie 2018]. The interested reader may wish to consult
the introduction to Chapter IV in [Lurie 2018] for more on this perspective.

Choose an inclusion
K ↪→ J

with J an injective O-module and let I• denote the simplicial O-module correspond-
ing to the two-term complex

J
idJ
−−→ J (9.10)
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concentrated in degrees −1 and 0. So we have an inclusion of simplicial O-modules
K ↪→ I•. Let I • denote the cokernel. The simplicial module I • is the simplicial
module associated to the two-term complex

J → J/K ,

which is quasi-isomorphic to K [1].
Let Õ denote the simplicial ring obtained by pushout from the diagram

K � � //
� _

��

O′

I•

So Õ comes equipped with a surjective map to O with kernel I•. Note also that the
further pushout of Õ along I• → I • is canonically isomorphic to O[I •].

Remark 9.11. Note that here we are using the Dold–Kan correspondence applied
to the complex (9.10) and then forming the pushout in the category of simplicial
rings to obtain Õ. In characteristic 0 one could also first consider the pushout in the
category of commutative differential graded algebras, but in general it is preferable
to work in the category of commutative simplicial rings.

Lemma 9.12. The natural map Dperf(S, Õ) → Dperf(S, O) is an equivalence.

Proof. This follows from [Schwede and Shipley 2000, Theorem 4.4], which implies
that the functor induces an equivalence of homotopy categories, and the description
of the fibers given in 2.22. □

9.13. Given a perfect complex E of O-modules, we therefore get a perfect complex
Ẽ of Õ-modules. Pushing out this complex Ẽ along the natural map

Õ → O[I •]

we get a class in

Ext1O(E, E ⊗
L I •) ≃ Ext1O(E, E ⊗

L K [1]) ≃ Ext2O(E, E ⊗
L K ).

We define
ω(E) ∈ Ext2O(E, E ⊗

L K )

to be this class. We see in Section 9.18 below that the class ω(E) vanishes if and
only if E lifts to O′.
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9.14. Gabber’s construction of the obstruction. In a 2005 email to Illusie, Gabber
gave a construction of an obstruction to deforming a perfect complex which is more
direct. The equivalence with the definition of the class ω(E) can be see as follows.

Let O′
→ O and E be as in 9.1. Gabber defines a class

o(E) ∈ Ext2O(E, E ⊗
L
O K ),

which vanishes if and only if there exists a deformation of E to O′. In fact, Gabber’s
construction is more general and can also be considered for nonperfect complexes.

9.15. The class o(E) is constructed as follows. Assume that E is represented by a
bounded above complex of flat modules. We work directly with complexes.

Choose a bounded above complex G of flat O′-modules which is acyclic and a
surjective map

G → E .

Let S be the kernel, so we have

0 → S → G → E → 0.

From the snake lemma applied to the diagram

S ⊗ K

��

// G ⊗ K //

��

E ⊗ K

0
��

// 0

0 // S // G // E // 0

we get an exact sequence of complexes

0 → E ⊗O K → S ⊗O′ O → G ⊗O′ O → E → 0. (9.16)

Let o(E) ∈ Ext2O(E, E ⊗O K ) denote the class of this Yoneda extension. A straight-
forward exercise shows that this class is independent of the choice of G → E .

Proposition 9.17. o(E) = ω(E).

Proof. We proceed with notation as in 9.9. Let Ẽ → E be the complex of Õ-modules
over E provided by the equivalence in Lemma 9.12. Abusing notation, we consider
this as a complex of N (̃O)-modules. Choose G → Ẽ a surjection of complexes of
O′-modules with G an acyclic bounded above complex of flat O′-modules. We then
get a commutative diagram

0 // S

��

// G

��

// E // 0

0 // E ⊗O N (I•) // Ẽ // E // 0
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Tensoring with O as above we get a commutative diagram

0 // E ⊗O K� s

&&

// S ⊗O′ O

��

// G ⊗O′ O

��

// E // 0

E ⊗ N (I•)

��

0 // E ⊗ N (I •) // Ẽ ⊗N (̃O) N (O[I •])) // E // 0

From this it follows that o(E) is the image under the boundary map

Ext1O(E, E ⊗
L N (I •)) → Ext2O(E, E ⊗

L K )

of the class in Ext1O(E, E ⊗
L N (I •)) given by the extension

0 → E ⊗O N (I •) → Ẽ ⊗N (̃O) N (O[I •]) → E → 0,

which in turn implies that o(E) = ω(E). □

9.18. ω(E) = 0 if and only if E lifts.

