)
e VR-LENS: Super Learning-based Cybersickness Detection and

Explainable Al-Guided Deployment in Virtual Reality

Ripan Kumar Kundu
University of Missouri-Columbia
Columbia, Missouri, USA
rkcgc@umsystem.edu

Prasad Calyam
University of Missouri-Columbia
Columbia, Missouri, USA
calyamp@umsystem.edu

ABSTRACT

Virtual reality (VR) systems are known for their susceptibility to
cybersickness, which can seriously hinder users’ experience. There-
fore, a plethora of recent research has proposed several automated
methods based on machine learning (ML) and deep learning (DL)
to detect cybersickness. However, these detection methods are
perceived as computationally intensive and black-box methods.
Thus, those techniques are neither trustworthy nor practical for
deploying on standalone VR head-mounted displays (HMDs). This
work presents an explainable artificial intelligence (XAI)-based
framework VR-LENS for developing cybersickness detection ML
models, explaining them, reducing their size, and deploying them
in a Qualcomm Snapdragon 750G processor-based Samsung A52
device. Specifically, we first develop a novel super learning-based
ensemble ML model for cybersickness detection. Next, we employ
a post-hoc explanation method, such as SHapley Additive exPla-
nations (SHAP), Morris Sensitivity Analysis (MSA), Local Inter-
pretable Model-Agnostic Explanations (LIME), and Partial Depen-
dence Plot (PDP) to explain the expected results and identify the
most dominant features. The super learner cybersickness model is
then retrained using the identified dominant features. Our proposed
method identified eye tracking, player position, and galvanic skin/-
heart rate response as the most dominant features for the integrated
sensor, gameplay, and bio-physiological datasets. We also show that
the proposed XAI-guided feature reduction significantly reduces
the model training and inference time by 1.91X and 2.15X while
maintaining baseline accuracy. For instance, using the integrated
sensor dataset, our reduced super learner model outperforms the
state-of-the-art works by classifying cybersickness into 4 classes
(none, low, medium, and high) with an accuracy of 96% and regress-
ing (FMS 1-10) with a Root Mean Square Error (RMSE) of 0.03. Our
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proposed method can help researchers analyze, detect, and miti-
gate cybersickness in real time and deploy the super learner-based
cybersickness detection model in standalone VR headsets.
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1 INTRODUCTION

Virtual reality (VR) is being applied in various fields containing
national defense [2], education [59], health care [27], public safety
[53], and others [7, 19, 70, 76]. Specifically, in the current COVID-19
pandemic situation, VR offers a tremendous prospect for remote
learning [63], as realistic collaboration workspaces [88, 98], and
also as coping strategies for mental wellness for adults [19] as it can
provide a sense of human presence. However, VR users often expe-
rience VR sickness or cybersickness, which hinders their immersive
experience. Thus cybersickness has emerged as an important ob-
stacle [59, 76, 87] to the wider acceptability of VR. Cybersickness
can be defined as a set of unpleasant symptoms such as eyestrain,
headache, nausea, disorientation, or even vomiting [22, 50, 70, 87].
One of the popular techniques to detect cybersickness is to use post-
immersive subjective questionnaires such as Simulator Sickness
Questionnaire (SSQ) and the VR Sickness Questionnaire (VRSQ)
[84]. In contrast, the Fast Motion Sickness Scale (FMS) [43] can
assess cybersickness severity during immersion. However, FMS
relies on user feedback, i.e., needs human intervention during the
VR immersion [62]. To overcome these limitations, deep learning
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(DL) and machine learning (ML) has recently become popular for
cybersickness detection [1, 31, 32, 38, 41, 50, 75].

State-of-the-art ML/DL models can detect cybersickness with
good accuracy from physiological signals (e.g., Heart Rate (HR), Gal-
vanic Skin Responses (GSR), Breathe Rate (BR), Electroencephalo-
gram (EEG)) [19, 65, 75, 91, 100], integrated eye and head tracking
sensors, [33], and stereoscopic video [33, 52, 67]. For instance, Is-
lam et al. [33] proposed a cybersickness severity detection using
a deep fusion network with an accuracy of 87.7% from users’ eye
tracking and head tracking data. Other researchers used electroen-
cephalography (EEG) [75, 91, 100], stereoscopic video [33, 67] and
bio-physiological signal [31, 75] data for detecting cybersickness
with good accuracy. Despite the great prospect of ML/DL models
in detecting cybersickness, these methods have several drawbacks
shown (see Figure 1).

e Most of the state-of-the-art ML/DL models for VR cyber-
sickness detection rely on black-box models; thus, they lack
explainability. Adding explainability to these black-box mod-
els can significantly improve the model’s trustworthiness
and provide insight into why and how the ML/DL model
arrived at a specific decision.

o VR sensors generate a tremendous amount of data, resulting
in complex, large, and power-hungry models. This makes
real-time cybersickness detection challenging in standalone
head-mounted devices (HMDs). Adding the explanation to
the ML/DL model can guide the engineers to optimize the
model effectively by identifying the dominating features. In-
deed, reducing the dimensionality of cybersickness ML/DL
models can significantly improve their training time, infer-
ence time, and size without compromising accuracy.

To demonstrate the need for the proposed XAI approach, con-
sider that a VR game developer may want to develop a cybersickness
detection model for their game based on alpha/beta players who
are using a resource-constrained standalone VR headset. Suppose
the developer used a black box cybersickness detection model with-
out explainability in the game. In that case, they could not easily
identify which of the model’s features (e.g., gaze origin from world
space) contributed to cybersickness prediction. Hence, they would
have used trial and error to reduce the model size to minimize
resource usage on the already resource-constrained Meta Quest
Pro.

It is worth mentioning that there is a significant research gap
in applying explainable artificial intelligence (XAI) to explain cy-
bersickness. Very recently, Kundu et al. [49] used inherently inter-
pretable ML models for cybersickness detection and explanation
using physiological[35] and gameplay datasets[73]. However, their
work considered binary classifiers, which can only detect the pres-
ence or absence of cybersickness. Such simple models are ineffective
for realistic VR applications as they cannot detect cybersickness
severity. Additionally, inherently interpretable models are typically
dependent on the data properties and thus suffer from the curse
of dimensionality problem [83]. For instance, decision tree and lo-
gistic regression-based inherently interpretable models can suffer
from their overfitting problem because of their dimensionality and
nonlinearity, which may eventually lead to their poor performance
in cybersickness classification [49, 69, 75]. Most prior works use
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feature selection or dimensionality reduction techniques, such as
principal component analysis (PCA) [45, 47, 60, 82, 89] to address
the high-dimensionality issue in ML/DL models for cybersickness
detection. For instance, Lin et al. [55] applied ML models with
PCA to extract the cybersickness-related features to predict the
cybersickness level. Similarly, Kottaimalai et al. in [48] used PCA
to reduce dimensions, complexity, and computational time for EEG
signals to detect cybersickness. Furthermore, Mawalid et al. in [61]
used time-domain feature extraction methods to extract the EEG
statistical features for classifying cybersickness. However, apply-
ing PCA results in loss of information [3]. This means applying
PCA-based dimensionality reduction may result in losing important
features essential for accurate cybersickness detection.

