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Abstract
Cluster randomized trials (CRTs) are commonly used to evaluate educational interventions,
particularly their effectiveness. Recently there has been greater emphasis on using these trials to
explore cost-effectiveness. However, methods for establishing the power of cluster randomized
cost-effectiveness trials (CRCETs) are limited. This study develops power computation formulas
and statistical software to help researchers plan two- and three-level CRCETs. We illustrate the
application of our formulas and software for the designs of CRCETs and discuss the influence of
sample size, nesting effects, covariates, and the covariance between cost and effectiveness

measures on the statistical power of cost-effectiveness estimates.
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Experimental Design and Statistical Power for Cluster Randomized Cost-Effectiveness
Trials

The randomized controlled trial (RCT) has been seen as the gold standard for evaluating
the causal effects of programs, policies, and practices (hereafter referred to as interventions;
Imbens & Rubin, 2015). Education interventions often involve nested data structures (e.g.,
students nested with schools) and, as a result, experiments frequently randomly assign clusters
(e.g., schools) rather than individuals to a treatment or control condition (e.g., Conroy et al.,
2018; Konstantopoulos et al., 2016; Spybrook et al., 2020). Historically, educational researchers
utilized cluster randomized trials (CRTs) to assess the effectiveness of educational interventions
but ignored the cost of implementing these interventions (e.g., Bulus & Dong, 2021; Harris,
2009; Shen & Kelcey, 2020). However, policymakers and administrators commonly strive to
identify interventions that have maximal effectiveness for a given budget or aim to achieve a
target improvement in effectiveness at the lowest possible cost (Levin et al., 2017). Therefore,
recent discussions regarding economic evaluations in education call for evaluating the cost as
well as the effectiveness of educational interventions to facilitate better decision-making (e.g.,
Belfield & Bowden, 2019; Levin & Belfield, 2015; Shand & Bowden, 2021).

Evaluations without a credible cost analysis can lead to misleading judgments regarding
the relative benefits of alternative strategies for achieving a particular goal (e.g., maximizing the
outcomes at current levels of expenditures or minimizing costs for achieving specific effects).
For example, results from the Project STAR (Student-Teacher Achievement Ratio) in Tennessee
provided strong evidence that class size reduction (CSR) improved student achievement in early
grades (Krueger, 1999; Mosteller, 1997; Konstantopoulos & Li, 2012). However, CSR policy is

costly (Brewer et al., 1999). Holding constant the level of performance gain, Levin et al. (1987)



estimated that CSR would be more costly than alternative strategies, such as peer tutoring, for
improving achievement. Therefore, even though CSR is an effective way to improve student
achievement, it might not be the most cost-efficient strategy, or it may simply be not feasible
given current resource constraints. Indeed, several European countries stopped implementing
CSR policies due to budget limitations (Li & Konstantopoulos, 2016, 2017a).

The CSR example illustrates the importance of incorporating cost analyses for
interventions that can produce significant positive effects. Even when a proposed new
intervention has similar effects to the older ones (e.g., a null effect), educational researchers and
policymakers still need to compare the cost of implementing these interventions for a
comprehensive assessment and solid decision-making. For example, in a CRT, Fishman et al.
(2013) found no significant difference in the effectiveness of two modalities (i.e., online and
face-to-face) of teacher professional development on either teacher or student learning. Still,
schools, districts, and states may see online teacher professional development as an attractive
alternative to traditional face-to-face professional development programs since online
professional development can potentially produce similar effects at much lower costs (e.g., Lay
et al., 2020). To sum up, when comparing alternative interventions with similar goals, both the
effectiveness and cost should be accounted for if the intent is for the evaluations to support
decision-making (Harris, 2009; Levin et al., 2017).

Two primary economic evaluation approaches in education are cost analysis (CA) and
cost-effectiveness analysis (CEA). CA identifies all the resources needed to deliver an
intervention (Levin & Belfield, 2015). It computes the total cost of an intervention and the
average cost per participant and thus can help practitioners and policymakers understand the

resources required to replicate a particular intervention. CEA examines the resources needed to



achieve a specific intervention effect and is widely used to compare the cost and effectiveness of
different interventions with similar goals (Levin & Belfield, 2015). It provides policymakers and
practitioners with estimates of the absolute and relative effectiveness per dollar expended to
achieve a specific goal, and thus enables them to determine which intervention alternatives are
expected to produce the best outcomes for a given budget cap - a common situation faced by
school administrators facing shrinking budgets following the 2008 recession (Sparks, 2019).
Today, major educational funding agencies, including the Institute of Education Sciences (IES),
are requiring an economic evaluation (e.g., CEA) as part of grant proposals for program
evaluations (IES, 2020). Education evaluators are increasingly likely to incorporate cost studies
and cost-effectiveness evaluations into their research plans (e.g., Jacob et al., 2016; Mustafa,
2018; Steele et al., 2018).

The study design that involves the random assignment of entire clusters to a treatment or
control condition to evaluate both the cost and effectiveness of an intervention is commonly
referred to as the cluster randomized cost-effectiveness trial (CRCET). CRCETs link the cost of
implementing an intervention to its effect and thus help researchers and policymakers adjudicate
the degree to which an intervention is cost-effective. Just as we have become accustomed to
designing CRTs with sufficient power, it is crucial to ensure that the size and allocation of the
study sample across and within clusters guarantee adequate power (e.g., power > 0.80) to
determine whether an intervention is significantly cost-effective or not. This study aims to
develop statistical methods and a user-friendly tool to help educational researchers plan their
CRCETs.

In education, the incremental cost-effectiveness ratio (ICER), defined as the net cost of

an intervention divided by the intervention effect, has been widely used as a cost-effectiveness



measure to compare alternative interventions with similar goals. The intervention with the
smallest ICER is deemed the most cost-effective, assuming a positive impact. The current
empirical CEA studies in education focus on the descriptive measure of ICER, and do not
provide inferential statistics such as p-values partially because of the difficulty of conducting
statistical inference for ratio statistics (e.g., Bowden & Belfield, 2015; Hollands et al., 2013;
Levin et al., 2017; Levin et al., 2012). Without accounting for estimation uncertainty in ICERs, it
is difficult to assess whether an intervention is statistically significantly cost-effective. Besides
ICER, another commonly used measure is the incremental net monetary benefit (INMB).
Because it can facilitate statistical inference and power computation, we used the INMB to
measure the cost-effectiveness of an intervention in this study. We provide a more detailed
discussion regarding these two measures in the method section.

CRCETs require plans to collect both effectiveness data (e.g., test scores) and cost data in
the design phase. Educational researchers commonly utilize the “ingredients method” for cost
data collection (Levin et al., 2017), which considers all the ingredients needed to implement an
intervention and computes the total cost and average cost per participant of an intervention based
on the quantities and prices of the ingredients (Levin et al., 2017). Given the nature of schools,
with students nested within classes nested within schools, the ingredients method is commonly
applied in the context of a multilevel data structure. Some ingredients are measured at the school
level (e.g., school staff and facilities), while others may be measured at the class level (e.g.,
teacher time) and student level (e.g., volunteer time and transportation for one-to-one tutoring).
Student-level cost is computed as the total cost of the student-level ingredients and the average

cost per student of the class- and school-level ingredients.



The cost of school-level ingredients usually varies across schools. That is, although the
quantities and prices of school-level ingredients are often fixed for students within the same
school, they are likely to vary across schools (e.g., Bowden & Belfield, 2015). For example, the
renting price for school facilities generally varies across school districts. Similarly, the costs of
class- and student-level ingredients (e.g., teacher salaries, student transportation, etc.) may vary
within and across schools. As a result, the student-level cost that considers the ingredients at
student, class, and school levels varies among individuals and schools. And thus, the school-level
cost, computed as the school-level average cost per student, varies among schools. Educational
researchers have documented vast variability in ingredients use and cost across schools for a
wide range of education interventions ranging from early literacy to college enrollment
(Bowden & Belfield, 2015; Hollands et al., 2013; Levin et al., 2017; Levin et al., 2012). For
example, Bowden and Belfield (2015) evaluated the cost-effectiveness of the Talent Search
program that was created to improve high school completion and college enrollment for
disadvantaged students. They found that the school-level costs varied across all categories of
ingredients. The school-level average cost per student ranged from $420 to $720, with a standard
deviation of 93.9.

It also should be noted that because students are nested within schools and share the same
class- and school-level ingredients, student-level costs are correlated among students within the
same schools. Similar to effectiveness measures (e.g., test scores), the within-class and school
correlations can be represented by the cost data intra-class correlation coefficients (ICCs) at
corresponding levels. The nested structure of cost data and the cost variation within levels of
measurement should be accounted for in the design of CRCETs. Otherwise, the statistical power

and sample size will be misestimated (Li et al., 2020). Compared to traditional impact studies



that only focus on the effectiveness measures, the outcome of interest for CRCETs considers
both the effectiveness and cost measures (e.g., INMB). The hierarchical linear model (HLM;
Raudenbush & Bryk, 2002) can be used to account for the nested data structure of these
measures. When designing a CRCET, educational researchers need to identify the appropriate
levels of clustering (e.g., two levels or three levels) and account for the variations of both
effectiveness and cost measures when they compute statistical power and sample size (e.g., Li et
al., 2020; Manju et al., 2014).

Power analysis methods for effectiveness studies have been widely discussed in
education literature (e.g., Dong et al., 2018, 2021; Dong & Maynard, 2013; Hedges & Rhoads,
2010; Kelcey et al., 2019; Konstantopoulos, 2008a, 2008b; Li & Konstantopoulos, 2017b, 2019;
Raudenbush, 1997; Raudenbush & Liu, 2000; Schochet, 2008; Spybrook et al., 2011). However,
the education literature largely ignores the statistical power of the cost estimates of implementing
the interventions in question. Methods for conducting power analysis for randomized cost-
effectiveness trials have been discussed in other disciplines (e.g., Willan & Briggs, 2006). For
example, health researchers have developed formulas to calculate power for two-level
randomized cost-effectiveness trials, where the treatment is at the patient-level or the health care
provider-level (Manju et al., 2014, 2015). These methods apply to unconditional models (i.e., no
covariates), whereas it is common in education evaluations to include covariates to improve the
precision of impact estimates (e.g., Bloom et al., 2007; Hedges & Hedberg, 2007;
Konstantopoulos, 2012). These methods developed for the health research field also
accommodate nested cost data structure and require individual-level cost data, while it is
recommended practice in education research to differentiate costs incurred at different levels of

intervention (i.e., individual versus school). Educational researchers commonly collect cost data



through structured interviews with school staff, research partners, and other supplemental
services staff for all ingredients, while often missing detail at the student level because of the
greater cost of data collection (e.g., Jacob et al., 2016). As a result, student-level cost data are
commonly unavailable, and only school-level average costs of student-level ingredients are
available (Levin & Belfield, 2015).

