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Almost Ramanujan Expanders from Arbitrary

Expanders via Operator Amplification

Fernando Granha Jeronimo* Tushant Mittal Sourya Roy

Avi Wigderson†

We give an efficient algorithm that transforms any bounded degree expander graph

into another that achieves almost optimal (namely, near-quadratic, d ≤ 1/λ2+o(1)) trade-off

between (any desired) spectral expansion λ and degree d. Furthermore, the algorithm is

local: every vertex can compute its new neighbors as a subset of its original neighborhood

of radius O(log(1/λ)). The optimal quadratic trade-off is known as the Ramanujan bound,

so our construction gives almost Ramanujan expanders from arbitrary expanders.

The locality of the transformation preserves structural properties of the original graph,

and thus has many consequences. Applied to Cayley graphs, our transformation shows

that any expanding finite group has almost Ramanujan expanding generators. Similarly,

one can obtain almost optimal explicit constructions of quantum expanders, dimension

expanders, monotone expanders, etc., from existing (suboptimal) constructions of such

objects. Another consequence is a "derandomized" random walk on the original (subop-

timal) expander with almost optimal convergence rate. Our transformation also applies

when the degree is not bounded or the expansion is not constant.

We obtain our results by a generalization of Ta-Shma’s technique in his breakthrough

paper [STOC 2017], used to obtain explicit almost optimal binary codes. Specifically, our

spectral amplification extends Ta-Shma’s analysis of bias amplification from scalars to ma-

trices of arbitrary dimension in a very natural way. Curiously, while Ta-Shma’s explicit

bias amplification derandomizes a well-known probabilistic argument (underlying the

Gilbert–Varshamov bound), there seems to be no known probabilistic (or other existen-

tial) way of achieving our explicit (“high-dimensional") spectral amplification.

*This material is based upon work supported by the NSF grant CCF-1900460. Any opinions, findings and

conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the NSF.
†This work was partially supported by NSF grant CCF-1900460.

1

http://arxiv.org/abs/2209.07024v1


Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries 11

3 Operator Bias Reduction via Expander Walks 13

3.1 Operator Norm Decay from Constant Bias . . . . . . . . . . . . . . . . . . . . 15

3.2 Instantiating the Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Operator Norm Decay from any Bias . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Explicit Expanders of Small Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Operator Bias Reduction via the s-wide Replacement Walk 19

4.1 The s-wide Replacement Product and its Walks . . . . . . . . . . . . . . . . . 20

4.2 The Collection of Derandomized Walks . . . . . . . . . . . . . . . . . . . . . 22

4.3 The s-wide Operator Norm Decay . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Instantiating the s-wide Replacement Product . . . . . . . . . . . . . . . . . 27

5 Some Applications 29

5.1 Permutation Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Arbitrary Expanders via Permutation Amplification . . . . . . . . . . . . . . 31

5.3 Explicit Almost Ramanujan Quantum Expanders . . . . . . . . . . . . . . . . 32

5.4 Explicit Almost Ramanujan Monotone Expander . . . . . . . . . . . . . . . . 33

5.5 Amplifying the Average Kazhdan Constant . . . . . . . . . . . . . . . . . . . 35

5.6 Explicit Almost Ramanujan Dimension Expanders . . . . . . . . . . . . . . . 36

5.7 Diameter of Finite Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Operator Expander Mixing Lemma 38

A Explicit Structures and their Parameters 45

i



1 Introduction

1.1 Background

Expander graphs are fundamental objects in computer science and mathematics, possess-

ing a variety of applications in both fields [HLW06, Lub12]. Indeed, expanders (and ex-

pansion) play a central role in numerous algorithmic advances, cryptographic schemes,

circuit and proof complexity lower bounds, derandomization and pseudorandom genera-

tors, error correcting codes, ... and are central to structural results in group theory, algebra,

number theory, geometry, combinatorics. In light of this wealth, a central question is

Which graphs are expanders?

A central quality measure of expansion of an infinite family of d-regular graphs {Xi}i∈ℕ
is the second largest singular value of its normalized adjacency matrix, which we denote

by λ(Xi) ∈ [0, 1]. We say that a family {Xi}i∈ℕ is λ-expanding, for some fixed λ < 1, if

λ(Xi) ≤ λ for every member Xi of the family. The smaller is the expansion parameter λ,

the more spectrally expanding is the family. (For simplicity, we will sometimes discuss

single graphs rather than families, and say that X is a (d, λ)-expander if it is d-regular and

satisfies λ(X) ≤ λ.)

A random d-regular graph with d ≥ 3 is easily shown [Pin73] to be .99-expanding with

high probability, giving rise to the existence of expanding families. The quest to explicitly

construct bounded degree expanders started with Margulis’ paper [Mar73], and has been

an extremely active research area in the past half century. Today we have a large arsenal

of constructions and tools to establish expansion which are quite different in nature, al-

gebraic, analytic, combinatorial, and mixtures of these (for a short survey of this wealth

see [Wig18, Sec 8.7]), and we will discuss a few of them below.

Returning to the main discussion, all different constructions above yield d-regular λ-

expanding families with some specific constants d and λ. Now, a large variety of struc-

tural and algorithmic applications call for optimizing both parameters, and understand-

ing the best trade-off between them. One example which is directly related to this pa-

per is the study of random walks on expanders sometimes used for randomness-efficient

error-reduction of probabilistic algorithms, and also in the construction of randomness ex-

tractors. The surprising expander Chernoff bound of Gillman [Gil93] informally says that a

sequence of highly correlated k vertices along a random walk in a (d, λ)-expander, is almost

as good a sampler as a sequence of k independent vertices. Saving randomness calls for

minimizing the degree d, while improving the quality of the sample requires minimizing

the expansion parameter λ.

However, for any choice of degree d, the spectral expansion λ cannot be made arbi-

trarily small. The Alon–Boppana bound [Nil91] shows that λ(Xi) ≥ 2
√
d − 1/d − o(1). It

intuitively says that the infinite d-regular tree is the best possible spectral expander, raising

the challenge of achieving it by finite graphs. This challenge was first met, by the (indepen-

dent) seminal papers of [LPS88, Mar88]; they constructed optimal spectrally expanding

families, dubbed Ramanujan graphs, satisfying the (Ramanujan bound) λ(Xi) ≤ 2
√
d − 1/d.

The investigation of expanding families near or achieving the optimal Ramanujan bound
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has received much attention. However since then, only one essentially different construc-

tion of Ramanujan graphs was found, 30 years later, by [MSS15].

The quest towards almost optimal trade-offs can be summarized as a sharpening of our

original major question above:

Which graphs are (almost) Ramanujan expanders?

A study of almost Ramanujan expanders, in which the bound above is nearly matched,

has received much attention as well. Friedman [Fri03] greatly strengthened Pinsker’s

bound above [Pin73], showing that with high probability, a random d-regular graph X

satisfies λ(X) ≤ 2
√
d − 1/d + o(1). Thus, for random regular graphs, expansion and (near)

optimal expansion occur "together". For explicit constructions, an approach towards such

a bound, which is central for this paper, follows from the zig-zag product of [RVW00]. They

showed that their basic zig-zag construction achieves an explicit family of expanders with

d ≤ 1/λ4, they further derandomize the basic zig-zag product to achieve d ≤ 1/λ3, and ask

if further derandomization can decrease the exponent to (the optimal) quadratic bound.

Ben-Aroya and Ta-Shma [BATS08] in their ingenious “s-wide zig-zag product", nearly

matched the optimal quadratic bound1, achieving d ≤ 1/λ2+o(1). Their “higher-order”

version of zig-zag [BATS08] will be central in our work. A different path to explicitly

construct almost Ramanujan graphs was the lifting method of Bilu–Linial [BL06], which

achieves d ≤ Õ(1/λ2), and famously led to the (exact) Ramanujan expanders of [MSS15]

mentioned above.

It is important to note that while for some applications and structural results, any family

of expanders would suffice, for many others, the graphs are externally given to us (as e.g. is

the case for understanding the expansion of Cayley graphs of groups). Moreover, seeking

different constructions and analysis tools has led to surprising applications beyond those

intended (e.g., the resolution of the Kadison–Singer conjecture by [MSS14] and the proof

of SL = L by Reingold [Rei05]).

When is it possible for a family of expanders to get close to the Ramanujan bound?

We show that this is always possible: any expander family can be locally and efficiently

converted into an almost Ramanujan family. More precisely, starting from any family of

bounded degree expanders, it is possible to obtain, for any desired target expansion λ > 0,

a new family of λ-expanders close to the Ramanujan bound.

1.2 Main Results

Our main result for general families of expander graphs is as follows.

Theorem 1.1 (Main I - Informal). Let {Xi}i∈ℕ be a family of (d0, λ0)-expanders where λ0 < 1 is

a constant. For any (target) λ ∈ (0, 1) and Xi, we can explicitly construct a (d, λ)-expander, X′
i
, on

the same vertex set, where d = O(d0/λ2+o(1)). Moreover, the construction is local in the sense that

edges in X′
i

correspond to short walks in Xi.

1We call any such bound near-optimal or almost Ramanujan. Of course, reducing the o(1) slack in the

exponent is clearly of much interest.

2



We obtain our results by considering the seemingly more specialized case of Cayley

expanders, which are based on group theory and represent a prominent way of construct-

ing expanders. Recall that a Cayley graph Cay(G,S) on a finite group G is specified by

a symmetric set of generators S ⊆ G, where vertices are elements of G and g,g′ ∈ G are

adjacent if and only if g′g−1 belongs to S.

While many groups admit Cayley expanders, most of these are far from the Ramanujan

bound. This is true, in particular, in the case of non-Abelian finite simple groups which

includes the symmetric group. Breuillard and Lubotzky [BL18] ask whether it is possible

to have near-Ramanujan expanders for all families of finite simple groups. More generally,

Which groups admit expanding Cayley graphs close to the Ramanujan bound?

An equivalent viewpoint arising from the theory of pseudorandomness, is that of biased

distributions. Here we work with a definition (formalized in Definition 2.4) for operators

which naturally generalizes the one for scalars. The equivalence is quite direct – a set S ⊆ G

is a a λ-biased distribution if and only if Cay(G,S) is a λ-expander.

Our key result is that any group that admits a Cayley expander also admits one that is

almost Ramanujan.

Theorem 1.2 (Main II). Let G be a finite group and S be such that Cay(G,S) is a λ0-expander, for

some constant λ0 ∈ (0, 1). For every λ ∈ (0, 1), there exists S′ such that

· Cay(G,S′) is a λ-expander. Equivalently, S′ is an λ-biased distribution.

· |S′| = O
(
|S| /λ2+o(1)) , and

· S′ can be computed deterministically in poly(|S| /λ)-time assuming an oracle for group op-

erations.

Furthermore, if Cay(G,S) is strongly explicit2, then so is Cay(G,S′).

Remark 1.3. The breakthrough construction of explicit almost optimal binary codes of Ta-

Shma [TS17] close to the Gilbert–Varshamov [Gil52, Var57] bound can be viewed as a par-

ticular case of Theorem 1.2 applied to a specific family of Abelian groups3.

Since expanding families of Cayley graphs are known for non-Abelian finite simple

groups [BL18, Theorem 3.1], this result makes substantial progress towards the question

asked therein (the o(1) term needs to be removed to resolve it completely). Moreover,

these are strongly explicit (except for the Suzuki group). Thus, our result yields strongly

explicit almost Ramanujan Cayley graphs for these these groups, which notably includes

the symmetric group!

2Neighbors of a vertex can be computed in polytime in the description length of a vertex.
3A linear λ0-balanced code over �픽

n0

2
of dimension k is equivalent to a Cayley λ0-expander over G = �픽k

2

of degree n0. Let S ⊆ G be the rows of a generator matrix of a good λ0-balanced code (good means k/n0

and λ0 < 1 are constants). Applying Theorem 1.2 above to S with final expansion parameter λ > 0, we

obtain a generating set S′ ⊆ G of a Cayley λ-expander with degree O(k/λ2+o(1)), or equivalently, we obtain a

λ-balanced code of rate Θ(λ2+o(1)).
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Corollary 1.4 (Explicit almost Ramanujan Cayley Expanders). For every non-Abelian finite

simple4 group G and λ > 0, we can explicitly construct almost-Ramanujan (d, λ)-Cayley multi-

graphs on G where d ≤ O(1/λ2+o(1)).

We can now move from Cayley graphs back to general graphs and answer our original

question. A result of König that says that the adjacency matrix of an arbitrary regular graph

can be written as a sum of permutation matrices which can be interpreted as elements of

the symmetric group. Using this set of permutations as our base set, we can amplify it close

to the optimum bound (essentially5) using Theorem 1.2. Thus, we obtain Theorem 1.1.

1.3 Applications

We will now discuss some applications of this operator amplification technique which al-

lows us to improve other pseudorandom objects. All the "pseudorandom" objects below

are expanders (with various stronger properties). For all, we amplify their spectral bound

to almost Ramanujan. We stress that our amplification preserves the underlying struc-

ture, and so produces another object with the same properties. Precise definitions of these

objects will be given in Section 5.

Quantum Expanders Roughly speaking, a quantum expander is an operator defined by

d complex matrices, whose (linear) action on quantum states has a constant spectral gap.

Quantum expanders were defined in [AS04, BASTS08, Has07a], and Hastings [Has07c]

showed that the Ramanujan bound also applies to them. Existing explicit constructions

are far from the Ramanujan bound. In [Har07], Harrow gave a generic construction using

expanding Cayley graphs which is explicit if the group has a large irreducible represen-

tation and admits efficient Quantum Fourier Transform (QFT). Both these conditions are

satisfied by the symmetric group Symn using the generating family by Kassabov [Kas07]

and the QFT algorithm by Beals [Bea97].

By amplifying the expansion of the generators of [Kas07], we give the first explicit

family of almost Ramanujan quantum expanders.

Corollary 1.5 (Explicit Almost Ramanujan Quantum Expanders). For every λ ∈ (0, 1), there

is an explicit infinite family of (efficient) (O(1/λ2+o(1)), λ)-quantum expanders.

Monotone Expanders Monotone expanders are expanders, whose edge set can be de-

composed into a constant number of monotone maps on [n]. Bourgain and Yehuday-

off [BY13] gave the only known explicit construction of monotone expanders with constant

degree. By an approach similar to that used for Theorem 1.1, we express it as a sum of

permutation matrices and amplify their expansion obtaining the following result.

Corollary 1.6 (Almost Ramanujan Monotone Expanders). For every λ > 0, there is an ex-

plicit family {Xi}i∈ℕ of (vertex) d-regular dO(1)-monotone expanders with d = O(1/λ2+o(1)) and

λ(Xi) ≤ λ.

4This holds for other groups as well, as long as they have expanding generators. One non-simple example

is the Cayley expanders of Rozenman, Shalev and Wigderson [RSW06].
5Actually, we only consider the standard representation in this amplification.
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Remark 1.7. There are two natural notions of degree for a monotone expander. The usual

vertex degree and the number of monotone maps. Our almost Ramanujan trade-off is with

respect to the vertex degree (and the monotone degree is polynomial in the vertex degree).

