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ABSTRACT

Cybersickness is a common ailment associated with virtual real-
ity (VR) user experiences. Several automated methods exist based
on machine learning (ML) and deep learning (DL) to detect cyber-
sickness. However, most of these cybersickness detection methods
are perceived as computationally intensive and black-box methods.
Thus, those techniques are neither trustworthy nor practical for de-
ploying on standalone energy-constrained VR head-mounted devices
(HMDs). In this work, we present an explainable artificial intelli-
gence (XAl)-based framework LiteVR for cybersickness detection,
explaining the model’s outcome, reducing the feature dimensions,
and overall computational costs. First, we develop three cybersick-
ness DL models based on long-term short-term memory (LSTM),
gated recurrent unit (GRU), and multilayer perceptron (MLP). Then,
we employed a post-hoc explanation, such as SHapley Additive
Explanations (SHAP), to explain the results and extract the most
dominant features of cybersickness. Finally, we retrain the DL mod-
els with the reduced number of features. Our results show that
eye-tracking features are the most dominant for cybersickness de-
tection. Furthermore, based on the XAl-based feature ranking and
dimensionality reduction, we significantly reduce the model’s size
by up to 4.3, training time by up to 5.6, and its inference time by
up to 3.8, with higher cybersickness detection accuracy and low
regression error (i.e., on Fast Motion Scale (FMS)). Our proposed
lite LSTM model obtained an accuracy of 94% in classifying cyber-
sickness and regressing (i.e., FMS 1-10) with a Root Mean Square
Error (RMSE) of 0.30, which outperforms the state-of-the-art. Our
proposed LiteVR framework can help researchers and practitioners
analyze, detect, and deploy their DL-based cybersickness detection
models in standalone VR HMDs.

Keywords: Virtual Reality, Cybersickness Detection, Explainable
Artificial Intelligence, Deep Learning, Model Reduction

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Virtual reality; Human-
centered computing—Human computer interaction (HCI)—HCI
design and evaluation methods.

1 INTRODUCTION

The applications of virtual reality (VR) are very diverse and are
rapidly increasing in areas such as health care [19,56], education [2],
military training [82], surgical training [48], and disaster manage-
ment/public safety [16,51]. However, VR users often experience
virtual reality sickness, or cybersickness, which hinders their immer-
sive experience. Thus cybersickness has emerged as an important
obstacle [49] to the wider acceptability of VR. Cybersickness can be
defined as a set of unpleasant symptoms such as eyestrain, headache,
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nausea, disorientation, or even vomiting [59]. One of the popular
techniques to detect cybersickness is to use post-immersive subjec-
tive questionnaires such as Simulator Sickness Questionnaire (SSQ)
and the VR Sickness Questionnaire (VRSQ) [66]. In contrast, the
Fast Motion Sickness Scale (FMS) [32] can assess cybersickness
severity during immersion. Note, FMS relies on user feedback,
i.e., needs human intervention during the VR immersion [47]. To
overcome these limitations, deep learning (DL) and machine learn-
ing (ML) have recently become popular for cybersickness detec-
tion [1,21,22,24,27,30, 58].

State-of-the-art DL models can detect cybersickness with good
accuracy. For instance, Islam et al. [24] proposed a cybersickness
severity detection using a deep fusion network with an accuracy
of 87.7% from users’ eye tracking and head tracking data. Other
researchers used electroencephalography (EEG) [58, 72, 83], stereo-
scopic video [24,52] and bio-physiological signal [21,58] data for
detecting cybersickness with higher accuracy. Despite the great
prospect of DL models in detecting cybersickness, these methods
have several limitations:

* Most of the cybersickness DL-based detection models rely on
black-box models; thus, they lack explainability. The explain-
ability of the DL models can significantly improve the model’s
understanding and provide insight into why and how the DL
model arrived at a specific decision. Identifying and under-
standing important features leading to cybersickness can help
designers to develop more effective cybersickness detection
models.

* The multimodal data generated by HMD’s integrated sensors
as well as external physiological sensors (EEG, GSR, HR)
results in a complex dataset and power-hungry DL models for
cybersickness detection. As a result, deploying these models
on standalone energy-constrained HMDs (e.g., Meta Quest
Pro) is often challenging and not feasible. By identifying
the dominant features, it can be useful to design and develop
lightweight DL models that can improve computational costs,
inference time, and model complexity.

To demonstrate the need for the proposed XAl approach, consider
that a VR game developer may want to develop a cybersickness
prediction model for their game based on alpha/beta players who are
using a Meta Quest Pro HMD. If the developer was using a black box
cybersickness prediction model without explainability in the game,
they could not easily determine which of the model’s features (e.g.,
pupil diameter) contributed to cybersickness prediction. Hence, they
would have use trial and error to reduce the model size such that it
would minimize resource usage on the already resource constrained
Meta Quest Pro.

Limited research has been conducted to address these research
gaps. Recently, Kundu et al. [38] used inherently interpretable
ML models for cybersickness detection and explanation using bio-
physiological [25] and gameplay datasets [57]. However, this work
considered binary classifiers, which can only detect the presence
or absence of cybersickness. Such binary classification for cyber-
sickness detection is less effective for realistic VR applications.
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Additionally, inherently interpretable models are typically depen-
dent on the data properties and thus suffer from the dimensionality
problem [64]. For instance, decision tree-based inherently inter-
pretable models can suffer from overfitting problems because of
over-complex trees that do not generalize the data well, which may
eventually lead to their poor performance in cybersickness classifi-
cation [54,58].