Recently, Li et al. (2020) extended power analysis methods used in health science to
accommodate the use of covariates in two-level multisite randomized cost-effectiveness trials,
where randomization of treatment occurs at the individual level within sites. That same paper
discusses the implications of not having student-level cost data for estimating the power.
However, that paper did not extend to addressing power computation methods and tools for two-
or three-level CRCETs with covariate adjustments, and it did not tackle the issues that arise from
the fact that educational interventions commonly involve complicated nesting structures (e.g.,
students nested with classes, and classes nested within schools).

This study extends the power analysis and CEA literature in three ways. First, we extend
the existing power analysis methods for two-level CRCETs (e.g., Manju et al., 2014) to
incorporate covariate effects. Second, we develop power analysis methods for three-level
CRCETs that also consider covariate effects. Third, we discuss the implications of not having
student-level or class-level cost data on statistical power and provide an accessible and user-
friendly software program, PowerUp!-CEA, to facilitate planning adequately powered CRCETs.
This includes providing practical guidance and illustrative examples regarding how to choose
design parameters under various design scenarios and assumptions. The study and accompanying
software provide a practical way of designing educational CEA studies to optimize power

subject to sample size and allocation constraints.



We begin by presenting a framework for analyzing cluster designs for cost-effectiveness
studies that use HLMs. We derive formulas for computing the statistical power to detect a
desired effect size regarding the cost-effectiveness of an intervention given sample size and the
minimum detectable effect size (MDES; Bloom, 1995) given statistical power and sample size
under different scenarios. We then demonstrate the application of the power analysis formulas
and discuss the features of statistical power under prototypical assumptions. We conclude with
suggestions for extending this work to include different and more complex study designs.

Method

In this section, we first discuss the measures to evaluate the cost-effectiveness of an
intervention, and then develop the statistical power formulas for two-level cluster designs.
Because the derivation is essentially the same, results for three-level designs are presented in
Online Appendix B.
Cost-Effectiveness Measures

In education literature, researchers commonly use the incremental cost-effectiveness ratio
(ICER) to measure the cost-effectiveness of an intervention, which is defined as the incremental
cost (denoted as 4C) divided by the incremental effect (denoted as 4E). The incremental cost is
measured by the difference between the average cost for the treatment and control groups. The
incremental effect is measured by the difference between the average value of the outcome of
interest for those in the treatment and control groups, usually called the average treatment effect
(ATE) in experimental studies that focus on the effectiveness measures. Prior CEA studies
commonly used the ICER to compare the relative cost-effectiveness among alternative
interventions with similar goals (e.g., Bowden & Belfield, 2015; Hollands et al., 2013; Levin et

al., 2017; Levin et al. al., 2012). When both the incremental effect and the incremental cost are
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positive, the intervention with the smallest ICER is the most cost-effective, and the intervention
with an ICER smaller than a targeted value is cost-effective. However, if either the incremental
effect or the incremental cost is negative, it is complicated to decide which is the most cost-
effective. For example, an intervention with a positive incremental effect but a negative
incremental cost might have the same ICER as another intervention with a negative incremental
effect but a positive incremental cost; however, the former intervention is more cost-effective
than the latter.

Another measure is the incremental net monetary benefit (INMB), defined as

INMB = kAE — AC, (1
where k is the value decision-makers (e.g., society, policymakers, and/or intervention
participants) assign to a unit change in the outcome—sometimes referred to as their
“willingness-to-pay” (Willan & Briggs, 2006). WTP (or k) can be interpreted as the threshold
ICER that renders the intervention cost-effective (Stinnett & Mullahy, 1998). There are various
ways to define k. For example, Herrera-Araujo et al. (2017) estimated adult’s willingness-to-pay
to improve reading and speaking skills among dyslexic individuals using a state-preference
survey. More generally, when comparing alternative programs with similar outcomes, k is
assumed to be constant and exogenous to the intervention.

Compared to the ICER, the interpretation of an estimated INMB is more straightforward:
interventions with a positive INMB would always be deemed cost-effective. Moreover, when the
estimated AF and AC are unbiased estimates, the estimated INMB is also an unbiased estimate of
the true INMB, while the estimated ICER is not an unbiased estimator of the true ICER due to it
being a ratio estimator (Stinnett & Mullahy, 1998). Therefore, when the sample size is small, the

bias in the estimated ICER might not be negligible (Stinnett & Mullahy, 1998). In addition,
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statistical inference and power computation are far more straightforward for INMB than for
ICER because INMB is a linear function of AE and AC, while ICER is a ratio of AE and AC.
Specifically, we can easily compute the variance of INMB through
Var(INMB) = Var(kAE — AC) = k*Var(4E) + Var(AC) — 2xCov(AE, AC). (2)
Although it is possible to use Fieller’s Theorem to compute the confidence interval for
ICER (Willan & O’Brien, 1996), educational evaluators rarely used it in practice. Moreover, the
power estimates based on equation (1) or Fieller’s Theorem are almost identical, although the
underlying assumptions about the distribution of the effectiveness and cost measures differ (see
Li et al., 2020). Therefore, to facilitate statistical inference and power computation, as in prior
studies (e.g., Manju et al., 2014, 2015; Li et al., 2020), we use the INMB as the CEA measure.
Two-level Cluster Designs: Unconditional Model
Consider a simple two-level cluster randomized design where level-2 units (e.g., schools)
are randomly assigned to treatment or control conditions, and the treatment is at the second level.
When level-1 cost data are available, two-level HLM can be used to estimate the incremental
effect (i.e., AE) and the incremental cost (i.e., AC), namely
Eij =v5o + TIAE + 15 + €5, 3)
Cij =Yoo + THAC + 15, + £}, 4)

and

reé. 2 ct 2
(o0 )5(00 )
rOj 0 Tec Tc eij 0 Ogc O¢
where Ej; is the effectiveness measure (e.g., test scores) and C;; is the cost for level-1 unit i in

level-2 unit j; T; is a binary treatment indicator variable; r5; and 7g; are the level-2 random

effects for effectiveness and cost data, respectively; and &f; and &f; are the level-1 errors for
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effectiveness and cost data, respectively. We assume the random effects and level-1 error terms
follow bivariate normal distributions as shown in equation (5).

Equations (3) and (4) express the effectiveness measure (e.g., test score) and cost
measures on the original scales (e.g., points and dollars), respectively. Following the net-benefit
framework (e.g., Manju et al., 2014), we can reconstruct equations (3) and (4) as

NMB;; = kE;j — Cij = oo + o1 Tj + 19 + &), (6)
where NMB;; represents the net monetary benefit (NMB) for level-1 unit i in level-2 unit j, k is a

positive constant that represents the dollar value of willingness-to-pay (Manju et al., 2014;

C

Willan & Briggs, 2006), oo = kY50 — Yoo, o1 = KAE — AC, 1 = KTg; — 155, & = K& — &},

10;~N (0, 72), and &;i~N (0, 02). The parameter of interest, 7, represents the INMB of the

treatment. When my; > 0, it indicates the treatment is cost-effective; when my; < 0, it suggests
the treatment is not cost-effective.
Suppose there are J level-2 units and 7z level-1 units within each level-2 unit, and thus, the

total number of level-1 units is nJ. Also, suppose there are J; units in the treatment group and /.

in the control condition. Define P = ]TT’ is the proportion of level-2 units in the treatment group,

then the variance of 775, is (Hedges & Rhoads, 2010; Raudenbush, 1997)

Var(ity,) = (nt? + o2). (7

1
P(1-P)nj

where 12 = k212 + 12 — 2KT,,, and 0% = k?0? + 02 — 2K0,.. Under the bivariate normal

assumptions (i.e., equation 3), the test statistic t = —2__ follows a student’s # distribution

Jvar(fo1)
when the null hypothesis is true. When the alternative hypothesis is true, the ¢ statistic follows a
non-central z-distribution with the non-centrality parameter as (Hedges & Rhoads, 2010;

Raudenbush, 1997)
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,P(I—P)n]
A= To1 nt24+o2 (8)

Let ¢, = 02 + 12 and Y, = 02 + 12 represent the total variance of effectiveness and cost
measures, respectively. Prior studies (e.g., Belfield & Bowden, 2019) suggested that the power
computation for CEA should allow for identifying a valid impact in dollars. Therefore, we first
standardize the effectiveness measures (i.e., Y, = 1), and then define the effect size as § =
INMB = kAE — AC, representing the net monetary benefit of the intervention with one SD

increase of the effective measures. The non-centrality parameter becomes

P(1-P)nj
A=6 9
\[Kz[(n_1)Pe]+1/)c[(n_l)Pc]"'(KZ'Hpc)_ZK\/wc(nrz*'rl), ( )

2
where . can be interpreted as the ratio between ¥, and Y,, given , = 1; p, = Z and pe =

Ye
2
;—C are the intra-class correlations (ICCs) of effectiveness and cost data, respectively; and r; =
c
Oec Tec . . .
—=—andr, = are the standardized covariance between cost and effectiveness measures
J¥ete 27 fbewe

at level 1 and level 2, respectively. Note that r; = (1 — p,)(1 — p.)corr; and r, = p,p.corr,

are positively correlated with the correlations between cost and effectiveness measures, where

and corr, = ‘e are the correlation coefficients at level 1 and level 2, respectively.

OegO¢ TeTlc

Oec

corry, =

Under these specifications, power is defined as

Power=1-H[c(a/2, J-2), (J-2), A] + H [-c(a /2, J-2), (J-2), 1], (10)
where c(a,v) is the one-tailed critical value of the #-distribution with Type I error rate of a and v
degrees of freedom (e.g., ¢(0.05,20)=1.72), H(x, v, 4) is the cumulative distribution function of
the non-central #-distribution with v degrees of freedom and non-centrality parameter 4. Besides

the statistical power of a CRCET, applied researchers also want to estimate the MDES that a
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CRCET can detect with sufficient power (e.g., power > 0.8) given sample sizes. The MDES for a

two-level cluster design without covariate adjustments is

MDES = \/% Kz[(n - 1)pe] + lpc[(n - 1)pc] + (KZ + 1nl)c) - ZK\/E(an + Tl), (11)

where M.> = t. + t1.4 for two-tailed tests with Type I error a, Type II error 5, and J-2 degrees
of freedom.