It would be really interesting to obtain an almost Ramanujan trade-off with respect to the

monotone degree.

Dimension Expanders Loosely speaking, dimension expanders (over any field �픽) are a

linear algebraic extension of expanders: a collection of d linear maps on �픽n, which signif-

icantly expands (the span of) any vector space of dimension below n/2. They were defined

by Barak et al. in [BISW01]. Over the complex numbers, any quantum expander is a

dimension expander. More generally, Dvir and Shpilka [DS09] proved that a monotone

expander directly yields a dimension expander over every field. We give spectral almost

Ramanujan expanders that have the additional property of being dimension expanders.

Additionally, if the starting dimension is small enough then we achieve almost doubling

of the starting dimension.

Kazhdan Constant We can also amplify operators in infinite dimensional Hilbert spaces.

This allows us to obtain improved (average) Kazhdan constants of groups with “Property

(T)”, which is an analogue of expansion for discrete groups. This implies better bounds for

the product replacement algorithm to sample group elements.

Corollary 1.8 (Amplifying Average Kazhdan Constant). Let G be a discrete group and S a

finite set of generators such that the average Kazhdan constant K(G,S) is equal to 2 · (1 − λ0) for

some constant λ0 ∈ (0, 1). For every λ ∈ (0, 1), there is a set S′ ⊆ G such that

1. K(G,S′) ≥ 2 · (1 − λ), and thus, K(G,S′) ≥ 2 · (1 − λ).
2. |S′| = Oλ0

(|S| /λ2+o(1)), and

3. S′ can be found in time poly(|S| /λ) assuming an oracle for group operations on G.

Randomness-efficient Walks An immediate consequence of being able to achieve an al-

most optimum degree versus expansion trade-off in this generic way is that we obtain

randomness-efficient random walks.

1.4 Techniques

We consider the main contribution of this work to be the broad applicability of the near-

optimal operator amplification to any family of expanders. For instance, the existence of

almost Ramanujan expanders for all expanding groups, including the symmetric group,

is quite surprising to us. On the technical side, we view our main contribution as the

identification of appropriate natural linear algebraic extensions to Ta-Shma’s amplifica-

tion framework [TS17] that accommodate amplification of operators as described above.

This extension will be so natural that it may almost feel that we are replacing absolute

values in the original scalar analysis [TS17] by operator norms. However, appropriate

generalizations and care are needed in such an extension to operators.
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We first recall the problem and see why it is non-trivial. Let G be a finite group and S

be a symmetric multiset such that Cay(G,S) is a λ0-expander for some λ0 ∈ (0, 1). Assume

that Cay(G,S) is far from being Ramanujan, e.g., |S| = 1/λ100
0

. Our goal is to construct a

new generating set S′ such that Cay(G,S′) is a λ-spectral expander with an almost optimal

final degree, say, |S′ | = O(1/λ2.001).
A first approach would be to take S′ to be the power St with t ≈ logλ0

(λ). However,

now the degree, |S|t = O(1/λ100), has also increased and the trade-off remains the same.

Thus, we want to efficiently compute a sparse subset of St that retains the expansion.

Since we know what degree we are aiming for, we could try take a sparse random sample

S′ ⊆ St of size d = O(1/λ2.001) and hope that some form of matrix concentration ensures

that Cay(G,S′) is λ′-spectral expander with λ′ ≈ λ. Unfortunately, it is not clear how to

show even the existence of a single sparse subset S′ that achieves the required expansion6.

Standard probabilistic techniques, such as the matrix Chernoff, have a forbidding depen-

dence on the dimension of the matrices for this application.

Switching to the bias distribution viewpoint, a subset S ⊆ G is said to be ε-biased

if it fools all non-trivial irreducible representations, i.e., for every non-trivial irreducible

representation, ρ, of G, we have ‖�피s∼S[ρ(s)]‖op ≤ ε. Here, a representation of a group is

an operator valued function, ρ : G → Mℓ(ℂ), that is multiplicative, i.e., for every two

group elements g1,g2 we have ρ(g1g2) = ρ(g1)ρ(g2). As mentioned earlier, Cay(G,S) is

λ-expanding if and only if S is λ-biased set. Thus, the problem of constructing optimal

Cayley expander can be reformulated as construction of small biased distribution with

optimal support size. In fact, we will see that the techniques work for general matrix value

functions (not just representations).

Earlier Work Much of the earlier work has focused on the case of Abelian groups. It

is well-known that the irreducible representations of these groups are 1-dimensional, i.e.,

scalar valued functions called characters. The special case of ε-biased distributions over

G = ℤk
2

introduced in the pioneering work of Naor and Naor [NN90]. One of their con-

structions of ε-biased distribution uses walks on expander graphs. These distributions

have found numerous applications (e.g., [ABN+92, Vad12, TS17]).

Rozenman and Wigderson (see analysis in [TS17]) introduced the following “scalar

amplification” technique using walks on an (auxiliary) expander graph X, whose vertices

are identified with elements of S. Let W ⊆ St be the collection of all walks of length (t − 1)
on X. Let f : S → {±1} be any function. The collection W naturally gives rise to a map TW

that lifts {±1}-valued functions on S to {±1}-valued functions on W by multiplication as

follows

TW(f)(w) = f(w) ≔ f(s0) · · · f(st−1) ∀w = (s0, . . . , st−1) ∈ W .

In words, the value of each walk is given by the product of the values f assigns to its

vertices. For a sufficiently “pseudorandom”7 collection W and any function f satisfying

6To some extent this difficulty is also present in the proof of the Alon–Roichman theorem [AR94] and

the reason why even for non-Abelian groups the only generic upper bound known uses Ω(log(|G|)) random

generators to obtain an expander. Recall that matrix Chernoff bounds deteriorate with the dimension of the

matrices, and we have no fixed bound on their dimension here.
7This amounts to X being sufficiently expanding.
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bias(f) ≤ ε0, they argue that the bias of the amplified function, TW(f), decreases exponen-

tially (roughly) as bias(TW(f)) ≤ ε
t/2
0

. Note that, when f is a character ρ (later we will

consider more general representations), we can use the homomorphism property to write

TW(ρ)(w) = ρ(s0 · · · st−1) ∀w = (s0, . . . , st−1) ∈ W .

This allow us to interpretTW(ρ) as a function with domain on the multiset S′ = {s0 · · · st−1 |
w = (s0, . . . , st−1) ∈ W}, our new biased set. This technique gives an ε-biased distribution

with support size O(1/ε4+o(1)) (cf., [TS17]), which is quite good but still sub-optimal.

Ta-Shma [TS17] managed to close the gap almost optimally using the s-wide replacement

product to derandomize the amplification of Rozenman and Wigderson. Recall that the s-

wide replacement product of Ben-Aroya and Ta-Shma [BASTS08] is a higher-order version

of the zig-zag product [RVW00]. Using the collection of walks on the s-wide replacement

product allows for a much smaller collection W ⊆ St with nearly optimal size. This scalar

technique was later applied to the more general case of arbitrary Abelian groups by Jalan

and Moshkowitz [JM21]. These results can be encapsulated in the following statement.

Theorem 1.9 (Scalar Amplification). Let S be a finite set and λ0 ∈ (0, 1) be a constant. For

every λ > 0, there exists a deterministic polynomial time algorithm to construct W ⊆ St of size

|W | ≤ O(|S| /λ2+o(1)) such that for every function f : S → ℂ with |�피s∼S[f(s)]| ≤ λ0 and

‖f‖∞ ≤ 1, we have |�피w∼W[f(w)]| ≤ λ.

Our Results To extend Ta-Shma’s approach to non-Abelian groups, it is necessary to

work with operator valued functions, f : S → Mℓ(ℂ), as the irreducible representations

are no longer of dimension one. In fact, the amplification applies to any operator valued

function. Our main technical result is a dimension independent generalization of the scalar

amplification result to operator valued functions. Note that the definition of TW extends

naturally to a mapping from Mℓ(ℂ)S to Mℓ(ℂ)W .

Theorem 1.10 (Operator Amplification (this work)). Let S be a finite set and λ0 ∈ (0, 1)
be a constant. For every λ > 0, there exists a deterministic polynomial time algorithm to con-

struct W ⊆ St of size |W | ≤ O(|S| /λ2+o(1)) such that for every function f : S → Mℓ(ℂ) with

‖�피s∼S[f(s)]‖op ≤ λ0 and maxs ‖f(s)‖op ≤ 1, we have ‖�피w∼W[f(w)]‖op ≤ λ.

To establish the operator valued generalization, we make a simple and yet extremely

useful change in the bias operator (Πf ) defined by Ta-Shma which is a key object in the

analysis of both [TS17] and [JM21]. In both these cases, f is scalar, and one defines

Πf : ℂ[S] → ℂ[S] where Πf · s = f(s) · s .

However, this approach is not readily generalizable to operators and the view we take

is that if f : S → Mℓ(ℂ), then, Πf is actually an operator on ℂℓ ⊗ ℂ[S] defined as

Πf : ℂℓ ⊗ ℂ[S] → ℂ
ℓ ⊗ ℂ[S] where Πf (v ⊗ s) = f(s) v ⊗ s .

Clearly, in the Abelian case, we have ℓ = 1 and this is isomorphic to the setup by

Ta-Shma. This generalization is very natural and we show that not only does the older
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machinery gel well with this, but the proof remains intuitive with the different spaces

neatly delineated. More precisely, we first establish an operator version of the Rozenman

and Wigderson amplification, and then we derandomize it using (a suitable version of)

the s-wide replacement product. Furthermore, since the result does not depend on the

dimension, ℓ, we can use it even for functions f : S → L(H) where L(H) is the space of

bounded linear operators on an arbitrary Hilbert space, H, possibly infinite dimensional.

This is useful if the underlying group is not finite but finitely generated by S.

To the best of our knowledge, only one general result was known for general groups.

Chen, Moore and Russell [CMR13] analyzed the usual expander walk construction using

a matrix version of the expander mixing lemma. This gives an amplification procedure

for Cayley graphs of general groups, but the resulting degree O(|S| /λ11) to achieve final

expansion λ is sub-optimal. Analogous to the (folklore results of the) scalar case, we show

that the analysis in [CMR13] of the amplification via (iterated applications of) expander

mixing lemma can be improved to get O(|S| /λ4+o(1)) achieving similar parameters to the

expander walk approach.

1.5 Discussion

The results of this paper have some curious features, which we would like to elaborate on.

For most of them, we will use the following "bare bones" description of our main spectral

amplification result. Namely, let S be a finite set and H a Hilbert space. Let f be a function

mapping elements of S to operators on H of unit norm, such that ‖�피s∈S[f(s)]‖op ≤ λ0. For

any λ > 0 take t = c log(1/λ) (for appropriate c). We extend f from S to St by defining

f(s1, . . . , st) = f(s1) · · · f(st). Clearly, ‖�피r∈St[f(r)]‖op ≤ (‖�피s∈S[f(s)]‖op)t ≤ λ. Our main

result is an explicit construction of a (pseudorandom) subset S′ ⊆ St, of size only |S′| =
O(|S|/λ2+o(1)), with a similar guarantee, namely ‖�피s′∈S′[f(s′)]‖op ≤ λ.

Dimension Independence Note that if the operators in S are 1-dimensional, namely

scalars, then the existence of a set S′ of this size (which is best possible even in this 1-

dimensional case) follows directly from the Chernoff bound. Indeed, Ta-Shma’s construc-

tion [TS17] may be viewed as derandomizing this result, producing an explicit such S′.

One may try to do the same for operators in a higher dimension, say ℓ, by appealing to

the Matrix Chernoff bounds of Ahlswede–Winter [AW02] (see also Tropp [Tro15]). How-

ever, these concentration inequalities pay a factor of ℓ in the tail bound, resulting in a set

S′ of size Ω(log(ℓ)). As the dimension ℓ is arbitrary (indeed, may be infinite), such a bound

is useless.

Thus, our explicit construction has no known probabilistic (or other existential) ana-

log! What is curious is that our dimension-independent analysis follows very closely that

of Ta-Shma for 1-dimension, roughly speaking, replacing scalar absolute values by the

operator norm in any dimension. We feel that it would be extremely interesting to find

a matrix concentration inequality for sampling product sets like St, which is dimension

independent.
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Algebraic vs. Combinatorial Expander Constructions Our explicit construction of the

pseudorandom set S′ above uses expanders obtained from the s-wide zig-zag product of

[BATS08]. This is a combinatorial construction, a refinement of the original zig-zag prod-

uct construction of [RVW00]. Nonetheless, it has significant consequences to algebraic ex-

pander constructions which use group theory, namely to the expansion of Cayley graphs.

This is possible due to the abstraction of how elements of S are mapped to operators via

some function f. We can take S to be expanding generating set of a group and f to be some

non-trivial irreducible representation ρ. Instead of using the t-product of elements of St to

obtain a new amplified generating set S′, a much sparser subset is chosen using the s-wide

zig-zag construction. The analysis of the norm amplification discussed above yields the

required expansion bound, in a way that has no dependence on the group or the represen-

tation. The flexibility in mapping element of S to operators underlies the versatility of our

spectral amplification. It allow us to preserve some of the structure of the expanders whose

expansion are being amplified. In this case, both the starting expander and the amplified

expander are Cayley graph over the same group.

It is interesting to note that this is a recurring phenomenon. In [ALW01], it was dis-

covered that the zig-zag product may be viewed as a combinatorial generalization of the

algebraic semi-direct product of groups. This connection made possible the construc-

tion of new expanding Cayley graphs in groups that are far from being simple, e.g., in

[MW04, RSW06]. It is rewarding to see again how new combinatorial constructions, some-

times inferior in certain parameters to some algebraic ones, yield new results in group

theory.

Iterated Pseudorandomness Another interesting aspect of our result is the following.

Recall that expanders are pseudorandom objects for many purposes. One important pur-

pose is sampling - rather than sampling t independent random elements in some set S, one

may sample t points along a random walk on an expander on the vertex set S and a Cher-

noff type bound still holds (a nontrivial result of [Gil93])- this affords significant savings

in the number of random bits spent. For this result, any expander would do. What hap-

pens in this paper is an iterated use of expanders as samplers as follows. We first choose a

sparse pseudorandom set of t-walks inside St using expanders walks. Then, we choose a

yet sparser pseudorandom set inside it, again using walks on an additional expander. This

repeated use of expanders improves the trade-off between quality of spectral amplification

and the size of the final pseudorandom set to near-optimal. Now the construction of this

iterated selection of walks seems critical, and (as in Ta-Shma’s paper) is chosen to come

from the s-wide zig-zag product of two expanders [BATS08].

Group Theory For us, the most surprising consequence of our results is that “weak” sim-

ple groups, especially the symmetric group,8 can have near-Ramanujan generators. The

question of which groups are expanding, and just how expanding they are, is an old quest

of group theory. One dichotomy is whether every finite set of generators of the group is

expanding (these are “strongly expanding” groups), or if some are and some aren’t (these

are “weakly expanding” groups). For the symmetric group, many finite non-expanding

8See also the groups in [RSW06], which are iterated wreath products of symmetric groups.
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generating sets of constant size were long known, and Kassabov’s breakthrough construc-

tion [Kas07] designed a constant size expanding generating set. The symmetric group is

then a weakly expanding group, while, e.g., simple groups of Lie type (namely, matrix

groups) are believed, and in some cases known, to be strongly expanding. Nonetheless,

our construction works equally well for all, and we have almost Ramanujan generators for

all expanding groups.

