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Abstract 

Cluster randomized trials (CRTs) are commonly used to evaluate educational interventions, 

particularly their effectiveness. Recently there has been greater emphasis on using these trials to 

explore cost-effectiveness. However, methods for establishing the power of cluster randomized 

cost-effectiveness trials (CRCETs) are limited. This study develops power computation formulas 

and statistical software to help researchers plan two- and three-level CRCETs. We illustrate the 

application of our formulas and software for the designs of CRCETs and discuss the influence of 

sample size, nesting effects, covariates, and the covariance between cost and effectiveness 

measures on the statistical power of cost-effectiveness estimates.  

 

Keywords: cost-effectiveness analysis, statistical power, cluster randomized cost-

effectiveness trials, multilevel models  
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Experimental Design and Statistical Power for Cluster Randomized Cost-Effectiveness 

Trials  

The randomized controlled trial (RCT) has been seen as the gold standard for evaluating 

the causal effects of programs, policies, and practices (hereafter referred to as interventions; 

Imbens & Rubin, 2015). Education interventions often involve nested data structures (e.g., 

students nested with schools) and, as a result, experiments frequently randomly assign clusters 

(e.g., schools) rather than individuals to a treatment or control condition (e.g., Conroy et al., 

2018; Konstantopoulos et al., 2016; Spybrook et al., 2020). Historically, educational researchers 

utilized cluster randomized trials (CRTs) to assess the effectiveness of educational interventions 

but ignored the cost of implementing these interventions (e.g., Bulus & Dong, 2021; Harris, 

2009; Shen & Kelcey, 2020). However, policymakers and administrators commonly strive to 

identify interventions that have maximal effectiveness for a given budget or aim to achieve a 

target improvement in effectiveness at the lowest possible cost (Levin et al., 2017). Therefore, 

recent discussions regarding economic evaluations in education call for evaluating the cost as 

well as the effectiveness of educational interventions to facilitate better decision-making (e.g., 

Belfield & Bowden, 2019; Levin & Belfield, 2015; Shand & Bowden, 2021).  

Evaluations without a credible cost analysis can lead to misleading judgments regarding 

the relative benefits of alternative strategies for achieving a particular goal (e.g., maximizing the 

outcomes at current levels of expenditures or minimizing costs for achieving specific effects). 

For example, results from the Project STAR (Student-Teacher Achievement Ratio) in Tennessee 

provided strong evidence that class size reduction (CSR) improved student achievement in early 

grades (Krueger, 1999; Mosteller, 1997; Konstantopoulos & Li, 2012). However, CSR policy is 

costly (Brewer et al., 1999). Holding constant the level of performance gain, Levin et al. (1987) 
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estimated that CSR would be more costly than alternative strategies, such as peer tutoring, for 

improving achievement. Therefore, even though CSR is an effective way to improve student 

achievement, it might not be the most cost-efficient strategy, or it may simply be not feasible 

given current resource constraints. Indeed, several European countries stopped implementing 

CSR policies due to budget limitations (Li & Konstantopoulos, 2016, 2017a).  

The CSR example illustrates the importance of incorporating cost analyses for 

interventions that can produce significant positive effects. Even when a proposed new 

intervention has similar effects to the older ones (e.g., a null effect), educational researchers and 

policymakers still need to compare the cost of implementing these interventions for a 

comprehensive assessment and solid decision-making. For example, in a CRT, Fishman et al. 

(2013) found no significant difference in the effectiveness of two modalities (i.e., online and 

face-to-face) of teacher professional development on either teacher or student learning. Still, 

schools, districts, and states may see online teacher professional development as an attractive 

alternative to traditional face-to-face professional development programs since online 

professional development can potentially produce similar effects at much lower costs (e.g., Lay 

et al., 2020). To sum up, when comparing alternative interventions with similar goals, both the 

effectiveness and cost should be accounted for if the intent is for the evaluations to support 

decision-making (Harris, 2009; Levin et al., 2017).  

Two primary economic evaluation approaches in education are cost analysis (CA) and 

cost-effectiveness analysis (CEA). CA identifies all the resources needed to deliver an 

intervention (Levin & Belfield, 2015). It computes the total cost of an intervention and the 

average cost per participant and thus can help practitioners and policymakers understand the 

resources required to replicate a particular intervention. CEA examines the resources needed to 
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achieve a specific intervention effect and is widely used to compare the cost and effectiveness of 

different interventions with similar goals (Levin & Belfield, 2015). It provides policymakers and 

practitioners with estimates of the absolute and relative effectiveness per dollar expended to 

achieve a specific goal, and thus enables them to determine which intervention alternatives are 

expected to produce the best outcomes for a given budget cap - a common situation faced by 

school administrators facing shrinking budgets following the 2008 recession (Sparks, 2019). 

Today, major educational funding agencies, including the Institute of Education Sciences (IES), 

are requiring an economic evaluation (e.g., CEA) as part of grant proposals for program 

evaluations (IES, 2020). Education evaluators are increasingly likely to incorporate cost studies 

and cost-effectiveness evaluations into their research plans (e.g., Jacob et al., 2016; Mustafa, 

2018; Steele et al., 2018). 

The study design that involves the random assignment of entire clusters to a treatment or 

control condition to evaluate both the cost and effectiveness of an intervention is commonly 

referred to as the cluster randomized cost-effectiveness trial (CRCET). CRCETs link the cost of 

implementing an intervention to its effect and thus help researchers and policymakers adjudicate 

the degree to which an intervention is cost-effective. Just as we have become accustomed to 

designing CRTs with sufficient power, it is crucial to ensure that the size and allocation of the 

study sample across and within clusters guarantee adequate power (e.g., power > 0.80) to 

determine whether an intervention is significantly cost-effective or not. This study aims to 

develop statistical methods and a user-friendly tool to help educational researchers plan their 

CRCETs.  

In education, the incremental cost-effectiveness ratio (ICER), defined as the net cost of 

an intervention divided by the intervention effect, has been widely used as a cost-effectiveness 
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measure to compare alternative interventions with similar goals. The intervention with the 

smallest ICER is deemed the most cost-effective, assuming a positive impact. The current 

empirical CEA studies in education focus on the descriptive measure of  ICER, and do not 

provide inferential statistics such as p-values partially because of the difficulty of conducting 

statistical inference for ratio statistics (e.g., Bowden & Belfield, 2015; Hollands et al., 2013; 

Levin et al., 2017; Levin et al., 2012). Without accounting for estimation uncertainty in ICERs, it 

is difficult to assess whether an intervention is statistically significantly cost-effective. Besides 

ICER, another commonly used measure is the incremental net monetary benefit (INMB). 

Because it can facilitate statistical inference and power computation, we used the INMB to 

measure the cost-effectiveness of an intervention in this study. We provide a more detailed 

discussion regarding these two measures in the method section.  

CRCETs require plans to collect both effectiveness data (e.g., test scores) and cost data in 

the design phase. Educational researchers commonly utilize the “ingredients method” for cost 

data collection (Levin et al., 2017), which considers all the ingredients needed to implement an 

intervention and computes the total cost and average cost per participant of an intervention based 

on the quantities and prices of the ingredients (Levin et al., 2017). Given the nature of schools, 

with students nested within classes nested within schools, the ingredients method is commonly 

applied in the context of a multilevel data structure. Some ingredients are measured at the school 

level (e.g., school staff and facilities), while others may be measured at the class level (e.g., 

teacher time) and student level (e.g., volunteer time and transportation for one-to-one tutoring). 

Student-level cost is computed as the total cost of the student-level ingredients and the average 

cost per student of the class- and school-level ingredients.  
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The cost of school-level ingredients usually varies across schools. That is, although the 

quantities and prices of school-level ingredients are often fixed for students within the same 

school, they are likely to vary across schools (e.g., Bowden & Belfield, 2015). For example, the 

renting price for school facilities generally varies across school districts. Similarly, the costs of 

class- and student-level ingredients (e.g., teacher salaries, student transportation, etc.) may vary 

within and across schools. As a result, the student-level cost that considers the ingredients at 

student, class, and school levels varies among individuals and schools. And thus, the school-level 

cost, computed as the school-level average cost per student, varies among schools. Educational 

researchers have documented vast variability in ingredients use and cost across schools for a 

wide range of education interventions ranging from early literacy to college enrollment  

(Bowden & Belfield, 2015; Hollands et al., 2013; Levin et al., 2017; Levin et al., 2012). For 

example, Bowden and Belfield (2015) evaluated the cost-effectiveness of the Talent Search 

program that was created to improve high school completion and college enrollment for 

disadvantaged students. They found that the school-level costs varied across all categories of 

ingredients. The school-level average cost per student ranged from $420 to $720, with a standard 

deviation of 93.9.  

It also should be noted that because students are nested within schools and share the same 

class- and school-level ingredients, student-level costs are correlated among students within the 

same schools. Similar to effectiveness measures (e.g., test scores), the within-class and school 

correlations can be represented by the cost data intra-class correlation coefficients (ICCs) at 

corresponding levels. The nested structure of cost data and the cost variation within levels of 

measurement should be accounted for in the design of CRCETs. Otherwise, the statistical power 

and sample size will be misestimated (Li et al., 2020). Compared to traditional impact studies 
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that only focus on the effectiveness measures, the outcome of interest for CRCETs considers 

both the effectiveness and cost measures (e.g., INMB). The hierarchical linear model (HLM; 

Raudenbush & Bryk, 2002) can be used to account for the nested data structure of these 

measures. When designing a CRCET, educational researchers need to identify the appropriate 

levels of clustering (e.g., two levels or three levels) and account for the variations of both 

effectiveness and cost measures when they compute statistical power and sample size (e.g., Li et 

al., 2020; Manju et al., 2014).  

 Power analysis methods for effectiveness studies have been widely discussed in 

education literature (e.g., Dong et al., 2018, 2021; Dong & Maynard, 2013; Hedges & Rhoads, 

2010; Kelcey et al., 2019; Konstantopoulos, 2008a, 2008b; Li & Konstantopoulos, 2017b, 2019; 

Raudenbush, 1997; Raudenbush & Liu, 2000; Schochet, 2008; Spybrook et al., 2011). However, 

the education literature largely ignores the statistical power of the cost estimates of implementing 

the interventions in question. Methods for conducting power analysis for randomized cost-

effectiveness trials have been discussed in other disciplines (e.g., Willan & Briggs, 2006). For 

example, health researchers have developed formulas to calculate power for two-level 

randomized cost-effectiveness trials, where the treatment is at the patient-level or the health care 

provider-level (Manju et al., 2014, 2015). These methods apply to unconditional models (i.e., no 

covariates), whereas it is common in education evaluations to include covariates to improve the 

precision of impact estimates (e.g., Bloom et al., 2007; Hedges & Hedberg, 2007; 

Konstantopoulos, 2012). These methods developed for the health research field also 

accommodate nested cost data structure and require individual-level cost data, while it is 

recommended practice in education research to differentiate costs incurred at different levels of 

intervention (i.e., individual versus school). Educational researchers commonly collect cost data 
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through structured interviews with school staff, research partners, and other supplemental 

services staff for all ingredients, while often missing detail at the student level because of the 

greater cost of data collection (e.g., Jacob et al., 2016). As a result, student-level cost data are 

commonly unavailable, and only school-level average costs of student-level ingredients are 

available (Levin & Belfield, 2015).  

Recently, Li et al. (2020) extended power analysis methods used in health science to 

accommodate the use of covariates in two-level multisite randomized cost-effectiveness trials, 

where randomization of treatment occurs at the individual level within sites. That same paper 

discusses the implications of not having student-level cost data for estimating the power. 

However, that paper did not extend to addressing power computation methods and tools for two- 

or three-level CRCETs with covariate adjustments, and it did not tackle the issues that arise from 

the fact that educational interventions commonly involve complicated nesting structures (e.g., 

students nested with classes, and classes nested within schools). 

This study extends the power analysis and CEA literature in three ways. First, we extend 

the existing power analysis methods for two-level CRCETs (e.g., Manju et al., 2014) to 

incorporate covariate effects. Second, we develop power analysis methods for three-level 

CRCETs that also consider covariate effects. Third, we discuss the implications of not having 

student-level or class-level cost data on statistical power and provide an accessible and user-

friendly software program, PowerUp!-CEA, to facilitate planning adequately powered CRCETs. 

This includes providing practical guidance and illustrative examples regarding how to choose 

design parameters under various design scenarios and assumptions. The study and accompanying 

software provide a practical way of designing educational CEA studies to optimize power 

subject to sample size and allocation constraints.   
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We begin by presenting a framework for analyzing cluster designs for cost-effectiveness 

studies that use HLMs. We derive formulas for computing the statistical power to detect a 

desired effect size regarding the cost-effectiveness of an intervention given sample size and the 

minimum detectable effect size (MDES; Bloom, 1995) given statistical power and sample size 

under different scenarios. We then demonstrate the application of the power analysis formulas 

and discuss the features of statistical power under prototypical assumptions. We conclude with 

suggestions for extending this work to include different and more complex study designs. 

Method 

In this section, we first discuss the measures to evaluate the cost-effectiveness of an 

intervention, and then develop the statistical power formulas for two-level cluster designs. 

Because the derivation is essentially the same, results for three-level designs are presented in 

Online Appendix B.  

Cost-Effectiveness Measures  

In education literature, researchers commonly use the incremental cost-effectiveness ratio 

(ICER) to measure the cost-effectiveness of an intervention, which is defined as the incremental 

cost (denoted as ΔC) divided by the incremental effect (denoted as ΔE). The incremental cost is 

measured by the difference between the average cost for the treatment and control groups. The 

incremental effect is measured by the difference between the average value of the outcome of 

interest for those in the treatment and control groups, usually called the average treatment effect 

(ATE) in experimental studies that focus on the effectiveness measures. Prior CEA studies 

commonly used the ICER to compare the relative cost-effectiveness among alternative 

interventions with similar goals (e.g., Bowden & Belfield, 2015; Hollands et al., 2013; Levin et 

al., 2017; Levin et al. al., 2012). When both the incremental effect and the incremental cost are 
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positive, the intervention with the smallest ICER is the most cost-effective, and the intervention 

with an ICER smaller than a targeted value is cost-effective. However, if either the incremental 

effect or the incremental cost is negative, it is complicated to decide which is the most cost-

effective. For example, an intervention with a positive incremental effect but a negative 

incremental cost might have the same ICER as another intervention with a negative incremental 

effect but a positive incremental cost; however, the former intervention is more cost-effective 

than the latter. 