To address the above-mentioned challenges, we propose a novel
methodology, VR-LENS-an XAl-based framework for cybersick-
ness detection, explanation, model reduction, and model deploy-
ment. First, to demonstrate the applicability of our proposed method,
we proposed a novel super learning-based ensemble ML model.
Then, we employed post-hoc explanation methods, SHapley Addi-
tive exPlanations (SHAP), Morris Sensitivity Analysis (MSA), Local
Interpretable Model-Agnostic Explanations (LIME), and Partial De-
pendence Plot (PDP) to explain the expected results and identify the
most dominant features. Specifically, we first develop a novel super
learning-based ensemble ML model for cybersickness detection.
Then, we employ post-hoc explanation methods, namely SHap-
ley Additive exPlanations (SHAP) [57], Morris Sensitivity Analy-
sis (MSA) [64], Local Interpretable Model-Agnostic Explanations
(LIME) [80], and Partial Dependence Plot (PDP) [24], to provide
global and local explanations for analyzing, identifying, and ranking
dominating features causing cybersickness. The identified domi-
nating features are then used to retrain the super learner model,
i.e., to train them with a reduced number of features. This results
in a lightweight cybersickness detection model with a significantly
reduced number of features. Finally, to show the effectiveness of
our VR-LENS framework, we deployed the reduced super learner
model in a Qualcomm Snapdragon 750G processor-based Samsung
A52 device [30] since many state-of-art VR devices are built using
Qualcomm Snapdragon processors. We show that our proposed
deployed reduced super learner model results in faster training and
significantly faster inference time in the deployed device with great
accuracy outperforming the state-of-the-art works. For instance,
our results show that using the integrated sensor dataset [33], the
proposed super learner model with all features classifies the cyber-
sickness severity into 4 classes (none, low, medium, and high) with
an accuracy of 95% and regress (FMS 1-10) the ongoing cybersick-
ness with a Root Mean Square Error (RMSE) value of 0.04. However,
after the XAl-based reduction of the same super learner model and
the same dataset, we can classify the cybersickness severity and
predict the ongoing cybersickness with an accuracy of 96% and
RMSE of 0.03, respectively, with only 1/3 of the features of the
baseline model. Furthermore, our reduction approach results in a
1.91X improvement in training time and a 2.15X improvement in
the inference time in the deployed embedded device. To the best of
our knowledge, this is the first work that uses a super learner model
and post-hoc explanation techniques for cybersickness detection,
explanations, model reduction, and deployment. Therefore, we be-
lieve the proposed method can help future researchers understand,
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Why did the model is detecting cybersickness?
Why misclassification happen?

Can I trust the model decision?

Can I reduce the size of the model?

Can I optimize the performance of the model?
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Figure 1: Key questions in ML-based cybersickness (CS) detection.

analyze, and design more straightforward, lightweight, trustworthy,
and accurate cybersickness detection models suitable for real-time
implementation in standalone HMDs.

2 RELATED WORKS

The term cybersickness refers to a group of symptoms, such as dizzi-
ness, nausea, etc., that are similar to motion sickness and can occur
during or after an immersive experience [51]. The most popular
theory to explain the reason behind cybersickness is the sensory
conflict [50, 51]. This theory states that cybersickness occurs when
the eyes sense motion, but the vestibular system does not. How-
ever, other theories, such as poison theory and postural instability
theory, have also been used to explain the causes of cybersickness.
In addition, factors such as age, gender, and prior VR experience of
users can also impact the degree of cybersickness [15, 21, 29]. Other
factors causing cybersickness are display, latency, flickering, lag,
cybersecurity, etc., [25, 38, 50, 93, 94]. The state-of-the-art works in
cybersickness detection can be broadly divided into two categories
using subjective, objective, and advanced ML/DL methods. In addi-
tion, there also exists work in the area of dimensionality reduction
of cybersickness models. In this section, we discuss these related
works as follows.

Researchers have proposed several subjective measurements
such as the Simulator Sickness Questionnaire (SSQ) [8-10, 16, 84,
96], the FMS [43], and the Motion Sickness Susceptibility Ques-
tionnaire (MSSQ) [42] to measure cybersickness. In contrast, sev-
eral researchers have also proposed objective measurements (i.e.,
physiological signals) for cybersickness [31, 35, 73] detection. Pre-
vious research has shown that objective measurements (e.g., heart
rate, gastric tachyarrhythmia, galvanic skin response, eye-blink
rate, pupil diameter and electroencephalogram (EEG))delta, and
beta wave signals) vary significantly when cybersickness occurs
[14, 35, 56, 56, 77, 79]. For instance, they found that HR and EEG
delta waves correlate positively with cybersickness, whereas EEG
beta waves correlate negatively [56]. On the contrary, another
study reported that GSR has a stronger positive correlation with
cybersickness than other objective measurements that can detect
cybersickness [35, 90].

Numerous ML and DL-based approaches have recently been
proposed [1, 26, 31, 33, 35, 37, 44, 50, 68, 75, 78, 79, 95, 97, 99] for
detecting cybersickness automatically from a variety of subjec-
tive measurements (FMSQ, MSSQ) data, objective measurements

821

(bio-physiological signals) data, and integrated multimodal sen-
sors measurements (eye-tracking, head-tracking, motion-flow, etc.)
data in HMD. For instance, Seungjun et al. [1] proposed a ma-
chine-deep—-ensemble learning method for classifying the cyber-
sickness from bio-physiological data. In contrast, in [73], a symbolic
ML-based approach is used to identify the levels of cybersickness.
Moreover, Azadeh et al. [26] used Topological Data Analysis (TDA)
based on support vector machine (SVMs) with Gaussian RBF ker-
nel methods for predicting cybersickness from physiological and
subjective measurements data. On the other hand, Padmanaban et
al. [67] used the ML algorithm on hand-crafted features from the
VR video data to predict cybersickness. Apart from the ML-based
method, in recent years DL-based method has gained more attention
from cybersickness researchers. For instance, the authors in [41]
applied three DL/ML-based methods, namely Convolutional neural
network (CNN), LSTM, and Support Vector Regression (SVR) for
cybersickness prediction. In contrast, Lee et al. [52] used a 3D-CNN
and a multimodal deep fusion network to detect cybersickness us-
ing optical flow, disparity, and saliency features from the VR video
data. On the other hand, Jeong et al. [37] applied attention-based DL
models for predicting cybersickness from integrated sensor data.
Likewise, in [75], an LSTM-based attention network is used for
detecting cybersickness from user bio-physiological signals. Conse-
quently, Islam et al. [35] applied an LSTM-based network to classify
the cybersickness severity from users’ bio-physiological data (e.g.,
HR, GSR, etc.). In addition, a deep fusion approach was presented
in [33] for classifying cybersickness severity from the multimodal
integrated sensors data (e.g., eye-tracking, head-tracking, etc.). Al-
though ML/DL-based methods have shown enormous success in
cybersickness detection, there is a significant research gap in apply-
ing XAI to explain detected cybersickness models. Indeed, under-
standing why some samples are correctly vs. incorrectly labeled as
cybersickness and which feature contributed to the cybersickness
detection result is an important step toward applying the proper
mitigation technique. Therefore, explicit explanations are required
to ascertain which feature (e.g., eye-tracking, head-tracking, HR,
galvanic skin response, etc.) is responsible for cybersickness detec-
tion. Moreover, applying XAl in cybersickness detection models
can significantly improve the model’s trustworthiness and provide
insight into why and how the ML/DL model arrived at a specific de-
cision. In our context, the concept of trustworthy refers to using XAI
for cybersickness explanations through mechanisms such as global
and local explanations and explainable layers, which make the
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Figure 2: Overview of VR-LENS for cybersickness (CS) detection, explanation, reduction, and deployment.