Semigroups and universality Perhaps the most general way to view our main result is

the following abstraction. Let S be any finite set (which may be best viewed as an alphabet)

of some size |S| = n, and for every integer t we consider subsets W ⊆ St of words of length

t. We call such a subset, W, λ-universal if, informally, W amplifies the bias of any linear

operator valued function on S. More precisely, if for every Hilbert space H and every

function f : S → L(H) satisfying ‖f(v)‖op ≤ 1 for all v ∈ S, and ‖�피S[f(v)]‖op ≤ 1
2

say,9

we have ‖�피W[f(w)]‖op ≤ λ, where for w = (v0, v1, . . . , vt−1) ∈ St, f(w) is a shorthand for

f(w) = f(v0)f(v1) . . . f(vt−1).
This semigroup viewpoint of words stresses the non-commutativity of composing the

operators. It is easy to see how to derive the results for groups directly from the result

above: take S to be a set of expanding10 elements in some group G, and f is some irre-

ducible representation of G. In this nice case, W will itself be a subset of G, and so an

almost Ramanujan expanding set of generators (and as f is a homomorphism in this case,

f(w) with w interpreted as a group element will actually match the definition of f(w) when

w is interpreted as a word over S).

Closeness to the Ramanujan Bound As mentioned above, a family of d-regular graphs is

called Ramanujan if its spectral expansion parameter λ is at most 2
√
d − 1/d. This terminol-

ogy was introduced in the seminal work of Lubotzky, Phillips and Sarnak [LPS88], and it

designates the optimal degree versus expansion trade-off that a family of bounded degree

expanders can achieve. Several notions of closeness to the Ramanujan bound were inves-

tigated, e.g., (2
√
d − 1 + ε)/d (with ε > 0 small or vanishing) in [Fri03, MOP20, JMO+22],

O(1/
√
d) in [ACKM19], polylog(d)/

√
d in[BL06, JMO+22] and more generally dod(1)/d1/2.

In this work, we obtain a bound of the form λ ≤ O(2log(d)c/d1/2) for some constant c ∈
(0, 1), which we refer to as an almost Ramanujan bound. Rephrasing in terms of the expan-

sion parameter, we achieve expansion λ with degree O(1/λ2+β), where β = O(1/log(1/λ))c′

for some c′ ∈ (0, 1). We stress that the nomenclatures almost Ramanujan, near Ramanujan

and etc, may vary depending on the author. Improving the results in this work to achieve

trade-offs even closer to the Ramanujan bound (if possible) is of great interest. We suspect

that new ideas may be required to substantially improve the bound to, say, expansion λ

versus degree O(polylog(1/λ)/λ2).
9The constant 1

2 is chosen for simplicity - in general we will have an initial bias parameter λ0.
10With second eigenvalue 1/2.
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1.6 Outline

We start in Section 2 by summarizing basic definitions and the notation used throughout

the paper. In Section 3, we generalize the simpler construction of Ta-Shma based on ex-

pander walks. Apart from serving as a nice warm-up to the more-involved construction,

it will be used as a bootstrap for the more involved construction based on s-wide replace-

ment product which is the subject of Section 4. Here, we prove the main amplification

result (a formal version of Theorem 1.10 above) and instantiate using known constructions

and those obtained from Section 3 which establishes Theorem 1.2. Section 5 discusses the

permutation amplification trick and formally completes the proof of Theorem 1.1. It also

discusses the other applications in more detail. Finally Section 6 gives an operator version

of the expander mixing lemma which improves the analysis of [CMR13].

2 Preliminaries

Let X = (V ,E) be an n-vertex d-regular multigraph for some d ≥ 1. We denote by AX the

normalized adjacency matrix of X, i.e., the adjacency matrix divided by d.

Definition 2.1 (λ-spectral Expander). Let the eigenvalues of the matrix AX, denoted as

Spec(AX), be {1 = λ1 ≥ · · · ≥ λn} and define λ(X) = max{|λ2 | , |λn |}. We say that X is a

λ-spectral expander if λ(X) ≤ λ.

We denote by G a finite group (except in Section 5.5 where we only need it to be finitely

generated). For a multiset S ⊆ G, Cay(G,S) denotes a multigraph11 with the vertex set

being G and edges {(g, sg) | g ∈ G, s ∈ S}.

Group Representations In order to study the expansion of a Cayley graph, we will use

the notion of a group representation12. Weyl’s unitary trick, says that for a large family of

groups (which includes all finite groups), every representation can be made unitary and

thus, we can restrict to studying these.

Let H be a complex Hilbert space and denote by L(H) the algebra of bounded linear oper-

ators13 on H. We denote by UH the unitary group of operators acting on H.

Definition 2.2 (Unitary Group Representation). For a group G, a unitary representation is

a pair (ρ,H) where ρ : G → UH is a group homomorphism, i.e., for every g1,g2 ∈ G, we

have ρ(g1g2) = ρ(g1)ρ(g2). A representation is irreducible if the only subspaces of H that

are invariant under the action of ρ(G) are the empty space, {0}, and the entire space, H.

Every group has two special representations, which are,

1. (Trivial representation ) - (ρ,ℂ) where for every g, ρ(g) = 1.

11Note that unless S = S−1, the graph Cay(G,S) is a directed multigraph.
12Additional background on representation theory of finite groups can be found in [SS96].
13For most applications, one can think of H = ℂn for some n, and L(H) = Mn(ℂ), the space of n×n complex

matrices. However, we will need the generality in Section 5.5.
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2. ((left) Regular representation ) - (ρreg,Vreg) where, Vreg = ℂ[G] is a vector space with the

elements of G being an orthonormal basis, and ρreg(g) : h ↦→ g · h.

Fact 2.3. Let G be a finite group and let Vreg be the regular representation over ℂ. We have

Vreg �

⊕

(ρ,Vρ)∈Irrep(G)
dim(ρ) · Vρ,

where Irrep(G) denotes the set of irreducible unitary representations of G.

Expanders and Biased Distributions It follows from definitions that the normalized ad-

jacency matrix of Cay(G,S) is given by A = �피s∼S[ρreg(s)]. Moreover, the copy of the trivial

representation is the space spanned by the all-ones vector. Fact 2.3 implies that this can be

block diagonalized and therefore,

Spec(A) =
⋃

ρ∈Irrep(G)
Spec( �피

s∼S
[ρ(s)]), and thus,

λ(Cay(G,S)) = max
ρ∈Irrep(G)

ρ is non-trivial





 �피
s∼S

[ρ(s)]






op

.

Recall that for any bounded linear operator, T : H → H′, between (non-empty) Hilbert

spaces, we have

‖T‖op = sup
v∈H:‖v‖=1

‖Tv‖ = sup
v∈H,w∈H′:‖v‖=‖w‖=1

|〈Tv,w〉 | ,

where ‖v‖ =
√
〈v, v〉H and ‖w‖ =

√
〈w,w〉H′.

Given this equivalence, we will find it convenient to work with the operator norm

version referred to as bias in the literature [CMR13].

Definition 2.4 (Biased Distribution on G). Let ε ∈ (0, 1). We say that a multiset S of el-

ements of a group G is ε-biased if for every non-trivial irreducible representation ρ, we

have ‖�피s∼S[ρ(s)]‖op ≤ ε. We sometimes use the shorthand bias(S) ≤ ε, where bias(S) =

λ(Cay(G,S)).

Irreducible representations of Abelian groups, called characters, have dimension 1. Thus,

this definition coincides with the usual one of ε-biased distribution fooling non-trivial char-

acters [NN90, AGHP92]. These pseudorandom distributions were introduced in the pi-

oneering work of Naor and Naor where several applications to derandomization were

given [NN90].

Notation

Since we deal with various vector spaces and graphs, we will find it useful to establish

some convenient notation. While we recall these in the relevant section, the following is a

summary for ready reference.
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· The main multigraphs we study will be X and Y with vertices VX,VY and normalized

adjacency operators AX,AY .

· We denote vertices of X,Y by x,y and an ordered tuple of vertices by ®x = (x0, · · · , xt).

· We use u, v,w to denote arbitrary vectors in H and x,y for basis vectors of ℂ[VX],ℂ[VY]
where ℂ[VX] is the complex vector space with the elements of VX being a orthonormal

basis.

· The tensored vector spaces have an induced inner product. For XH ≔ H ⊗ ℂ[VX], it is

〈v ⊗ x,w ⊗ x′〉 = 〈v,w〉H 〈x, x′〉. Similarly, we have one on XYH ≔ XH ⊗ ℂ[VY].

· Orthogonal decomposition: XH = X
‖
H

⊕ X ⊥
H

where X
‖
H
≔ span{v ⊗ ®1 | v ∈ H}. Here,

®1 denotes the un-normalized all-ones vector. Similarly, XYH = XY
‖
H

⊕ XY⊥
H

, where

XY
‖
H
≔ span{z ⊗ ®1 | z ∈ XH}.

· The operator
◦
A denotes the extension of operator A to a tensor product of spaces where

it acts as identity on the other spaces. For example, AX acts on ℂ[VX] and its extension to

XH is
◦
AX= IH ⊗AX. However, if we were working on XYH, it would be

◦
AX= IH ⊗AX⊗ IY

instead14.

· Given an operator valued function f : VX → L(H), the generalized bias operator is defined

as15,

Πf : XH → XH, v ⊗ x ↦→ f(x) v ⊗ x.

3 Operator Bias Reduction via Expander Walks

In this section, we establish a new operator analogue of the (expander walk based) bias

amplification procedure for scalars due to Rozenman and Wigderson. An analysis of this

scalar amplification was given by Ta-Shma in [TS17]. More precisely, we first prove the

following operator analogue for constant bias (Theorem 3.1) and later generalize it to any

bias (Theorem 3.8) in Section 3.3.

Theorem 3.1 (Operator Amplification via Expander Walks). Let X be a λ(X)-spectral expander

and let Wt be the collection of walks obtained from walks of length t on X. Then for any operator

valued function f such that ‖�피x∈VX
[f(x) ]‖op ≤ λ0 and maxx∈VX

‖f(x) ‖op ≤ 1, we have





 �피
(s0,...st)∈Wt

[f(st) · · · f(s0)]






op

≤ (2λ(X) + λ0)⌊t/2⌋ .

We remark that a precursor of these techniques, in the simpler setting of Abelian groups,

appears in the pioneering work of Naor and Naor introducing ε-biased distributions over

the group ℤm
2

. There, they also amplify bias using expander walks on an auxiliary ex-

pander [NN90].

14The spaces will be self-evident and the use of the same notation should not be confusing.
15An equivalent matrix definition is Πf ≔

∑
x∈VX

f(x) ⊗ Ex,x where Ex,x ∈ ℂVX×VX is the diagonal matrix

with exactly one non-zero entry of value 1 in the row and column indexed by the vertex x.
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This simpler amplification of Theorem 3.1 will be crucially used in the full almost op-

timal amplification (which derandomizes it) and also to bootstrap it. Moreover, it yields a

construction of expanding Cayley graphs of small sizes which will be required later.

This bias reduction procedure uses walks on an auxiliary expander graph. Here, we

only use its expansion property (as opposed to later when we rely on its structure for the

s-wide construction). With this it is already possible to obtain 1/λ4+o(1) dependence on the

final degree of an λ-expander.

Theorem 3.2. Let S ⊆ G such that λ(Cay(G,S)) = λ0 < 1. For every λ ∈ (0, 1) and constant

β ∈ (0, 1), we can find S′ ⊆ G in time poly(|S| , 1/λ0, 1/λ) such that λ(Cay(G,S′)) ≤ λ and

|S′ | = Oλ0
(|S| /λ4+β).

Towards this, we first formalize the connection between bias of a special subset of a

group and the operator norm of a certain operator. The subset is obtained by taking ran-

dom walks over an expander graph as mentioned above. We then proceed to bound this

operator norm. Finally, we instantiate our construction with an explicit expander graph

due to [Alo21].

The Analysis Let S be any finite set and let X be a graph on the vertex set Vx = S with AX

being its normalized adjacency matrix. Let H be a complex Hilbert space and L(H) be the

(bounded) operators on H; an important example will be L(H) = Mℓ(ℂ). For any operator

valued function, f : S → L(H), we define the generalized bias operator as

Πf : H ⊗ ℂ[VX] ↦→ H ⊗ ℂ[VX], Πf (v ⊗ x) = f(x) v ⊗ x .

In the scalar case, since H = ℂ, earlier works [TS17, JM21] used the implicit identification

ℂ ⊗ ℂ[VX] � ℂ[VX] and defined Πf as a diagonal matrix. This identification no longer is

suitable when f is operator valued in dimension > 1. However, a simple yet crucial obser-

vation is that merely decoupling the spaces allows us to collect the terms as we proceed

along the walk.

Let Wt ⊆ St+1 be the collection of all length t walks on the graph X and we define
◦
AX= IH ⊗ AX. Then, we have

Lemma 3.3.

Πf

( ◦
AX Πf

)t
�피
s∈S

[v ⊗ s] = �피
(st,··· ,s0)∈Wt

[f(st) · · · f(s0)] v ⊗ st . (1)

This can be shown easily via an induction on t and we refer to Lemma 4.7 for a formal

proof of a more general statement. A minor technicality is that the operators in the image

of f act on H whereas Πf acts on the space XH := H ⊗ ℂ[VX]. We use projection and lifting

maps to move between the spaces XH and H. Define PH : XH → H and LH : H → XH, as,

PH(w ⊗ x) = w, LH(v) = �피
x∈VX

[v ⊗ x] .

It follows directly from the definition that ‖LH‖op = 1/
√
|VX | and we can use Cauchy-

Schwarz to get that ‖PH‖op =
√
|VX |. Now, we put this together to obtain a simple expres-
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sion on the quantity we need to bound





 �피
(s0,...st)∈Wt

[f(st) · · · f(s0)]






op

= sup
‖v‖=1





 �피
(s0,··· ,st)∈Wt

[f(st) · · · f(s0)] v





2

= sup
‖v‖=1





PH

(
�피

(s0,··· ,st)∈Wt

[f(st) · · · f(s0)] v ⊗ st

)




2

= sup
‖v‖=1





PHΠf

( ◦
AX Πf

)t
�피
s∈S

[v ⊗ s]





2

= sup
‖v‖=1





PHΠf

( ◦
AX Πf

)t
LHv






2

≤




Πf

( ◦
AX Πf

)t




op

‖PH‖op ‖LH‖op

≤




Πf

( ◦
AX Πf

)t




op

.

