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We revisit the unified treatment of low-energy hadronic parity violation espoused by Desplanques, Donoghue,
and Holstein to the end of an ab initio treatment of parity violation in low-energy nuclear processes within the
Standard Model. We use our improved e↵ective Hamiltonian and precise non-perturbative assessments of the
quark charges of the nucleon within lattice QCD to make new assessments of the parity-violating meson-nucleon
coupling constants. Comparing with recent, precise measurements of hadronic parity violation in few-body
nuclear reactions, we find improved agreement with these experimental results, though some tensions remain.
We thus note the broader problem of comparing low-energy constants from nuclear and few-nucleon systems,
considering, too, unresolved theoretical issues in connecting an ab initio, e↵ective Hamiltonian approach to
chiral e↵ective theories. We note how future experiments and lattice QCD studies could sharpen the emerging
picture, promoting the study of hadronic parity violation as a laboratory for testing “end-to-end” theoretical
descriptions of weak processes in hadrons and nuclei at low energies.

I. INTRODUCTION

In spite of decades of research, hadronic parity violation in flavor non-changing processes remains poorly understood [1–6].
The pertinent body of experimental work involves the low-energy interactions of hadrons and nuclei, so that we are compelled to
address the interplay of the physics of the weak interaction and of nonperturbative strong dynamics. Ultimately we hope that this
problem can be largely conquered once the direct computation of two-nucleon matrix elements of a suitable e↵ective Hamiltonian
within lattice QCD (LQCD) becomes possible [7], though, as we shall see, there are further issues to address. As an interim
step, we revisit the unified treatment of hadronic parity violation by Desplanques, Donoghue, and Holstein (DDH) [1]. There,
the description of low-energy hadronic parity violation is framed within an one-meson-exchange model, and DDH show that it
is possible to compute the appropriate meson-nucleon coupling constants starting from the Standard Model (SM) Lagrangian.
Since that early work, powerful field theoretic treatments exploiting the low-energy symmetries of QCD have been developed
and applied to the analysis of hadronic parity violation [4, 6, 8–13]. Yet in these chiral e↵ective field theory treatments, organized
in terms of hadronic degrees of freedom, the e↵ective couplings are determined from experiment, and the underlying theoretical
connection to QCD and the SM is lost. We note, however, nascent work that would compute the parity-violating pion-nucleon
constant in an ab initio way [14–16]. Here we assess the current status of this problem by revisiting and updating the treatment
of DDH. Namely, we employ our improved e↵ective Hamiltonian [17] to compute the parity-violating meson-nucleon coupling
constants, using the factorization approximation (as it is now employed [18]) and LQCD assessments of the quark flavor charges
of the nucleon [19]. Our particular purpose is to see how these updated assessments combine to confront the constraints on these
parameters from precise experimental measurements of hadronic parity violation in few-body nuclear systems, namely, from the
NPDGamma [20] and n3He [21] collaborations that measure the parity-violating asymmetry from neutron-spin reversal in the
~n + p! d + � and in ~n +3 He! t + p reactions, respectively.

The NPDGamma measurement is particularly sensitive to the parity-violating pion-nucleon coupling, whereas that made by
the n3He collaboration also probes four-nucleon contact interactions of isoscalar and isovector character, which we interpret in
terms of contributions from vector-meson exchanges between nucleons. Much of the past theoretical e↵ort has concentrated on
studying charged pion-nucleon interactions, due to a longstanding notion of its dominance in hadronic-parity-violating observ-
ables [1]. However, noting the non-observation of parity violation in 18F radiative decay [22–24], and thus finding no clear sign
of this dominance, and with the direct theoretical analysis of nucleon-nucleon (NN) amplitudes in pionless e↵ective field theory
(EFT) in the large number of colors (Nc) limit showing that isoscalar and isotensor interactions should play driving phenomeno-
logical roles [5, 20, 21, 25, 26], we believe the contributions from all isosectors should be computed. Earlier studies of QCD
evolution e↵ects have either made calculational approximations [1, 27, 28], or focused on the isovector case [29–31]. We note,
for example, that the original estimates of parity-violating meson-nucleon couplings were performed with a low-energy Hamil-
tonian built using phenomenological K-factors to account for QCD evolution e↵ects on weak processes [1]. In this work, we
employ our low-energy e↵ective Hamiltonian [17], which makes a complete renormalization group evolution in leading-order
QCD, with matching across heavy-flavor thresholds, to give a unified treatment of all three isosectors in order to compare their
contributions to recent experimental measurements.
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Powerful searches for physics beyond the SM can be made through low-energy, precision measurements of symmetry-
breaking e↵ects in nucleons and nuclei [32, 33]. For example, in the case of searches for permanent electric dipole moments,
for neutrinoless double � decay, or for µ ! e conversion on nuclear targets, the expected SM contribution is either negligibly
small with respect to current experimental sensitivities or altogether absent. Thus the discovery of significantly non-zero results
in these systems would signal the existence of physics beyond the SM. Here theory is key to assessing the relative sensitivity
of di↵erent nuclear systems to the e↵ects of interest. Theory is also essential to the interpretation of a non-zero experimental
result or limit in terms of the parameters of an underlying new physics model — and, more broadly, to using the experimental
limit to estimate a lower bound on the energy scale of new physics, assuming that it lies beyond the weak scale. A theoretical
analysis that connects the scale of new physics to that of the pertinent low-energy experiments requires the consideration of
multiple physical scales, and “end-to-end” e↵ective-field-theory treatments are being developed to accomplish that [34–36]. In
this context, we believe QCD studies of hadronic parity violation have a crucial role to play in the benchmarking of these treat-
ments, because its observables are not only nonzero within the SM but also, given the success of the SM in describing ultra-low
energy, parity-violating electron-nucleon interactions [37], new-physics e↵ects presumably play a subdominant role. Thus the
comparison of theory and experiment in hadronic parity violation provides a welcome test of the overall theoretical framework,
as such tests possess aspects common to new-physics searches as well.
In this paper, we embark on this program by determining the parity-violating meson-nucleon coupling constants at a renor-