ML/DL model transparent, understandable, and therefore, trustwor-
thy to users [92]. Recently, Kundu et al. [49] used three inherently
interpretable ML models, namely explainable boosting Machine
(EBM), decision tree (DT), and logistic regression (LR), to detect
and explain the cybersickness from a user’s bio-physiological and
subjective measurement data. However, their proposed approach
is limited to binary classification (cybersickness vs. no cybersick-
ness). In contrast, our work considers a multi-class classification
problem (none, low, medium, and high) for cybersickness detection.
Another limitation in [49] is that their proposed EBM model is re-
quired higher training time [66], which is not feasible for real-time
deployment. In contrast, our work proposes a lightweight, super
learner model and uses a post-hoc explanation-based method such
as SHAP, MSA, LIME, and PDP to explain black-box ML model
cybersickness detection.

There exist several works in dimensionality reduction of cyber-
sickness models. Many researchers used PCA-based methods to
identify important features and reduce the model size [45, 47, 60,
82, 85, 89]. For example, Lin et al. [55] used PCA based method to
extract the cybersickness-related features from EEG signals. After
feature extraction, they utilized 3 ML/DL models, namely, linear
regression (LR), SVM, and self-organizing neural fuzzy inference
network (SOFIN), to predict the user’s level of cybersickness. Simi-
larly, the authors in [48] also used PCA to find the patterns from
the EEG signals and neural networks (NN) to classify the cognitive
tasks using the Colorado University EEG signal dataset. In contrast,
Singla et al. in [85] used PCA to reduce the set of questions from
the SSQ simulation. On the other hand, Mawalid et al. in [61] used
time domain feature extraction based on the statistical features (e.g.,
mean, variation, standard deviation, number of peaks) and power
percentage band to understand the cybersickness features and then
applied K-Nearest Neighbor and Naive Bayes classifiers to classify
cybersickness. However, PCA-based dimension reduction is not
always trustworthy and has a few drawbacks. For instance, PCA
maps high-dimensional data to low-dimensional space through
projections, which often leads to the loss of information from the
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original data[40]. In contrast, We use an XAlI-based approach for
dimensionality reduction of the cybersickness detection model to
avoid the loss of information and maintain trustworthy. Indeed, it
is important to identify the key features inducing cybersickness in
VR to develop effective mitigation methods. This can be achieved
by using XAI techniques. However, to the best of our knowledge,
XAI techniques for detecting and predicting cybersickness have
not been explored yet, which motivates our work in the paper.

3 VR-LENS FRAMEWORK

An overview of the proposed VR-LENS framework for VR cyber-
sickness detection, explanation, model reduction, and deployment
is shown in Figure 2. At first, the training data is used to train the
super learner-based ensemble learning model for training for both
classification and regression tasks (explained in detail in the next
section). The cybersickness classification and regression training
phase consist of two levels of the classifier. The level-1 classifier
consists of multiple ML models as base models, and the level-2 clas-
sifier consists of a meta-classifier for the final classification. Next,
the trained VR-LENS-based classification and regression models
are used for classifying and regressing the cybersickness from the
test dataset. The cybersickness regression aims at classifying the cy-
bersickness levels with the trained super learner model. In contrast,
the cybersickness regression predicts the next value of the ongoing
cybersickness FMS score in the range of 0 to 10. The next phase
uses post-hoc explanation methods, such as SHAP, LIME, Morris
Sensitivity, and PDP, to explain the cybersickness outcomes. For
the global explanation, we use SHAP and Morris sensitivity tool to
explain the overall feature ranking based on the overall outcome.
On the contrary, the local explanation is based on LIME and PDP
for individual feature ranking based on the specific test sample.
Once the features are analyzed and ranked using the explanation
methods, in the model reduction phase, we use only the top features
(1/3 of the features in our case) to retrain the super learner model.
This results in a significantly smaller model with fewer hyperpa-
rameters, leading to a faster training and inference time. Finally, we
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deploy the reduced super learner model in an embedded platform
for cybersickness detection.

3.1 Cybersickness classification using super
learner

We implement a super learner-based ensemble model for combining
predictions from base models and enhancing the predictions with
information from exogenous variables. It is worth mentioning that
the super-learning method is based on a general framework of sev-
eral ensemble algorithms [101]. We start with building base learners
and fit the base learners with a meta learner. We use six stacked
base learners, tested individually, to achieve the best performance.
The idea is to choose a suboptimal classifier to solve the problem,
improve the predictive performance, and increase the generaliza-
tion performance of the super learner model. The base learners that
we use to build the super learner model are: support vector classifier
(SVC) [12], K-nearest neighbors classifier (KNNC)[4], extra trees
classifier (ETC)[23], XG boost classifier (XGBC)[11], random forest
classifier (RFC)[54], gradient boosting classifier (GBC)[18], and the
meta learner classifier is based on a logistic regression classifier
[13].

Algorithm 1 shows the overview super learner-based ensemble
ML method for cybersickness detection. The algorithm takes sev-
eral base learners, meta-learners, and training and testing datasets
as input and returns the cybersickness level. First, for each of the
base learners By, the training data X_train is fitted with the learn-
ing algorithm function A in a stacking manner to obtain the best-
fitted base learners denoted as Fy (Lines 2). Next, the meta-learning
training set X_train’ is created based on the prediction function 6
(Line 3). This generates the new dataset for the meta learner using
X _train and Fy. The meta learner Mj and meta-learning training
set X_train’ are then fitted in the training function A (Line 5). The A
function calculates trained value F; from the ensemble base learner
and meta learner. Then, the cybersickness level Dy is predicted
from the fitted meta learner F; based on the prediction algorithm
0 (Lines 6-7). Finally, the algorithm returns the cybersickness level
when this process is complete for all the test data (Line 8).

Algorithm 1 Super learning-based cybersickness classification

Input: Training dataset: X7,q4in,
Testing dataset: X1est XTest
List of base learners By,

Meta learner Mg ;

Output: Dy ={}

1: for each base learners i € By do
2. Fp = AM(X_train)

3. X_train’ = 0(X_train, F)
4: end for

5: Fi =AMy, X_train’)
6: Pp =0'(F},X_test)

7: DL = DL U PL

8: return D
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3.2 Cybersickness regression using super
learner

We use the same super learner model that we used for classification
for the cybersickness regression task, in which base learners we
used are support vector regressor (SVR)[12], K- nearest neighbors
regressor (KNNR)[4], extra trees regressor (ETR)[23], XG boost
regressor (XGBR)[11], random forest regressor (RFR)[54], gradi-
ent boosting regressor (GBR)[18]. Then, we used the meta learner
regressor, namely the linear regression model, to forecast the cyber-
sickness FMS score in the range of 0 to 10. By comparing the user’s
current physiological state with the previous physiological state,
cybersickness regression regresses the user’s ongoing cybersick-
ness FMS score. The cybersickness regression task can formally be
defined as follows: Given a history of observed VR data (e.g., eye-
tracking data, head-tracking data, physiological signal, gameplay
data, etc.) and the FMS score at previous time steps t — 1, predict
the FMS score at the next time steps ¢. The predicted cybersickness
at time ¢ based on the previous time ¢t — 1 of physiological signals
is denoted by CSR;. For instance, if we predict the cybersickness
FMS score at time ¢ = 20 seconds, then CS; can be written as:

CSRy = [Pt—19, P18, Pt—17, Pt—16 - . ., Pt]

where P denotes the user’s cognitive state.