The Online Appendix A provides the derivations of Var(I NMI B) when only cluster level
cost information is available, but level-1 effectiveness data are still available. Specifically, we
can estimate AC through a single-level regression (i.e., equation A1) and estimate AE through
equation (3). Then based on equation (2) and the results from the Online Appendix A (i.e.,

equations A3, A4, and AS5), we get the variance of INMB as is

1

Var(INMB) = - ury

[K2(n12 + 02) + (n1? + 02) — 2k(NTy + 0.0)]. (12)

Again, assume the effectiveness measures are standardized with means of zero and
standard deviations of one (i.e., ¥, = 1) and define the effect size as § = INMB, then the

standardized non-centrality parameter is

A=6 P(1-P)nj
K2[(n=1) pel+¥cl(n=1)pcl+ (k2 +p ) =2k Pc(nry +71)’

(13)

which is identical to equation (9). Thus, the power of detecting the cost-effectiveness of
treatment is the same for unconditional models regardless of whether or not level-1 cost data are
available for two-level CRCETs.
Two-level Cluster Designs: Covariate Effects
When the analysis includes covariates, the two-level HLMs used to estimate the
incremental effect (i.e., AE) and the incremental cost (i.e., AC) become
Eij = vgo + T,AE + X{Tiy + Z7T6, + 140, + €44 (14)
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Cij =Yoo + T;AC + X{;T1o + ZiTg, + 14oj + €445 (15)
where X;; and Xj; are row vectors of level-1 unit characteristics, I'f and I, are column vectors
of coefficients of level-1 unit characteristics, Z ]-e and Z ]-C are row vectors of level-2 unit
characteristics, and I'5, and ['5, are column vectors of coefficients of level-2 unit characteristics.

Subscript 4 indicates adjustment because of covariates. The level-1 error terms and the level-2

random effects follow bivariate normal distributions

ré. . 2 cé.. 2
( 14201> ~N ((0) ’ <TRe TR2ec> and < f;u) ~N <(0), <0Re O_R;c> . (16)
T4oj 0/ \Trec Tre €aij 07" \ Orec Oic
where subscript R indicates residual variance or residual covariance. Then, the NMB for level-1
unit i in level-2 unit j becomes

NMBI_] = Ty + T[A017} +Xijrlo + eroz + erj + gAij' (17)

And the non-centrality parameter becomes (Hedges & Rhoades, 2010; Raudenbush, 1997)

3 = 5\/ P(1-P)nJ (18)

K2 [(w§-w)pel+Pc[(nws-w)pcl+ (k2w +Pw) =2k [P (Wi +wicry)’

where wi and wy represent the unexplained variance of effectiveness data at the first and second
levels, respectively; wy and w§ represent the unexplained variance of cost data at the first and
second levels, respectively; wy¢ and w5°¢ represent the unexplained covariance between cost and

2 2
ORe e _ TRTe

effectiveness at the first and second levels, respectively. Specifically, wy =

as’ z the
2 2
g T (o) T .
wi = =8¢ w = Bl yyec = “Rec and wee = £ Note that we assume group-mean centering
Oc TTc Oec TTec

of level-1 covariates so that they could only explain a proportion of the variance or covariance at
the first level. Then, power is defined as

Power=1—-H [c(a /2, J-2-q9), (J-2-q9), 2] + H [-c(a /2, J-2-q), (J-2-q), /], (19)
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where ¢ is the number of covariates at the second level. All the other terms have been defined

previously. Then, the MDES for two-level design with covariate adjustments is

MDES(8) =
Tt i (s = widp] + el (ws = wP)pe]+ (Pwf + o) — 2 wsn, +wir), (20)

where M.>.4 =t + t1-p for two-tailed tests with Type I error a, Type II error 5, and J-2-¢
degrees of freedom.

When only level-2 cost data are available, but level-1 effectiveness data are available,
based on the derivations in the Online Appendix A, we can use a single-level regression to
estimate AC and use two-level HLM to estimate AE, and then get the estimate of INMB (denoted

as INMB). The variance of INMB becomes

1
P(1-P)nJ

Var(INMB) = [K2(nt3, + 03,) + (nTh. + 02) — 2k(NTRee + 0 rec)]- (21)

Again, assume the effectiveness measures are standardized with means of zero and
standard deviations of one (i.e., ¥, = 1) and define the standardized effect size as § = INMB,

then the standardized non-centrality parameter becomes

_ P(1-P)nj
A= 5 [ (22)

w)pel+Pc[(nws—Dpcl+(2w +c) =2k [P (nws ro+wigr,)’

which is not identical to equation (18) because w'$¢ only takes into account the effects of

covariate adjustments in the effectiveness model.

The Online Appendix B provides the derivations and results for three-level cluster
designs. Table 1 summarizes standardized non-centrality parameters, MDES, and degrees of
freedom for the two- and three-level models we considered in this study. It should be noted that
our power and MDES computation methods assume equal cluster sizes (e.g., number of students

per school), while in practice it is more likely that the sample sizes vary across clusters. We
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suggest using the geometric mean for designs with unbalanced cluster sizes. Because closed-
form solutions of power computation formulas are usually unavailable when cluster size varies,
prior studies (e.g., Bloom, 2006; Dong et al., 2021; Konstantopoulos, 2010) compared three
options — arithmetic mean, harmonic mean, and geometric mean — for power computation. Dong
et al. (2021) evaluated the performance of these three options through a simulation analysis and
concluded that the power computation using harmonic mean or arithmetic mean either
underestimated or overestimates the actual power, while the power calculation based on the
geometric mean approximates the actual power from the simulation very well.
Illustration and Discussion

In this section, we first demonstrate the application of our formulas and a free statistical
tool (PowerUp!-CEA) to calculate statistical power and MDES and investigate the impact of
sample sizes and design parameters on power and MDES estimates for CRCETs, then discuss
the similarity and differences between power analyses for CRTs and CRCETs.
Working Example

We illustrate the application of PowerUp-CEA to design CRCETSs through a working
example, which focuses on the cost-effectiveness of an interim assessment program. Prior studies
(e.g., Konstantopoulos et al., 2013) evaluated the impact of Indiana’s system of interim
assessment on student achievement through a CRT and found significant treatment effects.
However, they did not evaluate the cost of implementing this intervention. Assume a new
research team plans to design a follow-up whole-school intervention to assess the cost-
effectiveness of Indiana’s system of interim assessment. Specifically, the research team would
like to explore whether the interim assessment is a cost-effective intervention (i.e., INMB > 0).

Demonstration
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We developed a user-friendly tool-(PowerUp!-CEA) for planning CRCETs that is free

and downloadable from the web (https://www.causalevaluation.org/). This tool is implemented

through an easy-to-use Microsoft Excel program that channels users to the design and power
analysis most appropriate to their study through a dialogue box.

To begin, the research team must first decide the number of total levels within the study.
School interventions in education commonly include data and measures at three levels: school-
level (e.g., enrollment), class-level (e.g., teacher characteristics), and student-level (e.g., grade
level, gender). If they gather data at all three levels (i.e., students, classes, and schools), they can
design a three-level CRCET. But, if they lack data at the class level, for example, they would
design a two-level CRCET (i.e., students nested within schools). The second step is to decide
whether they plan to determine the statistical power they need to achieve given a particular
sample and effect size or the MDES achievable for a given sample at a specified level of
statistical power. If the research team wants to know the probability of detecting the cost-
effectiveness of the intervention with a given effect size, they can use the power calculator
within PowerUp!-CEA (see the Online Appendix Table C1 for an example). If the team would
like to determine the smallest true effect size that has a given probability (e.g., power > 0.80) of
being found to be statistically significant given the specified sample size and allocation, they
could use the MDES calculator (see the Online Appendix Table C2 for an example). The third
step is to specify the values of design parameters for the effectiveness data, the cost data, the
covariance between the effectiveness and cost data, and the statistical significance tests (e.g.,
alpha level and one/two-tailed test) - the yellow highlighted parameters in the worksheet.
Educational researchers typically rely on one of three strategies to estimate these design

parameters: (1) calculating them from a pilot study; (2) consulting prior literature for similar
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studies; or (3) using existing databases to estimate these parameters (e.g., Spybrook et al., 2016).
Once these parameters have been input into PowerUp!-CEA, it automatically calculates the
power or MDES.

The relevant design parameters that are common for both CRT and CRCETs include the
proportion of variance in the effectiveness measure that is between levels of nesting effects (i.e.,
ICC), and the proportion of variance in the effectiveness measure that is explained by covariates
at different levels. Prior literature (e.g., Hedges & Hedberg, 2007, 2013) suggests that, for a two-
level design, a reasonable default estimate of the ICC for student achievement measures (p€) is
about 0.23; for a three-level design, reasonable default estimates of ICCs at the second and third
levels are 0.08 and 0.15, respectively. Prior literature (e.g., Hedges & Hedberg, 2007, 2013;
Konstantopoulos, 2008a), also provides guidance about reasonable default assumptions for the
total variance in achievement outcomes explained by covariates at each level (i.e., w; = wy =
ws = 0.5).

In randomized cost-effectiveness trials, researchers need to make additional assumptions.
These include assumptions about the willingness to pay (i.e., k), the variance and nested effect of
cost data, the covariance between cost and effectiveness data, covariate effects, and the
availability of student-level and class-level cost data. Regrettably, the compilation of reasonable
default assumptions for these measures are still under development. Thus, the study team may
need to draw on “guesstimates” to guide their design parameters.

In particular, if the study team plans to collect individual-level cost data and believes the
cost will vary among students, classrooms, and schools (i.e., . > 0), study designs should come
up with some means of estimating the nesting effects of cost data and the covariance between

measures of cost and achievement at each level of the analysis. Manju et al.(2014) reported an
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ICC of 0.17 for cost data in a two-level cluster design for a medical study, and they found a
negative correlation between the cost and effectiveness measures at the patient-level (level-1) but
a positive correlation at the cluster level. For illustration, assume the nesting effects and
covariate effects for cost data are similar to those for achievement data (e.g., for two-level
designs, p¢ = 0.23 and wiy = wy = 0.5) in situations where lower-level (e.g., student-level for a
two-level design) cost data are available. When lower-level cost data are not available, cost
variation and the nesting effects of cost data still impact power and MDES. However, in these
cases, it is not possible to use covariates to reduce the cost variance and covariance between cost
and effectiveness measures at the corresponding level, therefore, for example, assume wy = 1
and w'¢ = 0.8 for the two-level designs.