malization scale of 2 GeV, and, as we shall detail, we find improved agreement with the experimental results. Although better
agreement speaks to progress, our longer-term goals are to refine our results to higher precision and also to evolve our descrip-
tion to still smaller scales. We note that the parity-violating meson-nucleon couplings, and, generally, the low-energy constants
associated with the operators of an e↵ective field theory are not in themselves observables and can be expected to depend on the
renormalization scale. In this paper we discuss various assessments of the parity-violating pion-nucleon coupling constant from
this perspective, as it is the most precisely determined. Generally, we anticipate di�culties can arise both from the gap between
the lowest scale to which we can potentially apply perturbative QCD accurately and the highest scale to which we can employ
chiral perturbation theory, as well as from the e↵ects of the massive charm quark. The latter a↵ects the splay of operators that
can appear, even if the charm quark is still active [38], as we have developed explicitly in the �S = 0 case [17]. Moreover, the
truncation error from matching a four to three-flavor theory, at a fixed order of perturbation theory, at charm threshold can be
significant, as studied in K ! ⇡⇡ decay [39, 40], where we refer to Ref. [41] for a broader discussion. In this paper we comment
on how some of these e↵ects can impact our results.
We conclude this section with an outline of the rest of the paper. In Sec.II, we recapitulate the outcomes of our e↵ective weak

Hamiltonian computation [17] that are pertinent here. In Sec.III we discuss the factorization approximation and its validity. In
Sec.IV we employ these results to compute the parity-violating meson-NN coupling constants. In Sec. V we compare our results
with the parameters extracted from experiments and discuss the perspectives they o↵er, and we o↵er a concluding summary and
outlook in Sec. VI.

II. EFFECTIVE HAMILTONIAN ANDWILSON COEFFICIENTS

The e↵ective Hamiltonian for hadronic parity violation at a particular energy scale is defined in terms of four-quark operators
and corresponding Wilson coe�cients. In evolving the theory from one energy scale to another, such as from the W mass to
scale µ, the Wilson coe�cients follow the relation:

~C(µ) = exp
"Z

gs(µ)

gs(MW )
dg
�T (µ)
�(gs)

#
~C(MW ) with �(gs) = �

g3s
48⇡2

(33 � 2nf), (1)

where we work in leading-order (LO) QCD, noting that the anomalous dimension matrix � arises from the LO QCD mixing
of the operators. We refer to Ref.[17] for all details. Allowing the e↵ective theory to flow from the W mass scale to hadronic
energy scales, with µ = 2GeV, results in the Hamiltonian:

HPV
e↵ (2GeV) =

GFs2w
3
p
2

12X

i=1

Ci(2GeV)⇥i , (2)

where ⇥i are four-quark operators. Twelve such operators form a closed set under LO QCD mixing and thus describe the theory
of hadronic parity nonconservation, for all three isosectors, where we refer to App. A1 for a complete list. Moreover, we use
the weak-mixing angle ✓W with sin2 ✓W ⌘ s