Another measure is the incremental net monetary benefit (INMB), defined as 

𝐼𝑁𝑀𝐵 = 𝜅𝛥𝐸 − 𝛥𝐶,                                                                                                              (1) 

where 𝜅 is the value decision-makers (e.g., society, policymakers, and/or intervention 

participants) assign to a unit change in the outcome—sometimes referred to as their  

“willingness-to-pay” (Willan & Briggs, 2006). WTP (or 𝜅) can be interpreted as the threshold 

ICER that renders the intervention cost-effective (Stinnett & Mullahy, 1998). There are various 

ways to define 𝜅. For example, Herrera-Araujo et al. (2017) estimated adult’s willingness-to-pay 

to improve reading and speaking skills among dyslexic individuals using a state-preference 

survey. More generally, when comparing alternative programs with similar outcomes, 𝜅 is 

assumed to be constant and exogenous to the intervention. 

Compared to the ICER, the interpretation of an estimated INMB is more straightforward: 

interventions with a positive INMB would always be deemed cost-effective. Moreover, when the 

estimated 𝛥𝐸 and 𝛥𝐶 are unbiased estimates, the estimated INMB is also an unbiased estimate of 

the true INMB, while the estimated ICER is not an unbiased estimator of the true ICER due to it 

being a ratio estimator (Stinnett & Mullahy, 1998). Therefore, when the sample size is small, the 

bias in the estimated ICER might not be negligible (Stinnett & Mullahy, 1998). In addition, 
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statistical inference and power computation are far more straightforward for INMB than for 

ICER because INMB is a linear function of  𝛥𝐸 and 𝛥𝐶, while ICER is a ratio of 𝛥𝐸 and 𝛥𝐶. 

Specifically, we can easily compute the variance of INMB through  

𝑉𝑎𝑟(𝐼𝑁𝑀𝐵) = 𝑉𝑎𝑟(𝜅𝛥𝐸 − 𝛥𝐶) = 𝜅2𝑉𝑎𝑟(𝛥𝐸) + 𝑉𝑎𝑟(𝛥𝐶) − 2𝜅𝐶𝑜𝑣(𝛥𝐸, 𝛥𝐶).             (2) 

Although it is possible to use Fieller’s Theorem to compute the confidence interval for 

ICER (Willan & O’Brien, 1996), educational evaluators rarely used it in practice. Moreover, the 

power estimates based on equation (1) or Fieller’s Theorem are almost identical, although the 

underlying assumptions about the distribution of the effectiveness and cost measures differ (see 

Li et al., 2020). Therefore, to facilitate statistical inference and power computation, as in prior 

studies (e.g., Manju et al., 2014, 2015; Li et al., 2020), we use the INMB as the CEA measure.  

Two-level Cluster Designs: Unconditional Model 

Consider a simple two-level cluster randomized design where level-2 units (e.g., schools) 

are randomly assigned to treatment or control conditions, and the treatment is at the second level. 

When level-1 cost data are available, two-level HLM can be used to estimate the incremental 

effect (i.e., 𝛥𝐸) and the incremental cost (i.e., 𝛥𝐶), namely  

𝐸𝑖𝑗 = 𝛾00
𝑒 + 𝑇𝑗Δ𝐸 + 𝑟0𝑗

𝑒 + 𝜀𝑖𝑗
𝑒 ,                                                                                               (3) 

𝐶𝑖𝑗 = 𝛾00
𝑐 + 𝑇𝑗Δ𝐶 + 𝑟0𝑗

𝑐 + 𝜀𝑖𝑗
𝑐 ,                                                                                                (4) 

and  

(
𝑟0𝑗

𝑒

𝑟0𝑗
𝑐 ) ~𝑁 ((

0
0

) , (
𝜏𝑒

2  𝜏𝑒𝑐

𝜏𝑒𝑐   𝜏𝑐
2)), and (

𝜀𝑖𝑗
𝑒

𝜀𝑖𝑗
𝑐 ) ~𝑁 ((

0
0

) ,  (
𝜎𝑒

2  𝜎𝑒𝑐

𝜎𝑒𝑐   𝜎𝑐
2)),                                            (5) 

where 𝐸𝑖𝑗  is the effectiveness measure (e.g., test scores) and 𝐶𝑖𝑗 is the cost for level-1 unit i in 

level-2 unit  j; 𝑇𝑗 is a binary treatment indicator variable; 𝑟0𝑗
𝑒  and 𝑟0𝑗

𝑐  are the level-2 random 

effects for effectiveness and cost data, respectively; and 𝜀𝑖𝑗
𝑒  and 𝜀𝑖𝑗

𝑐  are the level-1 errors for 
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effectiveness and cost data, respectively. We assume the random effects and level-1 error terms 

follow bivariate normal distributions as shown in equation (5).  

Equations (3) and (4) express the effectiveness measure (e.g., test score) and cost 

measures on the original scales (e.g., points and dollars), respectively. Following the net-benefit 

framework (e.g., Manju et al., 2014), we can reconstruct equations (3) and (4) as 

𝑁𝑀𝐵𝑖𝑗 = 𝜅𝐸𝑖𝑗 − 𝐶𝑖𝑗 = 𝜋00 + 𝜋01𝑇𝑗 + 𝑟0𝑗 + 𝜀𝑖𝑗,                                                                  (6) 

where NMBij represents the net monetary benefit (NMB) for level-1 unit i in level-2 unit j, 𝜅 is a 

positive constant that represents the dollar value of willingness-to-pay (Manju et al., 2014; 

Willan & Briggs, 2006), 𝜋00 = 𝜅𝛾00
𝑒 − 𝛾00

𝑐 , 𝜋01 = 𝜅𝛥𝐸 − 𝛥𝐶, 𝑟0𝑗 = 𝜅𝑟0𝑗
𝑒 − 𝑟0𝑗

𝑐 , 𝜀𝑖𝑗 = 𝜅𝜀𝑖𝑗
𝑒 − 𝜀𝑖𝑗

𝑐 , 

𝑟0𝑗~𝑁(0, 𝜏2), and 𝜀ij~𝑁(0, 𝜎2). The parameter of interest, 𝜋01, represents the INMB of the 

treatment. When 𝜋01 > 0, it indicates the treatment is cost-effective; when 𝜋01 < 0, it suggests 

the treatment is not cost-effective.  

Suppose there are J level-2 units and n level-1 units within each level-2 unit, and thus, the 

total number of level-1 units is nJ. Also, suppose there are 𝐽𝑇 units in the treatment group and 𝐽𝐶  

in the control condition. Define 𝑃 =
𝐽𝑇

𝐽
, is the proportion of level-2 units in the treatment group, 

then the variance of 𝜋̂01 is (Hedges & Rhoads, 2010; Raudenbush, 1997) 

𝑉𝑎𝑟(𝜋̂01) =
1

𝑃(1−𝑃)𝑛𝐽
(𝑛𝜏2 + 𝜎2).                                                                                         (7) 

where 𝜏2 = 𝜅2𝜏𝑒
2 + 𝜏𝑐

2 − 2𝜅𝜏𝑒𝑐, and 𝜎2 = 𝜅2𝜎𝑒
2 + 𝜎𝑐

2 − 2𝜅𝜎𝑒𝑐. Under the bivariate normal 

assumptions (i.e., equation 3), the test statistic 𝑡 =
𝜋̂01

√𝑣𝑎𝑟(𝜋̂01)
 follows a student’s t distribution 

when the null hypothesis is true. When the alternative hypothesis is true, the t statistic follows a 

non-central t-distribution with the non-centrality parameter as (Hedges & Rhoads, 2010; 

Raudenbush, 1997)        
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 λ = 𝜋01√
𝑃(1−𝑃)𝑛𝐽

𝑛𝜏2+𝜎2  .                                                                                                                (8) 

Let 𝜓𝑒 = 𝜎𝑒
2 + 𝜏𝑒

2 and 𝜓𝑐 = 𝜎𝑐
2 + 𝜏𝑐

2 represent the total variance of effectiveness and cost 

measures, respectively. Prior studies (e.g., Belfield & Bowden, 2019) suggested that the power 

computation for CEA should allow for identifying a valid impact in dollars. Therefore, we first 

standardize the effectiveness measures (i.e., 𝜓𝑒 = 1), and then define the effect size as 𝛿 =

𝐼𝑁𝑀𝐵 = 𝜅Δ𝐸 − Δ𝐶, representing the net monetary benefit of the intervention with one SD 

increase of the effective measures. The non-centrality parameter becomes 

λ = 𝛿√
𝑃(1−𝑃)𝑛𝐽

𝜅2[(𝑛−1)𝜌𝑒]+𝜓𝑐[(𝑛−1)𝜌𝑐]+(𝜅2+𝜓𝑐)−2𝜅√𝜓𝑐(𝑛𝑟2+𝑟1)
,                                                        (9) 

where 𝜓𝑐 can be interpreted as the ratio between 𝜓𝑐 and 𝜓𝑒 , given 𝜓𝑒 = 1; 𝜌𝑒 =
𝜏𝑒

2

𝜓𝑒
  and 𝜌𝑐 =

𝜏𝑐
2

𝜓𝑐
  are the intra-class correlations (ICCs) of effectiveness and cost data, respectively; and 𝑟1 =

𝜎𝑒𝑐

√𝜓𝑒𝜓𝑐
 and 𝑟2 =

𝜏𝑒𝑐

√𝜓𝑒𝜓𝑐
 are the standardized covariance between cost and effectiveness measures 

at level 1 and level 2, respectively. Note that 𝑟1 = (1 − 𝜌𝑒)(1 − 𝜌𝑐)𝑐𝑜𝑟𝑟1 and 𝑟2 = 𝜌𝑒𝜌𝑐𝑐𝑜𝑟𝑟2  

are positively correlated with the correlations between cost and effectiveness measures, where 

𝑐𝑜𝑟𝑟1 =
𝜎𝑒𝑐

𝜎𝑒𝜎𝑐
 and 𝑐𝑜𝑟𝑟2 =

𝜏𝑒𝑐

𝜏𝑒𝜏𝑐
 are the correlation coefficients at level 1 and level 2, respectively. 

Under these specifications, power is defined as 

Power = 1 – Η [c(α /2, J-2), (J-2), λ] + Η [-c(α /2, J-2), (J-2), λ],                                       (10) 

where c(α,v) is the one-tailed critical value of the t-distribution with Type I error rate of α and v 

degrees of freedom (e.g., c(0.05,20)=1.72), H(x, v, λ) is the cumulative distribution function of 

the non-central t-distribution with v degrees of freedom and non-centrality parameter λ. Besides 

the statistical power of a CRCET, applied researchers also want to estimate the MDES that a 
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CRCET can detect with sufficient power (e.g., power > 0.8) given sample sizes. The MDES for a 

two-level cluster design without covariate adjustments is  

𝑀𝐷𝐸𝑆 =
𝑀𝐽−2

√𝑃(1−𝑃)𝑛𝐽
√𝜅2[(𝑛 − 1)𝜌𝑒] + 𝜓𝑐[(𝑛 − 1)𝜌𝑐] + (𝜅2 + 𝜓𝑐) − 2𝜅√𝜓𝑐(𝑛𝑟2 + 𝑟1),      (11) 

where MJ-2 = tα/2 + t1-β for two-tailed tests with Type I error 𝛼, Type II error 𝛽, and J-2 degrees 

of freedom. 

The Online Appendix A provides the derivations of 𝑉𝑎𝑟(𝐼𝑁𝑀𝐵̂) when only cluster level 

cost information is available, but level-1 effectiveness data are still available. Specifically, we 

can estimate Δ𝐶 through a single-level regression (i.e., equation A1) and estimate 𝛥𝐸 through 

equation (3). Then based on equation (2) and the results from the Online Appendix A (i.e., 

equations A3, A4, and A5), we get the variance of 𝐼𝑁𝑀𝐵̂ as is 

𝑉𝑎𝑟(𝐼𝑁𝑀𝐵̂) =
1

𝑃(1−𝑃)𝑛𝐽
[𝜅2(𝑛𝜏𝑒

2 + 𝜎𝑒
2) + (𝑛𝜏𝑐

2 + 𝜎𝑐
2) − 2𝜅(𝑛𝜏𝑒𝑐 + 𝜎𝑒𝑐)].                      (12) 

Again, assume the effectiveness measures are standardized with means of zero and 

standard deviations of one (i.e., 𝜓𝑒 = 1) and define the effect size as 𝛿 = 𝐼𝑁𝑀𝐵, then the 

standardized non-centrality parameter is  

λ = 𝛿√
𝑃(1−𝑃)𝑛𝐽

𝜅2[(𝑛−1)𝜌𝑒]+𝜓𝑐[(𝑛−1)𝜌𝑐]+(𝜅2+𝜓𝑐)−2𝜅√𝜓𝑐(𝑛𝑟2+𝑟1)
,                                                         (13) 

which is identical to equation (9). Thus, the power of detecting the cost-effectiveness of 

treatment is the same for unconditional models regardless of whether or not level-1 cost data are 

available for two-level CRCETs.  

Two-level Cluster Designs: Covariate Effects 

When the analysis includes covariates, the two-level HLMs used to estimate the 

incremental effect (i.e., 𝛥𝐸) and the incremental cost (i.e., 𝛥𝐶)  become 

𝐸𝑖𝑗 = 𝛾00
𝑒 + 𝑇𝑗𝛥𝐸 + 𝑋𝑖𝑗

𝑒 Γ10
𝑒 + 𝑍𝑗

𝑒Γ02
𝑒 + 𝑟𝐴0𝑗

𝑒 + 𝜀𝐴𝑖𝑗
𝑒 ,                                                           (14) 
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𝐶𝑖𝑗 = 𝛾00
𝑐 + 𝑇𝑗𝛥𝐶 + 𝑋𝑖𝑗

𝑐 Γ10
𝑐 + 𝑍𝑗

𝑐Γ02
𝑐 + 𝑟𝐴0𝑗

𝑐 + 𝜀𝐴𝑖𝑗
𝑐 ,                                                           (15) 

where 𝑋𝑖𝑗
𝑒  and 𝑋𝑖𝑗

𝑐  are row vectors of level-1 unit characteristics, Γ10
𝑒  and Γ10

𝑐  are column vectors 

of coefficients of level-1 unit characteristics, 𝑍𝑗
𝑒 and 𝑍𝑗

𝑐 are row vectors of level-2 unit 

characteristics, and Γ02
𝑒  and Γ02

𝑐  are column vectors of coefficients of level-2 unit characteristics. 