Several other works use feature selection or dimensionality reduc-
tion techniques, such as principal component analysis (PCA) [34,36,
45,63,70] to address the high-dimensionality issue in DL models for
cybersickness detection. For instance, Mawalid et al. in [46] used
time-domain feature extraction methods to extract the EEG statisti-
cal features for classifying cybersickness. Similarly, Lin et al. [41]
applied ML models with PCA to extract the cybersickness-related
features to predict the cybersickness level. Furthermore, Kottaimalai
et al. in [37] used PCA to reduce dimensions, complexity, and com-
putational time for EEG signals to detect cybersickness. Note, PCA
attempts to cover as much variance as possible among the feature
spaces in a dataset. If the number of principal components in a
dataset is not selected carefully, it is possible to miss some informa-
tion compared to the original set of features [3]. Hence, applying
PCA-based dimensionality reduction may result in losing important
features essential for accurate cybersickness detection.

To address the above-mentioned challenges, we propose a novel
methodology, LiteVR—an XAI-based framework for cybersickness
detection, explanation, and feature size reduction (also known as
dimensionality reduction). Specifically, we first develop three DL
models for cybersickness detection based on long-term short-term
memory (LSTM), gated recurrent unit (GRU), and multilayer per-
ceptron (MLP). Then we employ post-hoc explanation techniques,
namely SHapley Additive Explanations (SHAP) [44], to provide
global and local explanations for analyzing, identifying, and ranking
the dominant features causing cybersickness. The identified domi-
nant features are then used to retrain the models, (i.e., to train them
with a reduced number of features instead of using all the features).
This makes a cybersickness detection model that is easy to use and
has a much smaller number of trainable parameters. This makes
training and inference faster while maintaining baseline accuracy.
For instance, our results show that an LSTM model with all fea-
tures classifies the cybersickness severity into 4 classes (none, low,
medium, and high) with an accuracy of 92% and regresses (FMS
1-10) the ongoing cybersickness with a Root Mean Square Error
(RMSE) value of 0.36. However, after the XAl-based feature re-
duction (i.e., with only 1/3 of the features of the baseline model) of
the same LSTM model, we can classify the cybersickness severity
and predict the ongoing cybersickness with an accuracy of 94%
and an RMSE of 0.30, respectively. Furthermore, our XAl-based
model reduction approach results in up to a 4.3 x reduction in the
model size (for LSTM) and up to a 5.5% and 3.8 x improvement in
training and inference time, respectively. Therefore, we believe that
the proposed method can aid future researchers in comprehending,
analyzing, and designing cybersickness detection models that are
suitable for real-time cybersickness detection for standalone HMDs.
To the best of our knowledge, this is the first work applying XAI
for explaining and feature size reduction of DL-based cybersickness
detection models.

2 RELATED WORKS

The most popular theory to explain the reason behind cybersickness
is the sensory conflict [39]. This theory states that cybersickness
occurs when the visual sensory system perceives motion, but the
vestibular system does not. However, other theories, such as poison
theory and postural instability theory, even cybersecurity have also
been identified as the causes of cybersickness [17,39,74,75]. In
addition, factors such as age, gender, and prior VR experience of
users can also impact the degree of cybersickness [12, 14,20]. The
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state-of-the-art works in cybersickness detection can be broadly
divided into two categories that use either subjective and objective
measurements. Recently, automated cybersickness detection using
advanced ML and DL methods is getting more popular as it does
not require any human interventions. In this section, we highlight
the state-of-the-art works for cybersickness detection.

To measure cybersickness, researchers have proposed several sub-
jective measurements such as the Simulator Sickness Questionnaire
(SSQ) [6,7,9,13,50,66,78,84,85], the FMS [32], and the Motion
Sickness Susceptibility Questionnaire (MSSQ) [31]. In contrast,
several researchers have also proposed objective measurements (i.e.,
physiological signals) for cybersickness [21,25,57] detection. Previ-
ous research has shown that objective measurements (e.g., heart rate,
galvanic skin response, and electroencephalogram (EEG) signals)
vary significantly when cybersickness occurs [11,25,42,42,60, 62].
For example, they found that HR and EEG delta waves correlate
positively with cybersickness, whereas EEG beta waves correlate
negatively [42]. On the contrary, another study reported that GSR
has a stronger positive correlation with cybersickness than other
objective measurements that can detect cybersickness [25,71].

To automatically detect cybersickness from a variety of objec-
tive measurements (physiological signals) data, subjective measure-
ments (FMSQ, SSQ) data and integrated sensors measurements
(eye-tracking, head-tracking, motion-flow, etc.) data in HMD,
numerous ML and DL-based approaches have recently been pro-
posed [1,18,21,24-26,33,53,58,61,62,77,80,81]. For instance,
in [1], a machine—deep—ensemble learning method is applied to
classify the cybersickness. In contrast, Porcino et al. [57] used a
symbolic ML-based approach to identify the levels of cybersickness.
In recent years DL has gained more attention from the cybersickness
researchers. For instance, Qu et al. [58] used an LSTM-based at-
tention network for detecting cybersickness using bio-physiological
signals. On the other hand, Jin et al. [30] utilized three DL/ML
algorithms: Convolutional neural network (CNN), LSTM, and sup-
port vector machine (SVM) for cybersickness detection. Similarly,
Padmanaban et al. [52] used depth and optical flow features from
the VR video data to predict cybersickness. In contrast, the authors
in [40] used a 3D-CNN and a multi-modal deep fusion approach
with optical-flow, disparity, and saliency features and reported a
better cybersickness detection accuracy compared to Padmanaban et
al. in [52]. Consequently, in [25], the authors used an LSTM model
to classify the cybersickness severity from users’ physiological sig-
nals (e.g., HR, GSR, etc.). In addition, a deep fusion approach was
presented in [24] for classifying cybersickness severity to forecast
cybersickness from integrated sensors in HMD data. On the other
hand, Jeong et al. [26] used attention-based DL models for detect-
ing cybersickness from multimodal sensor data. Even though DL
models have shown tremendous success in cybersickness detection,
there is a significant research gap in applying XAl to explain cy-
bersickness models. Indeed, understanding the feature importance
in the cybersickness models and explaining why samples are being
correctly vs. incorrectly labeled as cybersickness is an important
step towards applying the proper mitigation technique. Furthermore,
applying XAl in cybersickness models can significantly improve
the model’s trustworthiness and provide insight into why and how
the DL model arrived at a specific decision. In our context, the
term trustworthy refers to using XAl for cybersickness explanation
through a set of mechanisms, such as global and local explanations
and explainable layers, to make the model transparent, understand-
able, and therefore, trusted by users [73]. Very recently, Kundu
et al. [38] used inherently interpretable ML-based models for ex-
plaining cybersickness. They used explainable boosting Machine
(EBM), decision tree (DT), and logistic regression (LR) to detect
and explain the cybersickness from a user’s bio-physiological and
subjective measurement signals. But unfortunately, their proposed
approach cannot explain DL-based cybersickness detection models.
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Figure 1: Overview of LiteVR for cybersickness (CS) detection, explanation, and dimensionality reduction.