3.3 Cybersickness Explanation

The XAI tools to explain cybersickness outcomes from the super
learner model produce visual representations, either as a bar graph
or as a set of visualizations either in global or local explanation. We
use these graphs to understand model interpretability regarding
cybersickness detection and prediction. The explanations can be
categorized as global and local explanations. The overall importance
ranking (global explanation) of cybersickness detection is visualized
as bar graphs. For the local explanation, each sample is randomly
chosen from the test dataset, which contains all the features. We
use SHapley Additive exPlanations (SHAP) and Morris sensitivity
analysis (MSA) to explain the overall feature importance. SHAP
assigns feature importance based on a game theoretic approach.
On the other hand, Morris sensitivity analysis measures the effect
of adjusting one feature at a time, and based on this randomized
process; the feature importance is assigned. We are using the results
from the global explanation to identify the essential features which
help us effectively reduce the feature space.

For the local explanation, we use the Local Interpretable Model-
agnostic Explanations (LIME) and partial dependence plots (PDP)
tools to explain the individual predictions from the test samples.
LIME generates an explanation by approximating the underlying
model with an interpretable one to show what feature contributed
to the output from that single sample. Similarly, PDP shows the
marginal effect one or two features have on the predicted outcome
of a machine learning model. This marginal effect can lead to a
linear, monotonic, or more complex relation between the output
and the feature.

4 DATASETS & EXPERMENTAL SETUP

This section explains our experimental setup and datasets to vali-
date our proposed VR-LENSE framework. We used Scikit-Learn [71]
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for training and evaluating our proposed super learner-based ML
model. For explaining the super learner model, we used the SHAP
[57] and the InterpretML [66] library. For deploying the super

learner-based ML model in a Qualcomm Snapdragon 750G processor-

based Android device, we used Android Studio [17], and ONNX [5]
library. The super learner-based ML model is trained on an Intel
Core 19 Processor and 32GB RAM option with NVIDIA GeForce
RTX 3080 Ti GPU.

4.1 Datasets

To validate the effectiveness of the proposed VR-LENS framework
for cybersickness classification, regression, explanation, and deploy-
ment, we used the three datasets, such as integrated sensor [33],
bio-physiological [36], and gameplay [74] datasets.

4.1.1 Integrated sensor dataset. The integrated sensor dataset [33]
contains the eye tracking, head tracking, and physiological sig-
nals for 27 participants (Male: 15 and Female: 12) immersed in 5
different VR simulations: Beach City, Road Side, Roller Coaster,
SeaVoyage, and Furniture Shop. They recruited a total of 30 partici-
pants (Male: 15, Female: 15) to collect the experiment data. However,
three participants’ data could not be collected due to technical is-
sues (i.e., blacktooth and HTC-Vive wireless adapter black screen
issue). Eye tracking, head tracking, and physiological data consist
of different subcategories. For instance, in the eye tracking data,
the subcategories are Pupil Diameter (left), Pupil Position (x, y,
z), Gaze Direction (%, y, z), Convergence Distance, and % of Eye
Openness, and for the head tracking data Quaternion Rotation of
X, Y, Z, and W axis, respectively. Similarly, for the physiological
signals, the subcategories are electrodermal activity (EDA) and HR
measurements. This dataset has a total of 20104 samples recorded
with a maximum of 7 minutes of VR simulation. In addition, the
dataset contains four different cybersickness severity classes: none,
low, medium, and high, and the FMS score ranges from 0 to 10,
which is used for regression analysis.

4.1.2  Bio-physiological dataset. The bio-physiological[36] dataset
consists of different physiological signals such as heart rate (HR),
breathing rate (BR), heart rate variability (HRV), and galvanic skin
response (GSR). The HR, BR, GSR, and HRV data have different
subcategories. For instance, in HR data, the subcategories are the
percentage of change from resting baseline (PC), minimum inside
3s rolling window (MIN), the maximum value of 3s rolling window
(MAX), and moving average of 3s rolling window (AVG). Similarly,
for the other bio-physiological signals, the subcategories are the
same. They recruited a total of 31 university students from a uni-
versity class for the experiment (Male: 29, Female:2). Unfortunately,
they were unable to collect eight users’ data due to some reason
(e.g., the battery of the HR sensors died in the middle of the ex-
periment, some users’ felt severe sickness during the experiment,
etc.,). Therefore, these physiological signals were collected from 23
participants immersed in a virtual roller coaster simulation. This
dataset has a total of 24533 samples recorded with a maximum of
897 seconds of VR simulation. The dataset contains three differ-
ent cybersickness severity classes: low sickness, moderate sickness,
and acute sickness. We labeled ‘low sickness’ as none, ‘'moderate
sickness’ as a medium, and ‘acute sickness’ as a high cybersickness
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class to reduce ambiguity. The FMS score ranges from 0 to 10 used
for regression analysis.

4.1.3 Gameplay dataset. The gameplay dataset [74] contains 22
different features from the sources, such as candidate profiles, ques-
tionnaires, user field of view, user position, speed of the game in
playtime, etc., for 87 participants. This dataset is generated using
two VR games, i.e., racing and flight games. However, the data from
35 participants (Male: 26, Female: 9) was collected due to their valid
cybersickness. Therefore, the data from participants in the game
who answered all virtual reality subjective questionnaires (VRSQ)
correctly and completed the whole game interaction The dataset
has four cybersickness severity classes are: none, slight, moderate,
and severe. The FMS score ranges from 0 to 10 and is used for regres-
sion analysis. The dataset contains a total of 9391 samples recorded
with 5 minutes of VR gameplay simulation [73]. It is worth men-
tioning that to reduce the ambiguity; we rename these four classes
as follows: none:none, slight: low, moderate: medium, and severe:
high as like integrated sensor dataset.

4.2 Deployment Setup

We used a Samsung A52 5G device running on Android 12 with a
Qualcomm Snapdragon 750G processor with up to 2.2 GHz clock
speed, 6 GB of RAM, and 128 GB of memory to evaluate our pro-
posed super learner model. Qualcomm Snapdragon processors are
typical in VR HMDs, which motivated our choice of this device. In
this setup, we simulate the VR setup by injecting integrated sensor
data for the model to detect cybersickness severity and measure
their outcome and inference time to assess the model’s performance.

4.3 Performance Metrics

The performance of the super learner-based ensemble model for
the cybersickness classification is evaluated using the standard
quality metrics such as accuracy, precision, recall, F-1 score, the
Area Under the Curve (AUC), and Receiver Operating Characteristic
curve (ROC) [1]. Likewise, the performance of the regression models
is analyzed using well-known loss functions such as Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Pearson Linear
Correlation Coefficient (PLCC) [102], and R? score. For example,
if y; and 7; denote the actual and predicted cybersickness of a
candidate at time ¢, respectively, then the RMSE can be defined as
follows.