Proposition 9.19. The class ω(E) is 0 if and only if E lifts to O′.

Proof. We show this using Gabber’s description of ω(E).
If E lifts to a complex E ′ over O′ then as above we can choose G → E that

factors through a map G → E ′. Examining the commutative diagram

0 // S

��

// G

��

// E // 0

0 // E ⊗O K // E ′ // E // 0

The map S → E ⊗O K induces a retraction of the inclusion E ⊗O K ↪→ S⊗O′ O and
therefore the corresponding Yoneda class ω(E) is zero.

Conversely, suppose ω(E)= 0. Fix G → E as above, and let T denote the image
of the map

S ⊗O′ O → G ⊗O′ O.

We then have short exact sequences

0 → E ⊗O K → S ⊗O′ O → T → 0
and

0 → T → G ⊗O′ O → E → 0.

The first of these defines a class

α ∈ Ext1O(T, E ⊗O K )
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whose image under the boundary map

Ext1O(T, E ⊗O K ) → Ext2O(E, E ⊗O K )

defined by the second sequence is the class ω(E). Since G is acyclic this boundary
map is injective (since Ext1O(G⊗O′ O, E ⊗O K ) surjects onto the kernel), so the class
α is 0. Thus there exists a morphism r : S ⊗O′ O → E ⊗O K in the derived category
splitting the inclusion E ⊗O K ↪→ S ⊗O′ O. Forming the pushout of the diagram

0 // S

r
��

// G // E // 0

E ⊗O K

we obtain E ′ lifting E . □

9.20. In fact a bit more is true. Note that the natural map of simplicial rings

O′
→ O×O[I •] Õ

is an isomorphism, so there is a commutative square

Dperf(S, O′)

��

// Dperf(S, Õ)

��

Dperf(S, O) // Dperf(S, O[I •])

(9.21)

Lemma 9.22. The square (9.21) is homotopy cartesian.

Proof. This follows from the preceding discussion combined with 2.22, which
implies that the map on fibers is an equivalence. □

Remark 9.23. In the case of the punctual topos, the above results are special cases
of the results in [Lurie 2018, §16.2].

Remark 9.24. We have formulated Theorem 9.2 in classical terms using the cat-
egory Def(E). This forces, in particular, the statement of Theorem 9.2(iii) to
incorporate the assumption of vanishing Ext−1. The proof, however, shows that if
one considers instead the category [Def∞(E)], then statements (i)–(iii) all hold and
no assumption of vanishing Ext−1 is needed in (iii). Furthermore, if the obstruction
is zero then the choice of a lifting of E identifies [Def∞(E)] with the Picard category
associated to the two-term complex

τ≥−1τ≤0(RHom(E, E ⊗
L K )[1]).
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10. Proof of Theorem 1.6

We continue with the notation of the preceding section.

10.1. For statement (i) of Theorem 1.6 note that there is a commutative diagram

Dperf(S, O)≃

det
��

Dperf(S, Õ)≃
≃

oo

det
��

// Dperf(S, O[I •])≃

det
��

DK τ≤0 RHom(E, E ⊗
L K [2])

tr

��

oo

PicZ
O PicZ

Õ

≃
oo // PicZ

O[I •]
R01(BK [1])oo

(10.2)

By definition the obstruction class ω(E) is obtained as follows: Let Ẽ ∈[Dperf(S, Õ)]

be the corresponding object. Then the pushout of Ẽ to O[I •] is a deformation of E
to O[I •] and therefore defines an isomorphism class in the fiber

DK(τ≤0 RHom(E, E ⊗
L K [2])).

The class ω(E) ∈ Ext2(E, E ⊗
L K ) is the class of this isomorphism class.