In contrast, we use a post-hoc explanation method based on SHAP
to explain DL cybersickness detection models in our work. Another
limitation in [38] is that their ML models are limited to binary classi-
fication (cybersickness vs. no cybersickness). In contrast, our work
considers a multi-class classification problem (none, low, medium,
and high) for cybersickness detection.

There exist several works in dimensionality reduction of cyber-
sickness models. Several researchers used PCA-based methods to
extract important features and reduce the model size [34, 36,45, 63,
68,70] for this purpose. For instance, authors in [41] used PCA to
extract the cybersickness-related features from EEG signals. Then
they used 3 ML/DL models: linear regression (LR), SVM, and self-
organizing neural fuzzy inference network (SOFIN) to predict the
user’s level of cybersickness. Similarly, Kottaimalai et al. in [37]
also used PCA to find the patterns from the EEG signals and neural
networks (NN) to classify the cognitive tasks using the Colorado
University EEG signal dataset. In contrast, Singla et al. in [68] used
PCA to reduce the set of questions from the SSQ simulation. On the
other hand, Mawalid et al. in [46] used time domain feature extrac-
tion based on the statistical features (e.g., mean, variation, standard
deviation, number of peaks) and power percentage band to under-
stand the cybersickness features and then applied K-Nearest Neigh-
bor and Naive Bayes classifiers to classify cybersickness. However,
PCA-based dimension reduction is not always trustworthy. This is
because PCA maps high-dimensional data to low-dimensional space
through projections, which often cause the loss of information from
the original data [29]. In contrast to that, we use a trustworthy, i.e.,
XAl-based approach for dimensionality reduction of cybersickness
detection models.

3 PROPOSED LITEVR FRAMEWORK

An overview of the proposed LiteVR framework for VR cyber-
sickness, detection, explanation, and model reduction is shown in
Figure 1. First, the training data [24] is used to train the DL models
(i.e., LSTM, GRU, and MLP) for both classification and regression
tasks !. Next, the trained DL models detect cybersickness on the test
dataset by classifying them into four classes— none, low, medium,
and high. The trained DL models can also forecast the next value
of the ongoing cybersickness using the FMS score range of 0 — 10.
Next, we use the state-of-the-art tool SHAP to explain the cybersick-
ness features, which can provide both local and global explanations.
Global explanation identifies features crucial for the overall predic-
tion, and local explanation identifies features dominating an individ-
ual sample prediction. After explaining the cybersickness features,
we use the global explanation to identify and rank the dominating
features. Finally, in the model reduction phase, we retrain the DL
models with only the most dominating features (in our case, only
the top 30%) to reduce the cybersickness models. This results in a
significantly smaller model with fewer trainable parameters, hence a
faster training and inference time.

IDataset [24]: https:/tinyurl.com/2p92p45h
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3.1 Cybersickness classification

The network architecture of the LSTM, GRU, and MLP-based cy-
bersickness classification model is shown in Tables 5.3 , 2, and 3,
respectively. The LSTM and GRU models have 6 layers, whereas
the MLP model has 8 layers. We chose LSTM and GRU models as
they can capture datasets’ temporal and spatial features. For both
the LSTM and GRU models, we set a timestep of 60 and have 43
features. The first LSTM layer had a recurrent dropout of 20%,
followed by a same-dropout layer of 20% to deal with overfitting.
In the next LSTM layer, we reduce the dropout rate by up to 5%
because a high dropout rate can slow the model’s convergence rate
and often harm final performance [79]. On the other hand, for the
GRU model, all of the GRU layers used a recurrent dropout of 30%
to reduce overfitting. For both the LSTM and GRU models, we used
’ReLu’ as the activation function for the fifth dense layer. Finally,
we used ‘softmax’ as the activation function in the last dense layer,
which contains four outputs for the four cybersickness classes. Since
all the 8 layers in MLP are dense, we do not have the timesteps like
LSTM and GRU models. We use ‘ReLu’ in each dense layer as
an activation function with a recursive dropout of 25%. Like GRU
and LSTM models, the last dense layer of MLP has the softmax
activation function to identify the four cybersickness severity classes.
We use categorical cross-entropy as the loss function in our DL
classification models as shown in eqn.1.

i=1j

(vijlog($ij)) )

q
=1

where . denoted the loss function, ;; is the predicted cybersick-
ness severity class label, and (y;;) is the actual cybersickness severity
class label. Furthermore, p is the number of cybersickness classes,
and ¢ denotes the classifier’s total number of training samples.