The research team can use PowerUp-CEA to compute power and MDES under the above
assumptions and three different scenarios regarding the correlations (or covariance) at student-
and school- levels for two-level and three-level designs. Tables 2 and 3 summarize the power
and MDES estimates. Note that, for three-level designs, the research team assumes the
correlations at level 2 are always negative for simplicity. Also, for both tables, the team assumes
the effect size is 0.5 (i.e., Screpr = 0.5), the total variance of cost data is half as large as the total
variance of effectiveness measures (i.e., Y, =21,.), a two-sided test with a = 0.05, and balanced
designs. It also should be noted that almost all prior CEA studies in education ignored Var(AC)
as if AC was estimated without error, which is equivalent to assume 1. = 0, as shown in the
Online Appendix A. Therefore, Tables 2 and 3 provide power estimates for CRCETs assuming
no cost variation to illustrate how power and MDES are incorrectly estimated in that case.

Because the magnitudes of the cost variation and the nesting effects vary across studies,

the research team might want to explore the sensitivity of power estimates under different
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assumptions, as shown in Figures 2 and 3. These figures illustrate the impact of various design
parameters on power using three-level designs as examples. To simplify the presentation and
discussion, Figure 2 focuses on unconditional models assuming no correlation between cost and
effectiveness measures and evaluates how the cost variation, ICCs of cost data, and the number
of level-3 units (e.g., schools) influence power. Specifically, the lines in the left-hand of Figure 2
show how power changes as sample sizes and ICCs of cost data increase, assuming no cost
variation; the lines in the middle of Figure 2 show how power changes when the cost measure
has a variance twice as large as the effectiveness measure (i.e., 21, = 1)), and the lines on the
right-hand of Figure 2 show how power changes assuming the cost and effectiveness measures
have similar variances (i.e., P, = Y.). Figure 3 incorporates covariate adjustments in the design
and displays how covariates influence power under alternative assumptions of cost data
availability and the covariance between effectiveness and cost measures. In particular,
Unconditional Model (the dotted lines) does not incorporate covariate adjustments at any level,
Conditional Model I assumes that only school-level cost data are available, and thus class and
student characteristics do not reduce the variance in costs at the student and class levels (i.e.,

wi = wj = 1); and Conditional Model II assumes that student-level and class-level cost data are
available and that covariates at both levels reduce the variance of the cost measure and the
covariance between cost and effectiveness measures at the first level (e.g., wi = ws = wy¢ =
ws¢ = 0.5). Figure 3 also assumes that level-1 and level-2 covariates explain less covariance
between cost and effectiveness measures when cost data at both levels are missing (e.g., w;*¢ =

w,£¢ = 0.8), and the class-level standardized covariance are assumed to increase as moving from
2 s g

the left-hand panel (-.03) to the right-hand panel (.06).
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It should be noted that examples presented in all Tables and Figures assume equal sample
sizes across clusters. For unbalanced cluster sizes (e.g., numbers of classes and students within a
school), the researcher has the option of using the geometric mean number of observations per
site as a good approximation for the power calculations (Dong et al., 2020). PowerUp!-CEA
provides a geometric mean calculator as shown in the Online Appendix Table C6.

Results

The Tables and Figures illustrate how the nested data structure, covariate adjustments,
and variation and covariation of cost and effectiveness measures influence power and MDES for
the designs of CRCETs. Some results of power analyses for CRCETs are identical or similar to
those for traditional power analyses focusing only on estimating the effectiveness of
interventions (e.g., a CRT estimating impact on test scores). Specifically, as shown in Figures 2
and 3, power increases as the sample size increases but decreases as the ICC of effectiveness or
cost measure increases. Also, incorporating covariates adjustments at each level increases the
statistical power if covariates can explain a meaningful proportion of the effectiveness or cost
measure variation at the corresponding level. Therefore, collecting class- and student-level cost
data can increase power or decrease MDES, as shown in Figure 3.

Tables 2 and 3 and Figures 1 and 2 also reveal some specific and important findings for
CRCETs. First, power and MDES are misestimated when ignoring cost variation. Tables 2 and 3
compare the power and MDES estimates for designs that assume no cost variation to those that
assume costs vary among students, classrooms, and schools. We can see that for both two- and
three-level CRCETs, the power estimates (or MDES estimates) are sensitive to whether cost
variation is accounted for and to the direction and strength of the covariance between cost and

effectiveness data. For example, as shown in Table 2, row 2, for the same design, the estimated
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power is 0.485 for a conditional model that assumes no cost variation. Assuming costs vary at
both student and school levels, but there is no correlation between cost and effectiveness data,
the power decreases to 0.441. When we assume that costs vary and are positively correlated with
the effectiveness measure, the power increases to 0.559, but when they vary and are negatively
correlated with the effectiveness measure, the power decreases to 0.365. We find similar results
for three-level designs in Table 3. These findings indicate that ignoring cost variation in a
CRCET can result in over or underestimation of statistical power (and MDES).

The ratio of the cost variation to the effectiveness variation and the nesting effects of the
cost data have a negative impact on power. As shown in Figure 2, other things being equal,
power is greater when 1), = Y. than when variances are unequal (e.g., 2y, = Y.). It also
illustrates that other things being equal, power decreases as the ICC of cost data increases. Based
on the non-centrality parameter formulas (e.g., equation 8), the effect of a higher ICC depends on
the magnitudes of 1,.: the impact increases as the total variance of cost data increases.

Second, covariance (or correlations) between effectiveness and cost data influences the
power and MDES estimates. For example, assume a conditional model with both student level
and classroom level cost data available, as shown in the last row of Table 3. When intervention
cost and student achievement are positively correlated at both the student and school level, for
instance r; = 0.1, , = —0.03, and 3 = 0.07, the MDES is about 0.455. When they are
negatively correlated, for instance r; = —0.1, r, = —0.03, and 3 = —0.07, the MDES increases
to 0.563. And when they are positively correlated at the school level but negatively correlated at
the student level (e.g., 7; = —0.1, r, = —0.03, and 3 = 0.07), the MDES becomes 0.458.

Other things being equal, as the covariance (i.e., 1y, 1, and r3) change from negative to

positive, power increases monotonically. That is, when cost and effectiveness measures are
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positively correlated at any level, power increases as the strength of the correlation (or the
absolute value of the standardized covariance) increases. And when the cost and effectiveness
measures are negatively correlated, power decreases as the strength of the correlation increases.
That is because, as shown in equation (1), the variance of INMB is negatively correlated with the
covariance between AE and AC. Therefore, when the correlation is positive, the absolute value of
the standardized covariance is negatively correlated with the variance of INMB. Conversely,
when the correlation is negative, the absolute value of the standardized covariance is positively
correlated with the variance of INMB. Since power increases as the variance of INMB decreases,
when the correlation is positive, the stronger the correlations are, the larger the power is; when
the correlation is negative, the stronger the correlations are, the smaller the power is. It also
should be noted that the level-3 standardized covariance (or correlation) have a more significant
impact on power comparing the correlations at the first level.

Third, covariates influence power and MDES estimates by changing the covariance
between cost and effectiveness measures. Figure 3 illustrates this finding by comparing power
across unconditional models (the dotted lines) and conditional models that incorporate student-
level, class-level, and school-level covariates (the dashed and solid lines). It indicates that when
covariates explain a proportion of the covariance between cost and effectiveness measures at a
particular level, their inclusion in the analysis affects power. However, the direction of impact
depends on the sign of the covariance. Specifically, assuming covariates could decrease the
absolute value of the covariance, and based on equation 1, when the correlations are positive,
covariates tend to increase the variance of INMB, and, thus, decrease the power and vice versa.
As illustrated in Figure 3, when the standardized covariance are negative at both the student- and

classroom levels (left-hand lines), power estimates based on Conditional Model II are larger than
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those from Conditional Model 1. Holding all the other parameters fixed, when the class-level
standardized covariance increases from -0.03 to 0.03, the power estimates from the two
conditional models (lines in the middle of Figure 3) are almost the same. But, holding all the
other parameters fixed, when the class-level standardized covariance increases to 0.06 (right-
hand lines), power estimates from Conditional Model I are notably larger than those from
Conditional Model I1. These findings also indicate that, when the cost and effectiveness
measures are negatively correlated at all levels, collecting cost data at lower levels can increase
power through covariate adjustments. In contrast, when the correlations are positively correlated
at certain levels, the impact of cost data and covariates on power are indeterminate: covariate
adjustments can reduce covariate at corresponding levels but also increase the covariance and
thus do not always increase power. That is, collecting student-level and class-level cost
information does not always help increase power or reduce MDES. It also should be noted that,
as discussed in the method section, power and MDES estimates based on unconditional models
are not sensitive to the availability of individual-level cost data. The power and MDES estimates
for the unconditional models in Tables 2 and 3 illustrate this finding.
Comparisons between Power Analyses for CRTs and CRCETs

There are a couple of key differences in computing power or MDES when the research
team designs a CRCET compared to designing a CRT. First, the measure of interest and the
study purpose are different. Compared to a CRT that focuses on the effectiveness measure (e.g.,
test scores), a CRCET focuses on the cost-effectiveness measure (e.g., NMB or INMB) that
combines both the effectiveness measure (e.g., test scores) and cost measures (e.g., student-level
cost to implement the interim achievement). Therefore, the purpose of a power analysis for a

CRT is to determine the minimum required sample sizes to test whether the treatment effect is
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larger than zero (i.e., AE > 0) with confidence. In contrast, the purpose of a power analysis for a
CRCET becomes, for example, to identify the minimum required sample size to test whether the
INMB is larger than zero (i.e., INMB > 0) with confidence. Second, the power analysis for a
CRT only considers the variance of the effectiveness measure, whereas the power analysis for a
CRCET considers both the variance of the effectiveness measure and the cost measure and their
covariance. As a result, for the same designs with the same sample sizes at all levels and the
same design parameters, the power to detect the cost-effectiveness of the intervention tends to be
different than that to detect the effectiveness of the intervention.