Subscript A indicates adjustment because of covariates. The level-1 error terms and the level-2 

random effects follow bivariate normal distributions 

(
𝑟𝐴0𝑗

𝑒

𝑟𝐴0𝑗
𝑐 ) ~𝑁 ((

0
0

) , (
𝜏𝑅𝑒

2  𝜏𝑅𝑒𝑐

𝜏𝑅𝑒𝑐  𝜏𝑅𝑐
2  

)), and (
𝜀𝐴𝑖𝑗

𝑒

𝜀𝐴𝑖𝑗
𝑐 ) ~𝑁 ((

0
0

) ,  (
𝜎𝑅𝑒

2  𝜎𝑅𝑒𝑐

𝜎𝑅𝑒𝑐  𝜎𝑅𝑐
2 )).                               (16) 

where subscript R indicates residual variance or residual covariance. Then, the NMB for level-1 

unit i in level-2 unit j becomes 

𝑁𝑀𝐵𝑖𝑗 = 𝜋00 + 𝜋𝐴01𝑇𝑗 + 𝑋𝑖𝑗Γ10 + 𝑍𝑗Γ02 + 𝑟𝐴0𝑗 + 𝜀𝐴𝑖𝑗 .                                                     (17) 

And the non-centrality parameter becomes (Hedges & Rhoades, 2010; Raudenbush, 1997) 

λ = 𝛿√
𝑃(1−𝑃)𝑛𝐽

𝜅2[(𝑛𝑤2
𝑒−𝑤1

𝑒)𝜌𝑒]+𝜓𝑐[(𝑛𝑤2
𝑐−𝑤1

𝑐)𝜌𝑐]+(𝜅2𝑤1
𝑒+𝜓𝑐𝑤1

𝑐)−2𝜅√𝜓𝑐(𝑛𝑤2
𝑒𝑐𝑟2+𝑤1

𝑒𝑐𝑟1)
,                           (18) 

where 𝑤1
𝑒 and 𝑤2

𝑒 represent the unexplained variance of effectiveness data at the first and second 

levels, respectively; 𝑤1
𝑐 and 𝑤2

𝑐 represent the unexplained variance of cost data at the first and 

second levels, respectively; 𝑤1
𝑒𝑐 and 𝑤2

𝑒𝑐 represent the unexplained covariance between cost and 

effectiveness at the first and second levels, respectively. Specifically, 𝑤1
𝑒 =

𝜎𝑅𝑒
2

𝜎𝑒
2 , 𝑤2

𝑒 =
𝜏𝑅𝑇𝑒

2

𝜏𝑇𝑒
2 , 

𝑤1
𝑐 =

𝜎𝑅𝑐
2

𝜎𝑐
2 , 𝑤2

𝑐 =
𝜏𝑅𝑇𝑐

2

𝜏𝑇𝑐
2 , 𝑤1

𝑒𝑐 =
𝜎𝑅𝑒𝑐

𝜎𝑒𝑐
, and 𝑤2

𝑒𝑐 =
𝜏𝑅𝑇𝑒𝑐

𝜏𝑇𝑒𝑐
.  Note that we assume group-mean centering 

of level-1 covariates so that they could only explain a proportion of the variance or covariance at 

the first level. Then, power is defined as 

Power = 1 – Η [c(α /2, J-2-q), (J-2-q), λ] + Η [-c(α /2, J-2-q), (J-2-q), λ],                          (19)                 
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where q is the number of covariates at the second level. All the other terms have been defined 

previously. Then, the MDES for two-level design with covariate adjustments is   

𝑀𝐷𝐸𝑆(𝛿) =

𝑀𝐽−2−𝑞

√𝑃(1−𝑃)𝑛𝐽
√𝜅2[(𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌𝑒] + 𝜓𝑐[(𝑛𝑤2

𝑐 − 𝑤1
𝑐)𝜌𝑐] + (𝜅2𝑤1

𝑒 + 𝜓𝑐𝑤1
𝑐) − 2𝜅√𝜓𝑐(𝑛𝑤2

𝑒𝑐𝑟2 + 𝑤1
𝑒𝑐𝑟1),             (20) 

where MJ-2-q = tα/2 + t1-β for two-tailed tests with Type I error 𝛼, Type II error 𝛽, and J-2-q 

degrees of freedom. 

When only level-2 cost data are available, but level-1 effectiveness data are available, 

based on the derivations in the Online Appendix A, we can use a single-level regression to 

estimate Δ𝐶 and use two-level HLM to estimate Δ𝐸, and then get the estimate of INMB (denoted 

as 𝐼𝑁𝑀𝐵̂). The variance of 𝐼𝑁𝑀𝐵̂ becomes  

𝑉𝑎𝑟(𝐼𝑁𝑀𝐵̂) =
1

𝑃(1−𝑃)𝑛𝐽
[𝜅2(𝑛𝜏𝑅𝑒

2 + 𝜎𝑅𝑒
2 ) + (𝑛𝜏𝑅𝑐

2 + 𝜎𝑐
2) − 2𝜅(𝑛𝜏𝑅𝑒𝑐 + 𝜎′𝑅𝑒𝑐)].            (21) 

Again, assume the effectiveness measures are standardized with means of zero and 

standard deviations of one (i.e., 𝜓𝑒 = 1) and define the standardized effect size as 𝛿 = 𝐼𝑁𝑀𝐵, 

then the standardized non-centrality parameter becomes 

λ = 𝛿√
𝑃(1−𝑃)𝑛𝐽

𝜅2[(𝑛𝑤2
𝑒−𝑤1

𝑒)𝜌𝑒]+𝜓𝑐[(𝑛𝑤2
𝑐−1)𝜌𝑐]+(𝜅2𝑤1

𝑒+𝜓𝑐)−2𝜅√𝜓𝑐(𝑛𝑤2
𝑒𝑐𝑟2+𝑤′1

𝑒𝑐𝑟1)
,                                (22) 

which is not identical to equation (18) because 𝑤′1
𝑒𝑐 only takes into account the effects of 

covariate adjustments in the effectiveness model. 

 The Online Appendix B provides the derivations and results for three-level cluster 

designs. Table 1 summarizes standardized non-centrality parameters, MDES, and degrees of 

freedom for the two- and three-level models we considered in this study. It should be noted that 

our power and MDES computation methods assume equal cluster sizes (e.g., number of students 

per school), while in practice it is more likely that the sample sizes vary across clusters. We 
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suggest using the geometric mean for designs with unbalanced cluster sizes. Because closed-

form solutions of power computation formulas are usually unavailable when cluster size varies, 

prior studies (e.g., Bloom, 2006; Dong et al., 2021; Konstantopoulos, 2010) compared three 

options – arithmetic mean, harmonic mean, and geometric mean – for power computation. Dong 

et al. (2021) evaluated the performance of these three options through a simulation analysis and 

concluded that the power computation using harmonic mean or arithmetic mean either 

underestimated or overestimates the actual power, while the power calculation based on the 

geometric mean approximates the actual power from the simulation very well. 

Illustration and Discussion 

In this section, we first demonstrate the application of our formulas and a free statistical 

tool (PowerUp!-CEA) to calculate statistical power and MDES and investigate the impact of 

sample sizes and design parameters on power and MDES estimates for CRCETs, then discuss 

the similarity and differences between power analyses for CRTs and CRCETs.   

 Working Example  

We illustrate the application of PowerUp-CEA to design CRCETs through a working 

example, which focuses on the cost-effectiveness of an interim assessment program. Prior studies 

(e.g., Konstantopoulos et al., 2013) evaluated the impact of Indiana’s system of interim 

assessment on student achievement through a CRT and found significant treatment effects. 

However, they did not evaluate the cost of implementing this intervention. Assume a new 

research team plans to design a follow-up whole-school intervention to assess the cost-

effectiveness of Indiana’s system of interim assessment. Specifically, the research team would 

like to explore whether the interim assessment is a cost-effective intervention (i.e., 𝐼𝑁𝑀𝐵 > 0).  

Demonstration  
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We developed a user-friendly tool-(PowerUp!-CEA) for planning CRCETs that is free 

and downloadable from the web (https://www.causalevaluation.org/). This tool is implemented 

through an easy-to-use Microsoft Excel program that channels users to the design and power 

analysis most appropriate to their study through a dialogue box.  

To begin, the research team must first decide the number of total levels within the study. 

School interventions in education commonly include data and measures at three levels: school-

level (e.g., enrollment), class-level (e.g., teacher characteristics), and student-level (e.g., grade 

level, gender). If they gather data at all three levels (i.e., students, classes, and schools), they can 

design a three-level CRCET. But, if they lack data at the class level, for example, they would 

design a two-level CRCET (i.e., students nested within schools). The second step is to decide 

whether they plan to determine the statistical power they need to achieve given a particular 

sample and effect size or the MDES achievable for a given sample at a specified level of 

statistical power. If the research team wants to know the probability of detecting the cost-

effectiveness of the intervention with a given effect size, they can use the power calculator 

within PowerUp!-CEA (see the Online Appendix Table C1 for an example). If the team would 

like to determine the smallest true effect size that has a given probability (e.g., power > 0.80) of 

being found to be statistically significant given the specified sample size and allocation, they 

could use the MDES calculator (see the Online Appendix Table C2 for an example). The third 

step is to specify the values of design parameters for the effectiveness data, the cost data, the 

covariance between the effectiveness and cost data, and the statistical significance tests (e.g., 

alpha level and one/two-tailed test) - the yellow highlighted parameters in the worksheet. 

Educational researchers typically rely on one of three strategies to estimate these design 

parameters: (1) calculating them from a pilot study; (2) consulting prior literature for similar 

https://www.causalevaluation.org/
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studies; or (3) using existing databases to estimate these parameters (e.g., Spybrook et al., 2016). 

Once these parameters have been input into PowerUp!-CEA, it automatically calculates the 

power or MDES.  

The relevant design parameters that are common for both CRT and CRCETs include the 

proportion of variance in the effectiveness measure that is between levels of nesting effects (i.e., 

ICC), and the proportion of variance in the effectiveness measure that is explained by covariates 

at different levels. Prior literature (e.g., Hedges & Hedberg, 2007, 2013) suggests that, for a two-

level design, a reasonable default estimate of the ICC for student achievement measures (𝜌𝑒) is 

about 0.23; for a three-level design, reasonable default estimates of ICCs at the second and third 

levels are 0.08 and 0.15, respectively. Prior literature (e.g., Hedges & Hedberg, 2007, 2013; 

Konstantopoulos, 2008a), also provides guidance about reasonable default assumptions for the 

total variance in achievement outcomes explained by covariates at each level (i.e., 𝑤1
𝑒 = 𝑤2

𝑒 =

𝑤3
𝑒 = 0.5).  

In randomized cost-effectiveness trials, researchers need to make additional assumptions. 

These include assumptions about the willingness to pay (i.e., 𝜅), the variance and nested effect of 

cost data, the covariance between cost and effectiveness data, covariate effects, and the 

availability of student-level and class-level cost data. Regrettably, the compilation of reasonable 

default assumptions for these measures are still under development. Thus, the study team may 

need to draw on “guesstimates” to guide their design parameters. 

In particular, if the study team plans to collect individual-level cost data and believes the 

cost will vary among students, classrooms, and schools (i.e., 𝜓𝑐 > 0), study designs should come 

up with some means of estimating the nesting effects of cost data and the covariance between 

measures of cost and achievement at each level of the analysis. Manju et al.(2014) reported an 
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ICC of 0.17 for cost data in a two-level cluster design for a medical study, and they found a 

negative correlation between the cost and effectiveness measures at the patient-level (level-1) but 

a positive correlation at the cluster level. For illustration, assume the nesting effects and 

covariate effects for cost data are similar to those for achievement data (e.g., for two-level 

designs, 𝜌𝑐 = 0.23 and 𝑤1
𝑐 = 𝑤2

𝑐 = 0.5) in situations where lower-level (e.g., student-level for a 

two-level design) cost data are available. When lower-level cost data are not available, cost 

variation and the nesting effects of cost data still impact power and MDES. However, in these 

cases, it is not possible to use covariates to reduce the cost variance and covariance between cost 

and effectiveness measures at the corresponding level, therefore, for example, assume 𝑤1
𝑐 = 1 

and 𝑤′1
𝑒𝑐 = 0.8 for the two-level designs.  

The research team can use PowerUp-CEA to compute power and MDES under the above 

assumptions and three different scenarios regarding the correlations (or covariance) at student- 

and school- levels for two-level and three-level designs. Tables 2 and 3 summarize the power 

and MDES estimates. Note that, for three-level designs, the research team assumes the 

correlations at level 2 are always negative for simplicity. Also, for both tables, the team assumes 

the effect size is 0.5 (i.e., 𝛿𝐶𝑅𝐶𝐸𝑇 = 0.5), the total variance of cost data is half as large as the total 

variance of effectiveness measures (i.e., 𝜓𝑒 =2𝜓𝑐), a two-sided test with 𝛼 = 0.05, and balanced 

designs. It also should be noted that almost all prior CEA studies in education ignored 𝑉𝑎𝑟(Δ𝐶) 

as if Δ𝐶 was estimated without error, which is equivalent to assume 𝜓𝑐 = 0, as shown in the 

Online Appendix A. Therefore, Tables 2 and 3 provide power estimates for CRCETs assuming 

no cost variation to illustrate how power and MDES are incorrectly estimated in that case.      

