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Almost Ramanujan Expanders from Arbitrary
Expanders via Operator Amplification
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We give an efficient algorithm that transforms any bounded degree expander graph
into another that achieves almost optimal (namely, near-quadratic, d < 1/A**°()) trade-off
between (any desired) spectral expansion A and degree d. Furthermore, the algorithm is
local: every vertex can compute its new neighbors as a subset of its original neighborhood
of radius O(log(1/A)). The optimal quadratic trade-off is known as the Ramanujan bound,
so our construction gives almost Ramanujan expanders from arbitrary expanders.

The locality of the transformation preserves structural properties of the original graph,
and thus has many consequences. Applied to Cayley graphs, our transformation shows
that any expanding finite group has almost Ramanujan expanding generators. Similarly,
one can obtain almost optimal explicit constructions of quantum expanders, dimension
expanders, monotone expanders, etc., from existing (suboptimal) constructions of such
objects. Another consequence is a "derandomized" random walk on the original (subop-
timal) expander with almost optimal convergence rate. Our transformation also applies
when the degree is not bounded or the expansion is not constant.

We obtain our results by a generalization of Ta-Shma’s technique in his breakthrough
paper [STOC 2017], used to obtain explicit almost optimal binary codes. Specifically, our
spectral amplification extends Ta-Shma’s analysis of bias amplification from scalars to ma-
trices of arbitrary dimension in a very natural way. Curiously, while Ta-Shma’s explicit
bias amplification derandomizes a well-known probabilistic argument (underlying the
Gilbert-Varshamov bound), there seems to be no known probabilistic (or other existen-
tial) way of achieving our explicit (“high-dimensional") spectral amplification.
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1 Introduction

1.1 Background

Expander graphs are fundamental objects in computer science and mathematics, possess-
ing a variety of applications in both fields [HLW06, Lub12]. Indeed, expanders (and ex-
pansion) play a central role in numerous algorithmic advances, cryptographic schemes,
circuit and proof complexity lower bounds, derandomization and pseudorandom genera-
tors, error correcting codes, ... and are central to structural results in group theory, algebra,
number theory, geometry, combinatorics. In light of this wealth, a central question is

Which graphs are expanders?

A central quality measure of expansion of an infinite family of d-regular graphs {Xi }ien
is the second largest singular value of its normalized adjacency matrix, which we denote
by A(Xi) € [0,1]. We say that a family {X;}ien is A-expanding, for some fixed A < 1, if
A(Xi) < A for every member X; of the family. The smaller is the expansion parameter A,
the more spectrally expanding is the family. (For simplicity, we will sometimes discuss
single graphs rather than families, and say that X is a (d, A)-expander if it is d-regular and
satisfies A(X) < A.)

A random d-regular graph with d > 3 is easily shown [Pin73] to be .99-expanding with
high probability, giving rise to the existence of expanding families. The quest to explicitly
construct bounded degree expanders started with Margulis” paper [Mar73], and has been
an extremely active research area in the past half century. Today we have a large arsenal
of constructions and tools to establish expansion which are quite different in nature, al-
gebraic, analytic, combinatorial, and mixtures of these (for a short survey of this wealth
see [Wigl8, Sec 8.7]), and we will discuss a few of them below.

Returning to the main discussion, all different constructions above yield d-regular A-
expanding families with some specific constants d and A. Now, a large variety of struc-
tural and algorithmic applications call for optimizing both parameters, and understand-
ing the best trade-off between them. One example which is directly related to this pa-
per is the study of random walks on expanders sometimes used for randomness-efficient
error-reduction of probabilistic algorithms, and also in the construction of randomness ex-
tractors. The surprising expander Chernoff bound of Gillman [Gil93] informally says that a
sequence of highly correlated k vertices along a random walk in a (d, A)-expander, is almost
as good a sampler as a sequence of k independent vertices. Saving randomness calls for
minimizing the degree d, while improving the quality of the sample requires minimizing
the expansion parameter A.

However, for any choice of degree d, the spectral expansion A cannot be made arbi-
trarily small. The Alon-Boppana bound [Nil91] shows that A(X;) > 2Vd -1/d —o(1). It
intuitively says that the infinite d-regular tree is the best possible spectral expander, raising
the challenge of achieving it by finite graphs. This challenge was first met, by the (indepen-
dent) seminal papers of [LPS88, Mar88]; they constructed optimal spectrally expanding
families, dubbed Ramanujan graphs, satisfying the (Ramanujan bound) A(X;) < 2vd - 1/d.
The investigation of expanding families near or achieving the optimal Ramanujan bound



has received much attention. However since then, only one essentially different construc-
tion of Ramanujan graphs was found, 30 years later, by [MSS15].

The quest towards almost optimal trade-offs can be summarized as a sharpening of our
original major question above:

Which graphs are (almost) Ramanujan expanders?

A study of almost Ramanujan expanders, in which the bound above is nearly matched,
has received much attention as well. Friedman [Fri03] greatly strengthened Pinsker’s
bound above [Pin73], showing that with high probability, a random d-regular graph X
satisfies A(X) < 2Vd —1/d + o(1). Thus, for random regular graphs, expansion and (near)
optimal expansion occur "together". For explicit constructions, an approach towards such
a bound, which is central for this paper, follows from the zig-zag product of [RVWO00]. They
showed that their basic zig-zag construction achieves an explicit family of expanders with
d < 1/A%, they further derandomize the basic zig-zag product to achieve d < 1/A3, and ask
if further derandomization can decrease the exponent to (the optimal) quadratic bound.
Ben-Aroya and Ta-Shma [BATS08] in their ingenious “s-wide zig-zag product”, nearly
matched the optimal quadratic bound!, achieving d < 1/A?*°(). Their “higher-order”
version of zig-zag [BATS08] will be central in our work. A different path to explicitly
construct almost Ramanujan graphs was the lifting method of Bilu-Linial [BL06], which
achieves d < 6(1 /A?%), and famously led to the (exact) Ramanujan expanders of [MSS15]
mentioned above.

It is important to note that while for some applications and structural results, any family
of expanders would suffice, for many others, the graphs are externally given to us (as e.g. is
the case for understanding the expansion of Cayley graphs of groups). Moreover, seeking
different constructions and analysis tools has led to surprising applications beyond those
intended (e.g., the resolution of the Kadison-Singer conjecture by [MSS14] and the proof
of SL = L by Reingold [Rei(05]).

When is it possible for a family of expanders to get close to the Ramanujan bound?

We show that this is always possible: any expander family can be locally and efficiently
converted into an almost Ramanujan family. More precisely, starting from any family of
bounded degree expanders, it is possible to obtain, for any desired target expansion A > 0,
a new family of A-expanders close to the Ramanujan bound.

1.2 Main Results

Our main result for general families of expander graphs is as follows.

Theorem 1.1 (Main I - Informal). Let {X;}ien be a family of (do, Ao)-expanders where Ao < 1 is
a constant. For any (target) A € (0, 1) and X, we can explicitly construct a (d, N)-expander, X}, on
the same vertex set, where d = O(dy/A2+°W)). Moreover, the construction is local in the sense that
edges in X correspond to short walks in X.

1We call any such bound near-optimal or almost Ramanujan. Of course, reducing the o(1) slack in the
exponent is clearly of much interest.



We obtain our results by considering the seemingly more specialized case of Cayley
expanders, which are based on group theory and represent a prominent way of construct-
ing expanders. Recall that a Cayley graph Cay(G,S) on a finite group G is specified by
a symmetric set of generators S C G, where vertices are elements of G and g,g’ € G are
adjacent if and only if g’g™! belongs to S.

While many groups admit Cayley expanders, most of these are far from the Ramanujan
bound. This is true, in particular, in the case of non-Abelian finite simple groups which
includes the symmetric group. Breuillard and Lubotzky [BL18] ask whether it is possible
to have near-Ramanujan expanders for all families of finite simple groups. More generally,

Which groups admit expanding Cayley graphs close to the Ramanujan bound?

An equivalent viewpoint arising from the theory of pseudorandomness, is that of biased
distributions. Here we work with a definition (formalized in Definition 2.4) for operators
which naturally generalizes the one for scalars. The equivalence is quite direct—asetS C G
is a a A-biased distribution if and only if Cay(G, S) is a A-expander.

Our key result is that any group that admits a Cayley expander also admits one that is
almost Ramanujan.

Theorem 1.2 (Main II). Let G be a finite group and S be such that Cay(G, S) is a Ag-expander, for
some constant Ay € (0,1). For every A € (0, 1), there exists S’ such that

- Cay(G, S’) is a A-expander. Equivalently, S’ is an A-biased distribution.
~|S'I=0(|S| /}\2“’(1)), and

- S” can be computed deterministically in poly(|S| /A)-time assuming an oracle for group op-
erations.

Furthermore, if Cay(G, S) is strongly explicit?, then so is Cay(G, S").

Remark 1.3. The breakthrough construction of explicit almost optimal binary codes of Ta-
Shma [TS17] close to the Gilbert-Varshamov [Gil52, Var57] bound can be viewed as a par-
ticular case of Theorem 1.2 applied to a specific family of Abelian groups®.

Since expanding families of Cayley graphs are known for non-Abelian finite simple
groups [BL18, Theorem 3.1], this result makes substantial progress towards the question
asked therein (the o(1) term needs to be removed to resolve it completely). Moreover,
these are strongly explicit (except for the Suzuki group). Thus, our result yields strongly
explicit almost Ramanujan Cayley graphs for these these groups, which notably includes
the symmetric group!

2Neighbors of a vertex can be computed in polytime in the description length of a vertex.

3 A linear Ag-balanced code over ]F;10 of dimension k is equivalent to a Cayley Ag-expander over G = ]F‘;
of degree ng. Let S C G be the rows of a generator matrix of a good Agp-balanced code (good means k/ng
and A9 < 1 are constants). Applying Theorem 1.2 above to S with final expansion parameter A > 0, we
obtain a generating set S’ C G of a Cayley A-expander with degree O(k/ Azto()) or equivalently, we obtain a
A-balanced code of rate ©(A2*°(1)),



Corollary 1.4 (Explicit almost Ramanujan Cayley Expanders). For every non-Abelian finite
simple* group G and N > 0, we can explicitly construct almost-Ramanujan (d, N)-Cayley multi-
graphs on G where d < O(1/A%+°W),

We can now move from Cayley graphs back to general graphs and answer our original
question. A result of Konig that says that the adjacency matrix of an arbitrary regular graph
can be written as a sum of permutation matrices which can be interpreted as elements of
the symmetric group. Using this set of permutations as our base set, we can amplify it close
to the optimum bound (essentially”) using Theorem 1.2. Thus, we obtain Theorem 1.1.

1.3 Applications

We will now discuss some applications of this operator amplification technique which al-
lows us to improve other pseudorandom objects. All the "pseudorandom" objects below
are expanders (with various stronger properties). For all, we amplify their spectral bound
to almost Ramanujan. We stress that our amplification preserves the underlying struc-
ture, and so produces another object with the same properties. Precise definitions of these
objects will be given in Section 5.

Quantum Expanders Roughly speaking, a quantum expander is an operator defined by
d complex matrices, whose (linear) action on quantum states has a constant spectral gap.
Quantum expanders were defined in [AS04, BASTS08, Has07a], and Hastings [Has07c]
showed that the Ramanujan bound also applies to them. Existing explicit constructions
are far from the Ramanujan bound. In [Har07], Harrow gave a generic construction using
expanding Cayley graphs which is explicit if the group has a large irreducible represen-
tation and admits efficient Quantum Fourier Transform (QFT). Both these conditions are
satisfied by the symmetric group Sym,, using the generating family by Kassabov [Kas07]
and the QFT algorithm by Beals [Bea97].

By amplifying the expansion of the generators of [Kas07], we give the first explicit
family of almost Ramanujan quantum expanders.

Corollary 1.5 (Explicit Almost Ramanujan Quantum Expanders). For every A € (0, 1), there
is an explicit infinite family of (efficient) (O(1/A2*°W) N)-quantum expanders.

Monotone Expanders Monotone expanders are expanders, whose edge set can be de-
composed into a constant number of monotone maps on [n]. Bourgain and Yehuday-
off [BY13] gave the only known explicit construction of monotone expanders with constant
degree. By an approach similar to that used for Theorem 1.1, we express it as a sum of
permutation matrices and amplify their expansion obtaining the following result.

Corollary 1.6 (Almost Ramanujan Monotone Expanders). For every A > 0, there is an ex-
plicit family {Xi }ien of (vertex) d-reqular O™ -monotone expanders with d = O(1/A**°W) and
AXi) <A

4This holds for other groups as well, as long as they have expanding generators. One non-simple example

is the Cayley expanders of Rozenman, Shalev and Wigderson [RSWO06].
5Actually, we only consider the standard representation in this amplification.
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Remark 1.7. There are two natural notions of degree for a monotone expander. The usual
vertex degree and the number of monotone maps. Our almost Ramanujan trade-off is with
respect to the vertex degree (and the monotone degree is polynomial in the vertex degree).
It would be really interesting to obtain an almost Ramanujan trade-off with respect to the
monotone degree.

Dimension Expanders Loosely speaking, dimension expanders (over any field FF) are a
linear algebraic extension of expanders: a collection of d linear maps on F™*, which signif-
icantly expands (the span of) any vector space of dimension below n/2. They were defined
by Barak et al. in [BISWO01]. Over the complex numbers, any quantum expander is a
dimension expander. More generally, Dvir and Shpilka [DS09] proved that a monotone
expander directly yields a dimension expander over every field. We give spectral almost
Ramanujan expanders that have the additional property of being dimension expanders.
Additionally, if the starting dimension is small enough then we achieve almost doubling
of the starting dimension.

Kazhdan Constant We can also amplify operators in infinite dimensional Hilbert spaces.
This allows us to obtain improved (average) Kazhdan constants of groups with “Property
(T)”, which is an analogue of expansion for discrete groups. This implies better bounds for
the product replacement algorithm to sample group elements.

Corollary 1.8 (Amplifying Average Kazhdan Constant). Let G be a discrete group and S a
finite set of generators such that the average Kazhdan constant K(G, S) is equal to 2 - (1 — Ag) for
some constant Ay € (0,1). For every A € (0, 1), there is a set S’ € G such that

1. K(G,S) > 2-(1—A), and thus, KK(G,S’) > 2- (1 - A).
2. 18| = Ox,(IS] /A%*oW), and

3. S’ can be found in time poly(|S| /A) assuming an oracle for group operations on G.

Randomness-efficient Walks An immediate consequence of being able to achieve an al-
most optimum degree versus expansion trade-off in this generic way is that we obtain
randomness-efficient random walks.

1.4 Techniques

We consider the main contribution of this work to be the broad applicability of the near-
optimal operator amplification to any family of expanders. For instance, the existence of
almost Ramanujan expanders for all expanding groups, including the symmetric group,
is quite surprising to us. On the technical side, we view our main contribution as the
identification of appropriate natural linear algebraic extensions to Ta-Shma’s amplifica-
tion framework [TS17] that accommodate amplification of operators as described above.
This extension will be so natural that it may almost feel that we are replacing absolute
values in the original scalar analysis [TS17] by operator norms. However, appropriate
generalizations and care are needed in such an extension to operators.