The Construction of Amplified Biased Sets The particular case of S ⊆ G (for some group

G) and the function f being a unitary representation ρ on H leads to the amplification of

biased sets. We will construct a new multiset S′ ⊆ G such if ‖�피s∼S[ρ(s)]‖op ≤ λ0, then we

have ‖�피s∼S′[ρ(s)]‖op ≤ λ ≪ λ0. Note here that the construction of S′ is agnostic to ρ, and

thus we can reduce the bias of all irreducible representations simultaneously! Assume that

we have a graph X on the vertex set S. For s ∈ S, we have f(s) = ρ(s) in this case. Let

S′ = {stst−1 · · · s0 | (s0, s1, · · · st) ∈ Wt} ,

which will be our new amplified biased set. Using the homomorphism property of ρ, we

have the following simplification

�피
w=(s0,...st)∈Wt

[f(st) · · · f(s0)] = �피
(s0,...,st)∈Wt

[ρ(st) · · · ρ(s0)] = �피
s′∈S′

[ρ(s′)] , (2)

and thus, bias(S′) ≤




Πf

( ◦
AX Πf

)t




op

(3)

where S′ is the new biased multiset of the construction and the second inequality follows

from the preceding calculation when Wt is a collection of walks on X.

3.1 Operator Norm Decay from Constant Bias

Now that we have reduced the problem to studying the operator norm, we will study how

the norm decays as we take walks. We use the decomposition, XH = X
‖
H

⊕ X ⊥
H

where

X
‖
H
≔ span{v⊗®1 | v ∈ H}. The decay comes from two sources. For z ∈ X ⊥

H
, we get a decay

by λ(X) by the definition of X being an expander. Claim 3.4 shows that for z ∈ X
‖
H

, we get

a decay from Πf , equal to the initial bias. We put this together in Theorem 3.1 to obtain the

desired exponential decay.
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Claim 3.4. For z ∈ X
‖
H

, we have




(Πf z)‖




2

≤




 �피
x∈VX

[f(x) ]






op

· ‖z‖2 .

Proof. The equation trivially holds when z = 0, so assume z ≠ 0 and scale it so that ‖z‖2 = 1.

From definition of X
‖
H

, we can assume that z = u ⊗ ®1. Computing we have,






(
Πf

(
u ⊗ ®1

)) ‖




2

= sup
w∈H : ‖w⊗®1‖2

=1

���
〈
w ⊗ ®1,Πf

(
u ⊗ ®1

)〉���

= sup
w∈H : ‖w⊗®1‖2

=1

�����

〈
w ⊗ ®1,Πf

(
u ⊗

∑

x∈VX

x

)〉�����

= sup
w∈H : ‖w⊗®1‖2

=1

�����

〈
w ⊗ ®1,

∑

x∈VX

(f(x)u ⊗ x)
〉�����

= sup
w∈H : ‖w⊗®1‖2

=1

�����
∑

x∈VX

〈w, f(x)u〉
〈
®1, x

〉�����

= sup
w∈H : ‖w⊗®1‖2

=1

����
〈
w, |VX |

(
�피

x∈VX

[f(x) ]
)
u

〉����

≤




 �피
x∈VX

[f(x) ]






op

|VX | ‖w‖ ‖u‖ =




 �피
x∈VX

[f(x) ]






op

.

We show that for every two16 steps of the walk, the norm of the (associated) operator

decays as follows.

Lemma 3.5. Let X be a λ(X)-spectral expander and let f be such that ‖�피x∈VX
[f(x) ]‖op ≤ λ0 and

maxx∈VX
‖f(x) ‖op ≤ 1. Then,






( ◦
AX Πf

)2






op

≤ 2λ(X) + λ0 .

Proof. Since ‖Πf ‖op = maxx∈VX
‖f(x) ‖op ≤ 1, it is enough to bound



 ◦
AX Πf

◦
AX




op

. Let

z ∈ XH be a unit vector which is decomposed as z = z‖ + z⊥. We have





( ◦
AX Πf

◦
AX

) (
z⊥ + z‖

)



2

≤ λ(X) +




( ◦
AX Πf

◦
AX

)
z‖




2

≤ λ(X) +






◦
AX

((
Πfz

‖
)⊥

+
(
Πfz

‖
) ‖)





2

≤ λ(X) +






◦
AX

(
Πfz

‖
)⊥





2

+





(
Πfz

‖
) ‖





2

16This is the source of loss of a factor of 2 in the exponent (which leads to degree O(|S| /λ4+o(1)) rather

than the desired degree of O(|S| /λ2+o(1)) we will later achieve. Note that the same loss occurs in the original

zig-zag analysis of [RVW00], which was later remedied by the s-wise zig-zag of [BATS08].
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≤ 2λ(X) +





(
Πfz

‖
) ‖





2

≤ 2λ(X) + λ0. (By Claim 3.4)

Theorem 3.1 now follows from the lemma above and the submultiplicativity of the

operator norm.

3.2 Instantiating the Construction

To construct S′, our construction requires an auxiliary expander graph X to perform walks

on. One convenient source (among several) is a recent construction of Alon.

Theorem 3.6 (Corollary of [Alo21, Thm. 1.3] ). For every n ∈ ℕ, λ ∈ (0, 1), there exists a

positive integer mλ and an explicit construction of a graph X on mλn vertices with degree at most

9/λ2 and λ(X) ≤ λ.

We now establish the key amplification lemma.

Lemma 3.7. Let S ⊆ G such that bias(S) = λ0 < 1. Then, for any λ > 0, we can explicitly

compute S′ such that bias(S′) ≤ λ and |S′| = Oλ0

(
|S|

λ4+δ(λ0)

)
.

Proof. Pick a constant ε0 such that λ1 ≔ (1 + 2ε0)λ0 < 1 and use Theorem 3.6 to obtain

an explicit (m|S|,d, ε0λ0)-graph X. Let S1 be the multiset consisting of m copies of S. The

bias remains the same and now, |V(X)| = |S1 |. We construct S′ by multiplying elements of

t-length walks on X where t = ⌈2(1 + logλ1
(λ))⌉. The size of S′ is

|S′| = (m|S|) · dt
= Oλ0

(|S|) ·
(

3

ε0λ0

)4 logλ1
λ

= Oλ0
(|S|) · λ

−4 log

(
3

ε0λ0

)

log(1/λ1)

≤ Oλ0
(|S|) · λ

−4

(
1+

log

(
3+6ε0
ε0

)

log(1/λ0)

)

.

Let ρ be any irreducible representation. From Eq. (3) and Theorem 3.1, we get,




 �피
s0 ···st∈S′

[ρ(st · · · s0)]






op

≤ (2λ(X) + bias(S))t/2−1 ≤ (λ1)t/2−1 ≤ λ .

Using the amplification above, we now derive our first simplified explicit construction.

Proof of Theorem 3.2. Pick a constant λ′ < min

(
1
2
,
(
3
4

)4β)
. Use Lemma 3.7 with the target

expansion λ = λ′ to obtain a set S1 with size |S1 | = Oλ0,β(|S|) as λ′ is a constant. Now use

Lemma 3.7 again with S1 as the initial set and the final expansion as λ to obtain S′. This

time we fix ε0 =
1
2

in the proof of Lemma 3.7 and by our choice of λ′, we have δ(λ′) ≤ β.

Thus, the final size is |S′| ≤ Oλ′
(

|S1 |
λ4+δ(λ′)

)
≤ Oλ0,β

(
|S|

λ4+β

)
.
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3.3 Operator Norm Decay from any Bias

The amplification guarantee of Theorem 3.1 trivializes if 2λ(X) + λ0 ≥ 1. Nonetheless, we

now show that amplification does occur under much weaker conditions, namely, when-

ever ‖�피x∈VX
[f(x) ]‖op < 1 and the auxiliary graph X has expansion λ(X) < 1. This estab-

lishes that expander walks can be used to derandomize powers of an operator, itself given

by an average of bounded operators, in the general case. In this derandomization, we still

have an exponential norm decay, but we only “pay additional randomness” proportional

to the degree of the auxiliary expander regardless of the number of operators.

Theorem 3.8 (Operator Amplification via Expander Walks (strengthening of Theorem 3.1)).

Let X be a λ(X)-spectral expander and let Wt be the collection of walks obtained from walks of

length t on X. Then for any operator valued function f such that ‖�피x∈VX
[f(x) ]‖op ≤ λ0 and

maxx∈VX
‖f(x) ‖op ≤ 1, we have





 �피
(s0,...st)∈Wt

[f(st) · · · f(s0)]






op

≤
[
1 − (1 − λ(X))2(1 − λ0)

] ⌊t/2⌋
.

The above amplification follows from the following improved version of Lemma 3.5.

The proof explores the structural syntactic similarity between the operator amplification

and known zig-zag analysis [RVW02, Rei05, TSD18]. This regime of bias amplification

was instrumental in the breakthrough SL=L result of Reingold [Rei05].

Lemma 3.9. Let X be a λ(X)-spectral expander and let f be such that ‖�피x∈VX
[f(x) ]‖op ≤ λ0 and

maxx∈VX
‖f(x) ‖op ≤ 1. Then,






( ◦
AX Πf

)2






op

≤ 1 − (1 − λ(X))2(1 − λ0) .

Proof. Let AJ = J/|V(X)|, where J is the |V(X)| × |V(X)| all ones matrix. We can write

AX = (1 − λ)AJ + λE, where λ = λ(X) and ‖E‖op ≤ 1. Then



 ◦
AX Πf

◦
AX




op

≤ (1 − λ)2


 ◦
AJ Πf

◦
AJ




op

+ λ(1 − λ)


 ◦
E Πf

◦
AJ




op

+ (1 − λ)λ


 ◦
AJ Πf

◦
E




op
+ λ2



 ◦
E Πf

◦
E




op
.

By Lemma 3.5 and the fact that λ(AJ) = 0, we obtain



 ◦
AJ Πf

◦
AJ




op

≤ 2λ(AJ) + λ0 = λ0 ,

Recall that ‖Πf ‖op ≤ 1 since maxx ‖f(x) ‖op ≤ 1, and we also have ‖E‖op , ‖AJ‖op ≤ 1. Then,



 ◦
AX Πf

◦
AX




op

≤ (1 − λ)2λ0 + 2λ(1 − λ) + λ2

= (1 − λ)2λ0 + 1 − (1 − λ)2,
= 1 − (1 − λ)2(1 − λ0) ,

concluding the proof.
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3.4 Explicit Expanders of Small Sizes

As an application of Theorem 3.2, we demonstrate an construction of explicit Cayley ex-

panders of sizes close to any desired n (as in Corollary 3.12). While a recent work of Alon

[Alo21] gives a construction for every n, it does not have a Cayley graph structure which

is convenient for us to prove Theorem 5.4. Moreover, the construction of Cayley graph as

in [TS17] based on [LPS88] does not suffice for us as they only work in the regime when n

is very large.

Recall that SL2(p) is the group of 2 × 2 invertible matrices over �픽p with determinant 1.

We obtain a base generating set for SL2(p) via the following result.

Theorem 3.10 ([Lub11]). There exists an explicit generating set S (of constant size) for SL2(p)
for any prime p > 17 such that λ (Cay(SL2(p),S)) ≤ λ0 for some absolute constant λ0 < 1.

Theorem 3.11 ([Che10]). For every n ≥ 23·215

, there exists a prime in [n,n + 4n2/3].

Corollary 3.12. For any n > 29·215

, λ > 0, there is a deterministic polynomial time algorithm to

construct an (n′,d, λ)-graph Cay(SL2(p),S), where n′ = n +O(n8/9) and d = O(λ−4.1).

Proof. Find a prime p ∈ [n1/3 + 1,n1/3 + O(n2/9)], which exists due to Theorem 3.11, via

brute-force search. Since, SL2(p) is a group of order (p2 − 1)p, we have n ≤ |SL2(p)| ≤
n + O(n8/9). We use the constant-sized generating set S from Theorem 3.10 and amplify

using Theorem 3.2.

4 Operator Bias Reduction via the s-wide Replacement Walk

We have seen in Section 3 that bias reduction via random walks on an expander X is sub-

optimal (by a factor of 2 in the exponent). We will derandomize this random walk construc-

tion to achieve an almost optimal bias reduction. The idea is to introduce a new graph Y

which has a much smaller degree, and to “simulate" a random walk on X via a walk on Y.

This is realized by a higher-order version of the zig-zag product [RVW00] called the s-wide

replacement product defined by Ben-Aroya and Ta-Shma [BATS08] (see Definition 4.5).

This section establishes our key technical result which states that given any initial oper-

ator valued function of constant bias < 1, we amplify the bias in an almost optimal way. This

generalizes the analysis of Ta-Shma [TS17] from scalar valued functions to operator valued

functions.

Theorem 4.1 (Operator Generalization of Theorem 24 [TS17]). Fix integers t ≥ s ≥ 1. Let

X be any d1-regular graph17 and Y be any d2-regular Cayley graph on �픽
s logd1

2
. Let Wt be the

collection of length t walks on the s-wide replacement product of X and Y. Let H be a Hilbert

space. For any operator valued function f : VX → L(H), satisfying maxx∈VX
‖f(x) ‖op ≤ 1 and

‖�피x∈VX
[f(x) ]‖op := λ0 ≤ λ(Y)2 − 2λ(X), we have





 �피
(s0,··· ,st)∈Wt

[f(s0) · · · f(st)]






op

≤
(
λ(Y)s + s · λ(Y)s−1 + s2 · λ(Y)s−3

) ⌊t/s⌋ ≤ Os (λ(Y))(1−os(1))t .

17With d1 a power of 2.
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Furthermore, the size of the collection is |Wt | = |X| · ds
1
· dt

2
.

Remark 4.2. Note that there is an inherent trade-off between the spectral bound amplifica-

tion (on the operator norm), and the degree bound (on the number of walks), which causes

the suboptimality in how close this technique lets us approach the Ramanujan bound. As

in [TS17], the o(1) term we obtain from the bound above is (1/log(1/λ))c for some c > 0

(see Theorem 4.17 for the precise computation).

The rest of this section is planned as follows. In Section 4.1, we recall the s-wide re-

placement product and describe random walks on it. Then, in Section 4.2, we formalize

the distributions we work with and reprove the result that if Y is a Cayley graph over

any product group of appropriate size18 then it is compatible, i.e., it enables the transfer

of pseudorandomness from Y to X. The key generalization to operator valued functions

is established in Lemma 4.7 which is identical in spirit to Eq. (1). In Section 4.3, we then

finish the amplification analysis in a manner similar to [TS17]. In Section 4.4, we provide

details about instantiating the setup by explicitly constructing the graphs we need.

4.1 The s-wide Replacement Product and its Walks

To describe the sparse derandomized subset of walks on X from the s-wide product, we

give an informal description, and then move to a formal description. Before doing so, we

first recall the standard replacement product of graphs. This product takes an outer graph

X on n vertices, which is d1-regular, and replaces each vertex of X with a “cloud” which is

a copy of an inner d2-regular graph Y on the vertex set [d1]. The edges within each cloud

are determined by Y while the edges between clouds are based on the edges of X (and

a rotation map). By taking d2 ≪ d1, the replacement product yields a new graph that

derandomizes the degree of X.

The s-wide replacement product generalizes this to allow VY = [d1]s for any positive

integer s. We will now need s rotation maps given by the operators X0,X1, . . . ,Xs−1 which

we describe now.

The i-th operator Xi specifies one inter-cloud edge for each vertex (v, (a0, . . . ,as−1)) ∈
VX × VY , which goes to the cloud whose X component is vX[ai], the ai-th neighbor of v in

X indexed by the i-th coordinate of the Y component. (We will discuss what happens to

the Y component after taking such a step momentarily.)