2
w
= 0.231 and the Fermi constant GF = 1.166 ⇥ 10�5 GeV�2 [42]. Just below the W

mass scale, the e↵ects of QCD are negligible, and we can collect the Wilson coe�cients by summing the tree-level W and Z
0

exchange contributions in �S = 0 quark interactions, giving ~C(MW ) = (1, 0, 0, 0,�3.49, 0, 0, 0,�13.0 cos2✓c, 0,�13.0 sin2✓c, 0),



3

with the Cabibbo angle given by sin ✓c = 0.2253. Upon performing the RG flow to 2 GeV using Eq.1, we have [17]

~C(2GeV)=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1.09 [1.17 . . . 1.06][1.08 . . . 1.04] [1.07][1.06]
0.018 [0.014 . . . 0.021][0.033 . . . 0.006] [�0.006][�0.006]
0.199 [0.321 . . . 0.133][0.193 . . . 0.127] [0.158][0.153]
�0.583 [�0.990 · · · � 0.385][�0.571 · · · � 0.374] [�0.460][�0.456]
�4.36 [�4.99 · · · � 4.05][�4.34 · · · � 4.03] [�4.16][�4.14]
1.72 [2.63 . . . 1.19][1.67 . . . 1.16] [1.40][1.36]
�0.170 [�0.288 · · · � 0.110][�0.165 · · · � 0.105] [�0.134][�0.129]
0.332 [0.496 . . . 0.235][0.322 . . . 0.225] [0.275][0.268]
�16.2 [�18.6 · · · � 15.0][�16.1 · · · � 15.0] [�15.48][�15.4]
6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]
�16.2 [�18.6 · · · � 15.0][�16.1 · · · � 15.0] [�15.48][�15.4]
6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (3)

where the last four entries should be multiplied by factors of cos2✓c, cos2✓c, sin2✓c, and sin2✓c, respectively. The primary result
is given by the leftmost column of numbers. The other columns illustrate the uncertainties in the computation. In the central
column, the left set shows the ranges of Wilson coe�cients that result in the Nf = 2 + 1 theory for renormalization scales of
µ = 1�4GeV and the right set shows them in the Nf = 2+1+1 theory with µ = 2�4GeV. The rightmost column gives Wilson
coe�cients if the ↵s running and matching is computed at NLO (left) and NNLO (right).
For the present work, it is useful to make the di↵erent isosector contributions explicit and separated as

HPV
e↵ (2GeV) = H I=1

e↵ (2GeV) +H I=0�2
e↵ (2GeV). (4)

Isovector (I = 1) Wilson coe�cients at high and low energies are: ~CI=1(MW ) = (1, 0, 0, 0, 3.49, 0, 3.49, 0,�13.0 cos2✓c, 0) and

~CI=1(2GeV)=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1.09 [1.17 . . . 1.06][1.08 . . . 1.04] [1.07][1.06]
0.018 [0.014 . . . 0.021][0.033 . . . 0.006] [�0.006][�0.006]
0.199 [0.321 . . . 0.133][0.193 . . . 0.127] [0.158][0.153]
�0.583 [�0.990 · · · � 0.385][�0.571 · · · � 0.374] [�0.460][�0.456]
4.36 [4.99 . . . 4.05][4.34 . . . 4.03] [4.16][4.14]
�1.72 [�2.63 · · · � 1.19][�1.67 · · · � 1.16] [�1.40][�1.36]
4.36 [4.99 . . . 4.05][4.34 . . . 4.03] [4.16][4.14]
�1.72 [�2.63 · · · � 1.19][�1.67 · · · � 1.16] [�1.40][�1.36]
�16.2 [�18.6 · · · � 15.0][�16.1 · · · � 15.0] [�15.48][�15.4]
6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (5)

where the last two entries should be multiplied by a factor sin2✓c and the error estimates are defined as in Eq. (3). Wilson
coe�cients for the I = 0 � 2 sector at high and low energies are: ~CI=0�2(MW ) = (�1, 0, 0, 0,�3.49, 0, 0, 0,�13.0 cos2✓c, 0) and

~CI=0�2(2GeV)=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�1.09 [�1.17 · · · � 1.06][�1.08 · · · � 1.04] [�1.07][�1.06]
�0.018 [�0.014 · · · � 0.021][�0.033 · · · � 0.006] [0.006][0.006]
�0.199 [�0.321 · · · � 0.133][�0.193 · · · � 0.127] [�0.158][�0.153]
0.583 [0.990 . . . 0.385][0.571 . . . 0.374] [0.460][0.456]
�4.36 [�4.99 · · · � 4.05][�4.34 · · · � 4.03] [�4.16][�4.14]
1.72 [2.63 . . . 1.19][1.67 . . . 1.16] [1.40][1.36]
�0.170 [�0.288 · · · � 0.110][�0.165 · · · � 0.105] [�0.134][�0.129]
0.332 [0.496 . . . 0.235][0.322 . . . 0.225] [0.275][0.268]
�16.2 [�18.6 · · · � 15.0][�16.1 · · · � 15.0] [�15.48][�15.4]
6.38 [9.76 . . . 4.44][6.22 . . . 4.30] [5.19][5.05]
,

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(6)

where the last two entries should be multiplied by a factor cos2✓c and the error estimates are defined as in Eq. (3). Although
Eqs. (3, 5, 6) appeared in our earlier paper [17], we have included them here to make our presentation self-contained.