We first recall the problem and see why it is non-trivial. Let G be a finite group and S
be a symmetric multiset such that Cay(G, S) is a Ag-expander for some A € (0, 1). Assume
that Cay(G, S) is far from being Ramanujan, e.g., [S| = 1/ )\500. Our goal is to construct a
new generating set S’ such that Cay(G, S’) is a A-spectral expander with an almost optimal
final degree, say, |S’| = O(1/A%001),

A first approach would be to take S’ to be the power S* with t ~ log,,(A). However,
now the degree, |S|t* = O(1/A%), has also increased and the trade-off remains the same.
Thus, we want to efficiently compute a sparse subset of S* that retains the expansion.
Since we know what degree we are aiming for, we could try take a sparse random sample
S’ C St of size d = O(1/A%%1) and hope that some form of matrix concentration ensures
that Cay(G, S’) is A’-spectral expander with A’ ~ A. Unfortunately, it is not clear how to
show even the existence of a single sparse subset S’ that achieves the required expansion®.
Standard probabilistic techniques, such as the matrix Chernoff, have a forbidding depen-
dence on the dimension of the matrices for this application.

Switching to the bias distribution viewpoint, a subset S C G is said to be e-biased
if it fools all non-trivial irreducible representations, i.e., for every non-trivial irreducible
representation, p, of G, we have ||Es-s[p(s)]|| op < € Here, a representation of a group is
an operator valued function, p : G — M¢(C), that is multiplicative, i.e., for every two
group elements g1, g2 we have p(g19z2) = p(g1)p(g2). As mentioned earlier, Cay(G, S) is
A-expanding if and only if S is A-biased set. Thus, the problem of constructing optimal
Cayley expander can be reformulated as construction of small biased distribution with
optimal support size. In fact, we will see that the techniques work for general matrix value
functions (not just representations).

Earlier Work Much of the earlier work has focused on the case of Abelian groups. It
is well-known that the irreducible representations of these groups are 1-dimensional, i.e.,
scalar valued functions called characters. The special case of ¢-biased distributions over
G = Z¥ introduced in the pioneering work of Naor and Naor [NN90]. One of their con-
structions of ¢-biased distribution uses walks on expander graphs. These distributions
have found numerous applications (e.g., [ABN*92, Vad12, TS17]).

Rozenman and Wigderson (see analysis in [TS17]) introduced the following “scalar
amplification” technique using walks on an (auxiliary) expander graph X, whose vertices
are identified with elements of S. Let W C S* be the collection of all walks of length (t — 1)
on X. Let f: S — {+1} be any function. The collection W naturally gives rise to a map Tw
that lifts {+1}-valued functions on S to {+1}-valued functions on W by multiplication as
follows

Tw(f)(w) = f(w) := f(s) - - f(s¢-1) Vw=(so,...,5t1) €W.

In words, the value of each walk is given by the product of the values f assigns to its
vertices. For a sufficiently “pseudorandom”” collection W and any function f satisfying

6To some extent this difficulty is also present in the proof of the Alon-Roichman theorem [AR94] and
the reason why even for non-Abelian groups the only generic upper bound known uses Q(log(|G[)) random
generators to obtain an expander. Recall that matrix Chernoff bounds deteriorate with the dimension of the
matrices, and we have no fixed bound on their dimension here.

7This amounts to X being sufficiently expanding.



bias(f) < ¢, they argue that the bias of the amplified function, Tw(f), decreases exponen-

tially (roughly) as bias(Tw/(f)) < 58/ 2. Note that, when f is a character p (later we will
consider more general representations), we can use the homomorphism property to write

Twi(p)w) = p(sp---s¢-1) Yw=(sp,...,8t_1) € W.

This allow us to interpret Tyy(p) as a function with domain on the multiset " = {sg - - - s¢_; |
w = (s0,...,8t-1) € W}, our new biased set. This technique gives an e-biased distribution
with support size O(1/e**°M) (cf., [TS17]), which is quite good but still sub-optimal.

Ta-Shma [TS17] managed to close the gap almost optimally using the s-wide replacement
product to derandomize the amplification of Rozenman and Wigderson. Recall that the s-
wide replacement product of Ben-Aroya and Ta-Shma [BASTS08] is a higher-order version
of the zig-zag product [RVWO00]. Using the collection of walks on the s-wide replacement
product allows for a much smaller collection W C S* with nearly optimal size. This scalar
technique was later applied to the more general case of arbitrary Abelian groups by Jalan
and Moshkowitz [JM21]. These results can be encapsulated in the following statement.

Theorem 1.9 (Scalar Amplification). Let S be a finite set and Ay € (0, 1) be a constant. For
every N > 0, there exists a deterministic polynomial time algorithm to construct W C S* of size
[W| < O(|S| /A**°W) such that for every function f : S — C with |Bss[f(s)]] < Ao and
Iflleo < 1, we have |E,,-w[f(W)]| < A.

Our Results To extend Ta-Shma’s approach to non-Abelian groups, it is necessary to
work with operator valued functions, f: S — M(C), as the irreducible representations
are no longer of dimension one. In fact, the amplification applies to any operator valued
function. Our main technical result is a dimension independent generalization of the scalar
amplification result to operator valued functions. Note that the definition of Ty, extends
naturally to a mapping from M;(C)" to M¢(C)W.

Theorem 1.10 (Operator Amplification (this work)). Let S be a finite set and Ag € (0,1)
be a constant. For every A > 0, there exists a deterministic polynomial time algorithm to con-
struct W C St of size [W| < O(|S| /A**°W) such that for every function f : S — M¢(C) with
x5 [F)lop < Ao and max [1F(s)p < 1, we have By [f)]llop <A

To establish the operator valued generalization, we make a simple and yet extremely
useful change in the bias operator ([f) defined by Ta-Shma which is a key object in the
analysis of both [TS17] and [JM21]. In both these cases, f is scalar, and one defines

M¢ : C[S] — C[S] where Mg -s =f(s) - s.

However, this approach is not readily generalizable to operators and the view we take
is that if f : S — My(C), then, M is actually an operator on C* ® C[S] defined as

N : C'®@C[S] — C* ® C[S] where Mi(v®s) =f(s)v®s.

Clearly, in the Abelian case, we have { = 1 and this is isomorphic to the setup by
Ta-Shma. This generalization is very natural and we show that not only does the older
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machinery gel well with this, but the proof remains intuitive with the different spaces
neatly delineated. More precisely, we first establish an operator version of the Rozenman
and Wigderson amplification, and then we derandomize it using (a suitable version of)
the s-wide replacement product. Furthermore, since the result does not depend on the
dimension, {, we can use it even for functions f : S — L(H) where L(H) is the space of
bounded linear operators on an arbitrary Hilbert space, H, possibly infinite dimensional.
This is useful if the underlying group is not finite but finitely generated by S.

To the best of our knowledge, only one general result was known for general groups.
Chen, Moore and Russell [CMR13] analyzed the usual expander walk construction using
a matrix version of the expander mixing lemma. This gives an amplification procedure
for Cayley graphs of general groups, but the resulting degree O(|S| /A'!) to achieve final
expansion A is sub-optimal. Analogous to the (folklore results of the) scalar case, we show
that the analysis in [CMR13] of the amplification via (iterated applications of) expander
mixing lemma can be improved to get O(|S| /A*"°()) achieving similar parameters to the
expander walk approach.

1.5 Discussion

The results of this paper have some curious features, which we would like to elaborate on.
For most of them, we will use the following "bare bones" description of our main spectral
amplification result. Namely, let S be a finite set and H a Hilbert space. Let f be a function
mapping elements of S to operators on H of unit norm, such that ||Eses[f(s)] ||0p < Ag. For
any A > 0 take t = clog(1/A) (for appropriate ¢). We extend f from S to S* by defining
f(s1,...,8¢) = f(s1)---f(s¢). Clearly, ||Evese[f(r)]llop < (||]Eseg[f(s)]||op)t < A. Our main
result is an explicit construction of a (pseudorandom) subset S’ C S*, of size only |S'| =
O(|S|/A%+°W), with a similar guarantee, namely ||Egcs[f(s")] llop <A

Dimension Independence Note that if the operators in S are 1-dimensional, namely
scalars, then the existence of a set S’ of this size (which is best possible even in this 1-
dimensional case) follows directly from the Chernoff bound. Indeed, Ta-Shma’s construc-
tion [TS17] may be viewed as derandomizing this result, producing an explicit such §’.

One may try to do the same for operators in a higher dimension, say {, by appealing to
the Matrix Chernoff bounds of Ahlswede-Winter [AWO02] (see also Tropp [Tro15]). How-
ever, these concentration inequalities pay a factor of { in the tail bound, resulting in a set
S’ of size Q(log(£)). As the dimension { is arbitrary (indeed, may be infinite), such a bound
is useless.

Thus, our explicit construction has no known probabilistic (or other existential) ana-
log! What is curious is that our dimension-independent analysis follows very closely that
of Ta-Shma for 1-dimension, roughly speaking, replacing scalar absolute values by the
operator norm in any dimension. We feel that it would be extremely interesting to find
a matrix concentration inequality for sampling product sets like S*, which is dimension
independent.



Algebraic vs. Combinatorial Expander Constructions Our explicit construction of the
pseudorandom set S” above uses expanders obtained from the s-wide zig-zag product of
[BATS08]. This is a combinatorial construction, a refinement of the original zig-zag prod-
uct construction of [RVWO00]. Nonetheless, it has significant consequences to algebraic ex-
pander constructions which use group theory, namely to the expansion of Cayley graphs.
This is possible due to the abstraction of how elements of S are mapped to operators via
some function f. We can take S to be expanding generating set of a group and f to be some
non-trivial irreducible representation p. Instead of using the t-product of elements of S* to
obtain a new amplified generating set S’, a much sparser subset is chosen using the s-wide
zig-zag construction. The analysis of the norm amplification discussed above yields the
required expansion bound, in a way that has no dependence on the group or the represen-
tation. The flexibility in mapping element of S to operators underlies the versatility of our
spectral amplification. It allow us to preserve some of the structure of the expanders whose
expansion are being amplified. In this case, both the starting expander and the amplified
expander are Cayley graph over the same group.

It is interesting to note that this is a recurring phenomenon. In [ALWO01], it was dis-
covered that the zig-zag product may be viewed as a combinatorial generalization of the
algebraic semi-direct product of groups. This connection made possible the construc-
tion of new expanding Cayley graphs in groups that are far from being simple, e.g., in
[MWO04, RSWO06]. It is rewarding to see again how new combinatorial constructions, some-
times inferior in certain parameters to some algebraic ones, yield new results in group
theory.

Iterated Pseudorandomness Another interesting aspect of our result is the following.
Recall that expanders are pseudorandom objects for many purposes. One important pur-
pose is sampling - rather than sampling t independent random elements in some set S, one
may sample t points along a random walk on an expander on the vertex set S and a Cher-
noff type bound still holds (a nontrivial result of [Gil93])- this affords significant savings
in the number of random bits spent. For this result, any expander would do. What hap-
pens in this paper is an iterated use of expanders as samplers as follows. We first choose a
sparse pseudorandom set of t-walks inside S* using expanders walks. Then, we choose a
yet sparser pseudorandom set inside it, again using walks on an additional expander. This
repeated use of expanders improves the trade-off between quality of spectral amplification
and the size of the final pseudorandom set to near-optimal. Now the construction of this
iterated selection of walks seems critical, and (as in Ta-Shma’s paper) is chosen to come
from the s-wide zig-zag product of two expanders [BATSO08].

Group Theory For us, the most surprising consequence of our results is that “weak” sim-
ple groups, especially the symmetric group,® can have near-Ramanujan generators. The
question of which groups are expanding, and just how expanding they are, is an old quest
of group theory. One dichotomy is whether every finite set of generators of the group is
expanding (these are “strongly expanding” groups), or if some are and some aren’t (these
are “weakly expanding” groups). For the symmetric group, many finite non-expanding

8Gee also the groups in [RSW06], which are iterated wreath products of symmetric groups.



generating sets of constant size were long known, and Kassabov’s breakthrough construc-
tion [Kas07] designed a constant size expanding generating set. The symmetric group is
then a weakly expanding group, while, e.g., simple groups of Lie type (namely, matrix
groups) are believed, and in some cases known, to be strongly expanding. Nonetheless,
our construction works equally well for all, and we have almost Ramanujan generators for
all expanding groups.

Semigroups and universality Perhaps the most general way to view our main result is
the following abstraction. Let S be any finite set (which may be best viewed as an alphabet)
of some size |S| = n, and for every integer t we consider subsets W C S* of words of length
t. We call such a subset, W, A-universal if, informally, W amplifies the bias of any linear
operator valued function on S. More precisely, if for every Hilbert space H and every
function f : S — L(H) satisfying [|f(v)l|,, < 1 forallv € S, and [[Es[f(v)]llop < % say,”
we have ||]Ew[f(w)]||0p < A, where for w = (vg,Vv1,...,vi_1) € St, f(w) is a shorthand for
f(w) = f(vo)f(v1) ... f(ve-1).

This semigroup viewpoint of words stresses the non-commutativity of composing the
operators. It is easy to see how to derive the results for groups directly from the result
above: take S to be a set of expanding!® elements in some group G, and f is some irre-
ducible representation of G. In this nice case, W will itself be a subset of G, and so an
almost Ramanujan expanding set of generators (and as f is a homomorphism in this case,
f(w) with w interpreted as a group element will actually match the definition of f(w) when
w is interpreted as a word over S).

Closeness to the Ramanujan Bound As mentioned above, a family of d-regular graphs is
called Ramanujan if its spectral expansion parameter A is at most 2Vd — 1/d. This terminol-
ogy was introduced in the seminal work of Lubotzky, Phillips and Sarnak [LPS88], and it
designates the optimal degree versus expansion trade-off that a family of bounded degree
expanders can achieve. Several notions of closeness to the Ramanujan bound were inves-
tigated, e.g., (2Vd — 1 + ¢)/d (with ¢ > 0 small or vanishing) in [Fri03, MOP20, ]MO*22],
O(1/Vd) in [ACKM19], polylog(d)/Vd in[BL06, ]IMO*22] and more generally d°a(1)/d'/2,

In this work, we obtain a bound of the form A < O(2'°8(4)° /31/2) for some constant ¢ €
(0,1), which we refer to as an almost Ramanujan bound. Rephrasing in terms of the expan-
sion parameter, we achieve expansion A with degree O(1/A**#), where p = O(1/log(1/A))¢’
for some ¢’ € (0, 1). We stress that the nomenclatures almost Ramanujan, near Ramanujan
and etc, may vary depending on the author. Improving the results in this work to achieve
trade-offs even closer to the Ramanujan bound (if possible) is of great interest. We suspect
that new ideas may be required to substantially improve the bound to, say, expansion A
versus degree O(polylog(1/A)/A?).