3.2 Cybersickness regression

The cybersickness regression task can be defined as follows: Given
a history of observed VR data (e.g., eye-tracking data, head-tracking
data, etc.) and the FMS score at previous time steps ¢ — 1, pre-
dict the FMS score at the next time steps t. Let us denote the
cybersickness FMS score at time ¢ as CS;. For instance, if we
predict the cybersickness FMS score at time ¢ = 10 seconds, then
CS; — [S1-9,81-8,5-7,8:_6 - - -, 5], where S denotes the user’s cog-
nitive state. We use the same three DL models that we used for
classification for the cybersickness regression task as well except the
loss function (RMSE for regression), i.e., to forecast the cybersick-
ness FMS score in the range of 0 to 10. For the regression models,
we use root mean squared error (RMSE) as the loss function as
defined in Equation 2.

1
IN|

N
Z Z(Yt _);[)2

yeSt=1

RMSE = 2)
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where y; is the input, e.g., verbally reported FMS score from the
user at time ¢, and ¥y is the predicted FMS score by the model at that
time. Consequently, N and S represent the total number of samples
and time steps.

Algorithm 1: SHAP-based cybersickness feature reduction

Inputs :Cybersickness DL Model 6,
Training dataset X7,qin,
Testing dataset X7es
Outputs  :F={}

1: for each feature i € X4, do

2 Ex,,; = ModelExplainer(0, Xt4in)
3 Fiml’ = SHAPval(Ex,q/, Xrest )

4 Frank = FrankUE'mp

5: end for

6: return F,,,;

3.3 Explaining DL models with SHAP

In this work, we use the SHAP-based post-hoc explanation tech-
nique for explaining the cybersickness outcomes. SHAP is a feature
importance explanation approach that works by assigning a feature
significance value to each prediction. It is based on the mathematical
foundation of Shapley values from cooperative game theory [44]. For
a given set of input samples (e.g., eye-tracking data, head-tracking
data, etc.) and DL models ( e.g., LSTM, GRU, and MLP), the goal of
SHAP is to explain the prediction of input samples by calculating the
contribution of each feature to the prediction. In other words, SHAP
values explain how a given feature value increases or decreases a
model’s prediction. For example, given a cybersickness prediction
model that predicts whether a sample has cybersickness, the SHAP
explanation allows us to know to what extent a feature drove a given
prediction. Such explanations can be global or local. The overall
feature importance ranking (global explanation) of cybersickness
can be visualized in terms of bar graphs in SHAP. On the contrary,
for the local explanation, each sample is randomly chosen from the
test dataset, which contains all the features and determines which
features increase or reduce the likelihood of cybersickness. We use
the Deep SHAP method [67] for computing SHAP values from the
DL-based cybersickness models. After that, these SHAP values
are used to calculate the feature’s importance during cybersickness
severity prediction.

3.4 Feature reduction through SHAP-based explanation

Algorithm 1 shows the overall method of feature reduction using
SHAP. The algorithm takes a cybersickness detection model, train-
ing and testing datasets as input, and returns the feature ranking.
For each feature in the dataset, given the model 6, the algorithm
uses the ModelExplainer () function to obtain the expected value
Ex,q (Lines 1-2). The ModelExplainer () function approximates
the conditional expectations of SHAP values using the X7, sam-
ples [44]. Next, the algorithm calculates the feature importance score
Fiymp for each feature using the SHAPvalue() function (Line 3),
which is then appended to the set Fj,; (Line 4). The SHAPvalue ()
function calculates the Fj,, value through calculating the mean aver-
age value for each feature. Finally, when this process is complete for
all the features, the algorithm returns the set Fj;,,; (Line 6). Based
on the ranked features F,,;, we sort (in descending order, i.e., the
top feature means the most important feature) them based on their
importance and use only a portion of the important/top features for
retraining the model. For instance, in our case, we only considered
the top 1/3 of the features in the ranked list to retrain the cybersick-
ness DL models. This results in a lighter model with significantly
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fewer trainable parameters and, thus, a faster training and inference
time.

4 DATASET & EXPERIMENTAL SETUP

This section explains the experimental setup and data we used to
validate our proposed LiteVR framework. We used Scikit-Learn [55]
and TensorFlow-2.4 [65] for training and evaluating our DL models.
For explaining the DL models, we used the SHAP [44] library. The
DL models were trained on an Intel Core i9 Processor and 32GB
RAM option with NVIDIA GeForce RTX 3080 Ti GPU.

4.1

We used the Adam optimizer to optimize our DL models with epochs
of 300 and a batch size of 256. For training the DL models, we used
the learning rate of 0.001. To prevent the model from overfitting,
we deployed an early-stopping strategy with a patience value of 30
while training the DL models. We used a 10 fold cross-validation
technique to train and test the performance of the DL models similar
to [4] in which the dataset is partitioned into k groups (i.e., in our
case k = 10). Only one partition out of £ is utilized for testing the
model, while the remaining partitions are used for training. The
method is repeated k times, each time picking a new test partition
and the remaining (k — 1) partition as a training dataset to eliminate
bias.