The obstruction class ω(det(E)) is obtained similarly from the bottom row
of (10.2). Statement (i) in Theorem 1.6 therefore follows from the commutativity
of (10.2).

Remark 10.3. Note that the construction of the obstruction class ω(L) for an
invertible O-modules is additive in L in the sense that for two invertible O-modules
L and M we have

ω(L⊗M) = ω(L)+ω(M).

10.4. Next we turn to statements (ii) and (iii) in Theorem 1.6. Write PicZ
det(E),O′

for the fiber product of the diagram

PicZ
O′

��

⋆
det(E)

// PicZ
O

and similarly for O[K ] and O′
×O O′. By Proposition 8.9 the following diagrams

commute:

FE,O′ ×FE,O′

det×det
��

FE,O′×OO′

(9.7)
oo

det
��

≃
// FE,O′ ×FE,O[K ]

det×det
��

PicZ
det(E),O′ ×PicZ

det(E),O′ PicZ
det(E),O′×OO′

oo
≃

// PicZ
det(E),O′ ×PicZ

det(E),O[K ]



DEFORMATION THEORY OF PERFECT COMPLEXES AND TRACES 687

FE,O′ ×FE,O[K ]

det×det
��

≃
// FE,O′ ×DK τ≤0 RHom(E, E ⊗

L K [1])

det×tr
��

PicZ
det(E),O′ ×PicZ

det(E),O[K ]

≃
// PicZ

det(E),O′ × R01(BK )

FE,O′×OO′ //

det
��

FE,O′

det
��

PicZ
det(E),O′×OO′

// PicZ
det(E),O′

From this and the construction of the action in 9.6 we get statements (ii) and (iii) in
Theorem 1.6.

11. An alternate proof of Theorem 1.6(i) in the case of global resolutions

For basic facts about the filtered derived category, see [Illusie 1971, Chapter V].
As in the previous section we work with a site S and consider a surjective map

of sheaves of rings O′
→ O with square-zero kernel K .

11.1. Let DF(O) denote the filtered derived category of perfect complexes E
equipped with locally finite decreasing filtration F•

E such that F i
E = 0 for i ≪ 0

and F i
E = E for i ≫ 0, and such that each of the graded pieces gri E are perfect

complexes (see for example [Illusie 1971, Chapter V, 3.1]). The category DF(O) is
a triangulated category.

There is a forgetful functor

ϵ : DF(O) → D(O), (E, F•

E) 7→ E,

and for each i a functor

gri
: DF(O) → D(O), (E, F•

E) 7→ gri E .

For (E, F•

E) ∈ DF(A) we get by the same construction as in the unfiltered case
a trace map

tr : E ⊗ E∨
→ O,

where O is viewed as filtered with F i
O = 0 for i < 0 and F0

O = O.
Let I ∈ D(O) be an object viewed as a filtered object with F i

I = 0 for i < 0 and
F0

I = I .

Proposition 11.2. For any u ∈ HomDF(O)(E, E ⊗ I ) we have

tr(ϵ(u)) =
∑

i

tr(gri (u))

in H 0(S, I ).

Proof. This is [Illusie 1971, Chapter V, Corollary 3.7.7]. □
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11.3. Gabber’s construction of the obstruction to deforming a perfect complex
carries through in the filtered context as well.

Let (E, F•

E)∈ DF(O) be an object with each gri E a perfect complex. Repeating
the discussion in 9.15, choose G to be a filtered complex such that for all i the
complex F i

G is a bounded above acyclic complex of O′-modules and

F i
G → F i

E

is surjective. Then S is also filtered and the sequence (9.16) becomes an exact
sequence of filtered complexes. We then get a class

õ(E, F•

E) ∈ Ext2DF(O)(E, E ⊗
L
O K )

mapping to
o(E) ∈ Ext2D(O)(E, E ⊗

L K ).

Moreover, by the construction the class

gri (õ(E, F•

E)) ∈ Ext2O(gri E, gri E ⊗
L K )

is equal to the obstruction o(gri E).