9The constant % is chosen for simplicity - in general we will have an initial bias parameter Ag.
10With second eigenvalue 1/2.
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1.6 Outline

We start in Section 2 by summarizing basic definitions and the notation used throughout
the paper. In Section 3, we generalize the simpler construction of Ta-Shma based on ex-
pander walks. Apart from serving as a nice warm-up to the more-involved construction,
it will be used as a bootstrap for the more involved construction based on s-wide replace-
ment product which is the subject of Section 4. Here, we prove the main amplification
result (a formal version of Theorem 1.10 above) and instantiate using known constructions
and those obtained from Section 3 which establishes Theorem 1.2. Section 5 discusses the
permutation amplification trick and formally completes the proof of Theorem 1.1. It also
discusses the other applications in more detail. Finally Section 6 gives an operator version
of the expander mixing lemma which improves the analysis of [CMR13].

2 Preliminaries

Let X = (V, E) be an n-vertex d-regular multigraph for some d > 1. We denote by Ax the
normalized adjacency matrix of X, i.e., the adjacency matrix divided by d.

Definition 2.1 (A-spectral Expander). Let the eigenvalues of the matrix Ax, denoted as
Spec(Ax), be {1 = A1 > --- > A} and define A(X) = max{|Az|, |An|}. We say that X is a
A-spectral expander if A(X) < A.

We denote by G a finite group (except in Section 5.5 where we only need it to be finitely
generated). For a multiset S C G, Cay(G, S) denotes a multigraph!! with the vertex set
being G and edges {(g,sg) | g € G, s € S}.

Group Representations In order to study the expansion of a Cayley graph, we will use
the notion of a group representation'?. Weyl’s unitary trick, says that for a large family of
groups (which includes all finite groups), every representation can be made unitary and
thus, we can restrict to studying these.

Let H be a complex Hilbert space and denote by £(#) the algebra of bounded linear oper-
ators!'® on 1. We denote by Uy, the unitary group of operators acting on H.

Definition 2.2 (Unitary Group Representation). For a group G, a unitary representation is
a pair (p, 1) where p : G — Uy is a group homomorphism, i.e., for every gi, g2 € G, we
have p(g192) = p(g1)p(g2). A representation is irreducible if the only subspaces of H that
are invariant under the action of p(G) are the empty space, {0}, and the entire space, H.

Every group has two special representations, which are,

1. (Trivial representation ) - (p, C) where for every g, p(g) = 1.

HNote that unless S = S~1, the graph Cay(G, S) is a directed multigraph.

12 Additional background on representation theory of finite groups can be found in [SS96].

13For most applications, one can think of # = C™ for some n, and £(H) = My (C), the space of nxn complex
matrices. However, we will need the generality in Section 5.5.
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2. ((left) Regular representation ) - (Preg, Vreg) Where, Ve = C[G] is a vector space with the
elements of G being an orthonormal basis, and p,e.(g) : h +— g - h.

Fact 2.3. Let G be a finite group and let V,¢, be the regular representation over C. We have

@ dim(p) - V,,

(p,Vp)elrrep(G)

IR

Vieg

where Irrep(G) denotes the set of irreducible unitary representations of G.

Expanders and Biased Distributions It follows from definitions that the normalized ad-
jacency matrix of Cay(G, S) is given by A = E_s[preg(s)]. Moreover, the copy of the trivial
representation is the space spanned by the all-ones vector. Fact 2.3 implies that this can be
block diagonalized and therefore,

Spec(A) = U Spec(slg‘ls [p(s)]), and thus,

pelrrep(G)
AMCay(G,S)) =  max E [p(s)]
pelrrep(G) |[s~S op

p is non-trivial

Recall that for any bounded linear operator, T: H — H’, between (non-empty) Hilbert
spaces, we have

ITllop = sup [Tyl = sup KTv,m)|,
veH:|v|=1 veH,weH:||v|=[lw|=1

where |[V|| = 4/{v, V)4 and [[w] = \/{w,W)4.

Given this equivalence, we will find it convenient to work with the operator norm
version referred to as bigs in the literature [CMR13].

Definition 2.4 (Biased Distribution on G). Let ¢ € (0,1). We say that a multiset S of el-
ements of a group G is e-biased if for every non-trivial irreducible representation p, we
have ||]ES~5[p(s)]||OP < &. We sometimes use the shorthand bias(S) < ¢, where bias(S) =
AMCay(G,S)).

Irreducible representations of Abelian groups, called characters, have dimension 1. Thus,
this definition coincides with the usual one of e-biased distribution fooling non-trivial char-
acters [NN90, AGHP92]. These pseudorandom distributions were introduced in the pi-
oneering work of Naor and Naor where several applications to derandomization were
given [NN90].

Notation

Since we deal with various vector spaces and graphs, we will find it useful to establish
some convenient notation. While we recall these in the relevant section, the following is a
summary for ready reference.

12



- The main multigraphs we study will be X and Y with vertices Vx, Vy and normalized
adjacency operators Ax, Ay.

- We denote vertices of X, Y by x,y and an ordered tuple of vertices by X = (xq, - - - , X¢).

- We use u, v, w to denote arbitrary vectors in H and x, y for basis vectors of C[Vx], C[Vy]
where C[Vx] is the complex vector space with the elements of Vx being a orthonormal
basis.

- The tensored vector spaces have an induced inner product. For Xy = H ® C[Vx], itis
VvexX,WwRX') = (v,W)y (x,x’). Similarly, we have one on XYy = Xy ® C[Vy].

- Orthogonal decomposition: X, = X7”{ ® A, where X7”{ = span{v ®1 | v e H}. Here,
1 denotes the un-normalized all-ones vector. Similarly, XYy = & y';l o X y;, where
X))g{ = span{z@i) | z € Xy}

- The operator A denotes the extension of operator A to a tensor product of spaces where
it acts as identity on the other spaces. For example, Ax acts on C[Vx] and its extension to
X is Ax= ly ® Ax. However, if we were working on X' V3, it would be Ax= I3y ® Ax® ly
instead*.

- Given an operator valued function f : Vx — L(H), the generalized bias operator is defined
as!s
Me: Xy > Xy, vOx > f(x) v x.

3 Operator Bias Reduction via Expander Walks

In this section, we establish a new operator analogue of the (expander walk based) bias
amplification procedure for scalars due to Rozenman and Wigderson. An analysis of this
scalar amplification was given by Ta-Shma in [TS17]. More precisely, we first prove the
following operator analogue for constant bias (Theorem 3.1) and later generalize it to any
bias (Theorem 3.8) in Section 3.3.

Theorem 3.1 (Operator Amplification via Expander Walks). Let X be a A(X)-spectral expander
and let W be the collection of walks obtained from walks of length t on X. Then for any operator

valued function f such that ||Excv, [f(x)]||0p < Ag and maxxevy [|f(x) [lop < 1, we have

E  [f(so)--f(so)l]| < AX)+Ag)t2

(So,...st)GWt

op

We remark that a precursor of these techniques, in the simpler setting of Abelian groups,
appears in the pioneering work of Naor and Naor introducing ¢-biased distributions over
the group Z*. There, they also amplify bias using expander walks on an auxiliary ex-
pander [NN90].

14 The spaces will be self-evident and the use of the same notation should not be confusing.
15An equivalent matrix definition is Mf := ¥ cv, f(x) ® Ex,x where Ex x € CVxXVX ig the diagonal matrix
with exactly one non-zero entry of value 1 in the row and column indexed by the vertex x.
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This simpler amplification of Theorem 3.1 will be crucially used in the full almost op-
timal amplification (which derandomizes it) and also to bootstrap it. Moreover, it yields a
construction of expanding Cayley graphs of small sizes which will be required later.

This bias reduction procedure uses walks on an auxiliary expander graph. Here, we
only use its expansion property (as opposed to later when we rely on its structure for the
s-wide construction). With this it is already possible to obtain 1/A**°() dependence on the
final degree of an A-expander.

Theorem 3.2. Let S C G such that N(Cay(G,S)) = A\g < 1. For every A € (0,1) and constant
B € (0,1), we can find " € G in time poly(|S|,1/Ao, 1/A) such that A(Cay(G,S’)) < A and
|S7] = Ox, (IS /A**P).

Towards this, we first formalize the connection between bias of a special subset of a
group and the operator norm of a certain operator. The subset is obtained by taking ran-
dom walks over an expander graph as mentioned above. We then proceed to bound this
operator norm. Finally, we instantiate our construction with an explicit expander graph
due to [Alo21].

The Analysis Let S be any finite set and let X be a graph on the vertex set Vi = S with Ax
being its normalized adjacency matrix. Let H be a complex Hilbert space and £(#) be the
(bounded) operators on #; an important example will be £L(H) = M¢(C). For any operator
valued function, f: S — L(H), we define the generalized bias operator as

MNe: HRC[Vx]— H®C[Vx], Mi(vex)="Ff(x)vex.

In the scalar case, since H = C, earlier works [TS17, J]M21] used the implicit identification
C ® C[Vx] = C[Vx] and defined [ as a diagonal matrix. This identification no longer is
suitable when f is operator valued in dimension > 1. However, a simple yet crucial obser-
vation is that merely decoupling the spaces allows us to collect the terms as we proceed
along the walk.

Let W, C S be the collection of all length t walks on the graph X and we define
Ax=lyy ® Ax. Then, we have

Lemma 3.3.

M (Z\X nf)t E[ves] = E  [f(s) -f(so)]ve®st. (1)

S€S (st,+,50)EW

This can be shown easily via an induction on t and we refer to Lemma 4.7 for a formal
proof of a more general statement. A minor technicality is that the operators in the image
of f act on H whereas [N acts on the space Xy := H ® C[Vx]. We use projection and lifting
maps to move between the spaces X3 and H. Define Py : Xy — H and Ly : H — Xy, as,

Pyiw®x)=w, Ly(v)= E [v®x].
x€Vx

It follows directly from the definition that ||Ly ||Op = 1/4/|Vx| and we can use Cauchy-
Schwarz to get that ||Py ||0p = /| Vx|. Now, we put this together to obtain a simple expres-
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sion on the quantity we need to bound

(so,...st)ewt[ (s¢)- -~ f(so)] . ||v||=p1 (so,-.‘,st)ewt[ (st)---f(so)] ;
= sup ||Px ( E [f(s¢)- - f(so)]ve® St)
[Ivil=1 (50, ,81)EW ,

5 t
sup |[PyM¢ (AX I'If) ]ES [V ® S]

Ivii=1 s€

2

3 t
sup |[|Px[¢ (Ax I_lf) Lyv
Ivil=1

. t
Me (Ax I_lf)

2

IA

1P3llop 1Lzl
op

. t
¢ (Ax Hf)

IA

op

The Construction of Amplified Biased Sets The particular case of S C G (for some group
G) and the function f being a unitary representation p on H leads to the amplification of
biased sets. We will construct a new multiset S’ € G such if ||[Es~s[p(s)]llop < Ao, then we
have [[Es~s/[p(s)]llop < A < Ag. Note here that the construction of §’ is agnostic to p, and
thus we can reduce the bias of all irreducible representations simultaneously! Assume that
we have a graph X on the vertex set S. For s € S, we have f(s) = p(s) in this case. Let

S" = {s¢se—1---50 | (S0,81,° - st) € Wh},

which will be our new amplified biased set. Using the homomorphism property of p, we
have the following simplification

[f(st) - f(so)]

w=(s0,...St)EW (80,.+-,81)EWY

. t
Me (Ax |_|f)

[p(s0)+p(so)l = E [pGs)], @

and thus, bias(S’)

IA

)

op

where S’ is the new biased multiset of the construction and the second inequality follows
from the preceding calculation when W, is a collection of walks on X.

3.1 Operator Norm Decay from Constant Bias

Now that we have reduced the problem to studying the operator norm, we will study how
the norm decays as we take walks. We use the decomposition, X7, = X7”{ ® A, where
Xfﬂl := span{v ®1|veH}. The decay comes from two sources. For z € Xﬁ, we get a decay

by A(X) by the definition of X being an expander. Claim 3.4 shows that for z € X, | we get
a decay from ¢, equal to the initial bias. We put this together in Theorem 3.1 to obtain the
desired exponential decay.
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Claim 3.4. Forz € XL, we have

|| < Azl

op

L E [f(9]

Proof. The equation trivially holds when z = 0, so assume z # 0 and scale it so that ||z||, = 1.
From definition of XL, we can assume that z = u ® 1. Computing we have,

(e o))

sup <W®T, Mg (u®T)>‘

2 weH: ||W®I||2=1
u® Z x)>

x€Vx

= sup <w ®1, Z fFx)u® x)>

weH: ||W®I||2=1 XEVx

= sup <w ® T, MM¢
weH: ||w®i||2:1

= sup Z (w, f(x)uw) <T, x>

weH: ||W®I||2=1 x€Vyx

= sw <w, Vi (1@ [f(x)]) u>'

WEeH: ||w®i||2:1

<

E [0l [V Il ull = ”Ev (091

X

op op

We show that for every two' steps of the walk, the norm of the (associated) operator
decays as follows.

Lemma 3.5. Let X be a A(X)-spectral expander and let f be such that ||Excv, [f(x) ]|
maxxevy [[f(x) [lop < 1. Then,

op S Ao and

i 2
(Ax nf) < ) + Ao

op

Proof. Since ||I'I,c||OP = maxyevy ||f(x) ||OP < 1, it is enough to bound ||Ax Me '&X”op' Let
z € Xy, be a unit vector which is decomposed as z = zll + z*+. We have

(A ) (=2 )]

IA

AX) + (Ax M¢ Ax) 2”H2

AX) + || Ax ((nfz")l + (rlfz”)”)

(nfz”)”

16This is the source of loss of a factor of 2 in the exponent (which leads to degree O(|S| /)\4+°(1)) rather
than the desired degree of O(|S| / A2+o(1)) we will later achieve. Note that the same loss occurs in the original
zig-zag analysis of [RVWO00], which was later remedied by the s-wise zig-zag of [BATS08].

IA

2

IA

+
2

ACX) + ||Ax (rlfz”)L

2
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IA

2A(X) +

(nfz")” 2

2A(X) + Ao. (By Claim 3.4)

IA

Theorem 3.1 now follows from the lemma above and the submultiplicativity of the
operator norm.

3.2 Instantiating the Construction

To construct S, our construction requires an auxiliary expander graph X to perform walks
on. One convenient source (among several) is a recent construction of Alon.

Theorem 3.6 (Corollary of [Alo21, Thm. 1.3] ). For every n € N, A € (0, 1), there exists a
positive integer my and an explicit construction of a graph X on mmn vertices with degree at most
9/A% and M(X) < A

We now establish the key amplification lemma.