For example, assume a two-level cluster design without covariate adjustments and a
standardized effectiveness measure with a mean of zero and SD of one (i.e., P, = 1).
Raudenbush (1997) provided the non-centrality parameter for a t-test to check whether the

average treatment effect (i.e., the incremental effect, AE ) is larger than zero:

Acgr = AE /% 23)
First, to make the comparisons of power estimates between a CRT and a CRCET simpler under
the same design (i.e., the same sample sizes, design parameters, and AE), we assume the research
team knows the true population value of the incremental cost, and thus there is no cost variation
(i.e., Y. = 0) and Var (AC) = 0 based on equation A3 from the Online Appendix A. Therefore,

according to equation (13) and assume 1, = 1, the non-centrality parameter for a #-test to check

whether an intervention is cost-effective (i.e., INMB = kAE — AC > 0) is:

P(1-P)nj
K2[(n—1)pe]+0x[(n—1) pc]+(k2+0)—2KX0X (nTy+74)

P(1-P)nj
(n-1)pe+1

ACRCET = INMBJ = (AE — ) (24)

It should be noted that, an intervention is deemed cost effective if and only if INMB > 0 (or

AE > AK—C ). In particular, the average treatment effect (i.e., AE') does not necessarily need to be
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larger than zero. For example, a cost-saving intervention (i.e., AC < 0) with a negative treatment
effect (i.e., AE < 0) could still be cost-effective. Comparing equations (23) and (24), we can see

that Acrr = Acrepr only when AC = 0, assuming no cost variation (i.e., Y. = 0). That is, even if
researchers know the population value of AC, the power for a CRCET is likely to differ from that
for an otherwise similarly designed CRT because AC is not equal to zero in general.

Second, educational researchers commonly do not know the population value of AC and
prior CEA studies in education found substantial cost variation among clusters (e.g., Bowden &
Belfield, 2015). Therefore, we recommend considering the cost variation and its nested structure
(Y. and p.) when designing CRCETs. Then, the differences in power estimates between CRTs
and CRCETs depend on the specific values of the design parameters, such as the incremental
cost (AC), cost data variation (y.) and ICC (p,), covariate effects, the covariance between cost
and effectiveness data, etc. For the same design, the power from a CRT tend to be larger than
that from a CRCET because of the cost variation (i.e., . # 0) and the incremental cost (i.e.,

AC # 0). However, the power to detect the cost-effectiveness of an intervention can still be
larger than the power to detect the treatment effect for the same design. For example, when the
cost and effectiveness data are positively correlated, according to equation 1, the variance of
INMB might be smaller than the variance of the incremental effect (i.e., AE), and thus the
statistical power for a CRCET might be larger than a CRT with the same design parameters and
sample sizes. Also, for some interventions that could reduce cost (e.g., an online teacher PD
program compared to a face-to-face PD program), Acgcgr 1s large than Aqgr, and thus the power
of a CRCET might be larger than that of a CRT.

To illustrate such a possibility, we consider two scenarios where the incremental cost is

either positive (i.e., AE = 0.4, AC = 0.3, and k = 2) or negative (i.e., AE = 0.2, AC = —0.1,
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and k = 2) as examples. Assuming the effectiveness measures are standardized (i.e., \/% = 1),
the effect sizes for the two scenarios are the same: §; = §, = 0.5. And thus, the power to detect
whether the intervention is cost-effectiveness for these two scenarios is the same under the same
sample sizes and design parameters; however, the power to detect whether the intervention is
effective (e.g., AE # 0) is not the same because the treatment effects are different (i.e., AE = 0.4
or 0.2). The last two columns of Tables 2 and 3 summarize the power or MDES estimates from
CRTs for these two scenarios. We can see that, for instance, as shown in Table 2, power
estimates for CRCETs are consistently smaller than those from CRTs if the incremental cost is
positive. However, when the incremental cost is negative, the power estimates from CRTs are
smaller than those from CRCETs. It should be noted that we assumed relatively smaller
covariance when they are positive (i.e., 7, = r, = 0.1). If the standardized covariance increase to
0.25 (i.e., r; = r2 = 0.25), the power for a two-level CRCET without covariates adjustment
(i.e., an unconditional model) becomes 0.868, which is larger than that from a CRT (0.803).
Similar results were also found in Table 3.
Conclusion

CRTs are becoming more common in education to evaluate interventions. Often
educational researchers focus on the effectiveness measures (e.g., test scores) but ignore the cost
of delivering the intervention. Recent studies (e.g., Belfield & Bowden, 2019; Levin et al., 2017;
Shand & Bowden, 2021) suggest educational evaluation should analyze both the cost and
effectiveness of an intervention for sound decision-making. CRCETs help researchers examine
whether an intervention is cost-effective. Still, the education literature has not previously had
well-documented procedures for conducting power analysis to guide the planning of such

studies. In this study, we extended previous work on power analysis for CRCETs (e.g., Willan &
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Briggs, 2006; Manju et al., 2014, 2015; Li et al., 2020) from two-level to three-level designs, and
presented methods for educational researchers who usually incorporate covariate effects and only
have cluster-level cost data. In general, the power of the test of the cost-effectiveness of an
intervention for CRCETs is a function of the effect size, the sample sizes at each level, the
nesting effects of effectiveness and cost data, the covariance between cost and effectiveness at
each level, the ratio between the total variance of cost and the total variance of effectiveness, and
the proportion of the variances and covariance between cost and effectiveness that covariates
explain. We also implemented our formulas to a free tool — PowerUp!-CEA to help researchers
plan CRCETs.

Our study has shown that the power and MDES estimates for CRCETs differ from those
for CRTs with the same sample sizes and design parameters. When the incremental cost is
positive, the power for a CRCET may be smaller than that from a CRT because of a smaller
effect size and (or) a larger variance, holding the sample size and design parameters fixed. When
the incremental cost is negative, or the covariance between cost and effectiveness are positive
and high, the power for a CRCET can be larger than that of a CRT because of a larger effect size
or a smaller variance. Educational researchers should conduct a different power for CRCETs to
guarantee a good enough chance of detecting a cost-effective intervention. Cost variation and the
nested structure of the cost data should be accounted for when performing power analysis for
CRCETs, otherwise, the power or MDES may be misestimated.

The methods we developed in this study apply to the design and analysis of CRCETs
regardless of whether lower-level cost data (e.g., student- or class-level) are available. For
example, as shown in Table 1 and Online Appendices A and B, when level-1 cost data are

available, researchers can use HLMs to compute power and INMB; when only cluster-level cost
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data are available, researchers can use the single-level method (e.g., OLS regression) to calculate
power and INMB if all related design parameters are available. Note that, for models without
lower-level cost data, we used the same definitions of design parameters (e.g., effect size, ICC of
cost data, etc.) and the same notations as those from HLM to present the cost variation (e.g.,
equations A2 and B10 in the Online Appendices), which allows us to compare power or MDES
for designs with or without lower-level cost information. Based on the results from Tables 2 and
3, we know that collecting lower-level cost data (e.g., student- or class-level) can increase power
if the covariates at the corresponding level could explain a meaningful portion of the cost
variation at that level. However, it usually requires substantial resources for student- or class-
level cost data collection, which can be used to sample more schools to boost power. Therefore,
one promising direction of future research is to consider the study budget when computing power
or MDES for CRCETs, and to explore which strategy — collecting lower-level cost information
or sampling more clusters — can maximize power or minimize the MDES through the optimal
design framework.

To use our formulas and tool effectively in planning CRCETs, researchers should be
prepared to make informed judgments about the value of the design parameters (e.g., ICCs for
cost data, the covariance between cost and effectiveness, etc.). Prior studies have documented
empirical values of the design parameters for effectiveness measures (e.g., Dong et al., 2016;
Hedberg & Hedges, 2014; Hedges & Hedberg, 2007; Kelcey et al., 2017; Westine et al., 2020);
however, to date, there is very limited information regarding the cost data or the covariance
between the cost data and the effectiveness data. Therefore, one important direction for further
work is the development of empirically-based estimates of these parameters. Considering a

growing number of educational interventions (e.g., I[ES-funded projects) that include an
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economic evaluation component, we suggest that they make cost-related information such as cost
data ICCs and the covariance between cost and effectiveness measures publicly available, which
can inform power analyses for CRCETs. It should be noted that the power analysis methods we
developed in this study require empirical estimates of some design parameters related to lower-
level cost data (e.g., p¢, wi, w'¢¢, and 7;) even for designs that only plan to collect cluster-level
cost data. However, these parameters cannot be estimated using cost data from most prior CEA
studies in education that did not collect student- or class-level cost information. Future research
needs to provide alternative power computation formulas that only require information from
aggregated cluster-level cost data.

A limitation of the current study is that we assume the available cost data resulting from
the application of the ingredients method will be accurately measured. Yet, the reality is that
there are likely to be varying degrees of error in measurement, depending on the type of
intervention and the evaluators’ ability to access data from various sources. Cox and Kelcey
(2019) found that the measurement error of effectiveness measures (e.g., test scores) negatively
affects power and MDES. Similarly, holding all the other factors fixed, the power estimate
should become smaller when the cost measures are not accurately measured. However, there are
no studies either addressing the validity of cost estimates generated using the ingredients method
or the reliability (or measurement error) of the cost estimates generated under varying types of
interventions and settings or drawing on different information sources. The second direction of
future research is exploring how errors measuring costs of interventions affect power and MDES.
Finally, in so far as education research commonly includes even more complicated designs than
considered here (e.g., treatment at the student or class level), the work should be extended to

accommodate three-level multisite designs.
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Table 1. Summary of the Standardized Noncentrality Parameter, MDES, and Degrees of Freedom
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Table 1. (continued)
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Table 2. Power and MDES estimates for specific scenarios with various assumptions: Two-level CRCETs and CRTs

CRCETs CRTs
Model Availability of No Cost Cost varies among students and schools Incremental cost
| cost. variation No . Positive Negative Mixed Positive Negative
information Correlation
Unconditional Level 2 0.485 0.441 0.559 0.365 0.553 0.803 0.290
Levels 1 and 2 0.485 0.441 0.559 0.365 0.553 0.803 0.290
Power
Conditional Level 2 0.776 0.723 0.844 0.623 0.837 0.978 0.511
Levels 1 and 2 0.776 0.726 0.846 0.626  0.841 0.978 0.511
Unconditional Level 2 0.729 0.773 0.665 0.868  0.669 0.399 0.399
Levels 1 and 2 0.729 0.773 0.665 0.868  0.669 0.399 0.399
MDES
Conditional Level 2 0.516 0.549 0.471 0.617  0.476 0.282 0.282
Levels 1 and 2 0.516 0.547 0.470 0.614  0.473 0.282 0.282

Note. (1) To compute power, we assume AE = 0.4 and AC = 0.3 when the incremental cost is positive and AE = 0.2 and AC = —0.1
when the incremental cost is negative. Therefore, under the assumption k¥ = 2, §ogrcpr = 0.5 in both scenarios. (2) To compute MDES,
we assume power = (.8. (3) Under the assumptions: n = 60, J = 50, p, = p. = 0.23, w{ = w{ = w5 = ws = w;* =w;° = 0.5,
w's¢=0.8, P = 0.5 ¢g=1, and a two-sided test with & = 0.05. (4) No cost variation indicates 1), = 0; When cost varies among
students and schools, we assume the total variance of cost is half as large as the total variance of effectiveness measures (i.e.,