Because the magnitudes of the cost variation and the nesting effects vary across studies, 

the research team might want to explore the sensitivity of power estimates under different 
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assumptions, as shown in Figures 2 and 3. These figures illustrate the impact of various design 

parameters on power using three-level designs as examples. To simplify the presentation and 

discussion, Figure 2 focuses on unconditional models assuming no correlation between cost and 

effectiveness measures and evaluates how the cost variation, ICCs of cost data, and the number 

of level-3 units (e.g., schools) influence power. Specifically, the lines in the left-hand of Figure 2 

show how power changes as sample sizes and ICCs of cost data increase, assuming no cost 

variation; the lines in the middle of Figure 2 show how power changes when the cost measure 

has a variance twice as large as the effectiveness measure (i.e., 2𝜓𝑒 = 𝜓𝑐), and the lines on the 

right-hand of Figure 2 show how power changes assuming the cost and effectiveness measures 

have similar variances (i.e., 𝜓𝑒 = 𝜓𝑐). Figure 3 incorporates covariate adjustments in the design 

and displays how covariates influence power under alternative assumptions of cost data 

availability and the covariance between effectiveness and cost measures. In particular, 

Unconditional Model (the dotted lines) does not incorporate covariate adjustments at any level; 

Conditional Model I assumes that only school-level cost data are available, and thus class and 

student characteristics do not reduce the variance in costs at the student and class levels (i.e., 

𝑤1
𝑐 = 𝑤2

𝑐 = 1); and Conditional Model II assumes that student-level and class-level cost data are 

available and that covariates at both levels reduce the variance of the cost measure and the 

covariance between cost and effectiveness measures at the first level (e.g., 𝑤1
𝑐 = 𝑤2

𝑐 = 𝑤1
𝑒𝑐 =

𝑤2
𝑒𝑐 = 0.5). Figure 3 also assumes that level-1 and level-2 covariates explain less covariance 

between cost and effectiveness measures when cost data at both levels are missing (e.g., 𝑤1
′𝑒𝑐 =

𝑤2
′𝑒𝑐 = 0.8), and the class-level standardized covariance are assumed to increase as moving from 

the left-hand panel (-.03) to the right-hand panel (.06).   
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It should be noted that examples presented in all Tables and Figures assume equal sample 

sizes across clusters. For unbalanced cluster sizes (e.g., numbers of classes and students within a 

school), the researcher has the option of using the geometric mean number of observations per 

site as a good approximation for the power calculations (Dong et al., 2020). PowerUp!-CEA 

provides a geometric mean calculator as shown in the Online Appendix Table C6.  

Results  

The Tables and Figures illustrate how the nested data structure, covariate adjustments, 

and variation and covariation of cost and effectiveness measures influence power and MDES for 

the designs of CRCETs. Some results of power analyses for CRCETs are identical or similar to 

those for traditional power analyses focusing only on estimating the effectiveness of 

interventions (e.g., a CRT estimating impact on test scores). Specifically, as shown in Figures 2 

and 3, power increases as the sample size increases but decreases as the ICC of effectiveness or 

cost measure increases. Also, incorporating covariates adjustments at each level increases the 

statistical power if covariates can explain a meaningful proportion of the effectiveness or cost 

measure variation at the corresponding level. Therefore, collecting class- and student-level cost 

data can increase power or decrease MDES, as shown in Figure 3.  

Tables 2 and 3 and Figures 1 and 2 also reveal some specific and important findings for 

CRCETs. First, power and MDES are misestimated when ignoring cost variation. Tables 2 and 3 

compare the power and MDES estimates for designs that assume no cost variation to those that 

assume costs vary among students, classrooms, and schools. We can see that for both two- and 

three-level CRCETs, the power estimates (or MDES estimates) are sensitive to whether cost 

variation is accounted for and to the direction and strength of the covariance between cost and 

effectiveness data. For example, as shown in Table 2, row 2, for the same design, the estimated 
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power is 0.485 for a conditional model that assumes no cost variation. Assuming costs vary at 

both student and school levels, but there is no correlation between cost and effectiveness data, 

the power decreases to 0.441. When we assume that costs vary and are positively correlated with 

the effectiveness measure, the power increases to 0.559, but when they vary and are negatively 

correlated with the effectiveness measure, the power decreases to 0.365. We find similar results 

for three-level designs in Table 3. These findings indicate that ignoring cost variation in a 

CRCET can result in over or underestimation of statistical power (and MDES).  

The ratio of the cost variation to the effectiveness variation and the nesting effects of the 

cost data have a negative impact on power. As shown in Figure 2,  other things being equal, 

power is greater when  𝜓𝑒 = 𝜓𝑐 than when variances are unequal (e.g., 2𝜓𝑒 = 𝜓𝑐). It also 

illustrates that other things being equal, power decreases as the ICC of cost data increases. Based 

on the non-centrality parameter formulas (e.g., equation 8), the effect of a higher ICC depends on 

the magnitudes of 𝜓𝑐: the impact increases as the total variance of cost data increases. 

Second, covariance (or correlations) between effectiveness and cost data influences the 

power and MDES estimates. For example, assume a conditional model with both student level 

and classroom level cost data available, as shown in the last row of Table 3. When intervention 

cost and student achievement are positively correlated at both the student and school level, for 

instance 𝑟1 = 0.1, 𝑟2 = −0.03, and 𝑟3 = 0.07, the MDES is about 0.455.  When they are 

negatively correlated, for instance 𝑟1 = −0.1, 𝑟2 = −0.03, and 𝑟3 = −0.07, the MDES increases 

to 0.563. And when they are positively correlated at the school level but negatively correlated at 

the student level (e.g., 𝑟1 = −0.1, 𝑟2 = −0.03, and 𝑟3 = 0.07), the MDES becomes 0.458.   

Other things being equal, as the covariance (i.e., 𝑟1, 𝑟2, and 𝑟3) change from negative to 

positive, power increases monotonically. That is, when cost and effectiveness measures are 
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positively correlated at any level, power increases as the strength of the correlation (or the 

absolute value of the standardized covariance) increases. And when the cost and effectiveness 

measures are negatively correlated, power decreases as the strength of the correlation increases. 

That is because, as shown in equation (1), the variance of INMB is negatively correlated with the 

covariance between 𝛥𝐸 and 𝛥𝐶. Therefore, when the correlation is positive, the absolute value of 

the standardized covariance is negatively correlated with the variance of INMB. Conversely, 

when the correlation is negative, the absolute value of the standardized covariance is positively 

correlated with the variance of INMB. Since power increases as the variance of INMB decreases, 

when the correlation is positive, the stronger the correlations are, the larger the power is; when 

the correlation is negative, the stronger the correlations are, the smaller the power is. It also 

should be noted that the level-3 standardized covariance (or correlation) have a more significant 

impact on power comparing the correlations at the first level.  

Third, covariates influence power and MDES estimates by changing the covariance 

between cost and effectiveness measures. Figure 3 illustrates this finding by comparing power 

across unconditional models (the dotted lines) and conditional models that incorporate student-

level, class-level, and school-level covariates (the dashed and solid lines). It indicates that when 

covariates explain a proportion of the covariance between cost and effectiveness measures at a 

particular level, their inclusion in the analysis affects power. However, the direction of impact 

depends on the sign of the covariance. Specifically, assuming covariates could decrease the 

absolute value of the covariance, and based on equation 1, when the correlations are positive, 

covariates tend to increase the variance of INMB, and, thus, decrease the power and vice versa. 

As illustrated in Figure 3, when the standardized covariance are negative at both the student- and 

classroom levels (left-hand lines), power estimates based on Conditional Model II are larger than 



26 
 

those from Conditional Model I. Holding all the other parameters fixed, when the class-level 

standardized covariance increases from -0.03 to 0.03, the power estimates from the two 

conditional models (lines in the middle of Figure 3) are almost the same. But, holding all the 

other parameters fixed, when the class-level standardized covariance increases to 0.06 (right-

hand lines), power estimates from Conditional Model I are notably larger than those from 

Conditional Model II. These findings also indicate that, when the cost and effectiveness 

measures are negatively correlated at all levels, collecting cost data at lower levels can increase 

power through covariate adjustments. In contrast, when the correlations are positively correlated 

at certain levels, the impact of cost data and covariates on power are indeterminate: covariate 

adjustments can reduce covariate at corresponding levels but also increase the covariance and 

thus do not always increase power. That is, collecting student-level and class-level cost 

information does not always help increase power or reduce MDES.  It also should be noted that, 

as discussed in the method section, power and MDES estimates based on unconditional models 

are not sensitive to the availability of individual-level cost data. The power and MDES estimates 

for the unconditional models in Tables 2 and 3 illustrate this finding.  

Comparisons between Power Analyses for CRTs and CRCETs  

There are a couple of key differences in computing power or MDES when the research 

team designs a CRCET compared to designing a CRT. First, the measure of interest and the 

study purpose are different. Compared to a CRT that focuses on the effectiveness measure (e.g., 

test scores), a CRCET focuses on the cost-effectiveness measure (e.g., NMB or INMB) that 

combines both the effectiveness measure (e.g., test scores) and cost measures (e.g., student-level 

cost to implement the interim achievement). Therefore, the purpose of a power analysis for a 

CRT is to determine the minimum required sample sizes to test whether the treatment effect is 
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larger than zero (i.e., Δ𝐸 > 0) with confidence. In contrast, the purpose of a power analysis for a 

CRCET becomes, for example, to identify the minimum required sample size to test whether the 

INMB is larger than zero (i.e., INMB > 0) with confidence. Second, the power analysis for a 

CRT only considers the variance of the effectiveness measure, whereas the power analysis for a 

CRCET considers both the variance of the effectiveness measure and the cost measure and their 

covariance. As a result, for the same designs with the same sample sizes at all levels and the 

same design parameters, the power to detect the cost-effectiveness of the intervention tends to be 

different than that to detect the effectiveness of the intervention.   

For example, assume a two-level cluster design without covariate adjustments and a 

standardized effectiveness measure with a mean of zero and SD of one (i.e., 𝜓𝑒 = 1). 

Raudenbush (1997) provided the non-centrality parameter for a t-test to check whether the 

average treatment effect (i.e., the incremental effect, Δ𝐸 ) is larger than zero: 

 𝜆𝐶𝑅𝑇 = Δ𝐸√
𝑃(1−𝑃)𝑛𝐽

(𝑛−1)𝜌𝑒+1
.                                                                                                   (23) 

First, to make the comparisons of power estimates between a CRT and a CRCET simpler under 

the same design (i.e., the same sample sizes, design parameters, and Δ𝐸), we assume the research 

team knows the true population value of the incremental cost, and thus there is no cost variation 

(i.e., 𝜓𝑐 = 0) and 𝑉𝑎𝑟 (Δ𝐶) = 0 based on equation A3 from the Online Appendix A. Therefore, 

according to equation (13) and assume 𝜓𝑒 = 1, the non-centrality parameter for a t-test to check 

whether an intervention is cost-effective (i.e., 𝐼𝑁𝑀𝐵 = 𝜅𝛥𝐸 − 𝛥𝐶 > 0) is:  

𝜆𝐶𝑅𝐶𝐸𝑇 = 𝐼𝑁𝑀𝐵 √
𝑃(1−𝑃)𝑛𝐽

𝜅2[(𝑛−1)𝜌𝑒]+0×[(𝑛−1)𝜌𝑐]+(𝜅2+0)−2𝜅×0×(𝑛𝑟2+𝑟1)
= (Δ𝐸 −

Δ𝐶

𝜅
)√

𝑃(1−𝑃)𝑛𝐽

(𝑛−1)𝜌𝑒+1
.    (24)  

It should be noted that, an intervention is deemed cost effective if and only if 𝐼𝑁𝑀𝐵 > 0 (or 

Δ𝐸 >
Δ𝐶

𝜅
 ). In particular, the average treatment effect (i.e., Δ𝐸) does not necessarily need to be 
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larger than zero. For example, a cost-saving intervention (i.e., Δ𝐶 < 0) with a negative treatment 

effect (i.e., Δ𝐸 < 0) could still be cost-effective. Comparing equations (23) and (24), we can see 

that 𝜆𝐶𝑅𝑇 = 𝜆𝐶𝑅𝐶𝐸𝑇 only when Δ𝐶 = 0, assuming no cost variation (i.e., 𝜓𝑐 = 0). That is, even if 

researchers know the population value of Δ𝐶, the power for a CRCET is likely to differ from that 

for an otherwise similarly designed CRT because Δ𝐶 is not equal to zero in general.  

Second, educational researchers commonly do not know the population value of Δ𝐶 and 

prior CEA studies in education found substantial cost variation among clusters (e.g., Bowden & 

Belfield, 2015). Therefore, we recommend considering the cost variation and its nested structure 

(𝜓𝑐 and 𝜌𝑐) when designing CRCETs. Then, the differences in power estimates between CRTs 

and CRCETs depend on the specific values of the design parameters, such as the incremental 

cost (Δ𝐶), cost data variation (𝜓𝑐) and ICC (𝜌𝑐), covariate effects, the covariance between cost 

and effectiveness data, etc. For the same design, the power from a CRT tend to be larger than 

that from a CRCET because of the cost variation (i.e., 𝜓𝑐 ≠ 0) and the incremental cost (i.e., 

Δ𝐶 ≠ 0). However, the power to detect the cost-effectiveness of an intervention can still be 

larger than the power to detect the treatment effect for the same design. For example, when the 

cost and effectiveness data are positively correlated, according to equation 1, the variance of 

INMB might be smaller than the variance of the incremental effect (i.e., Δ𝐸), and thus the 

statistical power for a CRCET might be larger than a CRT with the same design parameters and 

sample sizes. Also, for some interventions that could reduce cost (e.g., an online teacher PD 

program compared to a face-to-face PD program),  𝜆𝐶𝑅𝐶𝐸𝑇  is large than 𝜆𝐶𝑅𝑇 , and thus the power 

of a CRCET might be larger than that of a CRT.  

To illustrate such a possibility, we consider two scenarios where the incremental cost is 

either positive (i.e., Δ𝐸 = 0.4, Δ𝐶 = 0.3, and 𝜅 = 2) or negative (i.e., Δ𝐸 = 0.2, Δ𝐶 = −0.1, 
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and 𝜅 = 2) as examples. Assuming the effectiveness measures are standardized (i.e., √𝜓𝑒 = 1), 

the effect sizes for the two scenarios are the same: 𝛿1 = 𝛿2 = 0.5. And thus, the power to detect 

whether the intervention is cost-effectiveness for these two scenarios is the same under the same 

sample sizes and design parameters; however, the power to detect whether the intervention is 

effective (e.g., Δ𝐸 ≠ 0) is not the same because the treatment effects are different (i.e., Δ𝐸 = 0.4 

or 0.2). The last two columns of Tables 2 and 3 summarize the power or MDES estimates from 

CRTs for these two scenarios. We can see that, for instance, as shown in Table 2, power 

estimates for CRCETs are consistently smaller than those from CRTs if the incremental cost is 

positive. However, when the incremental cost is negative, the power estimates from CRTs are 

smaller than those from CRCETs. It should be noted that we assumed relatively smaller 

covariance when they are positive (i.e., 𝑟1 = 𝑟2 = 0.1). If the standardized covariance increase to 

0.25 (i.e., 𝑟1 = 𝑟2 = 0.25), the power for a two-level CRCET without covariates adjustment 

(i.e., an unconditional model) becomes 0.868, which is larger than that from a CRT (0.803). 