Lemma 3.7. Let S € G such that bias(S) = Ao < 1. Then, for any A > 0, we can explicitly
compute S’ such that bias(S’) < Aand |S’| = Oy, (i)

)\4+5()\0)
Proof. Pick a constant ¢y such that A; = (1 + 2¢9)A\g < 1 and use Theorem 3.6 to obtain
an explicit (m|S|, d, egAg)-graph X. Let S; be the multiset consisting of m copies of S. The
bias remains the same and now, |V(X)| = |S1|. We construct S’ by multiplying elements of
t-length walks on X where t = [2(1 + log,, (A))]. The size of §" is

3 4logy, A

S’ = (mlS]) - d* = O, (IS])- (—)
807\0

7410g( 503)\0)

= O, (IS]) - A" TostAD
og(%))

log(1/Aq)

—4(1+l
< 07\0(|S|) A
Let p be any irreducible representation. From Eq. (3) and Theorem 3.1, we get,

< @AX) + bias(S)* < (AP <A, m
op

E [p(s¢---so0)]

sg--St€S’

Using the amplification above, we now derive our first simplified explicit construction.

Proof of Theorem 3.2. Pick a constant N’ < min (%, (%)46). Use Lemma 3.7 with the target
expansion A = A’ to obtain a set S; with size |S1| = Ox,,g(|S]) as A is a constant. Now use
Lemma 3.7 again with S; as the initial set and the final expansion as A to obtain S’. This

time we fix g9 = % in the proof of Lemma 3.7 and by our choice of A/, we have 5(\) < f3.

Thus, the final size is |S’| < Oy (%) < Oxp.p (%) |
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3.3 Operator Norm Decay from any Bias

The amplification guarantee of Theorem 3.1 trivializes if 2A(X) + A9 > 1. Nonetheless, we
now show that amplification does occur under much weaker conditions, namely, when-
ever ||Exevy [f(x) ]| op <1 and the auxiliary graph X has expansion A(X) < 1. This estab-
lishes that expander walks can be used to derandomize powers of an operator, itself given
by an average of bounded operators, in the general case. In this derandomization, we still
have an exponential norm decay, but we only “pay additional randomness” proportional
to the degree of the auxiliary expander regardless of the number of operators.

Theorem 3.8 (Operator Amplification via Expander Walks (strengthening of Theorem 3.1)).
Let X be a N(X)-spectral expander and let W; be the collection of walks obtained from walks of
length t on X. Then for any operator valued function f such that ||Exev, [f(x)] < A and
maxxevy [If(x) [lop < 1, we have

lop

E [f(s¢)- - f(s0)] < [1-(1-AX)2(1 - Ao)] Lt/2)

(So,...st)GWt

op

The above amplification follows from the following improved version of Lemma 3.5.
The proof explores the structural syntactic similarity between the operator amplification
and known zig-zag analysis [RVW02, Rei05, TSD18]. This regime of bias amplification
was instrumental in the breakthrough SL=L result of Reingold [Rei05].

< Ao and

Lemma 3.9. Let X be a A(X)-spectral expander and let f be such that ||Excv, [f(x) ] ||0p <

maxxevy [[f(x) llop < 1. Then,
. 2
e

Proof. Let Ay = J/|V(X)|, where J is the |[V(X)| x [V(X)| all ones matrix. We can write
Ax = (1 =A)Aj + AE, where A = A(X) and ||E[|,p, < 1. Then

< 1-(1=-AMX)*1-N).
op

||Ax M AX”Op < (1-N%|A) N /f\]||Olo + A1 =) |E M A]HOP

+ (1 —7\)7\”/&] Me E”OP + A2 Ii: Me E

op ’

By Lemma 3.5 and the fact that A(Ay) = 0, we obtain

||,2\] MM¢ '&I”op < QA(A])+)\0 = Ao,

Recall that [|M[|, < 1 since maxy [[f(x) [|op < 1, and we also have |[E||, , ||A]||OP < 1. Then,
IAx M Axlyy < (L=2)A0 + 2M1=N) + N’
= (1-M*Ag + 1—(1-2A)2,
= 1-(1=2*1 - M),
concluding the proof. [ ]
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3.4 Explicit Expanders of Small Sizes

As an application of Theorem 3.2, we demonstrate an construction of explicit Cayley ex-
panders of sizes close to any desired n (as in Corollary 3.12). While a recent work of Alon
[Alo21] gives a construction for every n, it does not have a Cayley graph structure which
is convenient for us to prove Theorem 5.4. Moreover, the construction of Cayley graph as
in [TS17] based on [LPS88] does not suffice for us as they only work in the regime when n
is very large.

Recall that SLy(p) is the group of 2 X 2 invertible matrices over IF,, with determinant 1.
We obtain a base generating set for SLy(p) via the following result.

Theorem 3.10 ([Lub11]). There exists an explicit generating set S (of constant size) for SLa(p)
for any prime p > 17 such that A (Cay(SL2(p), S)) < Ag for some absolute constant Ay < 1.

Theorem 3.11 ([Chel0]). For every n > 232", there exists a prime in [n,n + 4n?/3].

Corollary 3.12. For any n > 292" X > 0, there is a deterministic polynomial time algorithm to
construct an (W', d, N)-graph Cay(SLa(p), S), where 1’ = n + O(m®°) and d = O(A™*1).

Proof. Find a prime p € [n!/3 +1,n'/3 + O(n?/9)], which exists due to Theorem 3.11, via
brute-force search. Since, SLa(p) is a group of order (p? — 1)p, we have n < [SLy(p)| <
n + O(®?). We use the constant-sized generating set S from Theorem 3.10 and amplify
using Theorem 3.2. ]

4 Operator Bias Reduction via the s-wide Replacement Walk

We have seen in Section 3 that bias reduction via random walks on an expander X is sub-
optimal (by a factor of 2 in the exponent). We will derandomize this random walk construc-
tion to achieve an almost optimal bias reduction. The idea is to introduce a new graph Y
which has a much smaller degree, and to “simulate” a random walk on X via a walk on Y.
This is realized by a higher-order version of the zig-zag product [RVWO00] called the s-wide
replacement product defined by Ben-Aroya and Ta-Shma [BATS08] (see Definition 4.5).

This section establishes our key technical result which states that given any initial oper-
ator valued function of constant bias < 1, we amplify the bias in an almost optimal way. This
generalizes the analysis of Ta-Shma [TS17] from scalar valued functions to operator valued
functions.

Theorem 4.1 (Operator Generalization of Theorem 24 [TS17]). Fix integers t > s > 1. Let
X be any dy-regular graph'” and Y be any dy-regular Cayley graph on F5' 5%, Let Wy be the
collection of length t walks on the s-wide replacement product of X and Y. Let H be a Hilbert
space. For any operator valued function f: Vx — L(H), satisfying maxxevy [If(x) llop < 1 and
[Exevy [F0) Illgp = Ao < A(Y)? = 2A(X), we have

< (7\(Y)S +s-AY)SH 452 7\(Y)S_3)Lt/SJ <0, (}\(Y))(l—os(l))t _
op

E  [f(so)---f
(507..‘7St)ewt[ (s0) -~ - f(st)]

7With d; a power of 2.
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Furthermore, the size of the collection is [Wy| = |X] - d} - dJ.

Remark 4.2. Note that there is an inherent trade-off between the spectral bound amplifica-
tion (on the operator norm), and the degree bound (on the number of walks), which causes
the suboptimality in how close this technique lets us approach the Ramanujan bound. As
in [TS17], the o(1) term we obtain from the bound above is (1/log(1/A))¢ for some ¢ > 0
(see Theorem 4.17 for the precise computation).

The rest of this section is planned as follows. In Section 4.1, we recall the s-wide re-
placement product and describe random walks on it. Then, in Section 4.2, we formalize
the distributions we work with and reprove the result that if Y is a Cayley graph over
any product group of appropriate size'® then it is compatible, i.e., it enables the transfer
of pseudorandomness from Y to X. The key generalization to operator valued functions
is established in Lemma 4.7 which is identical in spirit to Eq. (1). In Section 4.3, we then
finish the amplification analysis in a manner similar to [TS17]. In Section 4.4, we provide
details about instantiating the setup by explicitly constructing the graphs we need.

4.1 The s-wide Replacement Product and its Walks

To describe the sparse derandomized subset of walks on X from the s-wide product, we
give an informal description, and then move to a formal description. Before doing so, we
tirst recall the standard replacement product of graphs. This product takes an outer graph
X on n vertices, which is d;-regular, and replaces each vertex of X with a “cloud” which is
a copy of an inner dp-regular graph Y on the vertex set [d;]. The edges within each cloud
are determined by Y while the edges between clouds are based on the edges of X (and
a rotation map). By taking d» < d;, the replacement product yields a new graph that
derandomizes the degree of X.

The s-wide replacement product generalizes this to allow Vy = [d;]® for any positive
integer s. We will now need s rotation maps given by the operators Xg, X1, ..., Xs-; which
we describe now.

The i-th operator X; specifies one inter-cloud edge for each vertex (v, (ag, ..., as-1)) €
Vx X Vy, which goes to the cloud whose X component is vx[ai], the a;-th neighbor of v in
X indexed by the i-th coordinate of the Y component. (We will discuss what happens to
the Y component after taking such a step momentarily.)

Walks on the s-wide replacement product consist of steps with two different parts: an
intra-cloud part followed by an inter-cloud part. All of the intra-cloud steps simply move
to a random neighbor in the current cloud, which corresponds to applying the operator
| ® Ay, where Ay is the normalized adjacency matrix of Y. The inter-cloud steps are all
deterministic, with the first moving according to Xy, the second according to X;, and so
on, returning to X for step number s. The operator for such a walk taking t steps on the

18 Any product group of the form G® with |G| = d; can be used in the s-wide construction and it satisfies

10g2(d1)

this compatible property. Note that in Theorem 4.13 we used G = F,, .
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s-wide replacement product is

0
1—[ xi mod s(l ® AY)

i=t-1
Observe that a walk on the s-wide replacement product yields a walk on the outer graph
X by recording the X component after each step of the walk. Since a walk is completely
determined by its intra-cloud steps, the number of t-step walks on the s-wide replacement
product is,

|Vx| : |\/Y|-dt :n-di-dg <<T1-d;,
which therefore gives us a very sparse subset of all t-walks on X. Thus the s-wide re-
placement product will be used to simulate random walks on X while requiring a reduced

amount of randomness (as we shall see this simulation is only possible under special con-
ditions, namely, when we are uniformly distributed on each cloud).

We now formally define the s-wide replacement product and consider the labeling of
neighbors in X more carefully. Suppose X is a d;-regular graph. For each x € Vx and
j € [d1], let x[j] be the j-th neighbor of x in X.

Definition 4.3 (Locally Invertible Rotation Map). X admits a locally invertible rotation map
if there exists a bijection ¢: [d;] — [d;] such that for every (x,j) € Vx X [d1],

if X" =x[j], then, x'[@(j)] = x.

Example 4.4 (Cayley Graphs are Locally Invertible). Let G be a group and A C G where the
set A is closed under inversion. Label the neighbors of vertices in Cay(G, A), by elements
of A such that g[a] = a - g. Then, Cay(G, A) is locally invertible as the map ¢: A — A
defined as @(a) = a™! clearly satisfies the criteria,

if g'=gla]=a-g, then, ¢[p(a)] =a™" g’ =g,
forevery g € G, a € A.
Definition 4.5 (s-wide Replacement Product). Suppose we are given the following:

- A dj-regular graph X with a bijection ¢ : [d;] — [di] which defines a locally invert-
ible rotation map.

- A dp-regular graph Y on the vertex set [d; ]°.
And we define:
- Forie {0,1,...,s — 1}, we define Rot; : Vx X Vy — Vx X Vy such that,

ROti((X7 (a07 KRN as—l))) = (X[ai]7 (a07 ceey i1, (p(ai)v Aitlyeeny as—l)) ’

for every x € Vx and (ag, ..., as—1) € Vy = [d;]*. (Note that the Y component of the
rotation map depends only on a vertex’s Y component, not its X component.)

- Denote by X; the operator on C[Vx X Vy] which acts on the natural basis via the
permutation Rot; and let Ay be the normalized random walk operator of Y.

Then t steps of the s-wide replacement product are given by the operator

Xt—lmods Ay - leods Ay XOmods Ay .
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4.2 The Collection of Derandomized Walks

We now describe the distribution obtained by the walks on the s-wide replacement product
using the language of operators.

Recall that, in the expander walk case discussed in Section 3, we first relate the set of
walks W, to the action of the t-step walk operator (Eq. (1)) and then obtain that the task of
bounding the bias reduces to bounding the operator norm (Eq. (2)). Similarly for s-wide
case, we express a t-step walk in terms of a s-wide operator that act on the extended space
C[Vx] ® C[Vy]. Then we prove a core lemma that intuitively says: the action of t-step
s-wide operator is same as the action of t-step random walk operator in an appropriate
sense, whenever t < s. The scalar version of this lemma is present (Lemma 26) in [TS17]
and we generalize it for operator valued functions. This generalization requires some care
and appropriate notational setup. Finally, we use this lemma to show bias decay for any
value of t.

Definition 4.6 (Operators and Distributions). Given a tuple of random walk operators'
B =(Bo, - ,Bt-1) on C[Vx]®C[Vy] and a starting vertex xy € Vx, we can define a distribu-
tion induced by the walk using these operators. More precisely, D(B, x) is the distribution
on on (Vx X Vy)'*! such that for every 1 < { < t,

(Be-1-+-Bo) (Xo ® —— Wyl ) = E,5)~p@)Xt ® Ye- 4)

We typically suppress xg as it will not matter and denote D(B) = (Dx(B), Dy(B)) to specify
the projections to Vx, Vy.

The next lemma is a generalization of Eq. (1) which we need for the s-wide replacement
walk. This can also be specialized to prove Eq. (1) by letting Y be a graph with one vertex
(and thus Xy = XYy). Since we now work with the tensor products of three spaces
(one for the graph X, one for the graph Y, and one for the operator valued function f), we

formalize the computation more explicitly. Recall that |i|f vex®y) =f(x)vex®y.

Lemma 4.7 (Operator Generalization). For any tuple of random walk operators B, any operator
valued f, and any v € H, xo € Vx, we have

o © o °© 1 -
(Bt_l Me--- Bo I_lf) (V®X0®—1)= E
[Vyl (%,9)~D(B)

Proof. We prove the computation via induction on t. The base case is whent = 1

o © 1 i 1
M = f
(Bo f) (V®X0® VY] ) Bo ( (x0)vV®xg® — Vel )

E [f(xo))v®x; ®y;] (UsingEq. (4) forf=1)
(X,5)~D(B)

[f(xe-1) - f(x0) v ® Xt ® Y] .

Letyo = ﬁf and assume the statement holds for t — 1. Then,

0
(Bt—l Me--- Bo ”f) (v®x0®yo) = Bi-1 M- n (Bi ﬂf) (v®x0 ®yo)
2

i=t—

YMarkov chain operators on Vx X Vy.
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= B I B [f(xt—2) - f(x0) v ® xt-1 ® Yi-1]
(x,9)~D(B)

1 E  [f(xe-1)f(xe—2) - f(x0) v @ x¢-1 ® Yi-1]
(x,9)~D(B)

B [f(xe-1) - f(x0) v ® Xt ® Yi] -
(X,9)~D(B)

Bi-

The second equality uses the inductive hypothesis and the third uses the fact that ¢ acts
on the tensor space diagonally. Last two equalities use Eq. (4) for { = t—1and ¢ = t
respectively. ]

Using Definition 4.6, we further define the operators for the distributions we wish to
study.