Hyper-Parameter

4.2 Dataset

We used the integrated sensor dataset to validate the effectiveness of
the proposed DL models. The integrated sensor dataset [24] contains
the eye tracking, head tracking, and physiological signals for 30 par-
ticipants immersed in 5 different VR simulations: Beach City, Road
Side, Roller Coaster, SeaVoyage, and Furniture Shop. Eye tracking,
head tracking, and physiological data consist of different subcat-
egories. For instance, in the eye tracking data, the subcategories
are Pupil Diameter (left), Pupil Position (X, y, z), Gaze Direction
(X, y, z), Convergence Distance, and % of Eye Openness, and for
the head tracking data Quaternion Rotation of X, Y, Z, and W axis,
respectively. Similarly, for the physiological signals, the subcate-
gories are electrodermal activity (EDA) and HR measurements. This
dataset has a total of 20104 samples recorded with a maximum of
7 minutes of VR simulation. In addition, as mentioned earlier, the
dataset contains four different cybersickness severity classes: none,
low, medium, and high, and the FMS score ranges from 0 to 10,
which is used for regression analysis. We used the 70% samples
from this dataset for training the DL models and their remaining
30% samples for testing.

4.3 Performance Metrics

The standard quality metrics such as accuracy, recall, precision,
and F1-score are used to evaluate the performance of DL models
(e.g., LSTM, GRU, and GRU) for cybersickness severity classifi-
cation [15]. Similarly, standard loss functions like mean squared
error (MSE), root-mean-squared error (RMSE), mean absolute er-
ror (MAE), and R? score are used to evaluate the cybersickness
regression model’s performance [10]. For example, if y; and y; de-
note the actual and predicted cybersickness of a candidate at time ¢,
respectively, then the MAE can be defined as:

1

MAE =
IN|

N
Z Z(yt )

yeSt=1

where N and S represent the total number of samples and time
steps of all trajectories. The smaller the MAE, the better the re-
gression model. If Y'(y, — ;)% and ¥(y, — 7)? represent the Sum
Squared Regression (SSR) and the Total Sum of Squares (SST) then,
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Table 1: LSTM model architecture (with all features)

Table 3: MLP model architecture (with all features)

Table 2: GRU model architecture (with all features)

Layer Type Output shape | #Param | Dropout | Activation
1 GRU 32 3360 0.3 -
2 Dropout 32 0 0.3 -
3 GRU 64 18816 0.3 -
4 Dropout 64 0 0.3 -
5 Dense 16 74496 - ReLU
6 Dense 4 516 - Softmax
Total no. of param: 97,188
the R? score can be written as:
R2—1 paeY: —fz)z
Y —9)?

Consequently, a low R? value indicates that the regression model
does not adequately capture the output variance.

5 RESULTS

This section presents the results of cybersickness detection, explana-
tion, and reduction.

5.1 Cybersickness classification and regression perfor-

mance with all features

Before presenting the results of our LiteVR approach for cyber-
sickness explanation and model reduction, in this section, we first
present the details of the model development with their important
statistics, cybersickness classification and regression accuracy. This
will help us compare our approach’s effectiveness in the following
subsection of the paper.

5.1.1 Cybersickness detection model development

Tables 5.3, 2, 3 show the network architecture and number of train-
able parameters for the LSTM, GRU, and MLP based cybersickness
detection models. We observe that the ML, LSTM, and GRU model
has total 17,028, 119,172, and 97, 188 trainable parameters. The
MLP model has 7 times and 5.7 times less number of trainable pa-
rameters when compared to the LSTM and GRU models. These
models’ training and inference times are reported in Table 4. Train-
ing the MLP, LSTM, and GRU models (with all the features) requires
51.25,2076.21, and 3236.21 seconds, respectively. Indeed, training
the MLP model is 232.33 and 63.14 times faster than the GRU and
LSTM models. Similarly, the inference time required for the MLP,
LSTM, and GRU models are 0.15, 4.05, and 4.94 seconds, respec-
tively. Indeed the inference on MLP is 27 and 33 times faster than
the LSTM and GRU models, respectively.

5.1.2 Cybersickness classification and regression with all
features

Table 5 summarizes the accuracy, precision, recall, and F-1 scores of
cybersickness severity classification using LSTM, GRU, and MLP
models. The cybersickness classification using the LSTM and GRU
model resulted in an accuracy of 92% and 90%, whereas the accu-
racy of MLP is only 79%. Indeed the overall performance of the
LSTM model is slightly better than the GRU model in terms of pre-
cision, recall, and F1-score for cybersickness severity classification.
Furthermore, Table 6 summarizes the MSE, RMSE, R2, and MAE

Layer Type Output shape | #Param | Dropout | Activation Layer Type Output shape | #Param | Dropout | Activation
1 LSTM 128 66560 0.2 - 1 Dense 128 5504 0.25 ReLU
2 Dropout 128 0 0.2 - 2 Dropout 128 0 0.25
3 LSTM 64 49408 0.15 - 3 Dense 64 8256 0.25 ReLU
4 Dropout 64 0 0.15 - 4 Dropout 64 0.25 -
5 Dense 16 3136 - ReLU 5 Dense 32 2080 0.25 ReLU
6 Dense 4 68 - Softmax 6 Dropout 32 0 0.25 -
Total no. of parameter: 119,172 7 Dense 16 1056 - ReLU
8 Dense 4 132 Softmax
Total no. of param: 17,028
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Table 4: Training and inference time of: non-reduced DL models
(all features) vs. reduced DL models (reduced features)

Models Before XAI After XAI
Training(s) | Inference(s) | Training(s) | Inference(s)
LSTM 2076.21 4.05 376.37 1.07
GRU 3236.21 4.94 774.29 1.32
MLP 51.25 0.15 21.55 0.09

of cybersickness regression using LSTM, GRU and MLP models.
Like cybersickness classification, regression using the LSTM out-
performs the GRU and MLP models. Like classification, the MLP
also performs poorly for regression task.