Similar results were also found in Table 3.  

Conclusion 

CRTs are becoming more common in education to evaluate interventions. Often 

educational researchers focus on the effectiveness measures (e.g., test scores) but ignore the cost 

of delivering the intervention. Recent studies (e.g., Belfield & Bowden, 2019; Levin et al., 2017; 

Shand & Bowden, 2021) suggest educational evaluation should analyze both the cost and 

effectiveness of an intervention for sound decision-making. CRCETs help researchers examine 

whether an intervention is cost-effective. Still, the education literature has not previously had 

well-documented procedures for conducting power analysis to guide the planning of such 

studies. In this study, we extended previous work on power analysis for CRCETs (e.g., Willan & 
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Briggs, 2006; Manju et al., 2014, 2015; Li et al., 2020) from two-level to three-level designs, and 

presented methods for educational researchers who usually incorporate covariate effects and only 

have cluster-level cost data. In general, the power of the test of the cost-effectiveness of an 

intervention for CRCETs is a function of the effect size, the sample sizes at each level, the 

nesting effects of effectiveness and cost data, the covariance between cost and effectiveness at 

each level, the ratio between the total variance of cost and the total variance of effectiveness, and 

the proportion of the variances and covariance between cost and effectiveness that covariates 

explain. We also implemented our formulas to a free tool – PowerUp!-CEA to help researchers 

plan CRCETs.  

Our study has shown that the power and MDES estimates for CRCETs differ from those 

for CRTs with the same sample sizes and design parameters. When the incremental cost is 

positive, the power for a CRCET may be smaller than that from a CRT because of a smaller 

effect size and (or) a larger variance, holding the sample size and design parameters fixed. When 

the incremental cost is negative, or the covariance between cost and effectiveness are positive 

and high, the power for a CRCET can be larger than that of a CRT because of a larger effect size 

or a smaller variance. Educational researchers should conduct a different power for CRCETs to 

guarantee a good enough chance of detecting a cost-effective intervention. Cost variation and the 

nested structure of the cost data should be accounted for when performing power analysis for 

CRCETs, otherwise, the power or MDES may be misestimated.  

The methods we developed in this study apply to the design and analysis of CRCETs 

regardless of whether lower-level cost data (e.g., student- or class-level) are available. For 

example, as shown in Table 1 and Online Appendices A and B, when level-1 cost data are 

available, researchers can use HLMs to compute power and INMB; when only cluster-level cost 
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data are available, researchers can use the single-level method (e.g., OLS regression) to calculate 

power and INMB if all related design parameters are available. Note that, for models without 

lower-level cost data, we used the same definitions of design parameters (e.g., effect size, ICC of 

cost data, etc.) and the same notations as those from HLM to present the cost variation (e.g., 

equations A2 and B10 in the Online Appendices), which allows us to compare power or MDES 

for designs with or without lower-level cost information. Based on the results from Tables 2 and 

3, we know that collecting lower-level cost data (e.g., student- or class-level) can increase power 

if the covariates at the corresponding level could explain a meaningful portion of the cost 

variation at that level. However, it usually requires substantial resources for student- or class-

level cost data collection, which can be used to sample more schools to boost power. Therefore, 

one promising direction of future research is to consider the study budget when computing power 

or MDES for CRCETs, and to explore which strategy – collecting lower-level cost information 

or sampling more clusters – can maximize power or minimize the MDES through the optimal 

design framework.  

To use our formulas and tool effectively in planning CRCETs, researchers should be 

prepared to make informed judgments about the value of the design parameters (e.g., ICCs for 

cost data, the covariance between cost and effectiveness, etc.). Prior studies have documented 

empirical values of the design parameters for effectiveness measures (e.g., Dong et al., 2016; 

Hedberg & Hedges, 2014; Hedges & Hedberg, 2007; Kelcey et al., 2017; Westine et al., 2020); 

however, to date, there is very limited information regarding the cost data or the covariance 

between the cost data and the effectiveness data. Therefore, one important direction for further 

work is the development of empirically-based estimates of these parameters. Considering a 

growing number of educational interventions (e.g., IES-funded projects) that include an 
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economic evaluation component, we suggest that they make cost-related information such as cost 

data ICCs and the covariance between cost and effectiveness measures publicly available, which 

can inform power analyses for CRCETs. It should be noted that the power analysis methods we 

developed in this study require empirical estimates of some design parameters related to lower-

level cost data (e.g., 𝜌𝑐, 𝑤1
𝑐, 𝑤′1

𝑒𝑐, and  𝑟1) even for designs that only plan to collect cluster-level 

cost data. However, these parameters cannot be estimated using cost data from most prior CEA 

studies in education that did not collect student- or class-level cost information. Future research 

needs to provide alternative power computation formulas that only require information from 

aggregated cluster-level cost data.   

A limitation of the current study is that we assume the available cost data resulting from 

the application of the ingredients method will be accurately measured. Yet, the reality is that 

there are likely to be varying degrees of error in measurement, depending on the type of 

intervention and the evaluators’ ability to access data from various sources. Cox and Kelcey 

(2019) found that the measurement error of effectiveness measures (e.g., test scores) negatively 

affects power and MDES. Similarly, holding all the other factors fixed, the power estimate 

should become smaller when the cost measures are not accurately measured. However, there are 

no studies either addressing the validity of cost estimates generated using the ingredients method 

or the reliability (or measurement error) of the cost estimates generated under varying types of 

interventions and settings or drawing on different information sources. The second direction of 

future research is exploring how errors measuring costs of interventions affect power and MDES. 

Finally, in so far as education research commonly includes even more complicated designs than 

considered here (e.g., treatment at the student or class level), the work should be extended to 

accommodate three-level multisite designs.  
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Table 1. Summary of the Standardized Noncentrality Parameter, MDES, and Degrees of Freedom  

Model Name HLM Standardized Noncentrality Parameter () and MDES 

Degrees 

of 

Freedom  

Two-Level 
Model: Level-1 
Cost Data are 

Available 

𝐸𝑖𝑗 = 𝛾00
𝑒 + 𝛾𝐴01

𝑒 𝑇𝑗 + 𝑋𝑖𝑗
𝑒 Γ10

𝑒 + 𝑍𝑗
𝑒Γ02

𝑒 + 𝑟𝐴𝑜𝑗
𝑒 + 𝜀𝐴𝑖𝑗

𝑒 , 

𝐶𝑖𝑗 = 𝛾00
𝑐 + 𝛾𝐴01

𝑐 𝑇𝑗 + 𝑋𝑖𝑗
𝑐 Γ10

𝑐 + 𝑍𝑗
𝑐Γ02

𝑐 + 𝑟𝐴0𝑗
𝑐 + 𝜀𝐴𝑖𝑗

𝑐 . 

Standardized Noncentrality Parameter (): 

𝛿√
𝑃(1 − 𝑃)𝑛𝐽

𝜅2[(𝑛𝑤2
𝑒 − 𝑤1

𝑒)𝜌𝑒] + 𝜓𝑐[(𝑛𝑤2
𝑐 − 𝑤1

𝑐)𝜌𝑐] + (𝜅2𝑤1
𝑒 + 𝜓𝑐𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝑤2
𝑒𝑐𝑟2 + 𝑤1

𝑒𝑐 𝑟1)
 

MDES: 

𝑀𝐽−2−𝑞

√𝑃(1 − 𝑃)𝑛𝐽
√𝜅2[(𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌𝑒] + 𝜓𝑐[(𝑛𝑤2

𝑐 − 𝑤1
𝑐)𝜌𝑐] + (𝜅2𝑤1

𝑒 + 𝜓𝑐𝑤1
𝑐) − 2𝜅√𝜓𝑐(𝑛𝑤2

𝑒𝑐𝑟2 + 𝑤1
𝑒𝑐 𝑟1) 

J-2-q 

Two-Level 
Model: Level-2 

Cost Data are 
Available 

𝐸𝑖𝑗 = 𝛾00
𝑒 + 𝛾𝐴01

𝑒 𝑇𝑗 + 𝑋𝑖𝑗
𝑒 Γ10

𝑒 + 𝑍𝑗
𝑒Γ02

𝑒 + 𝑟𝐴𝑜𝑗
𝑒 + 𝜀𝐴𝑖𝑗

𝑒 , 

𝐶𝑗 = 𝛾00
𝑐 + 𝛾01

𝑐 𝑇𝑗 + 𝑟𝑗
𝑐. 

Standardized Noncentrality Parameter (): 

𝛿√
𝑃(1 − 𝑃)𝑛𝐽

𝜅2[(𝑛𝑤2
𝑒 − 𝑤1

𝑒)𝜌𝑒] + 𝜓𝑐[(𝑛𝑤2
𝑐 − 1)𝜌𝑐] + (𝜅2𝑤1

𝑒 + 𝜓𝑐) − 2𝜅√𝜓𝑐(𝑛𝑤2
𝑒𝑐𝑟2 + 𝑤′1

𝑒𝑐 𝑟1)
 

MDES: 

𝑀𝐽−2−𝑞

√𝑃(1 − 𝑃)𝑛𝐽
√𝜅2[(𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌𝑒] + 𝜓𝑐[(𝑛𝑤2

𝑐 − 𝑤1
𝑐)𝜌𝑐] + (𝜅2𝑤1

𝑒 + 𝜓𝑐𝑤1
𝑐) − 2𝜅√𝜓𝑐(𝑛𝑤2

𝑒𝑐𝑟2 + 𝑤′1
𝑒𝑐𝑟1) 

J-2-q 

Three-Level 
Model: Level-1 
Cost Data are 

Available 

𝑒𝑖𝑗𝑙 = 𝛾000
𝑒 + 𝛾𝐴001

𝑒 𝑇𝑙 + 𝑋𝑖𝑗𝑙
𝑒 Γ100

𝑒 + 𝑍𝑗𝑙
𝑒Γ010

𝑒 + 𝑊𝑙
𝑒Γ002

𝑒  

 +𝑢𝐴00𝑙
𝑒 + 𝑟𝐴0𝑗𝑙

𝑒 + 𝜀𝐴𝑖𝑗𝑙
𝑒 , 

𝑐𝑖𝑗𝑙 = 𝛾000
𝑐 + 𝛾𝐴001

𝑐 𝑇𝑙 + 𝑋𝑖𝑗𝑙
𝑐 Γ100

𝑐 + 𝑍𝑗𝑙
𝑐 Γ010

𝑐 + 𝑊𝑙
𝑐 Γ002

𝑐  

 +𝑢𝐴00𝑙
𝑐 + 𝑟𝐴0𝑗𝑙

𝑐 + 𝜀𝐴𝑖𝑗𝑙
𝑐 . 

Standardized Noncentrality Parameter (): 

√
δ2𝑃(1 − 𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽𝑤3
𝑒 − 𝑤1

𝑒)𝜌3
𝑒 + (𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌2

𝑒] + 𝜓𝑐[(𝑛𝐽𝑤3
𝑐 − 𝑤1

𝑐 )𝜌3
𝑐 + (𝑛𝑤2

𝑐 − 𝑤1
𝑐 )𝜌2

𝑐 ] + (𝜅2𝑤1
𝑒 + 𝜓𝑐𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐 𝑟3 + 𝑛𝑤2

𝑒𝑐 𝑟2 + 𝑤1
𝑒𝑐 𝑟1)

 

MDES: 

𝑀𝐿−2−𝑔

√𝑃(1 − 𝑃)𝑛𝐽𝐿
× 

√𝜅2[(𝑛𝐽𝑤3
𝑒 − 𝑤1

𝑒)𝜌3
𝑒 + (𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌2

𝑒 ] + 𝜓𝑐 [(𝑛𝐽𝑤3
𝑐 − 𝑤1

𝑐 )𝜌3
𝑐 + (𝑛𝑤2

𝑐 − 𝑤1
𝑐 )𝜌2

𝑐 ] + (𝜅2𝑤1
𝑒 + 𝜓𝑐 𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐 𝑟3 + 𝑛𝑤2

𝑒𝑐 𝑟2 + 𝑤1
𝑒𝑐 𝑟1)  

 

L-2-g 
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Table 1. (continued) 

Model Name HLM Standardized Noncentrality Parameter () and MDES 

Degrees 

of 

Freedom  

Three-Level 
Model: Level-2 
Cost Data are 

Available 

𝑒𝑖𝑗𝑙 = 𝛾000
𝑒 + 𝛾𝐴001

𝑒 𝑇𝑙 + 𝑋𝑖𝑗𝑙
𝑒 Γ100

𝑒 + 𝑍𝑗𝑙
𝑒Γ010

𝑒 + 𝑊𝑙
𝑒Γ002

𝑒  

 +𝑢𝐴00𝑙
𝑒 + 𝑟𝐴𝑜𝑗𝑙

𝑒 + 𝜀𝐴𝑖𝑗𝑙
𝑒 , 

𝑐𝑗𝑙 = 𝛾000
𝑐 + 𝛾𝐴001

𝑐 𝑇𝑙 + 𝑍𝑗𝑙
𝑐 Γ010

𝑐 + 𝑊𝑙
𝑐Γ002

𝑐  

 +𝑢𝐴0𝑙
𝑐 + 𝑟𝐴𝑗𝑙

𝑐 . 