Uniform Distribution Let us first capture using this notation the uniform distribution
on walks on X starting from xg € Vx. We define By where for each i, B; = Ax ® Iy for
every i. Then, for any {, (Ax ® Iy)¢ = A§< ® Iy. Therefore, we obtain that Dx(By) is the
t-step random walk distribution on Xi.e., x; ~ A{xo.

The s-wide Distribution This is the distribution obtained by the s-wide walks as de-
scribed in the earlier section. For 0 < a < b < s, we define

B[aab] = (Xa /&Y7Xa+1 AY7 o 7Xb /&Y) .

We can view this random walk as occurring in two steps. The first being picking an initial
vertex Yo € Y and then, picking the sequence of neighbors according to which we will
perform the walk in Y. To formalize this, let Ay = (1/d2) ZJ.djl P; where P; are permutation

matrices and let ] = (jo, -+ ,jb-a) € [d2]°"¢"L. The conditional distribution, is defined by
B[(l,b, ]] = (Xa IODjO? X(1+1 |%].17 T 7Xb Igjb—a) :

We would like these two distributions to be the same and a graph Y is said to be compatible
with respect to (X, @), if for any fixed sequence, |, of a walk of length { < s, the distribution
obtained on X via the uniform sampling of yo, is the same as the usual {-length walk on
X from any fixed initial vertex, xo. Thus, the randomness of sampling a vertex from Y is
effectively transferred to a random walk on X.

Definition 4.8 (Compatible). A graph Y is compatible with respect to (X, ¢) if for every
0<a<b<s,Je[da]P % and xg € Vx, we have?

Dx(Bla,b,]],%0) = Dx(Bu,x0) = AY **!xg.

Remark 4.9. This compatible property is the same as 0-pseudorandom property in [TS17].
We rename it as it is more of a structural compatibility property than a pseudorandomness
one.

21t is important to note that Dy (B[a, b, J]) # Dy(Bu).
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We now prove, for the sake of completeness, that Cayley graphs are compatible with
every locally invertible graph.

Lemma 4.10 ([TS17, Lemma 29]). Let Y = Cay(G*, T) where |G| = dy. Then, Y is compatible
with respect to any X, ¢.

Proof. Since Y is a Cayley graph, we can think of ] € S* and the permutation matrices as
Pg = preg(g). Recall that for any y = (r1,...15) € G¥,

ng =gy = (91T17' o 7gSrS)7 and le = (Tl,' cr T, (p(ri)vri+17' o 7rS)'

Suppose y = (r1,:--,Ts) ~ G% is now sampled uniformly. Since g; and ¢ are fixed, the
above operators Py and X; preserve the uniform distribution. Moreover, r; is independent
of rj as 1y = Ty k(1) after k steps for some fixed permutation 1; x depending only on ] and

©.
By definition, xi = Xi—1[Ta+i-1,i(Ta+i-1)] and we take at most s steps and therefore, we
use T for distinct i € [a, b] which are all independent. Thus, x; ~ A;xo. [ |

4.3 The s-wide Operator Norm Decay

We are now ready to establish the key technical lemma in the analysis of the s-wide re-
placement.

Lemma 4.11 (Simulation Lemma (generalization of Lemma 26 from [TS17])). Let 0 < s; <
sy < s. For every pair of vectors z,z" € Xy, we have,

S2 o o © 1 - N ° so—s1+1
n (XiAY ﬂf) (Z ® —1) ,Z’ ®1) = <(AX I'If) Z,ZI> .
i V|

Proof. Letz = ), vx ® x and 2’ = },, wx ® x. Since the expression is bilinear, it suffices to
prove the equation for v ® x, w ® x’ for an arbitrary pair (x,x’). Lett = s — 57 + 1.

S2

n (XLAY ﬂf) = E
(jslv”ﬁjsg)w[dQ]t

i=S1

S2

[ (xibs. 7

i=S1

Therefore, we can fix | = (js,, -+ ,js,) € [d2]* and prove it for that. Applying Lemma 4.7
to B[s1, s2,J], we get,

S2

o o ° 1 -
1—[ (Xini nf) (V ®xp ® —1) = E [f(xt-1) - F(x0) v ® xt ® Y]
%% (%,9)~D(B[s1,52,]1)

iZSl

Z E [f(X)v®xt ® y¢] I[yo gives rise to X],
R Yyo~Vy

X

where f(X) = f(x¢-1) - - - f(xo). The second equality uses the fact that J is fixed and we only
pick the starting vertex uniformly at random which determines the entire sequence X, y.
For each given X = (xo,--- ,X¢), there are exactly d}™* starting vertices yo = (r1, -+ ,Ts)
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that give rise to X. This is because, the only requirement is that each of the t constraints
Xi = Xi-1[Ts,+i-1,i(Ta+i-1)] is satisfied where T, 11— 1 is a fixed permutation (for a given J).
Each of these equations determine one of the ri’s and therefore we have df‘t free choices.
Therefore, the conditioning on y doesn’t change the distribution Dx and when we take
inner products, we obtain

S2 s—t

o o © 1 e d ’ e d d )

<1—[ (Xini ﬂf) (V®XO®W1),W®X ®1> = (113 Z (xe, XY (f(x¢_1) - - - f(xp) v, W)
1 Xevy

= . E [(x, ") (f(xe-1) - F(x0) v, W)] .
x~Dx(B[s1,s2,]])

iZSl

We now use?! Lemma 4.7 for By, and take inner product to get,

-

x~Dx(Bu

<(Z\x nf)”'“”(v@m),w@x'>: B [xex) (fxin) -+ fxo) v, w)]

From Lemma 4.10, we know that Y is compatible and thus, Dx(B[si,s2,]]) = Dx(Bu).
Thus, the right hand side of these two equations above are equal. |

The s-step Decay Just like the amplification in Section 3 was analyzed by studying the
norm decay obtained in every two steps (cf.,Lemma 3.7), this amplification via the s-wide
walks will be analyzed by bounding the norm decay for steps of length s using Lemma 4.11

similarly to [BATS08, TS17]. We will use the shorthand L; ::)21 MM ,&y.

The goal is to bound |[[Ls—; - - L0||Op which controls the bias of the set obtained by s-
long, s-wide walks (cf.,proof of Eq. (2)). Equivalently, we will bound (([]; Li)vo, ws) for
any unit vectors?? vg, ws € XYy. We will use the orthogonal decomposition,

XYy = Xy @ C[Vy] = XV) & XV3, where XY! = span{z®T |z e Ay}

For i > 1, we inductively define the vectors vi, wi, z; and bound their norms?,
vi = Lisivig, Zs—i = (Xs—i ”f) Ws—it1, Wi = (AY) ze; ()
Ivill < A(Y)*, llzs—ill < AV, [ws—ill <A (6)

The following lemma follows readily from a calculation and we omit its proof.

Lemma 4.12. For any vo,ws and 0 < 1 < s — 2 we have,

s—1
Lg_1---Logvg = v + Z Ls—1--- Li\)g
i=0

21 As we only want to work with the space X3 here, we can assume in the application of the lemma that
|[Vy| = 1. Else, one could directly apply Eq. (1) and use the observation that Dx (Byy) is the same as the random
walk distribution on X.

22Here we deviate from our notation and use v, w for vectors in X' V.

23By definition ||v{ || < H,&Y vé‘_ln < A(Y) [[vi=1]| .The computation is similar for w and z.
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I
s—1

Li_ws =wg_1 +2z
s—1
* * _ I * * I
Li Lo yws = wy + zp + Z L--- 1%
i=r+1

Theorem 4.13 (Operator Generalization of Theorem 24 [TS17]). Let X be any d,-reqular graph
and Y be a Cayley graph on FF; 8 d1 Lot Wy be the collection of t-length s-wide walks, on the
s-wide replacement product on X and Y. For any operator valued function f on Vx, such that

maxxevy [[f(x) [lop < 1 and [[Exevx[f() llop == Ao < MY)? = 2A(X),

[f(so) - - f(so)]

< (AY)S 45 AY)SL 4+ 52 A(Y)s 3
(S()’... 7St)€Wt

op

Proof. Using Lemma 4.7, we can repeat the proof of Eq. (2) to see that,

E [f(s)x¢ - f(s)xo]

(XO7“. 7Xt)€Wt

< ||Lt"-L0||0p < |||—s_1---L0||cL);‘)/SJ '

s—1
_ Il
(Ls—1---Lovo,ws) = (vs,wp) + <|—s—1 Lyvr, We
=0
s—1
f— | * *
= (vs,Wg) + Z<VT7LT"'LS—1WS
=0
s—1 s—2 s—1
_ I I Iy = « |l
= (vs,Wg) + Z:<vr,wr+zT + v, L3 1%
i=0 =0 i=7r+1
s—1 s—2 s-1
_ il Il Il
- <V57Ws> + <VTaZT + vraL: :_121
i=0 =0 i=r+1

The last step uses <vﬂ,wr> = <AY vﬂ, Z#> = 0. Using Eq. (6), we get <vﬂ, Zﬂ> < A(Y)*L. To

bound the last term, we finally use Lemma 4.11. Let vﬂ =V, ® T, and zg =z ® ﬁf Then,

o i-1
<v’r, (Ax I'If) z’1> (Using Lemma 4.11)
o i-1
)

}\(Y)2Li"7rj }\(Y)T+S—i—1 < )\(Y)s—3’

<vﬂ,L;---L;_1zﬂ>

IA

(AR
op

IA

where the penultimate inequality uses Theorem 3.1 and plugs in the assumption that 2A(X)+
IExevy [f(x)]]] op < A(Y)2. Substituting this back in our expression above gives us the re-
sult. |
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4.4 Instantiating the s-wide Replacement Product
Overview

The goal of this section is to explicitly construct the graphs X and Y, in order to finish the
proof of Theorem 1.2. Once we obtain the graphs, we identify the vertices of X, i.e., Vx
with the initial generating set?* S. The final set is obtained by multiplying elements along
each (t — 1)-length walks on the s-wide replacement product of X and Y. We will only
summarize the construction here and show that the choice of the parameters does in fact
yield our main result. Detailed computation and verification is present in Appendix A.

The construction Recall that a graph is said to be an (n, d, A)-graph if it has n vertices,
is d-regular, and has second largest singular value of its normalized adjacency matrix at
most A.

- The outer graph X will be an (n’, d;, A;)-graph which is a Cayley graph on SLy(p)
constructed using Corollary 3.12. By Example 4.4, it is locally invertible.

- The inner graph Y will be a (d}, d2, A2)-graph which is a Cayley graph on ZJ* and
therefore by Lemma 4.10, it is compatible. For this, we use the construction of Alon
et al. [AGHP92], and the analysis of Ta-Shma Lemma A.1.

The parameters n’, di, da, A1, A2 and s are chosen as follows for a fixed B(A). %

log(1/A) )1/3

s is the smallest power of 2 such that 3_62 <20 <s< (W

Every other parameter is a function of s.
\& (Tlg, d27)\2)a ng = dgsa d2 = 5483 }\2 = \})_di, b2 = 5510g d2
2
2
X:(,diuN), W an=0(Sd), di=dj A =2

t : smallest integer such that (Ay)1=2¥1-)(t=D <} - where ot = 1/s

Now, we mention the central claim that we need from our choice of parameters. We defer
its proof to Appendix A.

Claim 4.14. The selection of the parameters above implies the following bounds on t,

it—122s

ii (d2)(t—1) < )\—2(1+100£)/
Lemma 4.15. The number of walks of length t — 1 on the s-wide replacement product of X and Y
is O(|S| /A2tB).

2More precisely, a slightly modified set S’, obtained by duplicating and adding identities
Z5Note: While we let § be a function of A, it might be instructive to make the simplifying assumption that it
is an arbitrarily small constant. We will deonte it simply as 3 from now on.
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Proof. Since each step of the walk has d, options, the number of walks is

VOOV -df ™ = nas-alt! = - gl e
e (|S| . d(zt—1)+5$+5)

0 (|S| ) d(21+50c)(t—1)) _
which from Claim 4.14 (ii), implies a size of

(1+50)(t-1)\ _ S| 3 IS| B |S|
O(|S|-d2 ) - O(}\2(1+100c)(1+5cx)) - 0(7\2+32cx =0 A2+B |

Before we prove the main result, we need the following simple observation.

Lemma 4.16. Let S be an e-biased set of a group G. And let S" be obtained by adding © |S| many
identity elements. Then, S’ is an (e + 0)-biased set.

Proof. Denote by e the identity element of G. Let p be any non trivial irreducible represen-
tation of a group G. Computing we have

1
IEsesp(®)llop = g [Esesp(s) + 0 Esesisrote)],,
< [[Eoeso(s)llop + 8 (1p(©)llop = 1)
< e+0 (Sis e-biased) [ |

Theorem 4.17 (Almost Ramanujan Expanders I). Let Cay(G, S) be Ag-expander with constant
Ao € (0, 1). For every function®® B(\) > 0, and for any A > 0, sufficiently small such that

32 <( log(1/A) )”3
BA) T \4loglog(1/n)) ~

there exists a deterministic polynomial time algorithm to construct S” such that Cay(G,S’) is a
A-expander with degree |S’| = Oa,(|S| /A2B).

Furthermore, each element in S’ is the product of O(log(1/A)) elements of S.

Proof. We can assume that s > 219 since otherwise A is a constant and we can just use
Theorem 3.2.

Initial Boost We first boost the expansion from A to 1/d2 < ?\g /3. Using Theorem 3.2
(with its parameter 3 equal to 1), we can find a new set of generators, S;, such that
Cay(G, S1) is 1/dg-spectral expander and |S;| = O(|S| dg). Moreover, we also know that,
each element in $; is a multiple of at most log (d3) elements in S. We add multiple copies
of the entire set to make the size |S| dg.

26For a first reading, it may be helpful to assume that { is a very small but fixed constant not depending on
A. Since each of the parameters depend on $, they all become constants under this assumption.
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The s-wide walk Obtain an (n’, d;, A;) Cayley graph X from Corollary 3.12 as explained
before. We add n’ — n = O(n®?) copies of the identity to S; to obtain Ss. By Lemma 4.16
and the assumption that s > 210, Sy is a ?\% /3 +0(n~19) < 27\% /3-biased set. We denote
by S’ the final set of generators obtained by t steps of the s-wide replacement product of
X and Y. By definition, each element in S’ is a product of t elements in S; which has the
same elements as S;. Thus, each element in §’ is a product of at most

O(tlog(ds)) < O((1 + 10c)log(1/A)) (Using Claim 4.14 [ii])
O(log(1/N)) (By the assumption that &« < 1/128)

A

IA

elements of S. The only thing that remains is to prove expansion of Cay(G, S’). We pick any
irreducible representation p and apply Theorem 4.13 to the function p on Sy <> V(X). The
condition that 2A(X) + ||]Eg~52 [p(g)]”OP < A(Y)? translates to A\; < ?\% /6 which is satisfied by
our choice of A;. Thus, the final expansion is given by,

E [e(9)] L (AS +5 - A37L 452 A7) LD/
< (3s2A578) VI Using s < 20s,s22i2gs < %
< (s
< AU-B/s)1-s/(e-D)(e-)
< AYPeli-edey (Using Claim 4.14 [i])
= 7\(21_5“)(1_“)(t_1) <A, (From the choice of t) =

5 Some Applications

Our operator amplification leads to almost optimal explicit constructions of many pseudo-
random objects (from existing suboptimal ones): transforming arbitrary expander graphs
into almost-Ramanujan expanders (Section 5.2), quantum expanders (Section 5.3), mono-
tone expanders (Section 5.4), to generating sets with improved (average) Kazhdan con-
stants (Section 5.5) and to dimension expanders (Section 5.6). These pseudorandom objects
embody various notions of expansion.