Walks on the s-wide replacement product consist of steps with two different parts: an

intra-cloud part followed by an inter-cloud part. All of the intra-cloud steps simply move

to a random neighbor in the current cloud, which corresponds to applying the operator

I ⊗ AY , where AY is the normalized adjacency matrix of Y. The inter-cloud steps are all

deterministic, with the first moving according to X0, the second according to X1, and so

on, returning to X0 for step number s. The operator for such a walk taking t steps on the

18Any product group of the form Gs with |G| = d1 can be used in the s-wide construction and it satisfies

this compatible property. Note that in Theorem 4.13 we used G = �픽
log2(d1)
2

.
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s-wide replacement product is

0∏

i=t−1

Xi mod s(I ⊗ AY) .

Observe that a walk on the s-wide replacement product yields a walk on the outer graph

X by recording the X component after each step of the walk. Since a walk is completely

determined by its intra-cloud steps, the number of t-step walks on the s-wide replacement

product is,

|VX | · |VY | · dt
2 = n · ds

1 · dt
2 ≪ n · dt

2 ,

which therefore gives us a very sparse subset of all t-walks on X. Thus the s-wide re-

placement product will be used to simulate random walks on X while requiring a reduced

amount of randomness (as we shall see this simulation is only possible under special con-

ditions, namely, when we are uniformly distributed on each cloud).

We now formally define the s-wide replacement product and consider the labeling of

neighbors in X more carefully. Suppose X is a d1-regular graph. For each x ∈ VX and

j ∈ [d1], let x[j] be the j-th neighbor of x in X.

Definition 4.3 (Locally Invertible Rotation Map). X admits a locally invertible rotation map

if there exists a bijection ϕ : [d1] → [d1] such that for every (x, j) ∈ VX × [d1],
if x′ = x[j], then, x′[ϕ(j)] = x .

Example 4.4 (Cayley Graphs are Locally Invertible). Let G be a group and A ⊆ G where the

set A is closed under inversion. Label the neighbors of vertices in Cay(G,A), by elements

of A such that g[a] = a · g. Then, Cay(G,A) is locally invertible as the map ϕ : A → A

defined as ϕ(a) = a−1 clearly satisfies the criteria,

if g′ = g[a] = a · g, then, g′[ϕ(a)] = a−1 · g′ = g ,

for every g ∈ G, a ∈ A.

Definition 4.5 (s-wide Replacement Product). Suppose we are given the following:

- A d1-regular graph X with a bijection ϕ : [d1] → [d1] which defines a locally invert-

ible rotation map.

- A d2-regular graph Y on the vertex set [d1]s.

And we define:

- For i ∈ {0, 1, . . . , s − 1}, we define Roti : VX × VY → VX × VY such that,

Roti((x, (a0, . . . ,as−1))) ≔ (x[ai], (a0, . . . ,ai−1,ϕ(ai),ai+1, . . . ,as−1)) ,
for every x ∈ VX and (a0, . . . ,as−1) ∈ VY = [d1]s. (Note that the Y component of the

rotation map depends only on a vertex’s Y component, not its X component.)

- Denote by Xi the operator on ℂ[VX × VY] which acts on the natural basis via the

permutation Roti and let AY be the normalized random walk operator of Y.

Then t steps of the s-wide replacement product are given by the operator

Xt−1 mod s

◦
AY · · · X1 mod s

◦
AY X0 mod s

◦
AY .
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4.2 The Collection of Derandomized Walks

We now describe the distribution obtained by the walks on the s-wide replacement product

using the language of operators.

Recall that, in the expander walk case discussed in Section 3, we first relate the set of

walks Wt to the action of the t-step walk operator (Eq. (1)) and then obtain that the task of

bounding the bias reduces to bounding the operator norm (Eq. (2)). Similarly for s-wide

case, we express a t-step walk in terms of a s-wide operator that act on the extended space

ℂ[VX] ⊗ ℂ[VY]. Then we prove a core lemma that intuitively says: the action of t-step

s-wide operator is same as the action of t-step random walk operator in an appropriate

sense, whenever t ≤ s. The scalar version of this lemma is present (Lemma 26) in [TS17]

and we generalize it for operator valued functions. This generalization requires some care

and appropriate notational setup. Finally, we use this lemma to show bias decay for any

value of t.

Definition 4.6 (Operators and Distributions). Given a tuple of random walk operators19

B = (B0, · · · ,Bt−1) on ℂ[VX]⊗ℂ[VY] and a starting vertex x0 ∈ VX, we can define a distribu-

tion induced by the walk using these operators. More precisely, D(B, x0) is the distribution

on on (VX × VY)t+1 such that for every 1 ≤ ℓ ≤ t,

(Bℓ−1 · · ·B0)
(
x0 ⊗ 1

|VY |
®1
)
= �피(®x,®y)∼D(B)xℓ ⊗ yℓ. (4)

We typically suppress x0 as it will not matter and denote D(B) = (DX(B),DY(B)) to specify

the projections to VX,VY .

The next lemma is a generalization of Eq. (1) which we need for the s-wide replacement

walk. This can also be specialized to prove Eq. (1) by letting Y be a graph with one vertex

(and thus XH � XYH). Since we now work with the tensor products of three spaces

(one for the graph X, one for the graph Y, and one for the operator valued function f), we

formalize the computation more explicitly. Recall that
◦
Πf (v ⊗ x ⊗ y) = f(x) v ⊗ x ⊗ y.

Lemma 4.7 (Operator Generalization). For any tuple of random walk operators B, any operator

valued f, and any v ∈ H, x0 ∈ VX, we have
(

◦
Bt−1

◦
Πf · · ·

◦
B0

◦
Πf

) (
v ⊗ x0 ⊗

1

|VY |
®1
)
= �피

(®x,®y)∼D(B)
[f(xt−1) · · · f(x0) v ⊗ xt ⊗ yt] .

Proof. We prove the computation via induction on t. The base case is when t = 1
(

◦
B0

◦
Πf

) (
v ⊗ x0 ⊗

1

|VY |
®1
)

=
◦
B0

(
f(x0) v ⊗ x0 ⊗

1

|VY |
®1
)

= �피
(®x,®y)∼D(B)

[f(x0) v ⊗ x1 ⊗ y1] (Using Eq. (4) for ℓ = 1)

Let y0 =
1

|VY |
®1 and assume the statement holds for t − 1. Then,

(
◦
Bt−1

◦
Πf · · ·

◦
B0

◦
Πf

)
(v ⊗ x0 ⊗ y0) =

◦
Bt−1

◦
Πf ·

0∏

i=t−2

(
◦
Bi

◦
Πf

)
(v ⊗ x0 ⊗ y0)

19Markov chain operators on VX × VY .
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=
◦
Bt−1

◦
Πf �피

(®x,®y)∼D(B)
[f(xt−2) · · · f(x0) v ⊗ xt−1 ⊗ yt−1]

=
◦
Bt−1 �피

(®x,®y)∼D(B)
[f(xt−1)f(xt−2) · · · f(x0) v ⊗ xt−1 ⊗ yt−1]

= �피
(®x,®y)∼D(B)

[f(xt−1) · · · f(x0) v ⊗ xt ⊗ yt] .

The second equality uses the inductive hypothesis and the third uses the fact that
◦
Πf acts

on the tensor space diagonally. Last two equalities use Eq. (4) for ℓ = t − 1 and ℓ = t

respectively.

Using Definition 4.6, we further define the operators for the distributions we wish to

study.

Uniform Distribution Let us first capture using this notation the uniform distribution

on walks on X starting from x0 ∈ Vx. We define BU where for each i, Bi = AX ⊗ IY for

every i. Then, for any ℓ, (AX ⊗ IY)ℓ = Aℓ
X
⊗ IY . Therefore, we obtain that DX(BU) is the

t-step random walk distribution on X i.e., xi ∼ Ai
X
x0.

The s-wide Distribution This is the distribution obtained by the s-wide walks as de-

scribed in the earlier section. For 0 ≤ a ≤ b ≤ s, we define

B[a,b] =
(
Xa

◦
AY ,Xa+1

◦
AY , · · · ,Xb

◦
AY

)
.

We can view this random walk as occurring in two steps. The first being picking an initial

vertex y0 ∈ Y and then, picking the sequence of neighbors according to which we will

perform the walk in Y. To formalize this, let AY = (1/d2)
∑d2

j=1
Pj where Pj are permutation

matrices and let J = (j0, · · · , jb−a) ∈ [d2]b−a+1. The conditional distribution, is defined by

B[a,b, J] =
(
Xa

◦
Pj0 , Xa+1

◦
Pj1 , · · · ,Xb

◦
Pjb−a

)
.

We would like these two distributions to be the same and a graph Y is said to be compatible

with respect to (X,ϕ), if for any fixed sequence, J, of a walk of length ℓ ≤ s, the distribution

obtained on X via the uniform sampling of y0, is the same as the usual ℓ-length walk on

X from any fixed initial vertex, x0. Thus, the randomness of sampling a vertex from Y is

effectively transferred to a random walk on X.

Definition 4.8 (Compatible). A graph Y is compatible with respect to (X,ϕ) if for every

0 ≤ a ≤ b ≤ s, J ∈ [d2]b−a+1 and x0 ∈ VX, we have20

DX(B[a,b, J], x0) = DX(BU, x0) = Ab−a+1
X x0 .

Remark 4.9. This compatible property is the same as 0-pseudorandom property in [TS17].

We rename it as it is more of a structural compatibility property than a pseudorandomness

one.

20It is important to note that DY (B[a,b, J]) ≠ DY(BU).
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We now prove, for the sake of completeness, that Cayley graphs are compatible with

every locally invertible graph.

Lemma 4.10 ([TS17, Lemma 29]). Let Y = Cay(Gs, T ) where |G| = d1. Then, Y is compatible

with respect to any X,ϕ.

Proof. Since Y is a Cayley graph, we can think of J ∈ St and the permutation matrices as

Pg = ρreg(g). Recall that for any y = (r1, ...rs) ∈ Gs,

Pgy = gy = (g1r1, · · · ,gsrs), and Xiy = (r1, · · · , ri−1,ϕ(ri), ri+1, · · · , rs) .

Suppose y = (r1, · · · , rs) ∼ Gs is now sampled uniformly. Since gi and ϕ are fixed, the

above operators Pg and Xi preserve the uniform distribution. Moreover, ri is independent

of rj as ri ↦→ τi,k(ri) after k steps for some fixed permutation τi,k depending only on J and

ϕ.

By definition, xi = xi−1[τa+i−1,i(ra+i−1)] and we take at most s steps and therefore, we

use ri for distinct i ∈ [a,b] which are all independent. Thus, xi ∼ Ai
X
x0.

4.3 The s-wide Operator Norm Decay

We are now ready to establish the key technical lemma in the analysis of the s-wide re-

placement.

Lemma 4.11 (Simulation Lemma (generalization of Lemma 26 from [TS17])). Let 0 ≤ s1 ≤
s2 < s. For every pair of vectors z, z′ ∈ XH, we have,

〈
s2∏

i=s1

(
◦
Xi

◦
AY

◦
Πf

) (
z ⊗ 1

|VY |
®1
)
, z′ ⊗ ®1

〉
=

〈( ◦
AX Πf

)s2−s1+1

z, z′
〉

.

Proof. Let z =
∑

x vx ⊗ x and z′ =
∑

xwx ⊗ x. Since the expression is bilinear, it suffices to

prove the equation for v ⊗ x, w ⊗ x′ for an arbitrary pair (x, x′). Let t = s2 − s1 + 1.

s2∏

i=s1

(
◦
Xi

◦
AY

◦
Πf

)
= �피

(js1 ,··· ,js2 )∼[d2]t

[
s2∏

i=s1

(
◦
Xi

◦
Pji

◦
Πf

)]

Therefore, we can fix J = (js1
, · · · , js2

) ∈ [d2]t and prove it for that. Applying Lemma 4.7

to B[s1, s2, J], we get,

s2∏

i=s1

(
◦
Xi

◦
Pji

◦
Πf

) (
v ⊗ x0 ⊗ 1

|VY |
®1
)

= �피
(®x,®y)∼D(B[s1,s2,J])

[f(xt−1) · · · f(x0) v ⊗ xt ⊗ yt]

=

∑

®x∈Vt
X

�피
y0∼VY

[f(®x) v ⊗ xt ⊗ yt] �핀[y0 gives rise to ®x],

where f(®x) = f(xt−1) · · · f(x0). The second equality uses the fact that J is fixed and we only

pick the starting vertex uniformly at random which determines the entire sequence ®x, ®y.

For each given ®x = (x0, · · · , xt), there are exactly ds−t
1

starting vertices y0 = (r1, · · · , rs)
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that give rise to ®x. This is because, the only requirement is that each of the t constraints

xi = xi−1[τs1+i−1,i(ra+i−1)] is satisfied where τs1+i−1,i is a fixed permutation (for a given J).

Each of these equations determine one of the ri’s and therefore we have ds−t
1

free choices.

Therefore, the conditioning on y doesn’t change the distribution DX and when we take

inner products, we obtain

〈
s2∏

i=s1

(
◦
Xi

◦
Pji

◦
Πf

) (
v ⊗ x0 ⊗

1

|VY |
®1
)
,w ⊗ x′ ⊗ ®1

〉
=

ds−t
1

ds
1

∑

®x∈Vt
X

〈xt, x′〉 〈f(xt−1) · · · f(x0) v,w〉

= �피
®x∼DX(B[s1,s2,J])

[〈xt, x′〉 〈f(xt−1) · · · f(x0) v,w〉] .

We now use21 Lemma 4.7 for BU and take inner product to get,

〈( ◦
AX Πf

)s2−s1+1

(v ⊗ x0) ,w ⊗ x′
〉

= �피
®x∼DX(BU)

[〈xt, x′〉 〈f(xt−1) · · · f(x0) v,w〉] .

From Lemma 4.10, we know that Y is compatible and thus, DX(B[s1, s2, J]) = DX(BU).
Thus, the right hand side of these two equations above are equal.

The s-step Decay Just like the amplification in Section 3 was analyzed by studying the

norm decay obtained in every two steps (cf.,Lemma 3.7), this amplification via the s-wide

walks will be analyzed by bounding the norm decay for steps of length s using Lemma 4.11

similarly to [BATS08, TS17]. We will use the shorthand Li ≔
◦
Xi

◦
Πf

◦
AY .

The goal is to bound ‖Ls−1 · · · L0‖op which controls the bias of the set obtained by s-

long, s-wide walks (cf.,proof of Eq. (2)). Equivalently, we will bound 〈(∏i Li)v0,ws〉 for

any unit vectors22 v0,ws ∈ XYH. We will use the orthogonal decomposition,

XYH := XH ⊗ ℂ[VY] = XY
‖
H
⊕ XY⊥

H
where XY

‖
H
≔ span{z ⊗ ®1 | z ∈ XH} .