Y. =2y.); No correlation indicates 1, = r, = 0; Positive indicates r; = r, = 0.1; Negative indicates r; = r, = —0.1; Mixed indicates
r; = —0.1and r, = 0.1. (5) All the power and MDES for CRCETs were computed using PowerUp!-CEA. The Online Appendix
Tables C1 and C2 illustrate the parameters used in the Two-level CRCET software package to generate the power and MDES
estimates for conditional models when both level-1 and level-2 cost data are available, and the covariance between cost and
effectiveness measures are positive, respectively. (6) The Online Appendix Table C5 illustrates the parameters used in the Two-level
CRCET software package to generate the power for the conditional model when only level-2 cost data are available, and the
correlation is positive. (7) The power and MDES for CRTs were computed using PowerUpR (Bulus et al., 2021).
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Table 3. Power and MDES estimates for specific scenario with various assumptions: Three-level CRCETs and CRTs

CRCETs CRTs
Model Availability of cost No Cost Cost varies among students and schools Incremental Cost
information variation No . Positive Negative Mixed Positive Negative
Correlation
Level 3 0.556 0.508 0.587 0.421 0.581 0.919 0.390
Unconditional Levels 2 and 3 0.556 0.508 0.587 0.421 0.581 0.919 0.390
Levels 1, 2, and 3 0.556 0.508 0.587 0.421 0.581 0.919 0.390
Power
Level 3 0.844 0.788 0.848 0.681 0.840 0.997 0.661
Conditional Levels 2 and 3 0.844 0.796 0.856 0.688 0.848 0.997 0.661
Levels 1,2, and 3 0.844 0.800 0.869 0.701 0.864 0.997 0.661
Level 3 0.667 0.707 0.643 0.796 0.647 0.334 0.334
Unconditional Levels 2 and 3 0.667 0.707 0.643 0.796 0.647 0.334 0.334
Levels 1, 2, and 3 0.667 0.707 0.643 0.796 0.647 0.334 0.334
MDES
Level 3 0.472 0.508 0.469 0.576 0.474 0.236 0.236
Conditional Levels 2 and 3 0.472 0.502 0.463 0.572 0.469 0.236 0.236
Levels 1, 2, and 3 0.472 0.500 0.455 0.563 0.458 0.236 0.236

Note. (1) To compute power, we assume AE = 0.4 and AC = 0.3 when the incremental cost is positive and AE = 0.2 and AC = —0.1
when the incremental cost is negative. Therefore, under the assumption k = 2, §cgcgr = 0.5 in both scenarios. (2) To compute MDES,
we assume power = (.8. (3) Under the assumptions: n =25, J = 2, L=60, p5 = p5 = 0.08, p§ = p5 = 0.15, w{ = wy = w5 =wj5 =
ws =ws§ = wf =wf =wé =05 w' =wy =0.8 P =0.5,g=1, and a two-sided test with @ = 0.05. (4) No cost variation
indicates 1. = 0; When cost varies among students and schools, we assume the total variance of cost is half as large as the total
variance of effectiveness measures (i.e., Y, =21.); No correlation indicates r; = r, = r3 = 0; Positive indicates r; = 0.1 and 13 =
0.07; Negative indicates r; = —0.1 and r; = —0.07; Mixed indicates r; = —0.1 and 3 = 0.07. We always assume 7, = —0.03 for
the Positive, Negative, and Mixed scenarios. (5) All the power and MDES for CRCETs were computed using PowerUp!-CEA. The
Online Appendix Tables C3 and C4 illustrate the parameters used in the three-level CRCET software package to generate the power
and MDES estimate for conditional models when cost data at all levels are available, and the correlations are mixed, respectively. (6)
The power and MDES for CRTs were computed using PowerUpR (Bulus et al., 2021).
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Figure 1. A three-step process to computer power or MDES for CRCETs using PowerUp!-CEA
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Figure 2. Effects of Sample Size and Cost Variation on Power

Note. Under the assumptions: k = 2, § = 0.5, ] = 2, n = 25, p§ = 0.08, p§ =0.15, r, =r, =1, =0, P = 0.5, no covariates, and
a two-sided test with @ = 0.05.
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Figure 3. Effects of Covariate Adjustments on Power

Note. (1) The conditional model I assumes only school-level cost data are available; Conditional model II assumes cost data at three
levels are all available. (2). Under the assumptions: k =2, § = 0.5, ] =2, n =25, Y, =y, p5 =p5 =0.08, p§ =p5 =
0.15 wy =wsy =w§ =05, wf =ws =w§ =05 g=1, P=0.5, and a two-sided test with « = 0.05. (3) For the three lines on
the left-hand panel, we assume r; = —0.1,r, = —0.03, and 3 = 0.07; for the three lines in the middle, we assume r; = —0.1, 71, =
0.03, and 3 = 0.07; and for the three lines on the right-hand panel, we assume r; = —0.01,7, = 0.06, and 3 = 0.07.
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Online Appendix A: Derivation of the Variance Formulas in Equations 11 and 20

When only level-2 cost information is available, we can estimate AC through a single-level
regression, namely
C; =vg0 + T;AC + 77, (A1)
where C; is the cost for cluster j, ¥, is the grand mean of cost for the control group, and 7y is the
error term for cost data. To compare the power for designs with or without level-1 cost

information available, we rewrite rjc as a combination of error terms at the first and second levels

using the same notations as those used in equation (3), namely

n EC

re = g 4 Bt (A2)

J n

where efj is the level-1 error term, and rocj is the level-2 random effect. And thus, the variance of

AC 1s

Var(AC) = Var(y§,) = ! (nt? + o). (A3)

Please note that when ¥, = 0, indicating 72 = 62 = 0, Var(AC) is equal to zero. Assume level-

1 effectiveness data are available, we can still estimate AE through equation (3), and the variance

of AE is (Raudenbush,1997)

Var(4E) = Var(p§;) = m (nt? + o2). (A4)

Similarly, the covariance between AE and AC is:

1
P(1-P)nJj

Cov(4E,AC) = (NTee + 0,¢). (A5)

Based on equation (1) we have the variance of INMB (equation 12) as

1

Var(INMB) = - RSy

[k2(nt2 + 02) + (n12 + 02) — 2k(nT,. + 0.0)]. (A6)

When only level-2 cost data are available, and there are covariates incorporated in the

analysis, we could estimate AC through a single-level regression with level-2 covariates, namely
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Ci =Yoo + T;AC + Z{Tg, + 14, (A7)
where Z; is a row vector of level-2 unit characteristics, ['g, is a column vector of coefficients of
level-2 unit characteristics, and 74; is the residual term. Subscript 4 indicates adjustment because
of covariates. Again, we could rewrite 7;; as combinations of error terms at the first and second

levels, namely

TL C

Tij =Thoj + i) (A8)

n

Then the variance of AC becomes
A~ 1
Var(AC) = Var($5,,) = e (nt3, + 0?). (A9)

Assume level-1 effectiveness data are available, and thus we could use equation (14) to estimate

the variance of AE as

Var(AE) = Var(§5y,) = ——— (nt3, + 05.). (A10)

)

Similarly, the covariance between AE and AC becomes

Cov(4E, AC) = (NTree + 0'Rec)- (A11)

P(1-P)nj
where o'y, represents the covariance between cost and effectiveness data at level-1 that only
considers the covariate effects for effectiveness measures. Therefore, we have the variance of
INMB (equation 21) as

Var(INMB) = [K2(nTde + 0pe) + (NTh. + 02) — 2k(NTRee + 0 Rec)]- (A12)

P(1- P) nJ
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Online Appendix B: Three-Level Designs

Three-level models: Unconditional Model
Consider a three-level cluster design (e.g., students nested within classes, and classes nested

within schools), where level-3 units (e.g., schools) are randomly assigned to treatment or control
conditions and the treatment is at the third level. When the level-1 effectiveness data and cost
data are available, three-level HLMs could be used to estimate the incremental effect and the
incremental cost (i.e., 4E and 4C), namely

Eiji = vooo + TIAE + uge, + 75; + 51, (BI)

Ciji = Yo00 + TIAC + ugo, + 155 + &, (B2)
where E;;; represents the effectiveness measure (e.g., achievement) for level-1 unit i in level-2
unit j within level-3 unit /; C;;; represents the cost for level-1 unit 7 in level-2 unit j within level-3

unit /; T} is a binary treatment indicator variable; and the level-1 error and random effects at

level-2 and level-3 follow bivariate normal distributions, namely

UGl 0y (@ wec)) (Ton 0\ (T2 Tec £iji 0\ (0F Tec
(58w (@): (%)) () () (%) pama () (B). (%))
Uoo1 0/ \we, we Toji 0/ \tee 72 Eiji 0/ \gec o¢
(B3)
Again, let NMBj; represent the NMB for level-1 unit 7 in level-2 unit j within level-3 unit
[, we can reconstruct equations (B1) and (B2) as
NMB;j; = kE;j; — Cijy = Tooo + Too1 T + Ugor + Toji + Eijis (B4)
where To00 = K¥YGoo — Yo00> Toor = KAE — AC, uge = KUGe — Ugors Toji = KTgj1 — Tojis Eijt =
Kefy — &fjp» oot ~N(0, w?), 19;,~N(0,7?), and ;;,~N (0, 0?). The parameter of interest now is
Too1, representing the INMB of the treatment. When 5, > 0, it indicates the treatment is cost-

effective, when myy; < 0, it indicates the treatment is not cost-effective.
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Suppose there are L level-3 units, J level-2 units within each level-3 unit, and n level-1
units within each level-2 unit. The total number of level-1 units is nJL. Also, suppose there are
Lt

Ly level-3 units in the treatment group and L. in the control condition. Define P = - is the

proportion of level-3 units in the treatment group, then the variance of 7y, is (Konstantopoulos,

2008a)

A 1
Var(foo1) = prpym (W@? +nt” + 0%), (BS)

where w? = K2w?2 — 2kw,, + w?, 1% = k?12 — 2KT,. + 12, and 6% = k?0? — 2K0,, + 02. The

non-centrality parameter is

_ [papmjL_
A= Too1 (nJw2+nt2+02) (B6)

Similarly, let Y, = 62 + 12 + w?2 and Y, = 62 + 12 + w? represent the total variance of
effective and cost measures. If we assume the effectiveness measure is standardized with a mean
of zero and a standard deviation of one (i.e., Y, = 1) and then define the effect size as § =