1 N
RMSE = | 5 D D (e = i)

yeSs t=1

where N and S represent the total number of samples and time
steps, respectively. Mathematically, the MAE can be expressed as
follows.

1 N R
MAE = >0 e =)

yeS =1

It is worth mentioning that the smaller the MAE and RMSE, the
better the regression model. If 3 (y; — ;)% and 3 (y; — 7)? repre-
sent the sum squared regression (SSR) and the total sum of squares
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(SST) then, the R? score can be expressed as follows.

RE_ - 2 yi)*
2(ye - 9)*
Consequently, a low R? value indicates that the regression model
does not adequately capture the output variance.

5 RESULTS

This section presents the results of cybersickness detection, expla-
nation, reduction and deployment.

5.1 Cybersickness classification and regression
performance with all features

Before applying the XAl-based model reduction, we present the
non-reduced super learner model development results with their
important statistics, such as training and inference time, cyber-
sickness classification, and regression accuracy. This will help us
compare our approach’s effectiveness (XAI-based reduction) in the
following sections of the paper.

Table 1: Hyperparameters for the super learner (non-reudced
vs reduced) model

Model Hyperparameters
Original Default
KNN Reduced | no. of neighbors = 2
Original Default
sve Reduced | kernel= polynomial
ET Original Default
Reduced | no. of estimators = 50
RE Original Default
Reduced | no. of estimators = 10
Original Default
XGB Reduced | no. of estimators=30
GB Original Default
Reduced | learning rate= 0.05

5.1.1 Cybersickness Detection Model Development. Table 1 shows
the hyperparameters list for the super learner-based cybersickness
detection model. The model is trained based on the default hyperpa-
rameters from Scikit-learn [72] in which every learner is taken with

mm After Reduction
Before Reduction

1000

s o @
3 3 3
3 3 3

Training Time (seconds)

N
S
3

0 Bio-physiological data Gameplay data Integrated sensor

Figure 3: Training time for Super learned model: non-reduced
model (all features) vs. reduced model (reduced features).
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default hyperparameters values. We use a 10 fold cross-validation
technique to train and test the performance of the super learner
model similar to [6] in which the dataset is partitioned into k groups
(i.e., in our case k = 10). Only one partition out of k is utilized for
testing the model, while the remaining partitions are used for train-
ing. The method is repeated k times, each time picking a new test
partition and the remaining (k — 1) partition as a training dataset
to eliminate bias. Note we do not use a leave-participant-out vali-
dation technique to train and test the performance of our proposed
super learner model. The reason is that our dataset is quite large,
and leave-participant-out validation is more appropriate for a small
dataset since it uses more training samples in each iteration [58].
The training and inference times for integrated sensor, gameplay,
and physiological datasets are shown in Figure 3. Training the in-
tegrated sensor, gameplay, and physiological datasets using super
learner (with all the features) requires 1012, 460, and 154 seconds,
respectively.

5.1.2  Cybersickness Classification. We summarize the accuracy,
precision, recall, and the F-1 score of cybersickness severity classifi-
cation using the super learner model in Tables 2 and 3. For the inte-
grated sensors, bio-physiological, and gameplay datasets, our super
learner model achieves 95%, 98%, and 82% accuracy, respectively.
From Table 2, we can observe that the overall performance of the
super learner model for the bio-physiological dataset is significantly
better than the gameplay dataset in terms of precision, recall, and
F1-score for cybersickness severity classification. For example, the
physiological dataset obtains a precision value of 95%, 96%, and 95%
for the none, medium, and high cybersickness classes. On the other
hand, the gameplay dataset obtains the precision value of 91%, 70%,
56%, and 75% for the none, low, medium, and high cybersickness
classes. As mentioned in section 4.1.2, the bio-physiological dataset
contains only 3 cybersickness classes, namely none, medium, and
high. Therefore, there are no results obtained for the low cyber-
sickness class. In addition, Figure 5 presents the AUC-ROC curves
for the integrated sensor, physiological, and gameplay datasets us-
ing the super-learner model. From Figures 5b and 5c, we observe
that the bio-physiological dataset possesses a higher AUC score of
0.994; however, the gameplay dataset has a comparatively lower
AUC score of 0.906. In addition, the proposed super-learner model
achieves a higher AUC score for all of the datasets in comparison
to other baseline models. For instance, the super-learner has an
AUC score of 0.994 whereas SVC has an AUC score of 0.932 for
the bio-physiological dataset. It is observed that the super-learner
performs better than other baseline models except for the XGB
classifier model for both bio-physiological and gameplay datasets.
This is due to the fact that ensemble methods approximate complex
functional relationships of data by combining a set of individual
learning algorithms using a meta-learning algorithm [81]. This
provides depth insight into the feature and hence, leads to high
classification accuracy. Likewise, the accuracy of our proposed su-
per learner model outperforms the DL-based convolutional LSTM
model for the bio-physiological dataset [31]. Even though we obtain
a great accuracy for the gameplay dataset, but we are unable to
compare with symbolic ML-based methods [73]. The reason is that
they performed binary classification while we classify the severity
of the cybersickness (multiclass classification).
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Table 2: Performance of 10-Fold Cross Validation on Cybersickness Severity Classification (non-reduced super learner model)

Dataset % Accuracy % Precision % Recall %F1-Score
None | Low | Medium | High | None | Low | Medium | High | None | Low | Medium | High
Gameplay 82 91 70 56 75 92 90 67 65 91 79 61 71
Bio-physiological 98 95 - 96 95 96 - 94 97 96 - 96 95

Table 3: Performance of 10-Fold Cross Validation on Cybersickness Severity Classification (non-reduced super learner model)
for the integrated sensor dataset

Fusi daliti % A % Precision % Recall %F1-Score
using modalities ccurac . . . . h -
& ) Y None | Low | Medium High | None | Low | Medium | High | None | Low | Medium | High
Head-tracking 67 71 63 43 64 79 71 48 40 75 67 42 49
Eye-tracking 93 97 91 77 90 96 96 68 81 97 94 73 86
Eye + head tracking 95 98 95 87 94 99 97 79 90 98 96 83 92
High
High PC_GSR . ..’.sp. § ootttV A Fo Mocmte s High
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Figure 4: Overall feature importance using global explanation using SHAP for (a) integrated sensor dataset (b) bio-physiological
dataset (c) gameplay dataset.
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Figure 5: AUC-ROC curve for Super Learner (a) integrated sensor dataset (b) gameplay dataset. (c) bio-physiological dataset.

To demonstrate the performance of our proposed model, and
compare our work to the state-of-the-art DL model-based cyber-
sickness detection in [33], we use three fusing modalities (head
tracking, eye tracking, and head + eye tracking) as shown in Table
3 from the integrated sensors dataset. The proposed super learner
model achieves an accuracy of 67%, 93%, and 95% for head tracking,
eye tracking, and head + eye tracking fusing modalities, respectively.
This outperforms the previously developed deep fusion model pro-

posed in [33] both in terms of eye tracking and head + eye tracking
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fusing modalities with accuracies of 80.7% and 87.7%. Likewise,
Figure 5a shows the AUC-ROC curves for the integrated sensor
datasets using only the head + eye tracking fusing modality due to
its good accuracy. It is observed that the integrated sensor obtains
an AUC score of 0.980, which is higher than other single classifiers
except for the XGB classifier model. For instance, the super-learner
possesses a higher AUC score of 0.980; however, the baseline model
SVC has a comparatively lower AUC score of 0.908.
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Figure 6: Overall feature importance using for MSA-based global explanation for: (a) integrated sensor dataset (b) bio-

physiological dataset (c) gameplay dataset.