Standardized Noncentrality Parameter (): 

√
δ2𝑃(1 − 𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽𝑤3
𝑒 − 𝑤1

𝑒)𝜌3
𝑒 + (𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌2

𝑒] + 𝜓𝑐 [(𝑛𝐽𝑤3
𝑐 − 𝑤1

𝑐 )𝜌3
𝑐 + (𝑛𝑤2

𝑐 − 𝑤1
𝑐 )𝜌2

𝑐 ] + (𝜅2𝑤1
𝑒 + 𝜓𝑐 𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐 𝑟3 + 𝑛𝑤2

𝑒𝑐 𝑟2 + 𝑤′1
𝑒𝑐 𝑟1)

 

MDES: 

𝑀𝐿−2−𝑔

√𝑃(1 − 𝑃)𝑛𝐽𝐿
× 

√𝜅2[(𝑛𝐽𝑤3
𝑒 − 𝑤1

𝑒)𝜌3
𝑒 + (𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌2

𝑒 ] + 𝜓𝑐 [(𝑛𝐽𝑤3
𝑐 − 𝑤1

𝑐 )𝜌3
𝑐 + (𝑛𝑤2

𝑐 − 𝑤1
𝑐 )𝜌2

𝑐 ] + (𝜅2𝑤1
𝑒 + 𝜓𝑐 𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐 𝑟3 + 𝑛𝑤2

𝑒𝑐 𝑟2 + 𝑤′1
𝑒𝑐 𝑟1)  

L-2-g 

Three-Level 
Model: Level-3 
Cost Data are 

Available 

𝑒𝑖𝑗𝑙 = 𝛾000
𝑒 + 𝛾𝐴001

𝑒 𝑇𝑙 + 𝑋𝑖𝑗𝑙
𝑒 Γ100

𝑒 + 𝑍𝑗𝑙
𝑒Γ010

𝑒 + 𝑊𝑙
𝑒Γ002

𝑒  

 +𝑢𝐴00𝑙
𝑒 + 𝑟𝐴𝑜𝑗𝑙

𝑒 + 𝜀𝐴𝑖𝑗𝑙
𝑒 , 

𝐶𝑙 = 𝛾000
𝑐 + 𝛾𝐴001

𝑐 𝑇𝑙 + 𝑊𝑙
𝑐 Γ002

𝑐 + 𝑢𝐴𝑙
𝑐  

Standardized Noncentrality Parameter (): 

√
δ2𝑃(1 − 𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽𝑤3
𝑒 − 𝑤1

𝑒)𝜌3
𝑒 + (𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌2

𝑒] + 𝜓𝑐[(𝑛𝐽𝑤3
𝑐 − 𝑤1

𝑐 )𝜌3
𝑐 + (𝑛𝑤2

𝑐 − 𝑤1
𝑐 )𝜌2

𝑐 ] + (𝜅2𝑤1
𝑒 + 𝜓𝑐𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐𝑟3 + 𝑛𝑤′2

𝑒𝑐 𝑟2 + 𝑤′1
𝑒𝑐 𝑟1)

 

MDES: 

𝑀𝐿−2−𝑔

√𝑃(1 − 𝑃)𝑛𝐽𝐿
× 

√𝜅2[(𝑛𝐽𝑤3
𝑒 − 𝑤1

𝑒)𝜌3
𝑒 + (𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌2

𝑒 ] + 𝜓𝑐 [(𝑛𝐽𝑤3
𝑐 − 𝑤1

𝑐 )𝜌3
𝑐 + (𝑛𝑤2

𝑐 − 𝑤1
𝑐 )𝜌2

𝑐 ] + (𝜅2𝑤1
𝑒 + 𝜓𝑐 𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐 𝑟3 + 𝑛𝑤′2

𝑒𝑐 𝑟2 + 𝑤′1
𝑒𝑐 𝑟1)  

 

L-2-g 
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Table 2. Power and MDES estimates for specific scenarios with various assumptions: Two-level CRCETs and CRTs 

Model 

CRCETs   CRTs 

Availability of 

cost 

information 

No Cost 
variation 

Cost varies among students and schools   Incremental cost 

No 

Correlation 
Positive Negative Mixed   Positive   Negative 

Power 

Unconditional 
Level 2 0.485 0.441 0.559 0.365 0.553   0.803   0.290 

Levels 1 and 2 0.485 0.441 0.559 0.365 0.553   0.803   0.290 

                      

Conditional 
Level 2 0.776 0.723 0.844 0.623 0.837   0.978   0.511 

Levels 1 and 2 0.776 0.726 0.846 0.626 0.841   0.978   0.511 

                        

MDES 

Unconditional 
Level 2 0.729 0.773 0.665 0.868 0.669   0.399   0.399 

Levels 1 and 2 0.729 0.773 0.665 0.868 0.669   0.399   0.399 

                      

Conditional 
Level 2 0.516 0.549 0.471 0.617 0.476   0.282   0.282 

Levels 1 and 2 0.516 0.547 0.470 0.614 0.473   0.282   0.282 

Note. (1) To compute power, we assume Δ𝐸 = 0.4 and Δ𝐶 = 0.3 when the incremental cost is positive and Δ𝐸 = 0.2 and Δ𝐶 = −0.1 

when the incremental cost is negative. Therefore, under the assumption 𝜅 = 2, 𝛿𝐶𝑅𝐶𝐸𝑇 = 0.5 in both scenarios. (2) To compute MDES, 

we assume power = 0.8. (3) Under the assumptions: n = 60, J = 50, 𝜌𝑒 = 𝜌𝑐 = 0.23, 𝑤1
𝑒 = 𝑤1

𝑐 = 𝑤2
𝑒 = 𝑤2

𝑐 = 𝑤1
𝑒𝑐 = 𝑤2

𝑒𝑐 = 0.5, 

𝑤′
1
𝑒𝑐 = 0.8, 𝑃 = 0.5, q = 1,  and a two-sided test with 𝛼 = 0.05. (4) No cost variation indicates 𝜓𝑐 = 0; When cost varies among 

students and schools, we assume the total variance of cost is half as large as the total variance of  effectiveness measures (i.e.,  

𝜓𝑒 =2𝜓𝑐); No correlation indicates 𝑟1 = 𝑟2 = 0; Positive indicates 𝑟1 = 𝑟2 = 0.1; Negative indicates 𝑟1 = 𝑟2 = −0.1; Mixed indicates 

𝑟1 = −0.1 and 𝑟2 = 0.1. (5) All the power and MDES for CRCETs were computed using PowerUp!-CEA. The Online Appendix 

Tables C1 and C2 illustrate the parameters used in the Two-level CRCET software package to generate the power and MDES 

estimates for conditional models when both level-1 and level-2 cost data are available, and the covariance between cost and 

effectiveness measures are positive, respectively. (6) The Online Appendix Table C5 illustrates the parameters used in the Two-level 

CRCET software package to generate the power for the conditional model when only level-2 cost data are available, and the 

correlation is positive. (7) The power and MDES for CRTs were computed using PowerUpR (Bulus et al., 2021).  
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Table 3. Power and MDES estimates for specific scenario with various assumptions: Three-level CRCETs and CRTs  

Model 

CRCETs   CRTs 

Availability of cost 
information 

No Cost 
variation 

Cost varies among students and schools   Incremental  Cost 

No 

Correlation 
Positive Negative Mixed 

  
Positive   Negative 

Power 

Unconditional 

Level 3 0.556 0.508 0.587 0.421 0.581   0.919   0.390 

Levels 2 and 3 0.556 0.508 0.587 0.421 0.581   0.919   0.390 

Levels 1, 2, and 3 0.556 0.508 0.587 0.421 0.581   0.919   0.390 

                      

Conditional 

Level 3 0.844 0.788 0.848 0.681 0.840   0.997   0.661 

Levels 2 and 3 0.844 0.796 0.856 0.688 0.848   0.997   0.661 

Levels 1, 2, and 3 0.844 0.800 0.869 0.701 0.864   0.997   0.661 

                        

MDES 

Unconditional 

Level 3 0.667 0.707 0.643 0.796 0.647   0.334   0.334 

Levels 2 and 3 0.667 0.707 0.643 0.796 0.647   0.334   0.334 

Levels 1, 2, and 3 0.667 0.707 0.643 0.796 0.647   0.334   0.334 

                      

Conditional 

Level 3 0.472 0.508 0.469 0.576 0.474   0.236   0.236 

Levels 2 and 3 0.472 0.502 0.463 0.572 0.469   0.236   0.236 

Levels 1, 2, and 3 0.472 0.500 0.455 0.563 0.458   0.236   0.236 

Note. (1) To compute power, we assume Δ𝐸 = 0.4 and Δ𝐶 = 0.3 when the incremental cost is positive and Δ𝐸 = 0.2 and Δ𝐶 = −0.1 

when the incremental cost is negative. Therefore, under the assumption 𝜅 = 2, 𝛿𝐶𝑅𝐶𝐸𝑇 = 0.5 in both scenarios. (2) To compute MDES, 

we assume power = 0.8. (3) Under the assumptions: n =25, J = 2, L=60, 𝜌2
𝑒 = 𝜌2

𝑐 = 0.08, 𝜌3
𝑒 = 𝜌3

𝑐 = 0.15, 𝑤1
𝑒 = 𝑤1

𝑐 = 𝑤2
𝑒 = 𝑤2

𝑐 =
𝑤3

𝑒 = 𝑤3
𝑐 = 𝑤1

𝑒𝑐 = 𝑤2
𝑒𝑐 = 𝑤3

𝑒𝑐 = 0.5, 𝑤′
1
𝑒𝑐 = 𝑤2

′𝑒𝑐 = 0.8, 𝑃 = 0.5, q = 1,  and a two-sided test with 𝛼 = 0.05. (4) No cost variation 

indicates 𝜓𝑐 = 0; When cost varies among students and schools, we assume the total variance of cost is half as large as the total 

variance of effectiveness measures (i.e., 𝜓𝑒 =2𝜓𝑐); No correlation indicates 𝑟1 = 𝑟2 = 𝑟3 = 0; Positive indicates 𝑟1 = 0.1 and 𝑟3 =
0.07; Negative indicates 𝑟1 = −0.1  and 𝑟3 = −0.07; Mixed indicates 𝑟1 = −0.1 and 𝑟3 = 0.07. We always assume 𝑟2 = −0.03 for 

the Positive, Negative, and Mixed scenarios. (5) All the power and MDES for CRCETs were computed using PowerUp!-CEA. The 

Online Appendix Tables C3 and C4 illustrate the parameters used in the three-level CRCET software package to generate the power 

and MDES estimate for conditional models when cost data at all levels are available, and the correlations are mixed, respectively. (6) 

The power and MDES for CRTs were computed using PowerUpR (Bulus et al., 2021).
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Figure 1. A three-step process to computer power or MDES for CRCETs using PowerUp!-CEA 
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Figure 2. Effects of Sample Size and Cost Variation on Power 

Note. Under the assumptions: 𝜅 = 2,  𝛿 = 0.5,  𝐽 = 2,  𝑛 = 25,  𝜌2
𝑒 = 0.08,  𝜌3

𝑒 = 0.15,   𝑟1 = 𝑟2 = 𝑟2 = 0,   𝑃 = 0.5, no covariates, and 

a two-sided test with 𝛼 = 0.05. 
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Figure 3. Effects of Covariate Adjustments on Power  

Note. (1) The conditional model I assumes only school-level cost data are available; Conditional model II assumes cost data at three 

levels are all available. (2). Under the assumptions: 𝜅 = 2,   𝛿 = 0.5, 𝐽 = 2,   𝑛 = 25,   𝜓𝑒 = 𝜓𝑐 ,   𝜌2
𝑒 = 𝜌2

𝑐 = 0.08,   𝜌3
𝑒 = 𝜌3

𝑐 =
0.15,  𝑤1

𝑒 = 𝑤2
𝑒 = 𝑤3

𝑒 = 0.5, 𝑤1
𝑐 = 𝑤2

𝑐 = 𝑤3
𝑐 = 0.5,   𝑞 = 1,   𝑃 = 0.5, and a two-sided test with 𝛼 = 0.05. (3) For the three lines on 

the left-hand panel, we assume 𝑟1 = −0.1, 𝑟2 = −0.03, and 𝑟3 = 0.07; for the three lines in the middle, we assume 𝑟1 = −0.1, 𝑟2 =
0.03, and 𝑟3 = 0.07; and for the three lines on the right-hand panel, we assume 𝑟1 = −0.01, 𝑟2 = 0.06, and 𝑟3 = 0.07. 
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Online Appendix A: Derivation of the Variance Formulas in Equations 11 and 20 

When only level-2 cost information is available, we can estimate Δ𝐶 through a single-level 

regression, namely  

𝐶𝑗 = 𝛾00
𝑐 + 𝑇𝑗Δ𝐶 + 𝑟𝑗

𝑐 ,                                                                                                        (A1) 

where 𝐶𝑗 is the cost for cluster j, 𝛾00
𝑐  is the grand mean of cost for the control group, and 𝑟𝑗

𝑐 is the 

error term for cost data. To compare the power for designs with or without level-1 cost 

information available, we rewrite 𝑟𝑗
𝑐 as a combination of error terms at the first and second levels 

using the same notations as those used in equation (3), namely 

𝑟𝑗
𝑐 = 𝑟0𝑗

𝑐 +
∑ 𝜀𝑖𝑗

𝑐𝑛
𝑖=1

𝑛
,                                                                                                               (A2)          

where 𝜀𝑖𝑗
𝑐  is the level-1 error term, and 𝑟0𝑗

𝑐  is the level-2 random effect. And thus, the variance of 

𝛥𝐶 is  

𝑉𝑎𝑟(𝛥𝐶) = 𝑉𝑎𝑟(𝛾01
𝑐 ) =

1

𝑃(1−𝑃)𝑛𝐽
(𝑛𝜏𝑐

2 + 𝜎𝑐
2).                                                                  (A3) 

Please note that when 𝜓𝑐 = 0, indicating 𝜏𝑐
2 = 𝜎𝑐

2 = 0, 𝑉𝑎𝑟(𝛥𝐶) is equal to zero. Assume level-

1 effectiveness data are available, we can still estimate 𝛥𝐸 through equation (3), and the variance 

of 𝛥𝐸 is (Raudenbush,1997) 

𝑉𝑎𝑟(𝛥𝐸) = 𝑉𝑎𝑟(𝛾01
𝑒 ) =

1

𝑃(1−𝑃)𝑛𝐽
(𝑛𝜏𝑒

2 + 𝜎𝑒
2).                                                                  (A4) 

Similarly, the covariance between 𝛥𝐸 and 𝛥𝐶 is: 

𝐶𝑜𝑣(𝛥𝐸, 𝛥𝐶) =
1

𝑃(1−𝑃)𝑛𝐽
(𝑛𝜏𝑒𝑐 + 𝜎𝑒𝑐).                                                                              (A5) 

Based on equation (1) we have the variance of 𝐼𝑁𝑀𝐵̂ (equation 12) as  

𝑉𝑎𝑟(𝐼𝑁𝑀𝐵̂) =
1

𝑃(1−𝑃)𝑛𝐽
[𝜅2(𝑛𝜏𝑒

2 + 𝜎𝑒
2) + (𝑛𝜏𝑐

2 + 𝜎𝑐
2) − 2𝜅(𝑛𝜏𝑒𝑐 + 𝜎𝑒𝑐)].                      (A6) 