11.4. Now by Proposition 11.2 we have

tr(ϵ(õ(E))) =
∑

tr(gri (õ(E))).

Furthermore, since each gri is a triangulated functor we have

gri (õ(E)) = o(gri E).

We conclude that
tr(o(E)) =

∑
i

tr(o(gri (E))).

Now we have
det(E) =

⊗
i

det(gri E)),

and by Remark 10.3 we have

o(det(E)) =
∑

i

o(det(gri E)).

We conclude the following:

Proposition 11.5. If Theorem 1.6(i) holds for gri E for all i then Theorem 1.6(i)
holds for E.

Proof. Indeed we have

tr(o(E)) =
∑

i

tr(o(gri (E))) =
∑

i

o(det(gri (E))) = o(det(E)). □
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Remark 11.6. In particular, if E is a strictly perfect complex then we can con-
sider the filtration on E whose successive quotients are E i and conclude that
Theorem 1.6(i) holds by Proposition 11.5 and the case of locally free sheaves
(which is straightforward).

Appendix: D(S, A•) and dg-modules

Let 3 be a commutative ring, let S be a site, and let O be a sheaf of 3-algebras
on S.

For a sheaf of simplicial O-algebras A• on S there are different approaches to
defining the associated ∞-categorical derived category of A•-modules. For the
convenience of the reader we summarize here how one can compare the different
approaches.

Let Sh(S, O) denote the category of sheaves of O-modules, and let C(S, O) denote
the category of complexes of O-modules.

A.1. Differential graded modules. For a strictly commutative differential graded
algebra O-algebra B• (see for example [Stacks, Tag 061V] and [Stacks, Tag 061W]),
we can consider its associated category of differential graded modules [Stacks, Tag
09JI], which we denote by Moddg

B• .
There is a forgetful functor

6 : Moddg
B• → C(S, O).

We consider the flat model category structure on C(S, O), defined in this generality
in [Liu and Zheng 2012, Proposition 2.1.3]. Since the flat model category structure
is monoidal, with respect to the usual tensor product of complexes, we can then
use [Schwede and Shipley 2000, Theorem 4.1] to get a model category structure
on Moddg

B• .
Note that Moddg

B• is again a 3-linear dg-category. We can therefore apply the
construction of [Lurie 2017, Construction 1.3.1.6] to get an ∞-category

D(S, B•) := Ndg(Moddg,◦

B• ),

where Moddg,◦

B• ⊂ Moddg
B• denotes the subcategory of cofibrant-fibrant objects.

Remark A.2. One can show directly that the category Moddg,◦

B• is pretriangulated
in the sense of [Bondal and Kapranov 1990]. It follows from this and [Faonte 2017,
Theorem 3.18] that Ddg(S, B•) is a stable ∞-category.

A.3. The stable ∞-category D(S, B•) can also be described using the dg-category
of cofibrant objects Moddg,cof

B• as follows.
The inclusion

Moddg,◦

B• ↪→ Moddg,cof
B•

https://stacks.math.columbia.edu/tag/061V
https://stacks.math.columbia.edu/tag/061W
https://stacks.math.columbia.edu/tag/09JI
https://stacks.math.columbia.edu/tag/09JI
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induces a morphism of ∞-categories

Ndg(Moddg,◦

B• ) → Ndg(Moddg,cof
B• ). (A.4)

Lemma A.5. The inclusion (A.4) admits a left adjoint in the sense of [Lurie 2009,
Definition 5.2.2.1].

Proof. Let M ∈ Moddg,cof
B• be an object and let i : M → I be a trivial cofibration

with I fibrant. Then I ∈ Moddg,◦

B• and for any E ∈ Moddg,◦

B• the natural map

Hom•

B•(I, E) → Hom•

B•(M, E)

is an equivalence. Indeed it suffices that this map induces an isomorphism on H i for
each i , and by shifting for this it suffices to verify that it holds for H 0, where it holds
since both sides are calculating morphisms in the homotopy category. It follows that
i exhibits I as a localization of M in the sense of [Lurie 2009, Definition 5.2.7.6],
and therefore by [Lurie 2009, Proposition 5.2.7.8] there exists a left adjoint of the
inclusion (A.4). □