5.1.3 Cybersickness Regression. Table 4a and 4b summarizes the
MAE, R%, RMSE, and PLCC values for the cybersickness regres-
sion using the super learner model on the integrated sensors, bio-
physiological, and gameplay datasets. The MAE, R?, RMSE, and
PLCC values for the bio-physiological and gameplay datasets are
0.01,0.99,0.02, 0.99 and 0.11, 0.57, 021, 0.75, respectively. Similar to
the classification, the regression also uses three fusing modalities
(head tracking, eye tracking, and head + eye tracking) as shown in
Table 4b for the integrated sensors dataset.

The proposed super learner model outperforms the previously
reported results [33] in cybersickness regression. For instance, the
deep fusion model regression results showed a R? score value of
0.18, 0.56, and 0.67, while the results from the proposed super
learner model show a R? score value of 0.49, 0.92, and 0.92 for head
tracking, eye tracking, and head + eye tracking fusing modalities,
respectively. It is worth mentioning that the high R? value indicates
that the regression model performs well in regressing the ongoing
cybersickness. The reason behind the good performance of the
super learner model is the fact that the super learner model is built
on the ensemble technique, which significantly improves the model

performance.
Dataset MAE | R* | RMSE | PLCC
Gameplay 0.11 | 0.57 | 0.21 0.75
Bio-physiological | 0.01 [ 0.99 [ 002 [ 0.99

(a) For bio-physiological and gameplay datasets

Fusing modalities | MAE | R | RMSE | PLCC
Head-tracking 0.72 | 049 | 1.08 0.70
Eye-tracking 0.23 | 092 | 043 0.96
Eye + head tracking | 0.02 | 0.92 | 0.04 0.96

(b) Integrated sensor dataset
Table 4: Cybersickness regression using non-reduced super
learner model (with all features) for different datasets
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5.2 Model reduction using XAlI-based
cybersickness explanation

In this section, we apply the post-hoc explanation methods, namely
SHAP, Morris sensitivity analysis, LIME, and PDP, to explain the
super learner model outcome. These explanations, specifically the
global explanation from the SHAP and MSA, are then used to iden-
tify the dominating features to reduce the super learner-based
cybersickness detection model.

5.2.1 Cybersickness Global Explanation. The overall feature im-
portance for cybersickness severity classification using the super
learner model with all features for the bio-physiological, game-
play, and integrated sensors datasets are presented in Figure 4
based on SHAP explanation. A shapely value calculates the ranking
of the most important features contributing to the cybersickness
severity classification, with important features at the top and the
least important ones at the bottom. From Figure 4a, we observe
that features such as NrmRightEyeOriginY, corresponding to the
normalized right eye origin in the Y axis measurement, GazeOrig-
inWrldSpc_Y, corresponding to the gaze origin in the world space
in the Y axis, and NrmRightEyeOriginZ, corresponding to the nor-
malized right eye origin in the Z axis, etc., are the most dominant
features in cybersickness severity classification for the integrated
sensor dataset. It is worth mentioning that the eye-tracking features
have a much stronger influence than the head-tracking features
on the cybersickness severity classification. Because eye tracking
features contain insightful information such as the type of blink of
the user, gaze behavior, and the position of the pupil to track the
user’s activity [33, 34, 37]. Similarly, from Figure 4b, it is observed
that features such as PC_GSR corresponding to the percentage of
galvanic skin responses (GSR) measurement, PC_BR corresponding
to the percentage change of breathing rate (BR) measurement and
PC_HRV corresponding to the percentage change of heart rate vari-
ability (HRV) measurement, etc., have a much stronger influence
in the cybersickness classification for the bio-physiological dataset.
Likewise, it is observed that the features such as Player Position
Z, user glasses use, and user gender, etc., are the most important
features in cybersickness classification for the gameplay dataset
(Figure 4c). Figure 6 presents the overall feature importance in the
cybersickness classification using the Morris sensitivity analysis
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Figure 7: LIME-based local explanation of cybersickness classification for the integrated dataset (a) explanation for high
cybersickness severity, (b) explanation for low cybersickness severity.
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Figure 8: LIME based-local explanation of cybersickness classification for the gameplay dataset (a) explanation for high
cybersickness severity, (b) explanation for low cybersickness severity.

for the integrated sensor, bio-physiological, and gameplay datasets.
Mean absolute score (MAS) is used to calculate the ranking of the
most important features contributing to the cybersickness classifi-
cation. From Figure 6a, we observe that for the integrated sensor
dataset, most of the features contributing to cybersickness classifi-
cation are again eye-tracking features, i.e., GazeOriginWrldSpc_Y,
corresponding to the gaze origin in the world space in the Y axis
measurement NrmLeftEyeOriginZ, corresponding to the normalized
left eye origin in the Z axis measurement NrmRightEyeOriginZ,
corresponding to the normalized right eye origin in the Z axis
measurement, etc., Similarly, From Figure 6b and Figure 6c, it is
observed that the most predictive features of cybersickness severity
classification for the bio-physiological dataset are PC_GSR, PC_HR,
PC_BR, etc., and player Position Z, user glasses use, user genere, etc.,
for the gameplay dataset, respectively.

5.2.2  Cybersickness Local Explanation. The results of the local
explanation utilizing LIME for the integrated sensor dataset are
shown in Figure 7. Figure 7a shows the high cybersickness severity
classification, in which the yellow and black colored bars denote
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cybersickness probabilities MAS for that individual outcome. The
x-axis represents the model’s output MAS value are log odds (the
probabilities of feature importance in prediction), and the y-axis
lists the model’s features. Most features contribute to the negative
impact indicated as yellow bars; hence, an accurate decision is made
for the high cybersickness severity class. It is observed that the eye
tracking feature GazeOriginWrldSpc_Y, corresponding to the gaze
origin from world space in the Y axis measurement, is the most
influential feature for high cybersickness severity classification,
which has the highest MAS value, nearly 0.4. For example, in Fig-
ure 7b, none cybersickness severity classification has the negative
MAS value for most of the features, which indicates that most of
the features contribute to the positive impact. Most of the features
except EDA corresponding to electrodermal activity measurement
belong to eye tracking features; thus, an appropriate decision is
established for none cybersickness severity classification. Similarly,
the local explanation of the classified cybersickness for the bio-
physiological dataset is shown in Figure 9. In Figure 9a and Figure
9b, we observe that most features contribute to a high cybersickness
severity class corresponding to the features PC_GSR corresponding
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Figure 9: LIME-based local explanation of cybersickness classification for the bio-physiological dataset (a) explanation for high
cybersickness severity, (b) explanation for low cybersickness severity.