When only level-2 cost data are available, and there are covariates incorporated in the 

analysis, we could estimate Δ𝐶 through a single-level regression with level-2 covariates, namely  
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𝐶𝑗 = 𝛾00
𝑐 + 𝑇𝑗Δ𝐶 + 𝑍𝑗

𝑐Γ02
𝑐 + 𝑟𝐴𝑗

𝑐 ,                                                                                       (A7)   

where 𝑍𝑗
𝑐 is a row vector of level-2 unit characteristics, Γ02

𝑐  is a column vector of coefficients of 

level-2 unit characteristics, and 𝑟𝐴𝑗
𝑐  is the residual term. Subscript A indicates adjustment because 

of covariates. Again, we could rewrite 𝑟𝐴𝑗
𝑐  as combinations of error terms at the first and second 

levels, namely 

𝑟𝐴𝑗
𝑐 = 𝑟𝐴0𝑗

𝑐 +
∑ 𝜀𝑖𝑗

𝑐𝑛
𝑖=1

𝑛
.                                                                                                             (A8) 

Then the variance of 𝛥𝐶 becomes 

𝑉𝑎𝑟(𝛥𝐶) = 𝑉𝑎𝑟(𝛾𝐴01
𝑐 ) =

1

𝑝(1−𝑝)𝑛𝐽
(𝑛𝜏𝑅𝑐

2 + 𝜎𝑐
2).                                                                (A9) 

Assume level-1 effectiveness data are available, and thus we could use equation (14) to estimate 

the variance of Δ𝐸 as  

𝑉𝑎𝑟(𝛥𝐸) = 𝑉𝑎𝑟(𝛾𝐴01
𝑒 ) =

1

𝑝(1−𝑝)𝑛𝐽
(𝑛𝜏𝑅𝑒

2 + 𝜎𝑅𝑒
2 ).                                                            (A10) 

Similarly, the covariance between 𝛥𝐸 and 𝛥𝐶 becomes 

𝐶𝑜𝑣(𝛥𝐸, 𝛥𝐶) =
1

𝑃(1−𝑃)𝑛𝐽
(𝑛𝜏𝑅𝑒𝑐 + 𝜎′𝑅𝑒𝑐).                                                             (A11) 

where 𝜎′𝑅𝑒𝑐  represents the covariance between cost and effectiveness data at level-1 that only 

considers the covariate effects for effectiveness measures. Therefore, we have the variance of 

𝐼𝑁𝑀𝐵̂ (equation 21) as  

𝑉𝑎𝑟(𝐼𝑁𝑀𝐵̂) =
1

𝑃(1−𝑃)𝑛𝐽
[𝜅2(𝑛𝜏𝑅𝑒

2 + 𝜎𝑅𝑒
2 ) + (𝑛𝜏𝑅𝑐

2 + 𝜎𝑐
2) − 2𝜅(𝑛𝜏𝑅𝑒𝑐 + 𝜎′𝑅𝑒𝑐)].           (A12) 
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Online Appendix B: Three-Level Designs  

Three-level models: Unconditional Model  

Consider a three-level cluster design (e.g., students nested within classes, and classes nested 

within schools), where level-3 units (e.g., schools) are randomly assigned to treatment or control 

conditions and the treatment is at the third level. When the level-1 effectiveness data and cost 

data are available, three-level HLMs could be used to estimate the incremental effect and the 

incremental cost (i.e., ΔE and ΔC), namely  

𝐸𝑖𝑗𝑙 = 𝛾000
𝑒 + 𝑇𝑙𝛥𝐸 + 𝑢00𝑙

𝑒 + 𝑟0𝑗𝑙
𝑒 + 𝜀𝑖𝑗𝑙

𝑒 ,                                                                           (B1) 

𝐶𝑖𝑗𝑙 = 𝛾000
𝑐 + 𝑇𝑙𝛥𝐶 + 𝑢00𝑙

𝑐 + 𝑟0𝑗𝑙
𝑐 + 𝜀𝑖𝑗𝑙

𝑐 ,                                                                           (B2) 

where 𝐸𝑖𝑗𝑙  represents the effectiveness measure (e.g., achievement) for level-1 unit i in level-2 

unit j within level-3 unit l; 𝐶𝑖𝑗𝑙  represents the cost for level-1 unit i in level-2 unit j within level-3 

unit l; 𝑇𝑙 is a binary treatment indicator variable; and the level-1 error and random effects at 

level-2 and level-3 follow bivariate normal distributions, namely 

(
𝑢00𝑙

𝑒

𝑢00𝑙
𝑐 ) ~𝑁 ((

0
0

) , (
𝜔𝑒

2 𝜔𝑒𝑐

𝜔𝑒𝑐  𝜔𝑐
2)),  (

𝑟0𝑗𝑙
𝑒

𝑟0𝑗𝑙
𝑐 ) ~𝑁 ((

0
0

) ,  (
𝜏𝑒

2 𝜏𝑒𝑐

𝜏𝑒𝑐  𝜏𝑐
2 

)), and (
𝜀𝑖𝑗𝑙

𝑒

𝜀𝑖𝑗𝑙
𝑐 ) ~𝑁 ((

0
0

) , (
𝜎𝑒

2 𝜎𝑒𝑐

𝜎𝑒𝑐  𝜎𝑐
2)). 

                                                                                                                                                    (B3) 

Again, let NMBijl represent the NMB for level-1 unit i in level-2 unit j within level-3 unit 

l, we can reconstruct equations (B1) and (B2) as  

𝑁𝑀𝐵𝑖𝑗𝑙 = 𝜅𝐸𝑖𝑗𝑙 − 𝐶𝑖𝑗𝑙 =  𝜋000 + 𝜋001𝑇𝑙 + 𝑢00𝑙 + 𝑟0𝑗𝑙 + 𝜀𝑖𝑗𝑙 ,                                           (B4) 

where 𝜋000 = 𝜅𝛾000
𝑒 − 𝛾000

𝑐 , 𝜋001 = 𝜅𝛥𝐸 − 𝛥𝐶, 𝑢00𝑙 = 𝜅𝑢00𝑙
𝑒 − 𝑢00𝑙

𝑐 , 𝑟0𝑗𝑙 = 𝜅𝑟0𝑗𝑙
𝑒 − 𝑟0𝑗𝑙

𝑐 , 𝜀𝑖𝑗𝑙 =

𝜅𝜀𝑖𝑗𝑙
𝑒 − 𝜀𝑖𝑗𝑙

𝑐 , 𝑢00𝑙~𝑁(0, 𝜔2), 𝑟0𝑗𝑙~𝑁(0, 𝜏2), and 𝜀𝑖𝑗𝑙~𝑁(0, 𝜎2). The parameter of interest now is 

𝜋001, representing the INMB of the treatment. When 𝜋001 > 0, it indicates the treatment is cost-

effective, when 𝜋001 < 0, it indicates the treatment is not cost-effective.  
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Suppose there are L level-3 units, J level-2 units within each level-3 unit, and n level-1 

units within each level-2 unit. The total number of level-1 units is nJL. Also, suppose there are 

𝐿𝑇 level-3 units in the treatment group and 𝐿𝐶  in the control condition. Define 𝑃 =
𝐿𝑇

𝐿
, is the 

proportion of level-3 units in the treatment group, then the variance of 𝜋̂001 is (Konstantopoulos, 

2008a) 

𝑉𝑎𝑟(𝜋̂001 ) =
1

𝑃(1−𝑃)𝑛𝐽𝐿
(𝑛𝐽𝜔2 + 𝑛𝜏2 + 𝜎2),                                                                     (B5) 

where 𝜔2 = 𝜅2𝜔𝑒
2 − 2𝜅𝜔𝑒𝑐 + 𝜔𝑐

2, 𝜏2 = 𝜅2𝜏𝑒
2 − 2𝜅𝜏𝑒𝑐 + 𝜏𝑐

2, and 𝜎2 = 𝜅2𝜎𝑒
2 − 2𝜅𝜎𝑒𝑐 + 𝜎𝑐

2. The 

non-centrality parameter is 

λ = 𝜋001 √
𝑃(1−𝑃)𝑛𝐽𝐿

(𝑛𝐽𝜔2+𝑛𝜏2+𝜎2)
.                                                                                                   (B6) 

Similarly, let 𝜓𝑒 = 𝜎𝑒
2 + 𝜏𝑒

2 + 𝜔𝑒
2 and 𝜓𝑐 = 𝜎𝑒

2 + 𝜏𝑒
2 + 𝜔𝑒

2 represent the total variance of 

effective and cost measures. If we assume the effectiveness measure is standardized with a mean 

of zero and a standard deviation of one (i.e., 𝜓𝑒 = 1) and then define the effect size as 𝛿 =

𝐼𝑁𝑀𝐵, the standardized non-centrality parameter is 

λ = 𝛿√
𝑃(1−𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽−1)𝜌3
𝑒+(𝑛−1)𝜌2

𝑒]+𝜓𝑐[(𝑛𝐽−1)𝜌3
𝑐+(𝑛−1)𝜌2

𝑐]+(𝜅2+𝜓𝑐)−2𝜅√𝜓𝑐(𝑛𝐽𝑟3+𝑛𝑟2+𝑟1)
,                   (B7)  

where 𝜌3
𝑒 =

𝜔𝑒
2

𝜓𝑒
  and 𝜌2

𝑒 =
𝜏𝑒

2

𝜓𝑒
  are the ICCs of effectiveness data at the third and second levels, 

respectively; 𝜌3
𝑐 =

𝜔𝑐
2

𝜓𝑐
  and 𝜌2

𝑐 =
𝜏𝑐

2

𝜓𝑐
  are ICCs of cost data at the third and second levels, 

respectively; and 𝑟1 =
𝜎𝑒𝑐

√𝜓𝑒𝜓𝑐
 and 𝑟2 =

𝜏𝑒𝑐

√𝜓𝑒𝜓𝑐
, and 𝑟3 =

𝜔𝑒𝑐

√𝜓𝑒𝜓𝑐
 are the standardized covariance 

between cost and effectiveness at the first, second, and third levels, respectively. Then, power is 

defined as: 

Power = 1 – Η [c(α /2, L-2), (L-2), λ] + Η [-c(α /2, L-2), (L-2), λ].                                    (B8) 
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When only level-3 cost data are available, but level-1 effectiveness data are still 

available, we could estimate Δ𝐶 through a single-level regression, namely  

𝐶𝑙 = 𝛾000
𝑐 + 𝑇𝑙Δ𝐶 + 𝑢𝑙

𝑐,                                                                                                     (B9) 

where 𝐶𝑙 is the cost for cluster l, 𝛾000
𝑐  is the grand mean of cost for the control group, and 𝑢𝑙

𝑐 is 

the error term. To compare the power for designs with or without level-1 cost information, we 

could rewrite 𝑢𝑙
𝑐 as combinations of error terms at the first, second, and third levels using the 

same notations as those used in equation (B2), namely 

𝑢𝑙
𝑐 = 𝑢00𝑙

𝑐 +
∑ 𝑟0𝑗𝑙

𝑐𝐽
𝑗=1

𝐽
+

∑ ∑ 𝜀𝑖𝑗𝑙
𝑐𝑛

𝑖=1
𝐽
𝑗=1

𝑛𝐽
,                                                                                   (B10)           

where 𝜀𝑖𝑗𝑙
𝑐  is the level-1error term, 𝑟0𝑗𝑙

𝑐  is the level-2 random effect, and 𝑢00𝑙
𝑐  is the level-3 

random effect. And thus, we could write the variance of 𝛥𝐶 as 

𝑉𝑎𝑟(𝛥𝐶) = 𝑉𝑎𝑟(𝛾001
𝑐 ) =

1

𝑃(1−𝑃)𝑛𝐽𝐿
(𝑛𝐽𝜔𝑐

2 + 𝑛𝜏𝑐
2 + 𝜎𝑐

2).                                                (B11) 

Assuming level-1 effectiveness data are available, we could use equation (B3) to estimate 

𝛥𝐸. Specifically, according to Konstantopoulos (2008), the variance of 𝛥𝐸 is  

𝑉𝑎𝑟(𝛥𝐸) = 𝑉𝑎𝑟(𝛾001
𝑒 ) =

1

𝑃(1−𝑃)𝑛𝐽𝐿
(𝑛𝐽𝜔𝑒

2 + 𝑛𝜏𝑒
2 + 𝜎𝑒

2).                                                (B12) 

And then the covariance between 𝛥𝐸 and 𝛥𝐶 is 

𝐶𝑜𝑣(𝛥𝐸, 𝛥𝐶) =
1

𝑃(1−𝑃)𝑛𝐽𝐿
(𝑛𝐽𝜔𝑒𝑐 + 𝑛𝜏𝑒𝑐 + 𝜎𝑒𝑐).                                                            (B13) 

Based on equation (1) in the main text, we can get the variance of 𝐼𝑁𝑀𝐵̂ as 

𝑉𝑎𝑟 (𝐼𝑁𝑀𝐵̂) =
1

𝑃(1−𝑃)𝑛𝐽𝐿
[𝜅2(𝑛𝐽𝜔𝑒

2 + 𝑛𝜏𝑒
2 + 𝜎𝑒

2) + (𝑛𝐽𝜔𝑐
2 + 𝑛𝜏𝑐

2 + 𝜎𝑐
2) − 2𝜅(𝑛𝐽𝜔𝑒𝑐 + 𝑛𝜏𝑒𝑐 + 𝜎𝑒𝑐)]                                                                                  

                                                                                                                                                  (B14) 
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Again, define the standardized effect size as 𝛿 = 𝐼𝑁𝑀𝐵  and assume the effectiveness 

measures are standardized with means of zero and standard deviations of one (i.e., 𝜓𝑒 = 1), we 

have the standardize the non-centrality parameter as  

λ = 𝛿√
𝑃(1−𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽−1)𝜌3
𝑒+(𝑛−1)𝜌2

𝑒]+𝜓𝑐[(𝑛𝐽−1)𝜌3
𝑐+(𝑛−1)𝜌2

𝑐]+(𝜅2+𝜓𝑐)−2𝜅√𝜓𝑐(𝑛𝐽𝑟3+𝑛𝑟2+𝑟1)
.              (B15) 

Note that equation (B15) is identical to equation (B7). Similarly, when level-1 cost data are not 

available, but level-2 cost data are available, we could estimate the INMB through a two-level 

(e.g., classes nested within schools) model, where the new level-1 error term is a combination of 

level-1 (e.g., students) and level-2 (e.g., classes) errors. Then, the non-centrality is also identical 

to equations (B7) and (B15), indicating the power of detecting the cost-effectiveness of treatment 

is the same for unconditional models, regardless of whether level-1 or level-2 cost data are 

available or not for three-level CRCETs. 