5.2 Feature space reduction using SHAP-based cyber-
sickness explanation

In this section, we apply the SHAP-based post-hoc explanation
method to explain the DL model’s outcome. These explanations,
specifically the global explanation, are then used to identify the
dominating features to aid in reducing the cybersickness DL models.

5.2.1 Cybersickness Severity Global Explanation

The overall feature importance for cybersickness severity classifi-
cation using LSTM, GRU, and MLP models with all features is
visualized in Figure 5. A shapely value is used to calculate the rank-
ing of the most important features contributing to the cybersickness
severity classification, with important features at the top and the
least important ones at the bottom. The features with large absolute
Shapley values are classed as important as they have a higher average
impact on the model output. From Figure 5a and b, we observe that
features such as NrmRightEyeOriginZ, NrmLeftEyeOriginY, Nrm-
RightEyeOriginY, NrmLeftEyeOriginZ , GazeOriginWrldSpc_Y, etc.,
are the most dominating features in cybersickness severity classifi-
cation for LSTM and GRU models, which corresponds to the eye
tracking features. Interestingly, for both LSTM and GRU models,
the eye-tracking features have a much stronger influence on the cy-
bersickness severity classification than head-tracking features. The
reason is that eye tracking measurement data contains insightful
information such as gaze behavior, the position of the pupil, and
the type of blink of the user for tracking the user’s activity [24].
Therefore, these eye-tracking features can influence the level of
cybersickness. On the other hand, features such as HeadQRota-
tionY, GazeOriginWrldSpc 'Y, GazeOriginWrldSpc_Z, HeadEulX,
EDA, etc., appear to be the most predictive features in cybersickness
classification for the MLP model (Figure 5c). The MLP model has
many false positives and negatives regarding cybersickness severity
classification. However, the cybersickness severity classification
using the MLP model has quite a low accuracy compared to LSTM
and GRU models, as discussed in Section 5.1.2. Therefore, there is
an incorrect ranking of the features such as HeadQRotationY at the
top of the features list in Figure Sc. Previous work [8,24,43,76] has
suggested that eye tracking features are the most influential features
in cybersickness severity classification as compared to head tracking
features. Such cybersickness explanation about misclassification
gives great insights into classification findings and increases trust in
the model’s prediction.
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Table 5: Performance of 10-Fold Cross Validation on Cybersickness Severity Classification (non-reduced DL models)

Precision % Recall % F1-score%

Model | Accuracy% | None | Low | Medium | High | None | Low | Medium | High | None | Low | Medium | High

LSTM 92 96 86 87 90 92 95 86 93 95 92 83 90

GRU 90 95 89 81 83 94 90 79 87 95 90 81 86

MLP 79 83 79 80 75 81 85 72 78 82 77 70 75
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Figure 2: The local explanation of LSTM-based cybersickness classification for the (a) explanation for high cybersickness severity, (b)

explanation for none cybersickness severity.
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Figure 3: The local explanation of GRU-based cybersickness classification for (a) explanation for high cybersickness severity, (b) explanation

for none cybersickness severity.

Table 6: Cybersickness regression using non-reduced DL models
(with all features)

Regression Models | MSE | RMSE | RZ | MAE
LSTM 0.24 0.36 9 | 0.21
GRU 0.29 0.41 86 | 0.24
MLP 0.42 0.57 73 | 040

5.2.2 Cybersickness Severity Local Explanation

The individual samples are taken from the model randomly to ex-
plain their outcome for cybersickness local explanation. The results
of the local explanation utilizing SHAP for the LSTM model are
shown in Figure 2. Figure 2a illustrates the high cybersickness
severity classification. In that figure, the red-colored line shows
cybersickness probabilities for that individual outcome, the x-axis
represents the model’s output as log odds (the probabilities of feature
importance in prediction), and the y-axis lists the model’s features.

It is observed that the eye tracking feature NrmLeftEyeOriginY is
the most influential feature for high cybersickness severity classifi-
cation, which has the highest probabilities of nearly 1.0. Most of
the features except HeadQRotationY have the highest probabilities
of outcome belonging to eye tracking features; thus, an appropriate
decision is established for high cybersickness severity classification.
For example, in Figure 2b, none cybersickness severity classifica-
tion has low probabilities score for eye tracking features, in which
HeadQRotationW is the most influential feature with probabilities
of 0.4 and NrmRightEyeOriginZ is the least influential feature with
probabilities of 0. As a result, the correct classification is made
for none cybersickness severity class. Similarly, the local explana-
tion of the classified cybersickness using the GRU model is shown
in Figure 3. In Figure 3 a and Figure 3 b, we observe that most
features contribute to a high cybersickness severity class correspond-
ing to the eye-tracking features and for none cybersickness severity
class the dominating features are mostly from head-tracking fea-
tures i.e., HeadEulZ, HeadEulY, CLeftPupilPosInSensorY, Conver-
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Figure 4: The local explanation of MLP-based cybersickness classification for the (a) explanation for high cybersickness severity, (b)

explanation for low cybersickness severity.
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Figure 5: Overall feature importance using global explanation using SHAP for (a) LSTM model (b) GRU model (¢) MLP model

gence distance, etc.,. Likewise, the local explanation of the classified
cybersickness using the MLP model is shown in Figure 4. From
Figure 4a, it is observed that the most influential features for the
high cybersickness severity class belong to eye-tracking features
such as GazeOriginWrldSpc_Y, NrmLeftEyeOriginX,etc. However,
the features, such as EDA, HeadQRotationY, HeadEulX, etc., have
significant importance in high cybersickness severity classification.
This observation is misguiding since we know eye-tracking features
are more critical in cybersickness prediction. However, this explana-
tion also shows why the accuracy of the cybersickness classification
using the MLP model is lower than that of the LSTM and GRU
models. Consequently, Figure 4b shows that most of the features
that influence the positive outcome (none cybersickness severity
class) belong to head tracking and physiological signal features
again. The HeadEulZ, HeadEulZ, HeadQRotationW, HR, etc., are
the most predictive features for none cybersickness severity class.
Such feature identification provides insights into the classification
results and builds trust in the model outcome to make appropriate
decisions.