Lemma A.6. Let W be the collection of equivalences in Ndg(Moddg,cof
B• ), and

consider the associated localization Ndg(Moddg,cof
B• )[W−1

] (for the existence of
this localization, see [Lurie 2017, Remark 1.4.3.2]). Then the composition

Ndg(Moddg,◦

B• ) → Ndg(Moddg,cof
B• ) → Ndg(Moddg,cof

B• )[W−1
]

is an equivalence of ∞-categories

Ndg(Moddg,◦

B• ) → Ndg(Moddg,cof
B• )[W−1

].

Proof. This follows from [Lurie 2009, Proposition 5.2.7.12]. □

A.7. Comparison. By [Lurie 2017, Proposition 1.3.5.3] there is a model category
structure on C(S, O) in which a morphism f : M → N is a weak equivalence
(resp. cofibration) if f is a quasi-isomorphism (resp. termwise injection), and
fibrations are defined by the right lifting property with respect to trivial cofibrations.
We refer to this as the injective model structure.

The derived ∞-category D(S, O) is defined in [Lurie 2017, Definition 1.3.5.8]
as the dg-nerve

D(S, O) := Ndg(C(S, O)◦inj)

of the fibrant-cofibrant objects C(S, O)◦inj ⊂ C(S, O) with respect to the injective
model structure. By [Lurie 2018, Corollary 2.1.2.3] the ∞-category D(S, O) is
identified with the hypercomplete objects in Mod(S,O). By [Lurie 2017, Proposi-
tion 1.3.5.15], and the observation that every object of C(S, O) is cofibrant, we
deduce that

N (C(S, O))[W−1
] → D(S, O)
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is an equivalence, where W denotes the set of quasi-isomorphisms. We therefore
obtain an equivalence between N (C(S, O))[W−1

] and the ∞-category of hyper-
complete objects in Mod(S,O).

By [Liu and Zheng 2012, Remark 2.1.4(1)] the identity functor is a Quillen
equivalence between C(S, O) with the flat model category structure and C(S, O)

with the injective model structure, and therefore by [Lurie 2017, Lemma 1.3.4.21]
we can also describe D(S, O) as

N (C(S, O)cof
fl )[W−1

],

where C(C, O)cof
fl ⊂ C(S, O) are the cofibrant objects with respect to the flat model

category structure.
If A• is a simplicial O-algebra with each An flat over O, then the corresponding

differential graded algebra N (A•) is a cofibrant monoid in the monoidal model
category C(S, O). Combining this with [Lurie 2017, Theorem 4.3.3.17] taking
B = O, using [Lurie 2017, Corollary 4.3.2.8], we find that

N (Moddg,cof
(S,N (A•))

)[W−1
] ≃ ModA•

(D(S, O)). (A.8)

That is, the ∞-category associated to the model category of dg-modules over N (A•)

is equivalent to the ∞-category of hypercomplete objects in Mod(S,A•).
In fact, the assumption that the An are flat over O is unnecessary. If B• → A•

is an equivalence, then it follows from [Lurie 2017, Corollary 4.3.2.8] (applied
to the ∞-category of (A•, B•)-bimodules in the category of B•-modules) that the
restriction functor

ModA•
(D(S, O)) → ModB•

(D(S, O))

is an equivalence, and similarly by [Schwede and Shipley 2000, Theorem 4.4] the
restriction

Moddg
(S,N (A•))

→ Moddg
(S,N (B•))

is a Quillen equivalence. Thus if B• → A• is a cofibrant replacement we see that
we also have (A.8) without assuming that A• is flat. We summarize as follows
(using also [Lurie 2017, Proposition 1.3.1.17]).

Theorem A.9. Let A• be a simplicial O-algebra with associated differential graded
algebra N (A•). Then the ∞-category

Ndg(Moddg,◦

(S,N (A•))
) ≃ Ndg(Moddg,cof

(S,N (A•))
)[W−1

]

is equivalent to the ∞-category of hypercomplete objects in Mod(S,A•). □
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