INMB, the standardized non-centrality parameter is

}\ — 6 P(1-P)njL
k2[(nJ-1)pS+(n-1) p§|+c[(nJ-1)p§+(n—1) p§|+ (k2 + )2k [P (njrs+nry+11)’

(B7)

2 2
where p§ = % and p§ = ;—e are the ICCs of effectiveness data at the third and second levels,

2 2
respectively; p§ = % and p5 = ;—C are ICCs of cost data at the third and second levels,

respectively; and r; = \/% andr, = \/%, andr; = ‘/% are the standardized covariance

between cost and effectiveness at the first, second, and third levels, respectively. Then, power is
defined as:

Power =1 —H[e(a /2, L-2), (L-2), 2] + H [-c(0. /2, L-2), (L-2), 1]. (BS)
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When only level-3 cost data are available, but level-1 effectiveness data are still
available, we could estimate AC through a single-level regression, namely
C; = ¥§o0 + T,AC + uf, (B9)
where C; is the cost for cluster /, ¥§y, is the grand mean of cost for the control group, and uy is
the error term. To compare the power for designs with or without level-1 cost information, we
could rewrite u; as combinations of error terms at the first, second, and third levels using the

same notations as those used in equation (B2), namely

Y_ v Y I ef
uf = ul,, + =y 2 = Lo (B10)
where &}, is the level-lerror term, 7y, is the level-2 random effect, and ug, is the level-3
random effect. And thus, we could write the variance of AC as
. 1
Var(AC) = Var(7§,,) = FRESY (nJw? + nt? + c?). (B11)

Assuming level-1 effectiveness data are available, we could use equation (B3) to estimate

AE. Specifically, according to Konstantopoulos (2008), the variance of AE is

Var(4E) = Var({#&,,) = (nJw? + nt2 + a?). (B12)

_t
P(1-P)njL

And then the covariance between AE and AC is

1

COU(AE,AC) = m

(MJwee + NTpe + T,c). (B13)

Based on equation (1) in the main text, we can get the variance of INMB as

1

Var (IWB) = m

[K2(MJw? + n12 + 02) + (W w? + 12 + 02) — 2k(J Wee + NToe + Gpc)]

(B14)
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Again, define the standardized effect size as § = INMB and assume the effectiveness
measures are standardized with means of zero and standard deviations of one (i.e., P, = 1), we

have the standardize the non-centrality parameter as

A=6 P(1-P)njL
K2[(nj=1)p§+(n-1)ps|+pc[(n) -1 p§+(n-1) p§|+(k2+p ) —2k[hc(n)rs+nry+11)’

(B15)

Note that equation (B15) is identical to equation (B7). Similarly, when level-1 cost data are not
available, but level-2 cost data are available, we could estimate the INMB through a two-level
(e.g., classes nested within schools) model, where the new level-1 error term is a combination of
level-1 (e.g., students) and level-2 (e.g., classes) errors. Then, the non-centrality is also identical
to equations (B7) and (B15), indicating the power of detecting the cost-effectiveness of treatment
is the same for unconditional models, regardless of whether level-1 or level-2 cost data are
available or not for three-level CRCETs.
Three-Level Cluster Design: Covariate Effects

When there are covariates incorporated in the analysis and level-1 cost data are available,
we can still use the three-level HLMs to estimate the incremental effect and the incremental cost
of an intervention, namely

eiji = ¥ooo + TIAE + X{Tio0 + ZjiT610 + W TGo2 + Uoor + Thojt + Eijis (B16)

Cijt = Yooo + TIAC + X{Tioo + ZjiTg10 + WiTg02 + Uaoor + Thoji + €4ijis (B17)
where X, and X;j; are row vectors of level-1 unit characteristics, and I'fy and I'fq are column

vectors of coefficients of level-1 unit characteristics; Z}; and Zj; row vectors of level-2 unit

characteristics, and ['5;, and I'§;, are column vectors of coefficients of level-2 unit
characteristics; W,° and W/¢ are row vectors of level-3 unit characteristics, and ['5,, and I§,, are

column vectors of coefficients of level-3 unit characteristics. Subscript 4 indicates adjustment
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because of covariates. The level-1 error and random effects at level-2 and level-3 follow

bivariate normal distributions
e
uflOOk 0 wl%e WRec Thojk 0 TI%e TRrec
c ~N ) 5 b\ ¢ ~N , ) , and
Ugpok 0 WRec WRc Taojik 0 TRec TRc

(‘%ﬁi}'k) ~N <(O) <O-I%e URec)
c_. O Y 2 s
gAl]k ORec ORc

where subscript R indicates residual variance or residual covariance. Then, the NMB for level-1

(B18)

unit i in level-2 unit j in cluster / becomes
NMB;j; = oo + Taoo1T1 + Xijil100 + Zjilo1o + Wilhoz + Waoor + Taoji T+ Eaiji- (B19)
And the non-centrality parameter becomes

A=06X

P(1-P)njL
k2[(njw§-w$) ps+(nwg-w) psl+ [(nws—wE) p§+(mws—w) pS]+ (k2w e+ w ) =2k [P (N W s +nwslr, +wilr, )’

(B20)
where wy, ws, w§ represent the unexplained variance of effectiveness at the first, second, and
third levels, respectively; wy, ws, and w§ represent the unexplained variance of cost at the first,
second, and third levels, respectively; wi¢, ws¢, and w$¢ represent the unexplained covariance

between cost and effectiveness at the first, second, and third levels, respectively. Specifically,

2 2 2 2 2 2
e _ 9Re e _ TRTe e _ WRe ¢ _ 9Rc ¢ _ IRTc c _ WRc ec _ 9Rec ec _ TRTec d
Wi =—"5 Wy = 55 W3 =Wy =5 Wy =5 Wy =—55 Wy = , Wy o = , an
O¢ TTe wWe ac TTc we Oec TTec

= 2Rec Note that we assume group-mean centering of level-1 and level-2 covariates so that

Wec
they could only explain a proportion of the variance or covariance corresponding levels. Then,
power is defined as

Power =1 —H [e(a./2, L-2-g), (L-2-g), A + H [-c(a /2, L-2-g), (L-2-g), /4], (B21)
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where g is the number of covariates at the third level. All the other terms have been defined
previously. The minimum detectable effect size (MDES) is

M,
MDES(8) =

JPA=P)JL x

JKZ[(nlwg“’ —w)p§ + (nws —wi)ps] + Y[ (ws — wp§ + (ws —w)ps] + (e2wf + Pews) — 2icy[ P (Wwiers +nwsr, + wirn).
(B22)
When only level-3 cost data are available, and covariates are incorporated in the analysis,
we could estimate AC through a single-level regression with level-3 covariates, namely
Ci = Y600 + TIAC + W TGo, + ug;, (B23)
where W is a row vector of level-3 unit characteristics, ', is @ column vector of coefficients
of level-3 unit characteristics, and uy, is the third level error term for cost data. Subscript 4
indicates adjustment because of covariates. Again, we could rewrite uj; as combinations of error

terms at the first, second, and third levels, namely

J J
Yi—1Tojl + Yj=1Ziz1 i1

Uy = Ugoor + . (B24)
Then the variance of AC becomes
A 1
Var(AC) = Var($5y01) = FRESn (nJw?3, + nt? + c?). (B25)

Assume individual level effectiveness measure is available, and thus we could use equation

(B16) to estimate the variance of AE as

Var(4E) = Var(#5501) = (W wge + NTRe + 0Fe). (B26)

1
pP(1-P)njL

And then the covariance between AE and AC is

Cov(AE, AC) = (N Wree + NT' grec + 0 Rec), (B27)

_r
P(1-P)nJL
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where 7', and a'g,. represent the covariance between cost and effectiveness measures at level-
2 and level-1 that only consider the covariate effects for effectiveness measures. Therefore, we
have the variance of INMB as

Var (INMB) = [K2(MJwi, + nt3, + 03,) + (w3, + n12 4+ 02) — 2k(N Wree + NT e + 0 Rec)]-

P-P)nJL
(B28)
Again, assume the effectiveness measure is standardized with a mean of zero and a
standard deviation of one (i.e., Y, = 1) and define the standardized effect size as 6 = INMB,

then the standardized the non-centrality parameter becomes

A=

P(1-P)nJL
6\/Kz[(n]w§—wf)p§+(nw§’—wf)p§]+1[)C[(n]w3c—1)p§+(n—1)p§]+(szf+1pc)—2KM(n]w§Cr3 +nwrElry +wislry )’

(B29)
which is not identical to equation (B21), because w'$¢ and w's¢ only take account of the effects
of covariate adjustments in the effectiveness model.

Similarly, when level-1 cost data are not available but level-2 cost data available, we

could use a two-level HLM estimate INMB. Assume level-2 covariates could explain a

proportion variation of the outcome variance at level-2, the non-centrality parameter becomes

- 6\/ P(1-P)njL

k2[(njw§—w)p§+(nws -w)ps|+ipc[(nIw§—1)p§+ (w5 |+ (k2w +e) 2k e (nJwECrs +nwsCry+w' )’

(B30)

where w'§¢ only takes account of the effects of covariate adjustments in the effectiveness model.
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Online Appendix C: Demonstrations using PowerUp!-CEA

Table C1. Demonstration of Power Computation for Two-level CRCETs: Level-1 Cost Data are Available

Model 2.1: Power Calculator for Two-Level Cluster Random Assignment Design (CRA2_2)— Treatment at Level 2

Assumptions Comments
Alpha Level () 0.05 Probability of a Type I error
Two-tailed or One-tailed Test? 2
Effect Size Difference 0.50 INMB standardized by the standard deviation of effectiveness data
Willingness to Pay (K) 2.00
P 0.50 Proportion of Level 2 units randomized to treatment: Jr /]
Y/, 0.50 Raito of the total variance of cost data to the total variance of effectiveness data
Parameters for Effectiveness Data
p° 0.23 Proportion of varance in effectiveness measures that is between clusters

RZ, 0.50 Proportion of variance of effectiveness data explained by level-1 covarnates

RZ, 0.50 Proportion of variance of effectiveness data explained by level-2 covariates
Parameters for Cost Data

p€ 0.23 Proportion of variance in cost measures that is between clusters

R?%. 0.50 Proportion of vanance of cost data explained by level-1 covanates

R%E 0.50 Proportion of variance of cost data explained by level-2 covanates
Parameters for Covariation between Effectiveness Data and Cost Data

n 0.10 Standardized covariance between the effectiveness data and cost data at level-1