Table 5: List of selected features for retraining the super learner model through global explanation

Dataset

Selected Features from SHAP and MSA -based Global Fxplanation

Integrated sensor

NrmRightEyeOriginZ; NrmLeftEyeOriginY; NrmRightEyeOriginX;
NrmRightEyeOriginY; NrmLeftEyeOriginZ; NrmLeftEyeOriginX;
NrmSRLeftEyeGazeDirX; NrmSRLeftEyeGazeDirY; NrmSRRightEyeGazeDirY;
GazeOriginWrldSpc_Y; GazeOriginWrldSpc_Z; RightPupilDiameter;
HeadQRotationW; HeadQRotationY; HeadEulX

Gameplay

PlayerPositionZ; UserGlassesUse; UserGenere; UserAge; PlayerSpeed; UserVisionProblems;
UserExperience; PlayerPositionX; StaticFrame; CameraRotationY

Bio-physiological

PC_GSR; PC_BR; GSR_MIN; PC_HRV

to the percentage of GSR measurement, PC_HRV corresponding
to the percentage of HRV measurement, etc., and for none cyber-
sickness severity class, the dominating features are, i.e., HRV_MIN
corresponding to the minimum HRV measurement, HRV_MAX cor-
responding to the maximum HRV measurement, etc., Likewise, the
local explanation of the classified cybersickness for the gameplay
dataset is shown in Figure 8. From Figure 8a, it is observed that
the most influential features for the high cybersickness severity
class belong to eye-tracking features such as user genere, user age,
etc. Consequently, Figure 8b shows that most of the features that
influence the positive outcome (none cybersickness severity class)
are player position Z, user age, static frame, user vision problems, etc.,
The cybersickness classification for the gameplay dataset has low
accuracy, as discussed in Section 5.1.2. So, there is a wrong expla-
nation of the features such as user age, player position Y in both
positive and negative outcomes. Such local explanation of features
provides insights into the classification/misclassification results
and thus builds trust in the model outcome to make appropriate
decisions.

We analyze the relation between top features and the model
output utilizing a PDP-based local explanation to provide a deeper
insight into the cybersickness severity classification explanation.
Figure 10 presents the PDP results of the top feature for the in-
tegrated sensor, bio-physiological, and gameplay datasets. PDP
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explanation aims to identify the partial relationship between a
set of given features and the corresponding predicted value. Fig-
ure 10a shows that the eye tracking feature NrmRightEyeOriginZ,
corresponding to the normalized right eye origin in the Z axis
measurement, has a positive relationship with the cybersickness
classification (the higher the value, the higher the probability of
cybersickness). Similarly, Figure 10b and Figure 10c shows the fea-
ture player position on the z axis for the gameplay and PC_GSR for
the bio-physiological dataset have a positive relationship with the
cybersickness classification.

5.2.3 Model reduction for deployment. This section presents fea-
ture selection, cybersickness model reduction, and deployment in an
embedded platform. Using the MSA and SHAP-based (global) expla-
nation results described in the previous section, we first identify the
top 1/3 of the features and retrain the super learner-based ensemble
model. We obtained the ratio of 1/3 by the trial and error method
for our super learner model and datasets. For instance, we took the
top 15 features out of 43 from the integrated sensors dataset, the top
4 features out of 13 features from the bio-physiological dataset, and
the top 10 features out of 20 features from the gameplay datasets.
Table 5 shows the selected features through SHAP and MSA-based
global explanation for retraining the proposed super-learner-based
ensemble model. Likewise, Table 1 shows the list of hyperparame-
ters for the retrained super learner model.
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Figure 10: PDP-based local explanation of cybersickness classification for: (a) Integrated sensors dataset. (b) Gameplay dataset.

(c) Bio-physiological dataset.

Table 6: Inference time from Super learner deployment: be-
fore reduction (all features) vs. after reduction (reduced fea-

tures)

Sample size

Inference Time in seconds

Before reduction | After reduction
1 0.15 0.07
10 1.2 0.72
100 11.8 7.6
500 54.7 38.04

5.2.4  Performance of reduced Super learner model. The total size
of the deployed model in the Samsung A52 5G device is 133, 609 KB
for the non-reduced and 90, 917 KB for the reduced super learner
models. Figure 3 shows the improvement in training time using
the reduced super learner model for the reduced bio-physiological,
gameplay, and integrated sensor datasets. It is observed that the
training time is improved significantly for the reduced super learner
model by 1.53X, 1.46X, and 1.91X for the bio-physiological, game-
play, and integrated sensors datasets, respectively. The deployed
reduced and non-reduced super learner models’ inference times
are shown in Table 6. For instance, inference on the deployed non-
reduced super learner model requires 0.15, 1.2, 11.8, and 54.7 sec-
onds for the 1, 10, 100, and 500 samples, respectively. On the other
hand, the reduced super learner model requires only 0.07, 0.72, 7.6,
and 38.04 for the 1, 10, 100, and 500 samples which are 2.15X, 1.67X,
1.58X, and 1.44X faster than the non-reduced super learner model.

5.2.5 Cybersickness classification for the reduced super learner
model. As mentioned earlier, we deploy the super learner model in
embedded hardware for classifying the integrated sensor dataset.
Then, we simulate the super learner model for the rest of the dataset
to evaluate their performance. Table 7 summarizes the accuracy,
precision, recall, and F-1 scores of cybersickness classification using
the reduced order super learner model for integrated sensors, bio-
physiological, and gameplay datasets. For instance, cybersickness
classification for the integrated sensor dataset using the reduced su-
per learner model exhibits 96% accuracy. In addition, the cybersick-
ness classification accuracy for the bio-physiological dataset is 98%,
which is also slightly higher than the accuracy of the non-reduced
super learner model for the bio-physiological dataset (see Table 2).
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However, the cybersickness classification accuracy of the reduced
super learner model for the gameplay dataset slightly decreased by
1.2% compared to their non-reduced version. Furthermore, other
performance metrics, such as precision, recall, and F1-score for
the none, low, medium, and high cybersickness classes, slightly
increased for the reduced super learner model compared to their
non-reduced version for the three datasets. For instance, the pre-
cision score for the none, low, medium, and high cybersickness
classes for the reduced super learner model using integrated sensor
dataset are 99%, 95%, 91%, and 95%, which is slightly better than
the non-reduced super learner model. Likewise, the recall score for
the none, medium, and high cybersickness classes for the reduced
super learner model are 99%, 98%, 97%, and 95%, in which medium
class 1.23 higher than the non-reduced model. In addition, for the
other datasets, specifically for the bio-physiological dataset, the
reduced model improved the precision, recall, and F1 score for all
classes.

5.2.6 Cybersickness regression for the reduced super learner model.
Table 8 shows the performance of cybersickness regression using
the reduced order super learner model for the integrated sensors,
bio-physiological, and gameplay datasets. For instance, the MAE,
(Rz), RMSE, and PLCC values for the reduced super learner model
with integrated sensor dataset are 0.02, 0.95, 0.04, and 0.97 and
0.03, 0.95, 0.06, and 0.97 for the bio-physiological dataset, respec-
tively. This reduced super learner model for integrated and bio-
physiological datasets has significantly improved the MAE, (R?),
RMSE, and PLCC values. On the other hand, it is observed that for
the gameplay dataset MAE, (Rz), RMSE, and PLCC values are 0.12,
0.49, 0.22, and 0.70, which is slightly better than the non-reduced
model. This is because the gameplay data contains the features,
mostly categorical features. .