5.3 Model reduction for cybersickness detection

This section presents the details of feature selection and cybersick-
ness model reduction. Using the (global) explanation results de-
scribed in the previous section, we first identify the top 1/3 of the
features based on the SHAP explanation in Algorithm 1. Once the
features are selected we retrain the DL models based on the selected
features. We chose 1/3 of the dominating features to develop a re-
duced model from the base model because we were able to achieve
a similar detection accuracy using this ratio. Note for different
datasets, this ratio can be different. It is also worth mentioning that
we use the explanation results for GRU and LSTM models as they

have excellent accuracies compared to the MLP model. Table 7
shows the selected features through SHAP explanation for retraining
the LSTM, GRU, and MLP models. Table 8, Table 9, and Table 10
show the network architectures of the retrained LSTM, GRU, and
MLP models. We observe that the explanation-based model reduc-
tion reduces their size significantly. For instance, after reduction, the
LSTM model has a total of 19,108 trainable parameters, which is
6.26X times less compared to its non-reduced version in . Similarly,
the total number of trainable parameters for the GRU and MLP mod-
els are 24,388 and 4,020 after model reduction, which is 4X, and
4.25X less compared to their non-reduced version in Tables 2 and 3,
respectively. The reduced models’ training and inference times are
reported in Table 4. We observe that the training time of the reduced
MLP, LSTM, and GRU models are 21.25, 376.37, and 774.29 sec-
onds, which is 2.4X, 5.6X, and 4.2X faster than their non-reduced
versions. Similarly, their inference time is also significantly faster
after reduction. For instance, the inference time for the reduced
MLP, LSTM, and GRU models are 0.09, 1.07, 1.32 seconds, which
is 1.66X, 3.78X, and 3.72X faster than their non-reduced versions.
In the following subsections, we describe the training and inference
performance of the reduced cybersickness DL models.

5.3.1

Table 11 summarizes the accuracy, precision, recall, and F-1 scores
of cybersickness classification using the reduced order LSTM, GRU,
and MLP models. For instance, cybersickness classification using
the reduced LSTM exhibits 94% accuracy, which is also slightly
higher than the accuracy of the non-reduced LSTM model (see Ta-
ble 5). In addition, the cybersickness classification accuracy of the
reduced MLP and GRU models also increased by 11.5% and 9.7%
compared to their non-reduced versions. Furthermore, other perfor-

Cybersickness classification with reduced DL models
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Table 7: List of selected features for retraining the LSTM, GRU and MLP models through SHAP explanation

Measurement Type

Selected Features from SHAP Fxplanation

Eye-Tracking Data

NrmRightEyeOriginZ; NrmLeftEyeOriginY; NrmRightEyeOriginX;
NrmRightEyeOriginY; NrmLeftEyeOriginZ; NrmLeftEyeOriginX;
NrmSRLeftEyeGazeDirX; NrmSRLeftEyeGazeDirY; NrmSRRightEyeGazeDirY;
GazeOriginWrldSpc_Y; GazeOriginWrldSpc_Z; GazeDirectionWrldSpc_Z;
RightPupilDiameter; GazeOriginLclSpc_Z

Head-Tracking Data

HeadQRotationW; HeadQRotationY; HeadEulX; HeadEulZ

Table 8: Reduced LSTM model architecture (with reduced features)

Layer Type Output shape | #Param | Dropout | Activation
1 LSTM 64 16896 0.15 -
2 Dropout 64 0 0.15
5 Dense 32 2080 - ReLU
6 Dense 4 132 Softmax
Total no. of param: 19,108
Table 9: Reduced GRU model architecture (with reduced features)
Layer Type Output shape | #Param | Dropout | Activation
1 GRU 32 3360 0.2 -
2 Dropout 32 0 0.2
3 GRU 64 18316 0.2 -
4 Dropout 64 0 0.2 -
5 Dense 32 2080 - ReLU
6 Dense 4 132 Softmax
Total no. of param: 24,388

mance metrics, such as precision, recall, and F1-score for the none,
low, medium, and high cybersickness classes, slightly increased
for the reduced LSTM, GRU, and MLP models compared to their
non-reduced versions. For instance, the precision score for the none,
low, medium, and high cybersickness classes for the reduced MLP
are 97%, 88%, 90%, and 92%, which is slightly better than the
non-reduced LSTM model. Likewise, the recall score for the none,
low, medium, and high cybersickness classes for the reduced MLP
model are 93%, 91%, 79%, and 85%, which is approximately 1.1X,
1.06X, 1.09X, and 1.15X higher than the non-reduced MLP model.
These results suggest that we significantly improve cybersickness
classification with reduced models in all cases.

5.83.2 Cybersickness regression with reduced DL models

Table 12 shows the performance of cybersickness regression using
the reduced order LSTM, GRU, and MLP models. To illustrate,
the MSE, RMSE, MAE, and (R2) values for the reduced LSTM
and GRU models are 0.18, 0.30, 0.17 and 0.92 and 0.24, 0.36, 0.20
and 0.88, respectively. Regarding the reduced MLP, we observe a
significant improvement in the MSE, RMSE, RZ, and MAE. This
is because MLP works more effectively with a small feature set.
For example, we observe a decrease of RMSE, MSE, and MAE
by approximately 14%, 17%, and 18%, and an increase of R? by
7.6% for the reduced MLP compared to its non-reduced version.
Such improvements are evident in all reduced-order DL models for
cybersickness regression.