For i ≥ 1, we inductively define the vectors vi,wi, zi and bound their norms23,

vi = Li−1v
⊥
i−1, zs−i =

(
◦
Xs−i

◦
Πf

)∗
ws−i+1, ws−i =

( ◦
AY

)∗
z⊥s−i (5)

‖vi‖ ≤ λ(Y)i, ‖zs−i‖ ≤ λ(Y)i−1, ‖ws−i‖ ≤ λ(Y)i . (6)

The following lemma follows readily from a calculation and we omit its proof.

Lemma 4.12. For any v0,ws and 0 ≤ r ≤ s − 2 we have,

Ls−1 · · · L0v0 = vs +
s−1∑

i=0

Ls−1 · · · Liv‖i

21As we only want to work with the space XH here, we can assume in the application of the lemma that

|VY | = 1. Else, one could directly apply Eq. (1) and use the observation that DX(BU) is the same as the random

walk distribution on X.
22Here we deviate from our notation and use v,w for vectors in XYH.
23By definition ‖vi‖ ≤



 ◦
AY v⊥

i−1



 ≤ λ(Y) ‖vi−1‖ .The computation is similar for w and z.
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L∗s−1ws = ws−1 + z
‖
s−1

L∗r · · · L∗s−1ws = wr + z
‖
r +

s−1∑

i=r+1

L∗r · · · L∗i−1
z
‖
i

Theorem 4.13 (Operator Generalization of Theorem 24 [TS17]). Let X be any d1-regular graph

and Y be a Cayley graph on �픽
s logd1

2
. Let Wt be the collection of t-length s-wide walks, on the

s-wide replacement product on X and Y. For any operator valued function f on VX, such that

maxx∈VX
‖f(x) ‖op ≤ 1 and ‖�피x∈VX

[f(x) ]‖op := λ0 ≤ λ(Y)2 − 2λ(X),




 �피
(s0,··· ,st)∈Wt

[f(s0) · · · f(st)]






op

≤
(
λ(Y)s + s · λ(Y)s−1 + s2 · λ(Y)s−3

) ⌊t/s⌋
.

Proof. Using Lemma 4.7, we can repeat the proof of Eq. (2) to see that,





 �피
(x0,··· ,xt)∈Wt

[f(s)xt · · · f(s)x0]






op

≤ ‖Lt · · · L0‖op ≤ ‖Ls−1 · · · L0‖⌊t/s⌋op .

〈Ls−1 · · · L0v0,ws〉 = 〈vs,w0〉 +
s−1∑

r=0

〈
Ls−1 · · · Lrv‖r,ws

〉

= 〈vs,ws〉 +
s−1∑

r=0

〈
v
‖
r, L

∗
r · · · L∗s−1ws

〉

= 〈vs,ws〉 +
s−1∑

i=0

〈
v
‖
r,wr + z

‖
r

〉
+

s−2∑

r=0

s−1∑

i=r+1

〈
v
‖
r, L

∗
r · · · L∗i−1

z
‖
i

〉

= 〈vs,ws〉 +
s−1∑

i=0

〈
v
‖
r, z

‖
r

〉
+

s−2∑

r=0

s−1∑

i=r+1

〈
v
‖
r, L

∗
r · · · L∗i−1

z
‖
i

〉
.

The last step uses
〈
v
‖
r,wr

〉
=

〈 ◦
AY v

‖
r, z

⊥
r

〉
= 0. Using Eq. (6), we get

〈
v
‖
r, z

‖
r

〉
≤ λ(Y)s−1. To

bound the last term, we finally use Lemma 4.11. Let v
‖
r = v′r ⊗ ®1, and z

‖
i
= z′

i
⊗ 1

|VY |
®1. Then,

〈
v
‖
r, L

∗
r · · · L∗i−1

z
‖
i

〉
=

〈
v′r,

( ◦
AX Πf

)i−r
z′i

〉
(Using Lemma 4.11)

≤





( ◦
AX Πf

)i−r




op



z′i


 ‖v′r‖

≤ λ(Y)2⌊ i−r
2

⌋λ(Y)r+s−i−1 ≤ λ(Y)s−3,

where the penultimate inequality uses Theorem 3.1 and plugs in the assumption that 2λ(X)+
‖�피x∈VX

[f(x) ]‖op ≤ λ(Y)2. Substituting this back in our expression above gives us the re-

sult.
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4.4 Instantiating the s-wide Replacement Product

Overview

The goal of this section is to explicitly construct the graphs X and Y, in order to finish the

proof of Theorem 1.2. Once we obtain the graphs, we identify the vertices of X, i.e., VX

with the initial generating set24 S. The final set is obtained by multiplying elements along

each (t − 1)-length walks on the s-wide replacement product of X and Y. We will only

summarize the construction here and show that the choice of the parameters does in fact

yield our main result. Detailed computation and verification is present in Appendix A.

The construction Recall that a graph is said to be an (n,d, λ)-graph if it has n vertices,

is d-regular, and has second largest singular value of its normalized adjacency matrix at

most λ.

- The outer graph X will be an (n′,d1, λ1)-graph which is a Cayley graph on SL2(p)
constructed using Corollary 3.12. By Example 4.4, it is locally invertible.

- The inner graph Y will be a (ds
1
,d2, λ2)-graph which is a Cayley graph on ℤm

2
and

therefore by Lemma 4.10, it is compatible. For this, we use the construction of Alon

et al. [AGHP92], and the analysis of Ta-Shma Lemma A.1.

The parameters n′,d1,d2, λ1, λ2 and s are chosen as follows for a fixed β(λ). 25

s is the smallest power of 2 such that 32
β ≤ 210 ≤ s ≤

(
log(1/λ)

4 log log(1/λ)

)1/3

Every other parameter is a function of s.

Y : (n2,d2, λ2), n2 = d5s
2

, d2 = s4s, λ2 ≤ b2√
d2

, b2 = 5s log d2

X : (n′,d1, λ1), n′ ≈ n = O(|S| d5
2
), d1 = d5

2
, λ1 =

λ2
2

10

t : smallest integer such that (λ2)(1−5α)(1−α)(t−1) ≤ λ, ; where α = 1/s

Now, we mention the central claim that we need from our choice of parameters. We defer

its proof to Appendix A.

Claim 4.14. The selection of the parameters above implies the following bounds on t,

i t − 1 ≥ 2s2

ii (d2)(t−1) ≤ λ−2(1+10α) ,

Lemma 4.15. The number of walks of length t − 1 on the s-wide replacement product of X and Y

is O(|S| /λ2+β).
24More precisely, a slightly modified set S′, obtained by duplicating and adding identities
25Note: While we let β be a function of λ, it might be instructive to make the simplifying assumption that it

is an arbitrarily small constant. We will deonte it simply as β from now on.
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Proof. Since each step of the walk has d2 options, the number of walks is

|V(X)| |V(Y)| · d(t−1)
2

= n′ · ds
1 · d(t−1)

2
= n′ · d(t−1)+5s

2

= Θ
(
|S| · d(t−1)+5s+5

2

)

= O
(
|S| · d(1+5α)(t−1)

2

)
.

which from Claim 4.14 (ii), implies a size of

O
(
|S| · d(1+5α)(t−1)

2

)
= O

( |S|
λ2(1+10α)(1+5α)

)
= O

( |S|
λ2+32α

)
= O

( |S|
λ2+β

)
.

Before we prove the main result, we need the following simple observation.

Lemma 4.16. Let S be an ε-biased set of a group G. And let S′ be obtained by adding θ |S| many

identity elements. Then, S′ is an (ε + θ)-biased set.

Proof. Denote by e the identity element of G. Let ρ be any non trivial irreducible represen-

tation of a group G. Computing we have

‖�피s∈S′ρ(s)‖op =
1

1 + θ



�피s∈Sρ(s) + θ · �피s∈S\S′ρ(e)




op

≤ ‖�피s∈Sρ(s)‖op + θ (‖ρ(e)‖op = 1)

≤ ε + θ (S is ε- biased)

Theorem 4.17 (Almost Ramanujan Expanders I). Let Cay(G,S) be λ0-expander with constant

λ0 ∈ (0, 1). For every function26 β(λ) > 0, and for any λ > 0, sufficiently small such that

32

β(λ) ≤
(

log(1/λ)
4 log log(1/λ)

)1/3
,

there exists a deterministic polynomial time algorithm to construct S′ such that Cay(G,S′) is a

λ-expander with degree |S′ | = Oλ0
(|S| /λ2+β).

Furthermore, each element in S′ is the product of O(log(1/λ)) elements of S.

Proof. We can assume that s ≥ 210 since otherwise λ is a constant and we can just use

Theorem 3.2.

Initial Boost We first boost the expansion from λ0 to 1/d2 ≤ λ2
2
/3. Using Theorem 3.2

(with its parameter β equal to 1), we can find a new set of generators, S1, such that

Cay(G,S1) is 1/d2-spectral expander and |S1 | = O(|S| d5
2
). Moreover, we also know that,

each element in S1 is a multiple of at most log
(
d5

2

)
elements in S. We add multiple copies

of the entire set to make the size |S| d5
2
.

26For a first reading, it may be helpful to assume that β is a very small but fixed constant not depending on

λ. Since each of the parameters depend on β, they all become constants under this assumption.
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The s-wide walk Obtain an (n′,d1, λ1) Cayley graph X from Corollary 3.12 as explained

before. We add n′ − n = O(n8/9) copies of the identity to S1 to obtain S2. By Lemma 4.16

and the assumption that s ≥ 210, S2 is a λ2
2
/3 + O(n−1/9) ≤ 2λ2

2
/3-biased set. We denote

by S′ the final set of generators obtained by t steps of the s-wide replacement product of

X and Y. By definition, each element in S′ is a product of t elements in S2 which has the

same elements as S1. Thus, each element in S′ is a product of at most

O(t log(d2)) ≤ O((1 + 10α) log(1/λ)) (Using Claim 4.14 [ii])

≤ O(log(1/λ)) (By the assumption that α ≤ 1/128)

elements of S. The only thing that remains is to prove expansion of Cay(G,S′). We pick any

irreducible representation ρ and apply Theorem 4.13 to the function ρ on S2 ↔ V(X). The

condition that 2λ(X) +


�피g∼S2

[ρ(g)]




op
≤ λ(Y)2 translates to λ1 ≤ λ2

2
/6 which is satisfied by

our choice of λ1. Thus, the final expansion is given by,





 �피
g∈S′

[ρ(g)]






op

≔

(
λs2 + s · λs−1

2 + s2 · λs−3
2

) ⌊(t−1)/s⌋

≤
(
3s2λs−3

2

) ((t−1)/s)−1

(
Using λ2 ≤ 20s2 log s

s2s2
≤ 1

3s2

)

≤
(
λs−4

2

) (t−1−s)/s

≤ λ
(1−5/s)(1−s/(t−1))(t−1)
2

≤ λ
(1−5α)(1−α)(t−1)
2

(
Using Claim 4.14 [i]

)

= λ
(1−5α)(1−α)(t−1)
2

≤ λ, (From the choice of t)

5 Some Applications

Our operator amplification leads to almost optimal explicit constructions of many pseudo-

random objects (from existing suboptimal ones): transforming arbitrary expander graphs

into almost-Ramanujan expanders (Section 5.2), quantum expanders (Section 5.3), mono-

tone expanders (Section 5.4), to generating sets with improved (average) Kazhdan con-

stants (Section 5.5) and to dimension expanders (Section 5.6). These pseudorandom objects

embody various notions of expansion.

Permutation Amplification The key to these applications is observing that the adjacency

matrix of an arbitrary graph and that of a monotone expander can be written as a sum of

permutation matrices which can be interpreted as Pσ = ρdef(σ) for the defining (or natural)

representation ρdef. We plug in the collection of these permutations {σ} in our amplifica-

tion machinery to obtain almost optimal spectral expanders and monotone expanders.

Almost Ramanujan Expanders for the Symmetric Group Constructing constant size

expanding generating sets for the symmetric group was quite challenging (even non-

explicitly). In a breakthrough work [Kas07], Kassabov provided the first family of such
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expanding generators which was also explicit. However, this family was not close to the

Ramanujan bound and no such generating set was known. Theorem 1.2 lets us amplify

Kassabov’s generating set to one close to optimum bound showing that the symmetric

group has explicit almost Ramanujan Cayley expanders. The same obviously holds for

every expanding group.

Quantum Expanders A quantum expander is a generalization of an expander graph hav-

ing many applications in quantum information theory [AS04, BASTS08, Has07b, Has07a,

HH09, AHL+14]. Harrow [Har07] showed that Cayley graphs can be used to construct

quantum expanders inheriting the expansion of the starting Cayley graph. However, the

construction is only explicit if the group admits an efficient quantum Fourier transform

(QFT). Since we can now obtain almost Ramanujan Cayley graphs for the symmetric group

which has a known efficient QFT [Bea97], we obtain the first explicit almost Ramanujan

quantum expanders.

Improving the Kazhdan Constant The Kazhdan constant K(G,S) of a finitely generated

group G, with respect to a generating set S, is a quantitative version of Property (T) which

has been used to construct explicit expanders (e.g., Margulis [Mar88]). We show that this

can be amplified by considering a slightly different version called the average Kazhdan con-

stant which directly relates to the bias of the set S. This is interesting as typically the bound

on the Kazhdan constant is used to construct expanders but here we construct expanding

generating sets to improve the constant! The improved constants and the generating sets

have algorithmic implications and we mention two of them.

· Dimension expanders - Lubotzky and Zelmanov [LZ08] showed that the image of a

generating set of a group under an irreducible representation gives a dimension ex-

pander and its expansion is controlled by its Kazhdan constant.

· Product replacement algorithm - uses random walks on k-tuples of groups elements.

Lubotzky and Pak [LP00] showed that the mixing time of the algorithm relates to the

Kazhdan constant (assuming Property (T)) of certain lattice groups like SLn(ℤ). This

crucial assumption was proven in complete generality27 recently by Kaluba, Kielak

and Nowak [KKN21]. In particular, we have a mixing time bound of
4 log |G|
K(G,S)2 .

Using our amplified generating set (Corollary 5.14), we can improve both these results.

Sampling Group elements Another application of having almost optimal Ramanujan

Cayley graphs is to sample random group elements efficiently. Given a Cayley graph,

Cay(G,S), one can consider a random walk on G which starts at an arbitrary vertex g and at

each step moves to a random neighbor g → sg. Spectral expansion guarantees that walks

mix quickly, i.e., in at most Oλ(log |G|) steps (See [HLW06]). The amount of randomness

used in each step is log d and since the degree versus expansion trade-off is now almost

27In general, we have quotients of Aut(Fn), the automorphism group of the free group generated by n

elements and [KKN21] proves that Aut(Fn) has Property (T).
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optimal, we can achieve the same convergence guarantee using a smaller degree and thus

the random walk is more efficient in terms of randomness.

5.1 Permutation Amplification

The defining representation - (ρdef(σ),ℂn) for Symn is defined as the representation that

maps a permutation to the matrix defining it. More formally, ρdef(σ)ei = eσ(i) for ev-

ery unit basis vector ei of ℂn. It is a fact that Vdef = Vtriv ⊕ Vstandard where Vstandard is an

irreducible non-trivial representation. Note that if we are given a set {P1, · · · ,Pr} of per-

mutation matrices acting on ℂn, we can identify a set S = {σ1, · · · ,σr} ⊆ Symn such that

ρdef (σi) = Pi.