Three-Level Cluster Design: Covariate Effects  

When there are covariates incorporated in the analysis and level-1 cost data are available, 

we can still use the three-level HLMs to estimate the incremental effect and the incremental cost 

of an intervention, namely 

𝑒𝑖𝑗𝑙 = 𝛾000
𝑒 + 𝑇𝑙Δ𝐸 + 𝑋𝑖𝑗𝑙

𝑒 Γ100
𝑒 + 𝑍𝑗𝑙

𝑒 Γ010
𝑒 + 𝑊𝑙

𝑒Γ002
𝑒 + 𝑢𝐴00𝑙

𝑒 + 𝑟𝐴0𝑗𝑙
𝑒 + 𝜀𝐴𝑖𝑗𝑙

𝑒 ,                (B16) 

𝑐𝑖𝑗𝑙 = 𝛾000
𝑐 + 𝑇𝑙Δ𝐶 + 𝑋𝑖𝑗𝑙

𝑐 Γ100
𝑐 + 𝑍𝑗𝑙

𝑐 Γ010
𝑐 + 𝑊𝑙

𝑐Γ002
𝑐 + 𝑢𝐴00𝑙

𝑐 + 𝑟𝐴0𝑗𝑙
𝑐 + 𝜀𝐴𝑖𝑗𝑙

𝑐 ,                (B17) 

where 𝑋𝑖𝑗𝑙
𝑒  and 𝑋𝑖𝑗𝑙

𝑐  are row vectors of level-1 unit characteristics, and Γ100
𝑒  and Γ100

𝑐  are column 

vectors of coefficients of level-1 unit characteristics; 𝑍𝑗𝑙
𝑒  and 𝑍𝑗𝑙

𝑐  row vectors of level-2 unit 

characteristics, and Γ010
𝑒  and Γ010

𝑐  are column vectors of coefficients of level-2 unit 

characteristics; 𝑊𝑙
𝑒  and 𝑊𝑙

𝑐  are row vectors of level-3 unit characteristics, and Γ002
𝑒  and Γ002

𝑐  are 

column vectors of coefficients of level-3 unit characteristics. Subscript A indicates adjustment 
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because of covariates. The level-1 error and random effects at level-2 and level-3 follow 

bivariate normal distributions  

(
𝑢𝐴00𝑘

𝑒

𝑢𝐴00𝑘
𝑐 ) ~𝑁 ((

0
0

) , (
𝜔𝑅𝑒

2  𝜔𝑅𝑒𝑐

𝜔𝑅𝑒𝑐  𝜔𝑅𝑐
2 )), (

𝑟𝐴0𝑗𝑘
𝑒

𝑟𝐴0𝑗𝑘
𝑐 ) ~𝑁 ((

0
0

) , (
𝜏𝑅𝑒

2  𝜏𝑅𝑒𝑐

𝜏𝑅𝑒𝑐  𝜏𝑅𝑐
2  

)), and 

(
𝜀𝐴𝑖𝑗𝑘

𝑒

𝜀𝐴𝑖𝑗𝑘
𝑐 ) ~𝑁 ((

0
0

) , (
𝜎𝑅𝑒

2  𝜎𝑅𝑒𝑐

𝜎𝑅𝑒𝑐  𝜎𝑅𝑐
2 )),                                                                  

                                                                                                                                                  (B18) 

where subscript R indicates residual variance or residual covariance. Then, the NMB for level-1 

unit i in level-2 unit j in cluster l becomes 

𝑁𝑀𝐵𝑖𝑗𝑙 = 𝜋000 + 𝜋𝐴001𝑇𝑙 + 𝑋𝑖𝑗𝑙Γ100 + 𝑍𝑗𝑙Γ010 + 𝑊𝑙Γ002 + 𝑢𝐴00𝑙 + 𝑟𝐴𝑜𝑗𝑙 + 𝜀𝐴𝑖𝑗𝑙 .         (B19) 

And the non-centrality parameter becomes 

λ = δ ×

√
𝑃(1−𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽𝑤3
𝑒−𝑤1

𝑒)𝜌3
𝑒+(𝑛𝑤2

𝑒−𝑤1
𝑒)𝜌2

𝑒]+𝜓𝑐[(𝑛𝐽𝑤3
𝑐−𝑤1

𝑐)𝜌3
𝑐+(𝑛𝑤2

𝑐−𝑤1
𝑐)𝜌2

𝑐]+(𝜅2𝑤1
𝑒+𝜓𝑐𝑤1

𝑐)−2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐𝑟3+𝑛𝑤2

𝑒𝑐𝑟2+𝑤1
𝑒𝑐𝑟1)

,  

(B20) 

where 𝑤1
𝑒, 𝑤2

𝑒, 𝑤3
𝑒 represent the unexplained variance of effectiveness at the first, second, and 

third levels, respectively; 𝑤1
𝑐, 𝑤2

𝑐, and 𝑤3
𝑐 represent the unexplained variance of cost at the first, 

second, and third levels, respectively; 𝑤1
𝑒𝑐, 𝑤2

𝑒𝑐, and 𝑤3
𝑒𝑐 represent the unexplained covariance 

between cost and effectiveness at the first, second, and third levels, respectively. Specifically, 

𝑤1
𝑒 =

𝜎𝑅𝑒
2

𝜎𝑒
2 , 𝑤2

𝑒 =
𝜏𝑅𝑇𝑒

2

𝜏𝑇𝑒
2 , 𝑤3

𝑒 =
𝜔𝑅𝑒

2

𝜔𝑒
2 , 𝑤1

𝑐 =
𝜎𝑅𝑐

2

𝜎𝑐
2 , 𝑤2

𝑐 =
𝜏𝑅𝑇𝑐

2

𝜏𝑇𝑐
2 , 𝑤3

𝑐 =
𝜔𝑅𝑐

2

𝜔𝑐
2 , 𝑤1

𝑒𝑐 =
𝜎𝑅𝑒𝑐

𝜎𝑒𝑐
, 𝑤2

𝑒𝑐 =
𝜏𝑅𝑇𝑒𝑐

𝜏𝑇𝑒𝑐
, and 

𝑤3
𝑒𝑐 =

𝜔𝑅𝑒𝑐

𝜔𝑒𝑐
. Note that we assume group-mean centering of level-1 and level-2 covariates so that 

they could only explain a proportion of the variance or covariance corresponding levels. Then, 

power is defined as 

Power = 1 – Η [c(α /2, L-2-g), (L-2-g), λA] + Η [-c(α /2, L-2-g), (L-2-g), λA],                  (B21)                  
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where g is the number of covariates at the third level. All the other terms have been defined 

previously. The minimum detectable effect size (MDES) is   

𝑀𝐷𝐸𝑆(𝛿) =  
𝑀𝑣

√𝑃(1 − 𝑃)𝑛𝐽𝐿
× 

√𝜅2[(𝑛𝐽𝑤3
𝑒 − 𝑤1

𝑒)𝜌3
𝑒 + (𝑛𝑤2

𝑒 − 𝑤1
𝑒)𝜌2

𝑒] + 𝜓𝑐[(𝑛𝐽𝑤3
𝑐 − 𝑤1

𝑐)𝜌3
𝑐 + (𝑛𝑤2

𝑐 − 𝑤1
𝑐 )𝜌2

𝑐] + (𝜅2𝑤1
𝑒 + 𝜓𝑐𝑤1

𝑐) − 2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐 𝑟3 + 𝑛𝑤2

𝑒𝑐 𝑟2 + 𝑤1
𝑒𝑐𝑟1).  

      (B22) 

When only level-3 cost data are available, and covariates are incorporated in the analysis, 

we could estimate Δ𝐶 through a single-level regression with level-3 covariates, namely  

𝐶𝑙 = 𝛾000
𝑐 + 𝑇𝑙Δ𝐶 + 𝑊𝑙

𝑐Γ002
𝑐 + 𝑢𝐴𝑙

𝑐 ,                                                                               (B23)   

where 𝑊𝑙
𝑐  is a row vector of level-3 unit characteristics, Γ100

𝑐  is a column vector of coefficients 

of level-3 unit characteristics, and 𝑢𝐴𝑙
𝑐  is the third level error term for cost data. Subscript A 

indicates adjustment because of covariates. Again, we could rewrite 𝑢𝐴𝑙
𝑐  as combinations of error 

terms at the first, second, and third levels, namely 

𝑢𝐴𝑙
𝑐 = 𝑢𝐴00𝑙

𝑐 +
∑ 𝑟0𝑗𝑙

𝑐𝐽
𝑗=1

𝐽
+

∑ ∑ 𝜀𝑖𝑗𝑙
𝑐𝑛

𝑖=1
𝐽
𝑗=1

𝑛𝐽
.                                                                                 (B24) 

Then the variance of 𝛥𝐶 becomes 

𝑉𝑎𝑟(𝛥𝐶) = 𝑉𝑎𝑟(𝛾𝐴001
𝑐 ) =

1

𝑃(1−𝑃)𝑛𝐽𝐿
(𝑛𝐽𝜔𝑅𝑐

2 + 𝑛𝜏𝑐
2 + 𝜎𝑐

2).                                             (B25) 

Assume individual level effectiveness measure is available, and thus we could use equation 

(B16) to estimate the variance of Δ𝐸 as  

𝑉𝑎𝑟(𝛥𝐸) = 𝑉𝑎𝑟(𝛾𝐴001
𝑒 ) =

1

𝑝𝑃(1−𝑃)𝑛𝐽𝐿
(𝑛𝐽𝜔𝑅𝑒

2 + 𝑛𝜏𝑅𝑒
2 + 𝜎𝑅𝑒

2 ).                                        (B26) 

And then the covariance between 𝛥𝐸 and 𝛥𝐶 is 

𝐶𝑜𝑣(𝛥𝐸, 𝛥𝐶) =
1

𝑃(1−𝑃)𝑛𝐽𝐿
(𝑛𝐽𝜔𝑅𝑒𝑐 + 𝑛𝜏′𝑅𝑒𝑐 + 𝜎′𝑅𝑒𝑐),                                                   (B27) 
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where 𝜏′𝑅𝑒𝑐 and 𝜎′𝑅𝑒𝑐  represent the covariance between cost and effectiveness measures at level-

2 and level-1 that only consider the covariate effects for effectiveness measures. Therefore, we 

have the variance of INMB as  

𝑉𝑎𝑟 (𝐼𝑁𝑀𝐵̂) =
1

𝑃(1−𝑃)𝑛𝐽𝐿
[𝜅2(𝑛𝐽𝜔𝑅𝑒

2 + 𝑛𝜏𝑅𝑒
2 + 𝜎𝑅𝑒

2 ) + (𝑛𝐽𝜔𝑅𝑐
2 + 𝑛𝜏𝑐

2 + 𝜎𝑐
2) − 2𝜅(𝑛𝐽𝜔𝑅𝑒𝑐 + 𝑛𝜏′𝑅𝑒𝑐 + 𝜎′𝑅𝑒𝑐)].                                                                                                  

                                                                                                                                                  (B28) 

Again, assume the effectiveness measure is standardized with a mean of zero and a 

standard deviation of one (i.e., 𝜓𝑒 = 1) and define the standardized effect size as 𝛿 = 𝐼𝑁𝑀𝐵, 

then the standardized the non-centrality parameter becomes 

λ =

𝛿√
𝑃(1−𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽𝑤3
𝑒−𝑤1

𝑒)𝜌3
𝑒+(𝑛𝑤2

𝑒−𝑤1
𝑒)𝜌2

𝑒]+𝜓𝑐[(𝑛𝐽𝑤3
𝑐−1)𝜌3

𝑐+(𝑛−1)𝜌2
𝑐]+(𝜅2𝑤1

𝑒+𝜓𝑐)−2𝜅√𝜓𝑐(𝑛𝐽𝑤3
𝑒𝑐𝑟3+𝑛𝑤′2

𝑒𝑐𝑟2+𝑤′1
𝑒𝑐𝑟1)

,    

(B29) 

which is not identical to equation (B21), because 𝑤′1
𝑒𝑐 and 𝑤′2

𝑒𝑐 only take account of the effects 

of covariate adjustments in the effectiveness model.  

Similarly, when level-1 cost data are not available but level-2 cost data available, we 

could use a two-level HLM estimate INMB. Assume level-2 covariates could explain a 

proportion variation of the outcome variance at level-2, the non-centrality parameter becomes 

λ = δ√
𝑃(1−𝑃)𝑛𝐽𝐿

𝜅2[(𝑛𝐽𝑤3
𝑒−𝑤1

𝑒)𝜌3
𝑒+(𝑛𝑤2

𝑒−𝑤1
𝑒)𝜌2

𝑒]+𝜓𝑐[(𝑛𝐽𝑤3
𝑐−1)𝜌3

𝑐+(𝑛𝑤2
𝑐−1)𝜌2

𝑐]+(𝜅2𝑤1
𝑒+𝜓𝑐)−2𝜅√𝜓𝑐(𝑛𝐽𝑤3

𝑒𝑐𝑟3+𝑛𝑤2
𝑒𝑐𝑟2+𝑤′1

𝑒𝑐
𝑟1)

,  

(B30) 

where 𝑤′1
𝑒𝑐 only takes account of the effects of covariate adjustments in the effectiveness model.  
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Online Appendix C: Demonstrations using PowerUp!-CEA  

Table C1. Demonstration of Power Computation for Two-level CRCETs: Level-1 Cost Data are Available 
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Table C2. Demonstration of MDES Computation for Two-level CRCETs: Level-1 Cost Data are Available
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Table C3. Demonstration of Power Computation for Three-level CRCETs: Level-1 and Level-2 Cost Data are Available
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Table C4. Demonstration of MDES Computation for Three-level CRCETs: Level-1 and Level-2 Cost Data are Available 

  

 

 



62 
 

Table C5. Demonstration of Power Computation for Two-level CRCETs: Only Level-2 Cost Data are Available
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Table C6. Demonstration of Geometric Mean Calculation  

 

 

 