6 DISCUSSION

This section briefly discusses the results obtained using the VR-
LENS framework. The SHAP and MSA-based global explanation
reveal that for the integrated sensor dataset, features such as nor-
mal eye origin, gaze origin, pupil diameter, etc., are the most influ-
ential features for causing cybersickness. Similarly, for the bio-
physiological and gameplay datasets features such as PC_GSR,
PC_BR and PC_HRYV, etc., and player Position Z, user glasses use, user
genere, etc., respectively. On the contrary, the LIME and PDP-based
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Table 7: Performance of 10-Fold Cross Validation on Cybersickness Severity Classification using the reduced super learner

model (reduced features)

Dataset Feature Count % Acc. % Precision % Recall %F1 Score
Original | Reduced None | Low | Medium | High | None | Low | Medium | High | None | Low | Medium | High
Gameplay 22 10 81 88 81 79 94 95 89 75 80 91 79 78 80
Integrated Sensors 43 15 96 99 95 91 95 98 98 97 95 99 96 89 94
Bio-Physiological 14 4 98 99 - 97 99 99 - 98 96 99 - 98 99

Table 8: Cybersickness regression using reduced super
learner model (with reduced features) for bio-physiological,
integrated sensor, and gameplay datasets

Dataset MAE | R | RMSE | PLCC
Bio-physiological | 0.03 | 0.95 | 0.06 0.97
Integrated Sensors | 0.02 | 0.95 | 0.03 0.97
Gameplay 0.12 | 049 | 0.22 0.70

local explanations of specific predictions offered useful insight for
each sample. Consequently, we ranked the features’ importance
from the global explanation using SHAP and MSA, and important
features were used to retrain the super learner model. Our results
suggest that the SHAP and MSA-guided reduced super learner
model result in significantly faster training times. Furthermore, the
deployed reduced super learner model in a Qualcomm Snapdragon
750G processor-based Samsung A52 5G device shows faster infer-
ence time for real-time cybersickness detection without sacrificing
accuracy. For instance, the deployed reduced super learner cyber-
sickness model, which was trained with only 1/3 of the features
compared to its non-reduced version, classified the cybersickness
severity with an accuracy of 96%. Similarly, while regressing to
cybersickness, the reduced super learner obtained an RMSE value
of 0.03, which is 25.5% less than its non-reduced version for the
integrated sensor dataset. It is worth mentioning that the reduced
super learner performed well for the bio-physiological dataset in
both cybersickness classification and regression. In contrast, the
gameplay dataset performed poorly in both cybersickness classi-
fication and regression. The reason is that the gameplay dataset
contains features from mostly users’ profile data, which doesn’t
provide any useful insight into cybersickness. However, the inte-
grated sensor data, such as eye-blink rate, pupil diameter, HR, etc.,
provided more insights into user behavior regarding cybersickness.

The accuracy of our proposed super learner model outperforms
several state-of-the-art works in ML and DL-based cybersickness
detection. For instance, Islam et al. [34] used a deep temporal con-
volutional network (DeepTCN) to forecast the cybersickness FMS
score (on a scale from 0-10) with an RMSE value of 0.49, based on
eye tracking, heart rate, and galvanic skin response data. In contrast,
Dennison et al. [14] reported accuracy of 78% and R? values 75%
using the bio-physiological data. Our super learner model’s clas-
sification and regression accuracy outperform these works. There
also exist other works which are relevant to our work. For instance,
Qu et al. [75], Kim et al. [46], Garcia-Agundez et al. [20], and Jeong
et al. [39] reported cybersickness detection accuracy of 96.85%, ,
89.16%, 82% and 94.02%, respectively, using bio-physiological and
EEG/ECG signals.

831

Even though there are several works in cybersickness detection
methods, to date, only a few studies have been conducted on iden-
tifying the causes of cybersickness [31, 33, 46, 67]. However, to the
best of our knowledge, no prior work exists on applying XAI to
explain the cybersickness from black-box ML models, reducing ML
model size using XAI and deploying them on embedded devices.
Indeed, XAlI-based explanations can help researchers understand
the reasons behind correct and incorrect cybersickness classifica-
tion and can be further utilized to develop effective cybersickness
reduction methods. Therefore, we believe that the proposed XAI-
based cybersickness model reduction and deployed model can help
researchers to automate the cybersickness detection in real-time
on standalone VR headsets and improve the usability of the VR.

7 LIMITATIONS AND FUTURE WORKS

Although our proposed XAlI-based super learner model for cyber-
sickness detection, feature reduction, and deployment method out-
performed the state-of-the-art cybersickness detection models, our
approach has a few limitations. For instance, we demonstrated the
effectiveness of our proposed XAl-based model reduction method
with a fast training and inference time and also deployed the model
in a Qualcomm Snapdragon processor-based (state-of-the-art VR
HMDs use Qualcomm Snapdragon processors) Samsung A52 device.
However, we did not deploy our models on an actual VR headset.
Therefore, it is hard to explain what type of sensors would perform
well in cybersickness detection. However, based on our proposed
XAl-based method, eye-tracking sensors are much more efficient
than a head-tracking sensors for cybersickness prediction. Conse-
quently, it is worth mentioning that external sensors (e.g., heart
rate, galvanic skin response, electroencephalogram) can limit VR
locomotion and 3D-object manipulation during the immersion. In
addition, these sensors often require tethering and affixing to the
users’ hands.

Furthermore, cybersickness might affect different people based
on their unique characteristics, VR environment, and gender [86].
For instance, Females whose Interpupillary distance (IPD) could
not be properly fit into the VR headset often suffered from high
cybersickness and did not fully recover within a short time [28,
86]. Therefore, in the future, we plan to conduct further research
with people from broader demographic backgrounds and of equal
gender representation. Also, this work uses only eye-tracking, head-
tracking, bio-physiological signals, and users’ profile data to detect
cybersickness. In the future, we plan to investigate the effect of
stereo images and stereoscopic video data to detect cybersickness
with explainability and deploy it in a realistic VR headset.
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8 CONCLUSION

In this work, we proposed the VR-LENS framework, an XAlI-based
framework for cybersickness detection through a super learner-
based ensemble ML model with explanations and deployment in
embedded devices. Specifically, we developed a super learner-based
ensemble ML model for cybersickness detection. Then applied,
XALI to explain the cybersickness and reduce the feature space and
model size for deploying in the embedded device. We illustrated
the effectiveness of our proposed method using three datasets, i.e.,
the integrated sensor, bio-physiological, and gameplay datasets.
Our global explanation results revealed that eye-tracking features
are the most influential for causing cybersickness in the integrated
sensor dataset. Consequently, for the bio-physiological dataset,
the GSR, HR, and for the gameplay dataset, the player Position
and user glasses of the user are the most influential feature in
causing cybersickness. Furthermore, we identified more helpful
insight for each sample (misclassification instances) using the local
explanation. Finally, based on the XAI-based feature ranking, we
significantly reduced the super learner model size and deployed it
on a Qualcomm Snapdragon processor-based Samsung A52 device
system. The deployed super learner model significantly reduced
the training time (up to 1.91X) and inference time (up to 2.46X). For
instance, our deployed reduced super learner model could classify
and regress the cybersickness with an accuracy of 96% and RMSE of
0.03 for the integrated sensor dataset, which outperforms the state-
of-art works. To our knowledge, this is the first work applying XAI
to explain a super learner-based ensemble model, reduce the model
size, and deploy it in an embedded device. We believe this research
will be helpful for future researchers working on cybersickness
detection, mitigation, and real-time prediction of cybersickness in
standalone VR headsets.
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