Corollary 5.1 (Permutation Amplification). Let P = {P1, · · · ,Pr} be a collection of permuta-

tion matrices such that λ(�피i∼[r][Pi]) ≤ λ0. Then, for any λ ∈ (0, 1), we can explicitly construct a

collection P′ such that

1. λ (�피M∼P′[M]) ≤ λ,

2. |P′ | ≤ O
(
|P| /λ2+o(1)) and

3. each P′
i
∈ P′ is a product of at most Oλ0

(log(1/λ)) many matrices from P.

Proof. Let Pi = σi. Applying Theorem 4.13 to the set S = {σi} we get a larger set of per-

mutations, S′ of the form σ′ = σi1
◦ · · · ◦σik where k = Oλ0

(log(1/λ)). By the decomposition

of the defining representation, we have that

Spec

(
�피

M∼P′
[M]

)
= Spec

(
�피

σ′∼S′
[ρdef(σ′)]

)

= {1} ∪ Spec

(
�피

σ′∼S′
[ρstandard(σ′)]

)
.

where the 1 corresponds to the eigenvalue from the trivial representation. Since the oper-

ator amplification reduces the bias of every non-trivial irreducible representation, it also

does so for Vstandard.

5.2 Arbitrary Expanders via Permutation Amplification

We can make any family of bounded degree expander graphs into an almost Ramanujan

family while preserving their adjacency structure. First, we recall König’s theorem that

says that the adjacency matrix of a d-regular graph can be expressed in terms of permuta-

tion matrices.

Theorem 5.2 (König). Let AX be normalized adjacency matrix of a d-regular n-vertex simple

graph X. Then, there exists d permutation matrices P1, . . . ,Pd ∈ ℝn×n such that

AX =
1

d

d∑

j=1

Pj.
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It is also efficient to find permutation matrices as above.

Claim 5.3. The permutations in Theorem 5.2 can be found in time poly(n).

Proof. We view AX as encoding the adjacency relation of a bipartite graph with vertex

bipartition (A = V(X),B = V(X)). This bipartite graph is d-regular so it has at least one

perfect matching M, which can be found in poly(n) time. We remove this matching M

obtaining a (d − 1)-regular graph and we repeat till the resulting graph is empty.

Our general transformation into an almost Ramanujan bound follows by using Claim 5.3

to obtain an initial set of permutation matrices which are amplified using Corollary 5.1.

Theorem 5.4 (Main I (Formal version of Theorem 1.1)). Let {Xi}i∈ℕ be a family of d0-regular

λ0-expanders with constant λ0 < 1. For any λ ∈ (0, 1) and any expander Xi, we can determin-

istically compute a d-regular λ-expander X′
i

with d = Oλ0
(d0/λ2+o(1)) in time poly(|V(Xi)|).

Moreover, the construction is local in the sense that edges in X′
i

correspond to short walks in Xi.

More precisely, if the adjacency matrix of Xi is

AXi
=

1

d0

d0∑

j=1

Pj,

where P1, . . . ,Pd0
are permutation matrices, then the adjacency matrix of X′

i
is

AX′
i
=

1

d

d∑

j=1

P′
j,

where each P′
j

is the product of at most k = Oλ0
(log(1/λ)) permutation matrices among P1, . . . ,Pd0

.

5.3 Explicit Almost Ramanujan Quantum Expanders

Quantum expanders were defined in [AS04, BASTS08, Has07a] and have found many

applications in quantum information theory. For instance, they can be used in the con-

struction of designs and gates sets [HH09], in quantum statistical zero knowledge (QSZK)

[BASTS08], in detecting EPR pairs [AHL+14] and in the study of entanglement [Has07b].

Roughly speaking, a quantum expander is a generalization of an expander graph (see

Definition 5.5 for precise details). While a usual degree-d expander graph X = (V ,E) is

given by d permutation matrices acting on a vector space ℂ[V], a quantum expander is

given by d (suitable) linear operators acting on quantum states (i.e., PSD matrices of trace

1). The normalized adjacency matrix of a λ-expander shrinks the ℓ2-norm of vectors or-

thogonal the all ones function by a factor of λ. Similarly, a quantum expander shrinks

the Frobenius norm of PSD matrices orthogonal 28 to the identity matrix (the quantum

analogue of the all ones function) by a factor of λ (the quantum expansion parameter).

In [Has07c], Hastings showed that the Ramanujan bound also applies to quantum ex-

panders and that d random unitaries get arbitrarily close to the bound. However, such a

28With respect to the Hilbert–Schmidt inner product.

32



construction cannot be efficiently implemented and thus used in applications like [AHL+14]

which rely on existing explicit constructions (e.g., [BASTS08, Har07]) that are far from the

Ramanujan bound and thus give sub-optimal results.

We deduce the existence of explicit families of almost Ramanujan quantum expanders

by applying our amplification of Cayley graphs together with a result of Harrow [Har07].

For this, it is important that we can efficiently construct almost Ramanujan Cayley ex-

panders on the symmetric group Symn, for which efficient Quantum Fourier Transform

(QFT) is known [Bea97].

Definition 5.5 (Quantum Expander [AHL+14]). The (super) operator Φ : ℂN×N → ℂN×N

is an (N,d, λ) quantum expander if

· (“Degree”) The operator Φ can be expressed as a sum of d linear operators as follows,

Φ(ρ) = ∑d
i=1 BiρB

†
i

where29
∑d

i=1 B
†
i
Bi = IN.

· (“Expansion”) The second largest eigenvalue30 of Φ as a linear map is ≤ λ.

Theorem 5.6 (Harrow [Har07]). Let G be a group and S ⊆ G be a multiset such that Cay(G,S)
is a λ-spectral expander. Let Vµ be an irreducible representation of G of dimension N. Then,

there exists an (|S| , λ)-quantum expander of dimension N. Furthermore, if the group G admits an

efficient QFT and logN = Ω(log |G|), then the quantum expander is explicit.

As a corollary of Harrow’s result and our explicit family of almost Ramanujan Cay-

ley expanders over the symmetric group obtained from the expanding family of Kass-

abov [Kas07], we deduce the following corollary.

Corollary 5.7 (Explicit Almost Ramanujan Quantum Expanders). For every λ ∈ (0, 1), there

is an explicit infinite family of (efficient) (O(1/λ2+o(1)), λ)-quantum expanders.

5.4 Explicit Almost Ramanujan Monotone Expander

We now show how to obtain almost Ramanujan monotone expanders starting from the

explicit construction in Bourgain and Yehudayoff [BY13]. Monotone expanders are di-

mension expanders over any field as observed by Dvir and Shpilka [DS09, DW10]. First,

we recall the definition of a monotone graph.

Definition 5.8 (Monotone Graph). A bipartite graph X = ([n]A ⊔ [n]B,E) is a d-monotone

graph if there are d partial monotone maps f1, . . . , fd with domain and images in [n] (as

an ordered set 31) such that the edges set E is the following disjoint union

E =

d⊔

i=1

{(vA, fi(v)B) | v ∈ Domain(fi)}.

29A useful special case is when each Bi is a (normalized) unitary.
30If ρ satisfies Tr(ρ) = 0, then ‖Φ(ρ)‖2 ≤ λ ‖ρ‖2, where ‖ρ‖2 ≔

√
Tr(ρ†ρ).

31Under the natural order, i.e., 1 ≤ 2 ≤ · · · ≤ n.
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We observe that there are two notions of degree of a monotone graph: the usual vertex

degree and the number of monotone functions. Clearly, if a graph is d-monotone, all vertex

degrees are at most d. The converse is not necessarily true (e.g., every bipartite graph

X = (V ,E) is |E|-monotone – it is important to keep this parameter constant). We stress

that our almost Ramanujan bound is with respect to the usual notion of vertex degree (and

keeps the number of monotone maps polynomial in the vertex degree).

Definition 5.9 (Monotone Vertex Expander). We say that X = (A = [n]A ⊔ B = [n]B,E) is

a d-monotone expander if it is a d-monotone graph and there exists δ > 0 such that for all

A′ ⊆ A with |A| ≤ n/2, we have |∂(A′)| ≥ (1+ δ) |A′ |, where ∂(A′) is the set of vertices in B

adjacent to A′.

Theorem 5.10 (Bourgain and Yehudayoff [BY13]). There is an explicit family {Xn}n∈ℕ of d-

monotone vertex expanders with d = Θ(1).

We will work with a spectral definition of monotone expander.

Definition 5.11 (Spectral Monotone Expander). Let X = (A = [n]A ⊔ B = [n]B,E) be a

d-monotone graph. We define AX to be the adjacency matrix of X when the two vertex par-

titions are identified (as xA = xB for x ∈ [n]) and define λ(X) = max{|λ2(AX)| , |λn(AX)|}.

It is well-known that starting from a monotone expander (not necessarily a vertex reg-

ular graph), we can add partial monotone functions to obtain a monotone graph of regular

(vertex) degree that is still expanding. We use this to establish the following,

Corollary 5.12. There is explicit family {Xn}n∈ℕ of d0-regular 2d0-monotone expanders with

λ(Xn) ≤ λ0 < 1 and d0 = Θ(1). Furthermore, the unormalized adjacency matrix of Xn can be

written as a sum of d0 permutation matrices each corresponding to two monotone maps.

Proof Sketch: Let {X′
n}n∈ℕ be the family in Theorem 5.10. Let X = X′

n be a fixed d0-

regular monotone expander with the maps {fi}.

For each monotone function fi, we define its “complement”, fi, as the (unique) partial

monotone function fi such that fi ∪ fi is a total function. Let Y be the 2d0-monotone graph

corresponding to the maps {fi, fi}. Then, its adjacency can be written as as follows

AY =

d0∑

i=1

Pi ,

where Pi = Mfi +M
fi

and (Mfi)x,y = 1 [fi(x) = y].
Each matrix Pi is a permutation matrix as fi∪ fi is a total function. Adding more maps

preserves the constant vertex expansion parameter which (together with having constant

vertex degree) implies constant spectral expansion bounded away from 1 (see [Vad12, The-

orem 4.19]). Thus, {Yn}n∈ℕ is the required family. �

In the amplification process, we will be multiplying permutation matrices rather than

just composing monotone maps since the latter operation can result in a map with empty

domain. We now establish the derandomized spectral amplification of monotone ex-

panders.
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Corollary 5.13 (Almost Ramanujan Monotone Expanders). For every λ > 0, there is an ex-

plicit family {Xi}i∈ℕ of (vertex) d-regular dO(1)-monotone expanders with d = O(1/λ2+o(1)) and

λ(Xi) ≤ λ.

Proof. Let {X′
n}n∈ℕ be the family in Corollary 5.12. Fix X = X′

n and let P1, . . . ,Pd0
∈ ℝn×n

be the permutation matrices guaranteed by Corollary 5.12, where each Pi = Mfi + M
fi

.

Use Corollary 5.1 to obtain a collection of d ≔ O(1/λ2+β) permutation matrices each of

which is a product of k permutation matrices from P1, . . . ,Pd0
and so we obtain

Pi1 · · ·Pik =

∑

gi∈{fi,fi}
Mgi1

· · ·Mgik

=

∑

gi∈{fi,fi}
Mgi1

◦gi2
◦ ··· ◦gik

,

where gi1 ◦ gi2 ◦ · · · gik is the composed map which is monotone (possibly with empty

domain). This means that we can have at most 2k monotone maps (and at least one since

Pi1 · · ·Pik ≠ 0). Therefore, the total number of maps is at most d · 2k = dO(1) as k =

Oλ0
(log(1/λ)). This can be made undirected by adding f−1 for each f and thereby doubling

the degree.

5.5 Amplifying the Average Kazhdan Constant

The Kazhdan constant is a notion of “spectral gap” (and so it is related to bias) for dis-

crete groups which predates and was central to the study of expansion in finite groups

and graphs. These groups can have infinitely many irreducible representations on more

general Hilbert spaces, possibly of infinite dimension. Nonetheless, we can still apply our

operator version of Ta-Shma’s amplification procedure as it is independent of dimension

and works for any unitary representation ρ. Therefore, we amplify the average Kazhdan

constant which also amplifies the Kazhdan constant. We now define these two parameters

formally.

Let G be a discrete group generated by a finite set S of generators. The Kazhdan constant

of G with respect to generators S is defined as

K(G,S) ≔ inf{K(G,S,ρ) | (ρ,H) irreducible and non-trivial} ,

where K(G,S,ρ) ≔ infv∈H : ‖v‖2=1 maxg∈S ‖ρ(g) v − v‖2
2.

Analogously, an average version of the Kazhdan constant, as in the work of Pak and

Zuk [PZ01], can be defined as

K(G,S) ≔ inf{K(G,S,ρ) | (ρ,H) irreducible and non-trivial}

K(G,S,ρ) ≔ inf
v∈H : ‖v‖2=1

1

|S|
∑

g∈S
‖ρ(g) v − v‖2

2

= inf
v∈H : ‖v‖2=1

1

|S|
∑

g∈S
2 − 2 〈ρ(g) v, v〉
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= inf
v∈H : ‖v‖2=1

2 − 2

〈
�피

g∼S
[ρ(g)] v, v

〉

= 2

(
1 −





 �피
g∼S

[ρ(g)]






op

)
.

Theorem 1.2 gives an improved generating set in this more general setting.

Corollary 5.14 (Amplifying Average Kazhdan Constant). Let G be a discrete group and S a

finite set of generators such that the average Kazhdan constant K(G,S) is equal to 2 · (1 − λ0) for

some constant λ0 ∈ (0, 1). For every λ ∈ (0, 1), there is a set S′ ⊆ G such that

1. K(G,S′) ≥ 2 · (1 − λ), and thus, K(G,S′) ≥ 2 · (1 − λ).
2. |S′| = Oλ0

(|S| /λ2+o(1)), and

3. S′ can be found in time poly(|S| /λ) assuming an oracle for group operations on G.

Remark 5.15. Note that the above amplification for K immediately implies the same am-

plification for K (since the maximum is at least the average). Moreover, we remark that

the above amplification can also similarly improve the constant of Lubotzky’s property

(τ) (the latter being a weaker version of property (T)), so it is more general and applies to

expansion in many more discrete groups [RL10].

In Section 5.6, we will apply this corollary to a specific family of representations which

will give a simple improvement to the bounds on the dimension expander constructed

in [LZ08].

5.6 Explicit Almost Ramanujan Dimension Expanders

Dimension expanders were defined in [BISW01] motivated by applications in theoretical

computer science. A conjectured construction based on irreducible representations was

suggested by Wigderson to hold over every field. The conjecture was subsequently estab-

lished by Lubotzky and Zelmanov [LZ08] for fields of characteristic zero. We now define

dimension expanders, explain the [LZ08] proof, and our amplification in this setting.

Definition 5.16 (Dimension Expander [LZ08]). Let �픽 be a field, d ∈ ℕ, ε > 0, V be a

vector space of dimension n and T1, . . . , Td : V → V be linear transformations. We say that

(V , {Ti}i∈[d]) is an ε-dimension expander if for every subspace W ⊆ V of dimension at

most n/2, we have dim(W +∑d
i=1 Ti(W)) ≥ (1 + ε) · dim(W).