6 DISCuUSSION

The SHAP based global explanation reveals that features such as
normal eye origin, gaze origin, pupil diameter, etc., are the most
influential features for causing cybersickness. On the contrary, the
SHAP-based local explanations of specific predictions offered use-
ful insight for each sample, which helps explain misclassification
scenarios. Consequently, we ranked the features’ importance from
the global explanation using SHAP, and important features were
used to retrain DL models. Our results suggest that the SHAP-
guided reduced DL models result in significantly faster training and
inference time without sacrificing accuracy. For instance, the re-
duced LSTM cybersickness model, which was trained with only 1/3
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Table 10: Reduced MLP model architecture (with reduced features)

Layer Type Output shape | #Param | Dropout | Activation
1 Dense 64 1344 0.25 ReLU
2 Dropout 64 0 0.25
3 Dense 32 2080 0.25 ReLU
4 Dropout 32 0.25 -
5 Dense 16 528 - ReLU
6 Dense 4 68 Softmax
Total no. of param: 4,020

of the features compared to its non-reduced version, classified the
cybersickness severity with an accuracy of 94%. Similarly, while
regressing cybersickness, the reduced LSTM obtained an RMSE
value of 0.30, which is 16.8% less than its non-reduced version.
The LSTM and GRU models performed great in both cybersickness
detection and regression, whereas MLP performed poorly. It is not
surprising that the MLP performs poorly in classification and re-
gression since MLP is incapable of remembering the past sequence
compared to LSTM and GRU. The accuracy of our LSTM models
outperforms several state-of-the-art works in DL-based cybersick-
ness detection. For instance, Islam et al. [24] employed the deep
fusion model to classify the severity of cybersickness with an accu-
racy of 87.7% and reported an RMSE value of 0.51 using eye and
head tracking data. The same authors in [23] used a deep temporal
convolutional network (DeepTCN) to forecast the cybersickness
FMS score (on a scale from 0-10) with an RMSE value of 0.49,
based on eye tracking, heart rate, and galvanic skin response data.
Our LSTM model’s classification and regression accuracy outper-
form these works. There also exist other works which are relevant
to our work. For instance, Qu et al. [58], Islam et. al [25], Kim
et al. [35], and Jeong et al. [28] reported cybersickness detection
accuracy of 96.85%, 97.44%, 89.16%, and 94.02%, respectively,
using physiological and EEG/ECG signals.

Even though there is tons of work in cybersickness detection meth-
ods, to date, only a few studies have been conducted on identifying
the causes of cybersickness [21,24,35,52]. However, to the best of
our knowledge, to date the exists no prior work on applying XAl to
explain cybersickness DL models and to reduce their dimensions.
Indeed, XAl-based explanations can help researchers understand the
reasons behind correct and incorrect cybersickness classification and
can be further utilized to develop effective cybersickness reduction
methods. On the other hand, using complex DL models for real-time
cybersickness detection is computationally intensive and may be
impractical for integration into energy-constrained standalone VR
HMDs [5]. Therefore, we believe that the proposed XAl-based
cybersickness model reduction can help deploy those models on
standalone HMDs.

7 LIMITATION AND FUTURE WORKS

Although the proposed XAl-based DL-based cybersickness detec-
tion and reduction, specifically LSTM, outperformed the previous
state-of-the-art cybersickness detection models, our approach has a
few limitations. For instance, even though we demonstrated the effec-
tiveness of our proposed XAl-based model reduction method with a
fast training and inference time, we did not deploy them on an actual
VR headset. We plan to address this limitation in the future. Fur-
thermore, cybersickness might affect different people based on their
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Table 11: Performance of 10-Fold Cross Validation on Cybersickness Severity Classification using reduced DL models (reduced features)

Models .Ft?ature Count Accuracy% Precision"{b ] Recall%. ] Fl-score. ]
Original | Reduced None | Low | Medium | High | None | Low | Medium | High | None | Low | Medium | High
LSTM 43 18 94 97 88 90 92 94 95 88 96 94 93 87 91

GRU 43 18 93 96 91 85 89 96 92 84 90 95 93 83 88

MLP 43 18 89 91 84 82 79 93 91 79 85 92 88 80 84
Table 12: Cybersickness regression using reduced DL models (with
reduced features) [4] Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of

Regression Models | Feature count | MSE | RMSE R? MAE k-fold cross-validation. Advances in Neural Information Processing
LSTM 43 18 0.18 0.30 092 | 0.17 Systems, 16, 2003.
GRU 43 18 0.24 0.36 0.88 | 0.20 [5] L. Castaneda and M. Pacampara. Virtual reality in the classroom-an ex-
MLP 43 18 0.35 0.49 0.79 | 033 ploration of hardware, management, content and pedagogy. In Society
for information technology & teacher education international confer-
ence, pp. 527-534. Association for the Advancement of Computing in
unique characteristics, VR environment, and gender [69]. Therefore, Education (AACE), 2016. . . .
N . [6] T. T. Chan, Y. Wang, R. H. Y. So, and J. Jia. Predicting subjec-
in the future, we plan to conduct further research with people from R . . L .
. tive discomfort associated with lens distortion in vr headsets during
broader demographic backgrounds and of equal gender represen- . ;

X . R N vestibulo-ocular response to vr scenes. IEEE Transactions on Visual-
tatlor.L Alrso, th_ls work uses only eyg—trackmg, head-tracking, and ization and Computer Graphics, pp. 1-1, 2022. doi: 10.1109/TVCG.
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