Permutation Amplification The key to these applications is observing that the adjacency
matrix of an arbitrary graph and that of a monotone expander can be written as a sum of
permutation matrices which can be interpreted as Py = pgef(0) for the defining (or natural)
representation pger. We plug in the collection of these permutations {o} in our amplifica-
tion machinery to obtain almost optimal spectral expanders and monotone expanders.

Almost Ramanujan Expanders for the Symmetric Group Constructing constant size
expanding generating sets for the symmetric group was quite challenging (even non-
explicitly). In a breakthrough work [Kas07], Kassabov provided the first family of such
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expanding generators which was also explicit. However, this family was not close to the
Ramanujan bound and no such generating set was known. Theorem 1.2 lets us amplify
Kassabov’s generating set to one close to optimum bound showing that the symmetric
group has explicit almost Ramanujan Cayley expanders. The same obviously holds for
every expanding group.

Quantum Expanders A quantum expander is a generalization of an expander graph hav-
ing many applications in quantum information theory [AS04, BASTS08, Has07b, Has07a,
HH09, AHL"14]. Harrow [Har07] showed that Cayley graphs can be used to construct
quantum expanders inheriting the expansion of the starting Cayley graph. However, the
construction is only explicit if the group admits an efficient quantum Fourier transform
(QFT). Since we can now obtain almost Ramanujan Cayley graphs for the symmetric group
which has a known efficient QFT [Bea97], we obtain the first explicit almost Ramanujan
quantum expanders.

Improving the Kazhdan Constant The Kazhdan constant K(G, S) of a finitely generated
group G, with respect to a generating set S, is a quantitative version of Property (T) which
has been used to construct explicit expanders (e.g., Margulis [Mar88]). We show that this
can be amplified by considering a slightly different version called the average Kazhdan con-
stant which directly relates to the bias of the set S. This is interesting as typically the bound
on the Kazhdan constant is used to construct expanders but here we construct expanding
generating sets to improve the constant! The improved constants and the generating sets
have algorithmic implications and we mention two of them.

- Dimension expanders - Lubotzky and Zelmanov [LZ08] showed that the image of a
generating set of a group under an irreducible representation gives a dimension ex-
pander and its expansion is controlled by its Kazhdan constant.

- Product replacement algorithm - uses random walks on k-tuples of groups elements.
Lubotzky and Pak [LP00] showed that the mixing time of the algorithm relates to the
Kazhdan constant (assuming Property (T)) of certain lattice groups like SL,(Z). This
crucial assumption was proven in complete generality?” recently by Kaluba, Kielak

and Nowak [KKN21]. In particular, we have a mixing time bound of ;él((gg lsG)2| .

Using our amplified generating set (Corollary 5.14), we can improve both these results.

Sampling Group elements Another application of having almost optimal Ramanujan
Cayley graphs is to sample random group elements efficiently. Given a Cayley graph,
Cay(G, S), one can consider a random walk on G which starts at an arbitrary vertex g and at
each step moves to a random neighbor g — sg. Spectral expansion guarantees that walks
mix quickly, i.e., in at most Ox(log |G|) steps (See [HLWO06]). The amount of randomness
used in each step is log d and since the degree versus expansion trade-off is now almost

?7In general, we have quotients of Aut(Fy), the automorphism group of the free group generated by n
elements and [KKN21] proves that Aut(F ) has Property (T).
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optimal, we can achieve the same convergence guarantee using a smaller degree and thus
the random walk is more efficient in terms of randomness.

5.1 Permutation Amplification

The defining representation - (pges(0), C™) for Sym,, is defined as the representation that
maps a permutation to the matrix defining it. More formally, pgef(0)e; = eq(i) for ev-
ery unit basis vector e; of C™. It is a fact that Vet = Viriv @ Vstandard Where Vstandard is an
irreducible non-trivial representation. Note that if we are given a set {Py,--- , Py} of per-
mutation matrices acting on C™, we can identify a set S = {0y, ,0+} € Sym,, such that

Pdef (01) = Py.

Corollary 5.1 (Permutation Amplification). Let P = {Py,---, Py} be a collection of permuta-
tion matrices such that N(Ei.[+1[Pi]) < Ao. Then, for any A € (0, 1), we can explicitly construct a
collection P’ such that

1. A(Epm~p/[M]) < A,
2. [P’ < O (|P| /A2*oW) and
3. each P’ € P’ is a product of at most Oy, (log(1/A)) many matrices from P.
Proof. Let Py = oi. Applying Theorem 4.13 to the set S = {0;} we get a larger set of per-

mutations, S’ of the form o’ = 0y, ©- - -° 0y, where k = O, (log(1/A)). By the decomposition
of the defining representation, we have that

Spec (Mlgp, [M]) = Spec ( E_[pacr(e')])

= {1} U Spec (GJI::S’ [pstandard(o—l)]) .

where the 1 corresponds to the eigenvalue from the trivial representation. Since the oper-
ator amplification reduces the bias of every non-trivial irreducible representation, it also
does so for Vsiandard- [ |

5.2 Arbitrary Expanders via Permutation Amplification

We can make any family of bounded degree expander graphs into an almost Ramanujan
family while preserving their adjacency structure. First, we recall Konig’s theorem that
says that the adjacency matrix of a d-regular graph can be expressed in terms of permuta-
tion matrices.

Theorem 5.2 (Konig). Let Ax be normalized adjacency matrix of a d-reqular n-vertex simple
graph X. Then, there exists d permutation matrices Py,...,Pq € R™™ such that

d
>
j=1

Ax =

ol



It is also efficient to find permutation matrices as above.

Claim 5.3. The permutations in Theorem 5.2 can be found in time poly(n).

Proof. We view Ax as encoding the adjacency relation of a bipartite graph with vertex
bipartition (A = V(X),B = V(X)). This bipartite graph is d-regular so it has at least one
perfect matching M, which can be found in poly(n) time. We remove this matching M
obtaining a (d — 1)-regular graph and we repeat till the resulting graph is empty. |

Our general transformation into an almost Ramanujan bound follows by using Claim 5.3
to obtain an initial set of permutation matrices which are amplified using Corollary 5.1.

Theorem 5.4 (Main I (Formal version of Theorem 1.1)). Let {X;}ien be a family of do-regular
Ao-expanders with constant Ao < 1. For any A € (0,1) and any expander X;, we can determin-
istically compute a d-regular A-expander X} with d = Ox,(do JAZW) i time poly(|V(Xy))).
Moreover, the construction is local in the sense that edges in X! correspond to short walks in X;.
More precisely, if the adjacency matrix of X; is

1 &
Ax. = — > P
Xi d(]]Z:; js

where Py, ..., Pa, are permutation matrices, then the adjacency matrix of X/ is
=
Ax; =5 D,
j=1
where each P; is the product of at most k = Ox,(log(1/\N)) permutation matrices among Py, ..., Pq,.

5.3 Explicit Almost Ramanujan Quantum Expanders

Quantum expanders were defined in [AS04, BASTS08, Has07a] and have found many
applications in quantum information theory. For instance, they can be used in the con-
struction of designs and gates sets [HH09], in quantum statistical zero knowledge (QSZK)
[BASTS08], in detecting EPR pairs [AHL*14] and in the study of entanglement [Has07b].

Roughly speaking, a quantum expander is a generalization of an expander graph (see
Definition 5.5 for precise details). While a usual degree-d expander graph X = (V,E) is
given by d permutation matrices acting on a vector space C[V], a quantum expander is
given by d (suitable) linear operators acting on quantum states (i.e., PSD matrices of trace
1). The normalized adjacency matrix of a A-expander shrinks the {3-norm of vectors or-
thogonal the all ones function by a factor of A. Similarly, a quantum expander shrinks
the Frobenius norm of PSD matrices orthogonal # to the identity matrix (the quantum
analogue of the all ones function) by a factor of A (the quantum expansion parameter).

In [Has07c], Hastings showed that the Ramanujan bound also applies to quantum ex-
panders and that d random unitaries get arbitrarily close to the bound. However, such a

28With respect to the Hilbert-Schmidt inner product.
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construction cannot be efficiently implemented and thus used in applications like [AHL*14]
which rely on existing explicit constructions (e.g., [BASTS08, Har07]) that are far from the
Ramanujan bound and thus give sub-optimal results.

We deduce the existence of explicit families of almost Ramanujan quantum expanders
by applying our amplification of Cayley graphs together with a result of Harrow [Har07].
For this, it is important that we can efficiently construct almost Ramanujan Cayley ex-
panders on the symmetric group Sym,,, for which efficient Quantum Fourier Transform
(QFT) is known [Bea97].

Definition 5.5 (Quantum Expander [AHL"14]). The (super) operator @ : CNN — ¢N*N
isan (N, d,A) quantum expander if

- (“Degree”) The operator @ can be expressed as a sum of d linear operators as follows,
O(p) = Zid:l BipBJ{ where?’ Zle BJ{Bi =In.

- (“Expansion”) The second largest eigenvalue®® of @ as a linear map is < A.

Theorem 5.6 (Harrow [Har07]). Let G be a group and S C G be a multiset such that Cay(G, S)
is a A-spectral expander. Let V¥ be an irreducible representation of G of dimension N. Then,
there exists an (|S| , A)-quantum expander of dimension N. Furthermore, if the group G admits an
efficient QFT and log N = Q(log |G|), then the quantum expander is explicit.

As a corollary of Harrow’s result and our explicit family of almost Ramanujan Cay-
ley expanders over the symmetric group obtained from the expanding family of Kass-
abov [Kas07], we deduce the following corollary.

Corollary 5.7 (Explicit Almost Ramanujan Quantum Expanders). For every A € (0, 1), there
is an explicit infinite family of (efficient) (O(1/A2*°W), \)-quantum expanders.

5.4 Explicit Almost Ramanujan Monotone Expander

We now show how to obtain almost Ramanujan monotone expanders starting from the
explicit construction in Bourgain and Yehudayoff [BY13]. Monotone expanders are di-
mension expanders over any field as observed by Dvir and Shpilka [DS09, DW10]. First,
we recall the definition of a monotone graph.

Definition 5.8 (Monotone Graph). A bipartite graph X = ([n]a U [n]g, E) is a d-monotone
graph if there are d partial monotone maps fi, ..., fq with domain and images in [n] (as
an ordered set 3!) such that the edges set E is the following disjoint union

d
E=| [{va, fiw)s) | v € Domain(f;)}.

i=1

29 A useful special case is when each Bj is a (normalized) unitary.

It  satisfies Tr(p) = 0, then [|O(p)ll; < Allplly, where flplly = yTr(p¥p).
31Under the natural order,ie., 1 <2 < --- <n.
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We observe that there are two notions of degree of a monotone graph: the usual vertex
degree and the number of monotone functions. Clearly, if a graph is d-monotone, all vertex
degrees are at most d. The converse is not necessarily true (e.g., every bipartite graph
X = (V,E) is |E|-monotone - it is important to keep this parameter constant). We stress
that our almost Ramanujan bound is with respect to the usual notion of vertex degree (and
keeps the number of monotone maps polynomial in the vertex degree).

Definition 5.9 (Monotone Vertex Expander). We say that X = (A = [n]Ja UB = [n]g,E) is
a d-monotone expander if it is a d-monotone graph and there exists & > 0 such that for all
A’ C A with |A| < n/2, we have [0(A’)| > (14 ) |A’|, where 0(A’) is the set of vertices in B
adjacent to A’.

Theorem 5.10 (Bourgain and Yehudayoff [BY13]). There is an explicit family {Xn }neN of d-
monotone vertex expanders with d = O(1).

We will work with a spectral definition of monotone expander.

Definition 5.11 (Spectral Monotone Expander). Let X = (A = [n]Ja UB = [n]g,E) be a
d-monotone graph. We define Ax to be the adjacency matrix of X when the two vertex par-
titions are identified (as xao = xp for x € [n]) and define A(X) = max{|A2(Ax)|, |An(Ax)|}.

It is well-known that starting from a monotone expander (not necessarily a vertex reg-
ular graph), we can add partial monotone functions to obtain a monotone graph of regular
(vertex) degree that is still expanding. We use this to establish the following,

Corollary 5.12. There is explicit family {Xy}nen of do-regular 2dg-monotone expanders with
AXn) < Ao < land dy = ©(1). Furthermore, the unormalized adjacency matrix of Xy, can be
written as a sum of do permutation matrices each corresponding to two monotone maps.

Proof Sketch: Let {X/,}nen be the family in Theorem 5.10. Let X = X/, be a fixed do-
regular monotone expander with the maps {fi}.

For each monotone function f;, we define its “complement”, f;, as the (unique) partial
monotone function f; such that f; U f; is a total function. Let Y be the 2dg-monotone graph
corresponding to the maps {fi, fi}. Then, its adjacency can be written as as follows

where P; = M¢, + Mf_i and (Mg, )x,y = T[fi(x) =y].

Each matrix P; is a permutation matrix as f; U f; is a total function. Adding more maps
preserves the constant vertex expansion parameter which (together with having constant
vertex degree) implies constant spectral expansion bounded away from 1 (see [Vad12, The-
orem 4.19]). Thus, {Yn }nen is the required family. O

In the amplification process, we will be multiplying permutation matrices rather than
just composing monotone maps since the latter operation can result in a map with empty
domain. We now establish the derandomized spectral amplification of monotone ex-
panders.

34



Corollary 5.13 (Almost Ramanujan Monotone Expanders). For every A > 0, there is an ex-
plicit family {Xi }ien of (vertex) d-reqular d®M-monotone expanders with d = O(1/A**°W) and
AXi) <A

Proof. Let {X/, }nen be the family in Corollary 5.12. Fix X = X/, and let Py,...,Pg4, € R™™
be the permutation matrices guaranteed by Corollary 5.12, where each Py = My, + Mz
Use Corollary 5.1 to obtain a collection of d = O(1/ AZ+B) permutation matrices each of

which is a product of k permutation matrices from Py,..., P4, and so we obtain
Pi, - Py = Z Mgil"'Mgik
gi€{fi,fi}
= Z Mgilogi2o‘.‘ogik Pl
gie{fi, fi)

where gy, © gi, © --- gi, is the composed map which is monotone (possibly with empty
domain). This means that we can have at most 2¥ monotone maps (and at least one since
Pi,--Pi, # 0). Therefore, the total number of maps is at most d - 2% = d°W as k =
Ox,(log(1/))). This can be made undirected by adding f~! for each f and thereby doubling
the degree. ]

5.5 Amplifying the Average Kazhdan Constant

The Kazhdan constant is a notion of “spectral gap” (and so it is related to bias) for dis-
crete groups which predates and was central to the study of expansion in finite groups
and graphs. These groups can have infinitely many irreducible representations on more
general Hilbert spaces, possibly of infinite dimension. Nonetheless, we can still apply our
operator version of Ta-Shma’s amplification procedure as it is independent of dimension
and works for any unitary representation p. Therefore, we amplify the average Kazhdan
constant which also amplifies the Kazhdan constant. We now define these two parameters
formally.