Remark 5.17. Observe that if the maps Ti are restricted to being permutation matrices, and

the expansion condition is restricted only to subspaces W generated by elementary basis

vectors, then one obtains the usual definition of vertex expansion of graphs. Thus dimen-

sion expanders may be viewed as a linear-algebraic extension of expander graphs.

For an irreducible unitary representation ρ, there exists an associated representation32 adjρ.

The construction in [LZ08] relates dimension expansion with the Kazhdan constant as fol-

lows.

32Let �픰�픩n(ℂ) = {tr(A) = 0 | A ∈ Mn(ℂ)}. Equip the space with the Frobenius inner product defined as

〈A,B〉 = tr(A†
B) where A

† is the conjugate transpose. For any finite dimensional unitary representation

ρ : G → �핌n, we have an adjoint representation (adjρ, �픰�픩n) where the action is by conjugation adjρ(g) · A =
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Proposition 5.18 (Adapted from [LZ08]). Let ρ : G → �핌ℂn be a unitary irreducible repre-

sentation. Then (ℂn, {ρ(g)}g∈S) is ε-expander, where ε = (1/2 − o(1)) · K(G,S, adjρ) (if we

additionally assume dim(W) is sufficiently small).

By definition, K(G,S, adjρ) ≥ K(G,S) and therefore for a group G which satisfies the

condition of Corollary 5.14, we obtain a set S′ (at the expense of restricting the dimension

of W) such that K(G,S′, adjρ) ≥ 2(1− ε) for any ε > 0. Which we can get ε arbitrarily close

to 1 in the definition of dimension expander. In fact, we need another simple improvement

to a computation in [LZ08] which we state without proof.

Claim 5.19. Let W,W′ ⊆ ℂd be two vector spaces. Let P,P′ be orthogonal projectors onto W,W′,
respectively. Then,

Re (Tr(PP′)) = Tr(PP′) ≥ dim(W ∩W′).

With the above claim and the analysis in [LZ08], we obtain stronger dimension expan-

sion for small dimensional spaces.

Remark 5.20. Forbes and Guruswami [FG15] point out that the quantum expander con-

struction of Harrow [Har07] also yields a dimension expander (with a similar construction

of the dimension expanders from [LZ08]). As mentioned earlier, monotone expanders are

dimension expanders over any field [DS09, DW10]. Moreover, the Bourgain and Yehuday-

off [BY13] construction of monotone expanders with constant generating set yields such

dimension expanders with constant generating set!

5.7 Diameter of Finite Groups

The study of the diameter of Cayley graphs can take many forms, e.g., it can be with respect

to every generating set (as in the celebrated Babai–Seress conjecture [BS88]) or with respect

to some constant size generating set as in [BKL89]. Here, we explore the latter case.

First, recall that any n-vertex degree-d graph has diameter at least logd−1(n). On the

other hand, it is well-known that expansion directly implies diameter at most C · logd−1(n)
for some constant C ≥ 1 (depending on the expansion).

Using the operator amplification, we deduce that any expanding group G has a con-

stant degree-d Cayley expander of diameter ≈ 2 · logd−1(|G|). More precisely, we have the

following.

Lemma 5.21. Suppose {Cay(Gi,Si)}i∈ℕ is a family of bounded degree Cayley expanders. Then,

there exists a family {Cay(Gi,S
′
i
)}i∈ℕ of constant degree-d Cayley expanders with diameter at

most (2 + od(1)) · logd−1(Gi).

Proof. We apply Theorem 1.2 to the family {Cay(Gi,Si)}i∈ℕ obtaining a new family of

{Cay(Gi,S
′
i
)}i∈ℕ of (d, λ)-expanders with d = 1/λ2+β for some sufficiently small constants

ρ(g)·A·ρ(g)−1. Since conjugation by unitary matrices preserves the trace, �픰�픩n is closed under the representation.

Moreover, it is unitary as
〈
adjρ(g)A, adjρ(g)B

〉
= tr(ρ(g)A†ρ(g)†ρ(g)Bρ(g)−1) = 〈A,B〉 .
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λ,β > 0. Let Ai be the normalized adjacency matrix of Cay(Gi,S
′
i
) and ni = |Gi |. Let eg

be the indicator vector of some fixed g ∈ Gi. Note that



(Ai − J/ni)teg



2
≤ λt = d−t/(2+β) < 1/|Gi | ,

for t = (2 + 2β) · logd(|Gi |) = (2 + od,β(1)) · logd−1(|Gi |).

This implies that Aieg is supported on all elements of Gi, and thus the diameter of Gi is at

most t.

6 Operator Expander Mixing Lemma

In Section 3, we showed an operator amplification based on walks on an auxiliary ex-

pander. An alternative approach due to Chen, Moore and Russell [CMR13] proves an

operator version of the expander mixing lemma (EML) and applies it in an iterated way

(using different auxiliary graphs) for bias amplification. They obtain a dependence factor

1/λ11 in the degree. We show that this approach [CMR13] can achieve a dependence fac-

tor of 1/λ4+o(1) which is similar to the expander walk approach Theorem 3.2 (also follows

similar trade-offs to the scalar amplification via random walks [TS17]). We formally prove

the following result.

Theorem 6.1 (Iterated Operator EML). Let S ⊆ G. Suppose λ(Cay(G,S)) = λ0 < 1, where

λ0 ∈ (0, 1). For every λ ∈ (0, 1), we can find S′ ⊆ G such that,

1. λ(Cay(G,S′)) ≤ λ and |S′ | = Oλ0
(|S| /λ4+o(1)), and

2. the running time is poly(|S| , 1/λ0, 1/λ).

We now show an operator version of the expander mixing lemma for completeness.

As we mentioned above, a similar result was first derived in [CMR13]. While a simple

generalization of EML, it is of the same nature of the generalizations of this paper, and is

of independent interest.

Lemma 6.2 (Matrix EML [CMR13]). Let X = (V ,E) be a λ(X)-spectral expander and let f : V →
L(H). Then,






 �피
(x′,x)∈E

[f(x′) · f(x) ] −
(

�피
x∈VX

[f(x) ]
)2







op

≤ λ(X) · max
x∈VX

‖f(x) ‖2
op .

We start with a simple claim describing an operator form the process of sampling ac-

cording to the edges of an expander and sampling according to pairs of vertices. Recall the

following maps from Section 3, PH : XH → H and LH : H → XH,

PH(w ⊗ x) = w, LH(v) = �피
x∈VX

[v ⊗ x] .

We will need again that ‖PH‖op ‖LH‖op = 1.
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Claim 6.3. Let AX be the normalized adjacency matrix of a d-regular graph X and let JX be the

normalized |VX | × |VX | all-ones matrix.

�피
(x,x′)∈E

[f(x′) · f(x) ] = PHΠz

◦
AX ΠzLH.

�피
x,x′∈V

[f(x′) · f(x) ] = PHΠz

◦
JX ΠzLH.

Proof. The proof is identical for both so we prove just the first one. For any w ∈ H, we

have

PHΠz

◦
AX ΠzLHw =

1

|VX |
PHΠz

◦
AX Πz

( ∑

x∈VX

x ⊗ w

)

=
1

|VX |
PHΠz

◦
AX

( ∑

x∈VX

x ⊗ f(x)w
)
.

=
1

d|VX |
PHΠz

( ∑

x∈VX

∑

x′∼x
x′ ⊗ f(x)w

)
.

=
1

|E|PH

( ∑

x∈VX

∑

x′∼x
x′ ⊗ f(x′) f(x)w

)
.

=
1

|E|
∑

x∼x′
f(x′) f(x)w = �피

(x′,x)∈E
[f(x′) · f(x) ]w.

as claimed.

We now prove the operator mixing lemma above.

Proof of Lemma 6.2. By Claim 6.3, it is enough to bound the operator norm




PHΠz

( ◦
AX − ◦

JX

)
ΠzLH





op

≤ ‖PH‖op ‖Πz‖2
op





( ◦
AX − ◦

JX

)



op

‖LH‖op

≤ λ(X) · ‖Πz‖2
op = λ(X) · max

x∈VX

‖f(x) ‖2
op ,

concluding the proof.

Corollary 6.4 (Non-abelian EML). Let X = (V ,E) be a λ(X)-spectral expander, ρ : G → UH be

an unitary representation and (gv)v∈V ∈ GV . Then





 �피
(u,v)∈E

[ρ(gu) · ρ(gv)] −
(
�피

u∈V
[ρ(gu)]

)2






op

≤ λ(X).

Proof. Follows immediately from Lemma 6.2 and the fact that unitary operators have op-

erator norm bounded by 1.

We now prove the main result of this section. This iterated amplification also appears in

the derandomized squaring of Rozenman and Vadhan [RV05] used to give an alternative

proof of the SL = L result of Reingold [Rei04].
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Proof of Theorem 6.1. We amplify the expansion in two phases. The first phase amplifies the

initial expansion of S from λ0 to a constant expansion λ′′
0
= 1/4. This phase increases the

size of the generator set by a constant factor.

(First Phase) Let ε0,γ0 be constants such that

ε0 = λ0(1 − λ0)/2, 0 < γ0 ≤ (1 − λ0)/2 < 1

Let X0 = (V0,E0) be an explicit expander via Theorem 3.6, with λ(X0) ≤ ε0, degree O(1/ε2
0
)

and with the number of vertices |V0 | = m |S| with m = O(1). Replicate each element of S m

times and still call the resulting multiset S (observe that expansion remains λ0). For every

edge (u, v) ∈ E0, add gugv to S0. By Corollary 6.4,

λ(G,S0) ≤ λ2
0 + ε0 ≤ λ0(1 − γ0), |S0 | = 9 |S| /ε2

0 = O(|S|)

Repeat this procedure log1−γ0
1/4λ0 times which ensures that the expansion is λ′′

0
= 1/4.

Let S0 be this final set.

(Second Phase) We will amplify the bias inductively using a stronger (i.e., more expand-

ing) auxiliary expander graph Xi at each step. As mentioned, this inductive amplification

is similar to the derandomized squaring of Rozenman and Vadhan [RV05]. We start with

S0 and expansion λ′′
0

= 2−2 as in the first phase. At each step assume that you have a

set Si−1 with expansion λi−1. Use Theorem 3.6, to construct Xi−1 to have expansion λ2
i−1

and degree at most 9/λ4
i−1

. Then, Si is obtained via edges of Xi as before and we have

λi ≤ 2λ2
i−1

. It is easy to check that the recurrence yields λi ≤ 2−(2
i) for i ≥ 1. Assume for

convenience that log λ = −2r. Clearly, then we need to iterate this r times. In each iteration,

the size grows by a factor of the degree which is 9/λ4
i−1

and thus the final size of S′ can be

bounded as,

|S′ | = |S0 |
r−1∏

i=0

9

λ4
i

≤ |S0 | · 9r24+4(20+···+2r−1) = |S0 |
λ4

·
(

1

log λ

) log 9

≤ Oλ0

( |S|
λ4+o(1)

)
.

concluding the proof.
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A Explicit Structures and their Parameters

The way we choose parameters and objects for it borrows heavily from Ta-Shma’s argu-

ments in [TS17]. The analysis follows an analogous structure of [JQST20] for binary codes,

which in turn builds on the original analysis of Ta-Shma [TS17].

Given as input |S|, λ and a slowly growing function β(λ), we construct the graphs X,Y

as described below with the following parameters which is similar (but not identical) to

Ta-Shma’s choice. Let s be the smallest power of 2 greater than 32
β and let d2 = s4s.

The outer graph X. We use our construction of expander from Corollary 3.12 to construct

a graph on n′ ≈ n vertices with expansion λ1 =
λ2

2

10
. The condition on the size is satisfied

as n = 2|S|d5
2
≥ d5

2
≥ 2217

by the assumption that s ≥ 210. Moreover, the degree is c
λ2∗4.1

1

≤
cd4.1

2

b8.2
2

≤ d5
2
. We increase its degree to d5

2
by taking multiple copies of the generating set

which doesn’t change bias33. Thus, we obtain a (n′,d1, λ1)-graph where n′ = n +O(n8/9).

The inner graph Y. We obtain a Cayley graph Y = Cay(ℤlog(n2)
2

,A) such that Y is an

(n2 = d5s
2

,d2, λ2) graph34. The set A of generators comes from a small bias code derived

33This is wasteful but we do it to ensure that V(Y) = ds
1

and that ds
1

is a power of 2.
34Notice that since s (and therefore d2,n2) is chosen to be a power of 2, the conditions of Lemma A.1 are

satisfied.
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from a construction of Alon et al. [AGHP92], but we will rely on Ta-Shma’s analysis.

Lemma A.1 (Based on Lemma 6 [TS17]). For every m ∈ ℕ+ and d = 22k ≤ 2m, there exists a

fully explicit set A ⊆ ℤm
2

such that the graph Cay(ℤm
2

,A) is a (2m,d, λ =
m√
d
)-expander graph.

We summarize the construction and the choice of parameters here -

s is the smallest power of 2 such that 32
β ≤ s ≤

(
log(1/λ)

4 log log(1/λ)

)1/3

Every other parameter is a function of s.

Y : (n2,d2, λ2), n2 = d5s
2

, d2 = s4s, λ2 ≤ b2√
d2

, b2 = 5s log d2

X : (n′,d1, λ1), n′ ≈ n = O(|S| d5
2
), d1 = d5

2
, λ1 =

λ2
2

10

t : smallest integer such that (λ2)(1−5α)(1−α)(t−1) ≤ λ, ; where α = 1/s

Note: We can assume that s ≥ 210 since otherwise λ is a constant and we can just use

Theorem 3.2.

Claim 4.14. The selection of the parameters above implies the following bounds on t,

i t − 1 ≥ 2s2

ii (d2)(t−1) ≤ λ−2(1+10α) ,

Proof. Proof of (i) Using d2 = s4s and the upper bound on s, we have

(
1

λ2

) (1−5α)(1−α)2s2

≤
(

1

λ2

)2s2

=

(
d2

b2
2

)s2

≤ (d2)s
2

= s4s3

= 24s3 log2(s) ≤ 2log2(1/λ) =
1

λ
.

Hence, (λ2)(1−5α)(1−α)s/α ≥ λ and thus t − 1 must be at least 2s2. Also observe that,

λ
(1−5α)(1−α)2(t−1)
2

= λ
(1−5α)(1−α)(t−2)

(
(1−α)

1−1/(t−1)

)

2
(7)

≥ λ
(1−5α)(1−α)(t−2)
2

(t − 1 ≥ s = 1/α) (8)

≥ λ (From the choice of minimal t) (9)

Since b2 = 5s log2(d2) = 20s2 log2(s) ≤ s4 (recall that s = 1/α ≥ 210),

d1−2α
2 =

d2

d2α
2

=
d2

s8
≤ d2

b2
2

=
1

λ2

.

We obtain (ii)

(d2)(t−1) ≤ λ2

−(t−1)
1−2α

≤ λ
−2

(1−2α)(1−5α)(1−α)2 (Using Eq. (9))

≤ λ−2(1+10α) .
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