T 0.10 Standardized covariance between the effectiveness data and cost data at level-2

prr 0.50 Proportion of the covariance explained by level-1 covariates

RZ,. 0.50 Proportion of the covariance explained by level-2 covariates
g* 1 Number of Level 2 covariates
n (Average Cluster Size) 50 Mean number of Level 1 units per Level 2 cluster (geometric mean recommended)
] (Sample Size [# of Clusters]) 60 Number of Level 2 units
Noncentrality Parameter 3.03 Automatically computed from the above assumptions
Power (1-8) 0.846 Statistical power (1-probability of a Type II error)

Note: (1)The parameters in yellow cells need to be specified. The power will be calculated automatically. (2) We always assume the effectiveness data are standardized with mean zero and standard deviation one.
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Table C2. Demonstration of MDES Computation for Two-level CRCETs: Level-1 Cost Data are Available

Model 2.1: MDES Calculator for for Two-Level Cluster Random Assignment Design (CRA2_2)— Treatment at Level 2

Assumptions Comments

Alpha Level () 0.05 Probability of a Type I error

Two-tailed or One-tailed Test? 2

Power (1-B) 0.80 Statistical power (1-probability of a Type II error)

Willingness to Pay (K) 2.00

P 0.50 Proportion of Level 2 units randomized to treatment: Jr /]

Yo/, 0.50 Raito of the total variance of cost data to the total variance of effectiveness data

Parameters for Effectiveness data

p° 0.23 Proportion of variance in effectivness measures that is between clusters
R12p 0.50 Proportjon of variance of effectiveness data explgmed by level-1 covariates
RZ, 0.50 Proportion of variance of effectiveness data explained by level-2 covariates

Parameters for Cost Data

p° 0.23 Proportion of varance in cost measures that is between clusters
R?, 0.50 Proportion of variance of cost data explained by level-1 covariates
R%C 0.50 Proportion of variance of cost data explamed by level-2 covarates

Parameters for Covariation between Effectiveness data and Cost Data

151 0.10 Standardized covariance between the effectiveness data and cost data at level-1
) 0.10 Standardized covariance between the effectiveness data and cost data at level-2
Rlzec 0.50 Proportion of the covariance explained by level-1 covariates
R% ec 0.50 Proportion of the covariance explained by level-2 covanates
¥ 1 Number of Level 2 covanates
n (Average Cluster Size) 50 Mean number of Level 1 units per Level 2 cluster (geometric mean recommended)
J (Sample Size [# of Clusters]) 60 Number of Level 2 units
M (Multiplier) 2.85 Computed from Ty and T,
T (Precision) 2.00 Determined from alpha level, given two-tailed or one-tailed test
T, (Power) 0.85 Determined from given power level
MDES 0.470 Minimum Detectable Effect Size Standardized by the Standard Deviation of the Effectiveness Data

Note: (1)The parameters in yellow cells need to be specified. The MDES will be calculated automatically. (2) We always assume the effectiveness data are standardized with mean zero and standard deviation one.



Table C3. Demonstration of Power Computation for Three-level CRCETs: Level-1 and Level-2 Cost Data are Available

Model 2.2: Power Calculator for for Three-Level Cluster Random Assignment Design (CRA3_3)— Treatment at Level 3

Assumptions Comments
Alpha Level («) 0.05 Probability of a Type I error
Two-tailed or One-tailed Test? 2
Effect Size Difference 0.50 INMB standardized by the standard deviation of effectiveness data
Willingness to Pay (k) 2.00
P 0.50 Proportion of Level 3 units randomized to treatment: Ly / L
Y./, 0.50 Raito of the total variance of cost data to the total variance of effectiveness data
Parameters for Effectiveness Data
ps 0.08 Proportion of variance in effectiveness measures among Level 2 units
p5 0.15 Proportion of variance in effectiveness measures among Level 3 Units
RZ, 0.50 Proportion of variance of effectiveness data explained by level-1 covariates
R§ 0.50 Proportion of variance of effectiveness data explained by level-2 covariates
R? 0.50 Proportion of variance of effectiveness data explained by level-3 covariates
Parameters for Cost Data
pi 0.08 Proportion of variance in cost measures among Level 2 units
s 0.15 Proportion of variance in cost measures among Level 3 Units
RZ. 0.50 Proportion of variance of cost data explained by level-1 covariates
R%E 0.50 Proportion of variance of cost data explained by level-2 covariates
R:)Z’C 0.50 Proportion of variance of cost data explained by level-3 covariates
Parameters for Covariation between Effectiveness Data and Cost Data
n -0.10 Standardized covariance between the effectiveness data and cost data at level-1
T -0.03 Standardized covariance between the effectiveness data and cost data at level-2
3 0.07 Standardized covariance between the effectiveness data and cost data at level-3
pr . 0.50 Proportion of the covariance explained by level-1 covanates
RZ,. 0.50 Proportion of the covariance explained by level-2 covariates
RZ,. 0.50 Proportion of the covariance explained by level-3 covariates
" 1 Number of Level 3 covariates
n (Average Sample Size for Level 1) 25 Mean number of Level 1 units per Level 2 unit (geometric mean recommended)
] (Average Sample Size for Level 2) 2 Mean number of Level 2 units per Level 3 unit (geometric mean recommended)
L (Sample Size [# of Level 3 units]) 60 The number of Level 3 units in the sample
Noncentrality Parameter 3.112 Automatically computed from the above assumptions
Power (1-8) 0.864 Statistical power (1-probability of a Type II error)

Note: (1)The parameters in yellow cells need to be specified. The power will be calculated automatically. (2) We always assume the effectiveness data are standardized with mean zero and standard deviation one.
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Table C4. Demonstration of MDES Computation for Three-level CRCETs: Level-1 and Level-2 Cost Data are Available

Model 2.2: MDES Calculator for for Three-Level Cluster Random Assignment Design (CRA3_3)— Treatment at Level 3

Assumptions Comments
Alpha Level (o) 0.05 Probability of a Type I error
Two-tailed or One-tailed Test? 2
Power (1-8) 0.80 Statistical power (1-probability of a Type II error)
Willingness to Pay (k) 2.00
P 0.50 Proportion of Level 3 units randomized to treatment: Ly /L
NLR 0.50 Raito of the total variance of cost data to the total variance of effectiveness data
Parameters for Effectiveness Data
Pz 0.08 Proportion of variance m effectiveness measures among Level 2 units
,0§ 0.15 Proportion of variance m effectiveness measures among Level 3 Units
ng 0.50 Proportion of variance of effectiveness data explained by level-1 covariates
R% e 0.50 Proportion of variance of effectiveness data explained by level-2 covariates
R32€, 0.50 Proportion of variance of effectiveness data explained by level-3 covariates
Parameters for Cost Data
pE 0.08 Proportion of variance i cost measures among Level 2 units
s 0.15 Proportion of variance in cost measures among Level 3 Units
R?. 0.50 Proportion of variance of cost data explained by level-1 covariates
RZZE 0.50 Proportion of variance of cost data explained by level-2 covariates
R%C 0.50 Proportion of variance of cost data explained by level-3 covarates
Parameters for Covariation between Effectiveness Data and Cost Data
T -0.10 Standardized covariance between the effectuveness data and cost data at level-1
r -0.03 Standardized covariancen between the effectiveness data and cost data at level-2
3 0.07 Standardized covariance between the effectiveness data and cost data at level-3
R12 o 0.50 Proportion of the covariance explained by level-1 covariates
RZ,, 0.50 Proportion of the covariance explained by level-2 covariates
RZ,. 0.50 Proportion of the covariance explained by level-3 covariates
g* 1 Number of Level 3 covariates
1 (Average Sample Size for Level 1) 25 Mean number of Level 1 units per Level 2 unit (geometric mean recommended)
] (Average Sample Size for Level 2) 2 Mean number of Level 2 units per Level 3 unit (geometrc mean recommended)
L (Sample Size [# of Level 3 units]) 60 The number of Level 3 units in the sample
M (Multiplier) 2.85 Computed from Ty and T,
T; (Precision) 2.002 Determined from alpha level, given two-tailed or one-tailed test
T, (Power) 0.848 Determined from given power level
MDES 0.458 Minimum Detectable Effect Size Standardized by the Standard Deviation of the Effectiveness Data

Note: (1)The parameters in yellow cells need to be specified. The power will be calculated automatically. (2) We akways assume the effectiveness data are standardized with mean zero and standard deviation one.
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Table C5. Demonstration of Power Computation for Two-level CRCETs: Only Level-2 Cost Data are Available

Model 2.1: Power Calculator for Two-Level Cluster Random Assignment Design (CRA2_2)— Treatment at Level 2

Assumptions Comments
Alpha Level (o) 0.05 Probability of a Type I error
Two-tailed or One-tailed Test? 2
Effect Size Difference 0.50 INMB standardized by the standard deviation of effectiveness data
Willingness to Pay (k) 2.00
P 0.50 Proportion of Level 2 units randomized to treatment: Jr /]
./, 0.50 Raito of the total variance of cost data to the total variance of effectiveness data
Parameters for Effectiveness Data
p¢ 0.23 Proportion of variance in effectiveness measures that is between clusters
Rf*p 0.50 Proportion of variance of effectiveness data explained by level-1 covariates
RZ, 0.50 Proportion of variance of effectiveness data explained by level-2 covaniates
Parameters for Cost Data
P 0.23 Proportion of variance in cost measures that is between clusters
R3. 0.00 Proportion of variance of cost data explained by level-1 covanates
R%C 0.50 Proportion of variance of cost data explained by level-2 covanates
Parameters for Covariation between Effectiveness Data and Cost Data
T 0.10 Standardized covariance between the effectiveness data and cost data at level-1
T 0.10 Standardized covariance between the effectiveness data and cost data at level-2
wa 0.20 Proportion of the covariance explained by level-1 covanates
RZ,. 0.50 Proportion of the covariance explained by level-2 covariates
g* 1 Number of Level 2 covariates
n (Average Cluster Size) 50 Mean number of Level 1 units per Level 2 cluster (geometric mean recommended)
] (Sample Size [# of Clusters]) 60 Number of Level 2 units
Noncentrality Parameter 3.02 Automatically computed from the above assumptions
Power (1-8) 0.844 Statistical power (1-probability of a Type II error)

Note: (1)The parameters in yellow cells need to be specified. The power will be calculated automatically. (2) We always assume the effectiveness data are standardized with mean zero and standard deviation one.
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Table C6. Demonstration of Geometric Mean Calculation

Cluster # Nj
1 10
2 8
3 14
4 6
5 20
6 9
7 11
8 16
9 13
10 7
11 22
12 15
13 14
14 19
15 17
16 10
17 16
18 4
19 18
20 8

Geometric Mean 11.8
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