Let G be a discrete group generated by a finite set S of generators. The Kazhdan constant
of G with respect to generators S is defined as

K(G,S) = inf{K(G,S, p) | (p, H) irreducible and non-trivial} ,

where K(G, S, p) := infyey. |v|,=1 Maxges [p(g)v — v|[3.

Analogously, an average version of the Kazhdan constant, as in the work of Pak and
Zuk [PZ01], can be defined as

K(G,S) = inf{K(G,S, p) | (p, H) irreducible and non-trivial}

— . 1 9
K(G,S,p) = inf — v—v
G.S.0)= il o ; lo(g)v =~ vii3

1
= inf — 2—2{(p(g)v,v)
veH: [[vll,=1 |S] gzes g
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veH: [[vllp=1 g~$

J)

Theorem 1.2 gives an improved generating set in this more general setting.

= inf 2-2 < E [p(9)] v,v>

=2({1-|l'E [p(9)]

g~S

Corollary 5.14 (Amplifying Average Kazhdan Constant). Let G be a discrete group and S a
finite set of generators such that the average Kazhdan constant K(G, S) is equal to 2 - (1 — Ag) for
some constant Ay € (0,1). For every A € (0, 1), there is a set S’ C G such that

1. K(G,S) > 2-(1—A), and thus, K(G,S’) > 2- (1 - ).
2. [8'] = Ox,(IS] /A2, and
3. S’ can be found in time poly(|S| /A) assuming an oracle for group operations on G.

Remark 5.15. Note that the above amplification for K immediately implies the same am-
plification for K (since the maximum is at least the average). Moreover, we remark that
the above amplification can also similarly improve the constant of Lubotzky’s property
(T) (the latter being a weaker version of property (T)), so it is more general and applies to
expansion in many more discrete groups [RL10].

In Section 5.6, we will apply this corollary to a specific family of representations which
will give a simple improvement to the bounds on the dimension expander constructed
in [LZ08].

5.6 Explicit Almost Ramanujan Dimension Expanders

Dimension expanders were defined in [BISW01] motivated by applications in theoretical
computer science. A conjectured construction based on irreducible representations was
suggested by Wigderson to hold over every field. The conjecture was subsequently estab-
lished by Lubotzky and Zelmanov [LZ08] for fields of characteristic zero. We now define
dimension expanders, explain the [LZ08] proof, and our amplification in this setting.

Definition 5.16 (Dimension Expander [LZ08]). Let IF be a field, d € N, ¢ > 0, V be a
vector space of dimensionn and Ty, ..., Tq: V — V be linear transformations. We say that
(V,{Ti}ig[q)) is an e-dimension expander if for every subspace W C V of dimension at
most n/2, we have dim(W + Zle Ti(W)) = (1 + ¢) - dim(W).

Remark 5.17. Observe that if the maps T; are restricted to being permutation matrices, and
the expansion condition is restricted only to subspaces W generated by elementary basis
vectors, then one obtains the usual definition of vertex expansion of graphs. Thus dimen-
sion expanders may be viewed as a linear-algebraic extension of expander graphs.

For an irreducible unitary representation p, there exists an associated representation® adj,,.
The construction in [LZ08] relates dimension expansion with the Kazhdan constant as fol-
lows.

Let sy (C) = {tr(A) = 0 | A € Mp(C)}. Equip the space with the Frobenius inner product defined as
(A,B) = tr(A'B) where At is the conjugate transpose. For any finite dimensional unitary representation
p : G — Un, we have an adjoint representation (adj,, sln) where the action is by conjugation adj,(g) - A =
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Proposition 5.18 (Adapted from [LZ08]). Let p: G — Ugn be a unitary irreducible repre-
sentation. Then (C™, {p(g)}ges) is e-expander, where ¢ = (1/2 - o(1)) - K(G, S, adj,,) (if we
additionally assume dim(W) is sufficiently small).

By definition, (G, S,adj,) > K(G,S) and therefore for a group G which satisfies the
condition of Corollary 5.14, we obtain a set S’ (at the expense of restricting the dimension
of W) such that (G, S’, adj,) > 2(1 —¢) for any ¢ > 0. Which we can get ¢ arbitrarily close
to 1 in the definition of dimension expander. In fact, we need another simple improvement
to a computation in [LZ08] which we state without proof.

Claim 5.19. Let W, W’ C C4 be two vector spaces. Let P, P’ be orthogonal projectors onto W, W’,
respectively. Then,

Re (Tr(PP’)) = Tr(PP’) > dim(W N'W’).

With the above claim and the analysis in [LZ08], we obtain stronger dimension expan-
sion for small dimensional spaces.

Remark 5.20. Forbes and Guruswami [FG15] point out that the quantum expander con-
struction of Harrow [Har07] also yields a dimension expander (with a similar construction
of the dimension expanders from [LZ08]). As mentioned earlier, monotone expanders are
dimension expanders over any field [DS09, DW10]. Moreover, the Bourgain and Yehuday-
off [BY13] construction of monotone expanders with constant generating set yields such
dimension expanders with constant generating set!

5.7 Diameter of Finite Groups

The study of the diameter of Cayley graphs can take many forms, e.g., it can be with respect
to every generating set (as in the celebrated Babai—Seress conjecture [BS88]) or with respect
to some constant size generating set as in [BKL89]. Here, we explore the latter case.

First, recall that any n-vertex degree-d graph has diameter at least logq_;(n). On the
other hand, it is well-known that expansion directly implies diameter at most C -log4_;(n)
for some constant C > 1 (depending on the expansion).

Using the operator amplification, we deduce that any expanding group G has a con-
stant degree-d Cayley expander of diameter ~ 2 - log4_,(|G|). More precisely, we have the
following.

Lemma 5.21. Suppose {Cay(Gi, Si)}ien is a family of bounded degree Cayley expanders. Then,
there exists a family {Cay(Gi,S})}ien of constant degree-d Cayley expanders with diameter at
most (2 + 04(1)) - logq_1(Gy).

Proof. We apply Theorem 1.2 to the family {Cay(Gi, Si)}ien obtaining a new family of
{Cay(Gi, S))}ien of (d,A)-expanders with d = 1/ A2*P for some sufficiently small constants

p(g)-A-p(g)~!. Since conjugation by unitary matrices preserves the trace, sy, is closed under the representation.
Moreover, it is unitary as

(adj,(9)A, adj,(9)B) = tr(p(g)ATp(g) p(9)Bp(g)™) = (A, B).
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A, B > 0. Let A; be the normalized adjacency matrix of Cay(Gi, S}) and n; = |Gi|. Let eq
be the indicator vector of some fixed g € G;. Note that

(A= I/mi)tegll, <At =d YR < 1/1Gy],
fort = (2+2B) loga(IGil) = (2 + 04,(1)) - logq 1 (IGi])-

This implies that A;eq is supported on all elements of Gi, and thus the diameter of Gj is at
most t. [ |

6 Operator Expander Mixing Lemma

In Section 3, we showed an operator amplification based on walks on an auxiliary ex-
pander. An alternative approach due to Chen, Moore and Russell [CMR13] proves an
operator version of the expander mixing lemma (EML) and applies it in an iterated way
(using different auxiliary graphs) for bias amplification. They obtain a dependence factor
1/A! in the degree. We show that this approach [CMR13] can achieve a dependence fac-
tor of 1/A**°(M) which is similar to the expander walk approach Theorem 3.2 (also follows
similar trade-offs to the scalar amplification via random walks [TS17]). We formally prove
the following result.

Theorem 6.1 (Iterated Operator EML). Let S C G. Suppose A(Cay(G,S)) = Ay < 1, where
Ao € (0,1). For every A € (0, 1), we can find S” C G such that,

1. MCay(G,S)) < Aand |S’| = Ox,(|S| /A*+°W), and

2. the running time is poly(|S|, 1/Ao, 1/A).

We now show an operator version of the expander mixing lemma for completeness.
As we mentioned above, a similar result was first derived in [CMR13]. While a simple

generalization of EML, it is of the same nature of the generalizations of this paper, and is
of independent interest.

Lemma 6.2 (Matrix EML [CMR13]). Let X = (V, E) be a N(X)-spectral expander and let f: V —
L(H). Then,

2
E_[f) -f(x)] - (]Fv [f() ])

(x’,x)€E

2
< . .
< MX) max 1£60) llop
op

We start with a simple claim describing an operator form the process of sampling ac-
cording to the edges of an expander and sampling according to pairs of vertices. Recall the
following maps from Section 3, Py : Xy — Hand Ly : H — Xy,

Pyiw®x) =w, Lyv) = Xgl/x [vex].

We will need again that ||Py||op lIL#lop = 1.
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Claim 6.3. Let Ax be the normalized adjacency matrix of a d-reqular graph X and let Jx be the
normalized |Vx| X |Vx| all-ones matrix.

E [f(x') -f(x)] = PyM, Ax MyLy.

(x,x’)eE

E_[f() 0] = PuMl. Jx Naly.

)

Proof. The proof is identical for both so we prove just the first one. For any w € H, we
have

1
[Vx|

= LPHI'IZ Ax (Z x®f(x)w).

|VX| xeVx

1 ,
= dlvlean(Z Zx ®f(x)w).

x€Vx X/ ~x

= %PH ( Z Z X’ ®f(x’)f(x)w) :

XEVx X/'~x

Py, Ax MyLyw

Py, Ax nZ(Z x®w

XEVX

1 ’ _ ’
= 5 XZ; f(x) F(x)w = <xf,]XE)eE [f(x)) - f(x)]w.
as claimed. [

We now prove the operator mixing lemma above.

Proof of Lemma 6.2. By Claim 6.3, it is enough to bound the operator norm

IA

[Pren (Ax =) Mt < WPl el (Ax = x| el

2 _ . 2
}\(X) ”rIZ“op - }\(X) gelz\i})(( ”f(X) ”op )

op

IA

concluding the proof. ]

Corollary 6.4 (Non-abelian EML). Let X = (V, E) be a A(X)-spectral expander, p: G — Uy be
an unitary representation and (gy)vev € GV. Then

< AX).

2
E [p(gu) - p(gv)] - (u]EV [p(gu)]) op

(u,v)eE

Proof. Follows immediately from Lemma 6.2 and the fact that unitary operators have op-
erator norm bounded by 1. |

We now prove the main result of this section. This iterated amplification also appears in
the derandomized squaring of Rozenman and Vadhan [RV05] used to give an alternative
proof of the SL = L result of Reingold [Rei04].
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Proof of Theorem 6.1. We amplify the expansion in two phases. The first phase amplifies the
initial expansion of S from A to a constant expansion Aj = 1/4. This phase increases the
size of the generator set by a constant factor.

(First Phase) Let ¢, vy be constants such that
g0 =Ao(1=20)/2, 0<yo<(1-Ag)/2<1

Let Xy = (Vo, Eo) be an explicit expander via Theorem 3.6, with A(X) < ¢, degree O(1/ eg
and with the number of vertices |Vy| = m |S| with m = O(1). Replicate each element of S m
times and still call the resulting multiset S (observe that expansion remains Ag). For every
edge (u,v) € Eg, add g..gy to Sp. By Corollary 6.4,

MG, So) <A+ €0 < Ao(1=vo), [Sol = 91S| /€5 = O(IS)

Repeat this procedure log;_,, 1/4Ag times which ensures that the expansion is Aj = 1/4.
Let Sy be this final set.

(Second Phase) We will amplify the bias inductively using a stronger (i.e., more expand-
ing) auxiliary expander graph X; at each step. As mentioned, this inductive amplification
is similar to the derandomized squaring of Rozenman and Vadhan [RV05]. We start with
So and expansion Aj = 272 as in the first phase. At each step assume that you have a
set Si_; with expansion A;_;. Use Theorem 3.6, to construct X;_; to have expansion )\%_1
and degree at most 9/ ?\f‘_l. Then, S; is obtained via edges of X; as before and we have
AL < 2?\%_1. It is easy to check that the recurrence yields A; < 2= for i > 1. Assume for
convenience that log A = —27. Clearly, then we need to iterate this r times. In each iteration,
the size grows by a factor of the degree which is 9/A{ ; and thus the final size of S’ can be
bounded as,

19 (20 by _1Sol (1 N
" o_ | | L Qrod+4(2°+-+2771) _ .
|S | - |SO| 1] }\4 S |SO| 9 2 - )\4 (lOg}\) S O?\O ()\4+0(1)) °
1= 1

concluding the proof. ]

Acknowledgement

We thank Alexander Lubotzky for stimulating and enlightening discussions in the initial
phase of this project.

References

[ABN*92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptotically
good, low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 28:509-516, 1992. 6

[ACKM19] Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla, and Vivek
Madan. On the expansion of group-based lifts. SIAM ]. Discret. Math.,
33(3):1338-1373, 2019. doi:10.1137/17M1141047. 10

40


https://doi.org/10.1137/17M1141047

[AGHP92]

[AHL*14]

[Alo21]

[ALWO1]

[AR94]

[AS04]

[AW02]

[BASTS08]

[BATS08]

[Bea97]

[BISWO1]

[BKL89]

N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of al-
most k-wise independent random variables. Random Structures and Algorithms,
3(3):289-304, 1992. 12, 27, 46

Dorit Aharonov, Aram W. Harrow, Zeph Landau, Daniel Nagaj, Mario
Szegedy, and Umesh V. Vazirani. Local tests of global entanglement and a
counterexample to the generalized area law. In Proceedings of the 55th IEEE
Symposium on Foundations of Computer Science, 2014. arxXiv:1410.0951,
doi:10.1109/F0OCS.2014.34. 30,32,33

Noga Alon. Explicit expanders of every degree and size. Combinatorica, Febru-
ary 2021. doi:10.1007/s00493-020-4429-x. 14,17, 19

N. Alon, A. Lubotzky, and A. Wigderson. Semi-direct product in groups and
zig-zag product in graphs: connections and applications. In Proceedings of the
42nd IEEE Symposium on Foundations of Computer Science, 2001. 9

Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Ran-
dom Struct. Algorithms, 5(2):271-285, 1994. doi:10.1002/rsa.3240050203.
6

Andris Ambainis and Adam D. Smith. Small pseudo-random families
of matrices: Derandomizing approximate quantum encryption. In Klaus
Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana Ron, editors, APPROX-
RANDOM 2004, Cambridge, MA, USA, August 22-24, 2004, Proceedings, vol-
ume 3122 of Lecture Notes in Computer Science, pages 249-260. Springer, 2004.
arXiv:0404075,doi1:10.1007/978-3-540-27821-4\_23.4,30,32

R. Ahlswede and A. Winter. Strong converse for identification via quantum
channels. IEEE Transactions on Information Theory, 48(3), 2002. 8

Avraham Ben-Aroya, Oded Schwartz, and Amnon Ta-Shma. Quantum ex-
panders: Motivation and constructions. In Proceedings of the 23rd IEEE Confer-
ence on Computational Complexity, pages 292-303. IEEE Computer Society, 2008.
doi1:10.1109/CCC.2008.23.4,7,30,32,33

Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of
almost-ramanujan graphs using the zig-zag product. In Proceedings of the 40th
ACM Symposium on Theory of Computing, page 325-334, 2008. 2,9, 16,19, 25

Robert Beals. Quantum computation of fourier transforms over symmetric
groups. In Proceedings of the 29th ACM Symposium on Theory of Computing, STOC
'97, page 48-53, 1997. 4, 30, 33

B. Barak, R. Impagliazzo, A. Shpilka, and A. Wigderson. Dimension ex-
panders. unpublished, 2001. 5, 36

Lé&szl6 Babai, William M. Kantor, and A. Lubotzky. Small-diameter cayley
graphs for finite simple groups. Eur. J. Comb., 10, 1989. 37

41


http://arxiv.org/abs/1410.0951
https://doi.org/10.1109/FOCS.2014.34
https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1002/rsa.3240050203
http://arxiv.org/abs/0404075
https://doi.org/10.1007/978-3-540-27821-4_23
https://doi.org/10.1109/CCC.2008.23

[BLO6]

[BL18]

[BS88]

[BY13]

[Chel0]

[CMR13]

[DS09]

[DW10]

[FG15]

[Fri03]

[Gil52]

[Gil93]

[Har07]

[Has07a]

[Has07b]

Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral
gap. Combinatorica, 26(5):495-519, October 2006. 2, 10

Emmanuel Breuillard and Alexander Lubotzky. Expansion in simple groups,
2018. arXiv:1807.03879. 3

Laszl6 Babai and Akos Seress. On the diameter of cayley graphs of the sym-
metric group. Journal of Combinatorial Theory, Series A, 49(1), 1988. 37

Jean Bourgain and Amir Yehudayoff. Expansion in sl 2(R)and monotone ex-
panders. Geometric and Functional Analysis, 23(1), 2013. 4, 33, 34, 37

Yuan-You Fu-Rui Cheng. Explicit estimate on primes between consecu-
tive cubes. Rocky Mountain Journal of Mathematics, 40(1), February 2010.
arxXiv:0810.2113,do1:10.1216/rmj—-2010-40-1-117.19

Sixia Chen, Cristopher Moore, and Alexander Russell. Small-bias sets for
nonabelian groups - derandomizations of the Alon-Roichman theorem. In
APPROX-RANDOM, volume 8096 of Lecture Notes in Computer Science, pages
436451, 2013. 8,11, 12, 38

Zeev Dvir and Amir Shpilka. Towards dimension expanders over finite fields.
Combinatorica, 31(3), sep 2009. 5, 33, 37

Zeev Dvir and Avi Wigderson. Monotone expanders: Constructions and ap-
plications. Theory of Computing, 6(12), 2010. 33, 37

Michael A. Forbes and Venkatesan Guruswami. Dimension Expanders via
Rank Condensers. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2015), volume 40, pages
800-814, 2015. 37

Joel Friedman. A proof of alon’s second eigenvalue conjecture. In Proceedings
of the 35th ACM Symposium on Theory of Computing, 2003. 2, 10

E.N. Gilbert. A comparison of signalling alphabets. Bell System Technical Jour-
nal, 31:504-522, 1952. 3

D. Gillman. A Chernoff bound for random walks on expander graphs. In
Proceedings of the 34th IEEE Symposium on Foundations of Computer Science, pages
680-691, 1993. 1,9

Aram W. Harrow. Quantum expanders from any classical cayley graph ex-
pander. Quantum Information & Computation, 2007. 4, 30, 33, 37

M. B. Hastings. Entropy and entanglement in quantum ground
states. Physical Review B, 76(3), jul 2007. arxXxiv:0701055,
doi:10.1103/physrevb.76.035114. 4, 30,32

M. B. Hastings. Entropy and entanglement in quantum ground states. Phys.
Rev. B, 2007. 30, 32

42


http://arxiv.org/abs/1807.03879
http://arxiv.org/abs/0810.2113
https://doi.org/10.1216/rmj-2010-40-1-117
http://arxiv.org/abs/0701055
https://doi.org/10.1103/physrevb.76.035114

[Has07c]

[HHO09]

[HLWO06]

[IM21]

[JMO*22]

[JQST20]

[Kas07]

[KKN21]

[LPOO]

[LPS88]

[Lubl1]

[Lub12]

[LZ08]

[Mar73]

M. B. Hastings. Random  unitaries give quantum ex-
panders. Phys. Rev. A, 76:032315, Sep 2007. URL:
https://link.aps.org/doi/10.1103/PhysRevA.76.032315,
arxXxiv:0706.0556,doi:10.1103/PhysRevA.76.032315. 4,32

M. B. Hastings and A. W. Harrow. Classical and quantum tensor product ex-
panders. Quantum Info. Comput., 2009. 30, 32

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bull. Amer. Math. Soc., 43(04):439-562, August 2006. 1, 30

Akhil Jalan and Dana Moshkovitz. Near-optimal cayley expanders for abelian
groups, 2021. arXiv:2105.01149.7,14

Fernando Granha Jeronimo, Tushant Mittal, Ryan O’'Donnell, Pedro Paredes,
and Madhur Tulsiani. Explicit abelian lifts and quantum Idpc codes. In ITCS
2022, 2022. 10

Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Mad-
hur Tulsiani. Unique decoding of explicit e-balanced codes near the Gilbert—
Varshamov bound. In Proceedings of the 61st IEEE Symposium on Foundations of
Computer Science, 2020. 45

Martin Kassabov. Symmetric groups and expander graphs. In-
ventiones mathematicae, 170(2):327-354, August 2007. arXiv:0505624,
doi:10.1007/s00222-007-0065~y. 4,10,29,33

Marek Kaluba, Dawid Kielak, and Piotr W. Nowak. On property (T)
for Aut(Fn) and SLn(Z). Annals of Mathematics, 193(2):539 — 562, 2021.
doi1:10.4007/annals.2021.193.2.3. 30

Alexander Lubotzky and Igor Pak. The product replacement algorithm and
kazhdan’s property (t). Journal of the American Mathematical Society, 14(2):347—
363, October 2000. doi:10.1090/s0894-0347-00-00356-8. 30

Alexander Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Com-
binatorica, 8:261-277, 1988. 1, 10, 19

Alexander Lubotzky. Finite simple groups of Lie type as expanders. Journal of
the European Mathematical Society, pages 1331-1341, 2011. arxiv:0904.3411,
doi:10.4171/JEMS/282. 19

Alexander Lubotzky. Expander graphs in pure and applied mathematics. Bull.
Amer. Math. Soc.,2012. 1

Alexander Lubotzky and Efim Zelmanov. Dimension expanders. Journal of
Algebra, 319(2):730-738, 2008. 30, 36, 37

G. A. Margulis. Explicit constructions of concentrators. Probl. Peredachi Inf., 9,
1973. 1

43


https://link.aps.org/doi/10.1103/PhysRevA.76.032315
http://arxiv.org/abs/0706.0556
https://doi.org/10.1103/PhysRevA.76.032315
http://arxiv.org/abs/2105.01149
http://arxiv.org/abs/0505624
https://doi.org/10.1007/s00222-007-0065-y
https://doi.org/10.4007/annals.2021.193.2.3
https://doi.org/10.1090/s0894-0347-00-00356-8
http://arxiv.org/abs/0904.3411
https://doi.org/10.4171/JEMS/282

[Mar88]

[MOP20]

[MSS14]

[MSS15]

[MWO04]

[Nil91]

[NN90]

[Pin73]

[PZ01]

[Rei04]

[Rei05]

[RL10]

[RSWO06]

[RVO5]

[RVWOO]

G. A. Margulis. Explicit group-theoretical constructions of combinatorial
schemes and their application to the design of expanders and concentrators.
1988. 1, 30

Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. Explicit near-
ramanujan graphs of every degree. In Proceedings of the 52nd ACM Symposium
on Theory of Computing, pages 510-523. ACM, 2020. 10

Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Interlacing families ii:
Mixed characteristic polynomials and the kadison—singer problem. Annals of
Mathematics, 2014. 2

Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Interlacing families i:
Bipartite Ramanujan graphs of all degrees. Annals of Mathematics, 2015. 2

Roy Meshulam and Avi Wigderson. Expanders in group algebras. Combinator-
ica, 24, 2004. 9

Alon Nilli. On the second eigenvalue of a graph. Discrete Mathematics,
91(2):207-210, 1991. doi:10.1016/0012-365X(91) 90112-F. 1

J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and
applications. In Proceedings of the 22nd ACM Symposium on Theory of Computing,
pages 213-223, 1990. 6, 12,13

Mark S. Pinsker. On the complexity of a concentrator. In 7th International Tele-
traffic Conference, 1973. 1,2

Igor Pak and Andrzej Zuk. Two Kazhdan constants and mixing of random
walks. Technical report, Int. Math. Res. Not. 2002, 2001. 35

Omer Reingold. Undirected st-connectivity in log-space. Technical Report
TR04-094, Electronic Colloquium on Computational Complexity, 2004. 39

Omer Reingold. Undirected ST-connectivity in log-space. In Proceedings of the
37th ACM Symposium on Theory of Computing, pages 376-385, 2005. 2, 18

J.D. Rogawskiand A. Lubotzky. Discrete Groups, Expanding Graphs and Invariant
Measures. Modern Birkhduser Classics. Birkhduser Basel, 2010. 36

Eyal Rozenman, Aner Shalev, and Avi Wigderson. Iterative construction of
cayley expander graphs. Theory of Computing, 2(5):91-120, 2006. 4, 9

Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Pro-
ceedings of RANDOM'05, pages 436—447. Springer-Verlag, 2005. 39, 40

O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. In Proceedings of
the 41st IEEE Symposium on Foundations of Computer Science, 2000. 2,7, 9, 16, 19

44


https://doi.org/10.1016/0012-365X(91)90112-F

[RVWO02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Annals of Mathematics,
155(1):157-187, 2002. 18

[SS96] L. L. Scott and J. P. Serre. Linear Representations of Finite Groups. Graduate Texts
in Mathematics. Springer New York, 1996. 11

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Found.
Trends Mach. Learn., 2015. 8

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Pro-
ceedings of the 49th ACM Symposium on Theory of Computing, STOC 2017, pages
238-251, New York, NY, USA, 2017. ACM. 3,5, 6,7,8,13,14, 19, 20, 22, 23, 24,
25,26, 38, 45, 46

[TSD18]  Amnon Ta-Shma and Dean Doron. Combinatorial constructions of expanders.
the zig-zag product. Lecture notes, 2018. 18

[Vad12] Salil P. Vadhan. Pseudorandomness. Now Publishers Inc., 2012. 6, 34

[Var57] R.R. Varshamov. Estimate of the number of signals in error correcting codes.
Doklady Akademii Nauk SSSR, 117:739-741, 1957. 3

[Wigl8]  Avi Wigderson. Mathematics and computation. Book draft at
https://www.math.ias.edu/files/mathandcomp.pdf,2018. 1

A Explicit Structures and their Parameters

The way we choose parameters and objects for it borrows heavily from Ta-Shma’s argu-
ments in [TS17]. The analysis follows an analogous structure of [JQST20] for binary codes,
which in turn builds on the original analysis of Ta-Shma [TS17].

Given as input [S|, A and a slowly growing function 3(A), we construct the graphs X, Y

as described below with the following parameters which is similar (but not identical) to

Ta-Shma’s choice. Let s be the smallest power of 2 greater than 3_62 and let dy = s%5.

The outer graph X. We use our construction of expander from Corollary 3.12 to construct

. . . A3 o L s
a graph on n’ ~ n vertices with expansion A; = 73. The condition on the size is satisfied

asmn =2[S|d} > dj > 22 by the assumption that s > 2!°. Moreover, the degree is T <
cd%'1 '
b§‘2

which doesn’t change bias®*. Thus, we obtain a (n’, d;, A;)-graph where n’ = n + o(nd9).

< d5. We increase its degree to dj by taking multiple copies of the generating set

The inner graph Y. We obtain a Cayley graph Y = Cay(Zg’g(nz), A) such that Y is an
(ny = d5°,ds, A2) graph®. The set A of generators comes from a small bias code derived

33This is wasteful but we do it to ensure that V(Y) = d} and that d} is a power of 2.
34Notice that since s (and therefore d2, 1n2) is chosen to be a power of 2, the conditions of Lemma A.1 are
satisfied.
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from a construction of Alon et al. [AGHP92], but we will rely on Ta-Shma’s analysis.

Lemma A.1 (Based on Lemma 6 [TS17]). For every m € N* and d = 22% < 2™, there exists a
fully explicit set A C Z.J* such that the graph Cay(Z}*,A) isa (2™, d,A = \%)—expander graph.

We summarize the construction and the choice of parameters here -

1/3
s is the smallest power of 2 such that 3_62 <s< (m)

Every other parameter is a function of s.

Y: (Tlg, d2,)\2), Ng = dgsa dp = 548, Ao < \7—(12—2, by = 5slog dy
2
X:(,duN), W an=0(Sd), di=dj A =2

t : smallest integer such that (Ay)1=201-)(t=1D <} - where ot = 1/s

log(1/A)

Note:
Theorem 3.2.

We can assume that s

> 210

Claim 4.14. The selection of the parameters above implies the following bounds on t,

it—13>2s2

ii (d2)(t—1) < )\—2(1+10oc),

Proof. Proof of (i) Using ds = s* and the upper bound on s, we have

1 (1-5x)(1-x)2s2
A2

Hence, (7\2 )(1—5 a)(1-o)s /o

)\(21—504)(1—“)2(‘5—1) _

\%

>

IA

2s2 s?
1 d2 52 453
— = | < (d ="
(Aa) (b%) ()

— 243310g2(s) < 2log2(1/?\) — 1
- A

> A and thus t — 1 must be at least 2s2. Also observe that,

A(l—Sa)(l—a)(t—2)( )
2
(1-50)(1-cx)(t-2)

AQ

A

(t-1>s=1/x)

(From the choice of minimal t)

Since by = 5slogy(ds) = 20s? logy(s) < s* (recall that s = 1/ > 210),

We obtain (ii)

(dg)*V)

da

i = da

—(t-1)
2 1-2x

IA

-2
< A (-20)(1-50)(1-0)2
A—2(1+10e) -

IA
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s8

da 1

A

(Using Eq. (9))

since otherwise A is a constant and we can just use

(8)
©)
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