III. FACTORIZATION APPROXIMATION

The e↵ective Hamiltonian presented in the previous section can be used in the computation of various parity-violating meson-
nucleon coupling constants of isospin I: hI

M
. These parameters are introduced to quantify the observable e↵ects of hadronic
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parity violation via the phenomenological Hamiltonian of Ref. [1],HDDH. By matching the quark-level and hadron-level matrix
elements via hMN

0|H I

e↵ |Ni = hMN
0|HDDH|Ni, these couplings can be estimated. The main challenge in this is determining the

quark-level matrix elements hMN
0|H I

e↵ |Ni involving hadrons. This task is significantly simplified within the factorization, or
vacuum saturation, approximation, in which the hadronic matrix element of the four-quark operator is computed as the product
of the hadron matrix elements of each current. The factorization approximation is heuristic, though its use can be justified a

posteriori with experimental data, if not a priori on theoretical grounds, except in special cases. The di↵erence in the matrix-
element computation of the full 4-quark operator and that of its 2-quark pieces is termed a non-factorizable contribution. This
di↵erence is not well-known in general, and its outcome depends on the matrix element chosen.
To our knowledge, the factorization approximation was first studied in the context of hadronic parity violation [43, 44]; in

particular, the matrix element of a parity-violating four-quark operator to yield a neutral vector meson from a nucleon state is
thus written in the form

hVN0| (q̄1q2)V (q̄3q4)A |Ni = hV | (q̄1q2)V |0i hN0| (q̄3q4)A |Ni . (7)

Factorization has also been broadly employed in analyses of hadronic weak decays, with the first application being to the
computation of so-called tree graphs, arising from partially disconnected intermediate states, and their contribution to the |�I| =
1/2 rule in K ! 2⇡ and K ! 3⇡ decay [45, 46]. With further developments, the factorization approximation has been used
to yield predictions for the exclusive decays of charmed mesons [47, 48], compared against experimental data [18, 49], and
applied to the B-meson system, in which extensive tests become possible through the rich selection of possible hadronic final
states [50–52]. Under certain conditions, factorization has been shown to work extremely well. To that end we consider the
specific example of B-meson decays to heavy-light final states, for which factorization has been shown to exist in QCD in leading
inverse power in the heavy quark mass [53, 54] — assuming that both b and c quarks are heavy. Tests of these predictions, and of
factorization more generally, come from the study of B! D

(⇤)
(s)(⇡,K) decays [55], particularly the comparison of the theoretical

decay rates with experiment, yielding excellent agreement. These decays include both vector and pseudoscalar final states and
probe the color-suppressed (C) and exchange (E) topologies, in addition to the color-allowed tree (T) contribution. For example,
a test derived from B̄

0
d
! D

+⇢� and B̄
0
d
! D

+⇡� branching ratio data, which is sensitive to both the T and E topologies, probes
factorization to a precision of 10%, and the authors note that they could not resolve any nonfactorizable e↵ects within the current
experimental precision, which could be as small as 5% in some cases [55]. In contrast, in meson decays to light final states,
the energy release is generally much larger, admitting the possibility of rescattering with intermediate-state hadronic resonances
and thus yielding contributions beyond the factorization approach. Empirical uncertainties in B ! ⇡⇡, ⇡K decays are still large
enough to preclude such precise tests [56]. In this class of decays, an outstanding problem has been that of understanding the
pattern of amplitudes in K ! ⇡⇡ decay, for which a marked dominance of the I = 0 final state amplitude over the I = 2
amplitude is observed, with roughly only a factor of 2 of the empirical ratio ReA0/ReA2 ' 22.5 in the isospin limit [57] coming
from the perturbative Wilson coe�cients and a simple factorization of the hadronic matrix elements. Although the problem has
long been attributed to an unidentified enhancement of the I = 0 amplitude [58, 59], to which a role for the �(500) resonance
has been argued [60, 61], LQCD studies have now shown that a numerical resolution of the |�I| = 1/2 puzzle [62] includes
a significant cancellation of two tree-level operators that contribute to the I = 2 amplitude in K ! ⇡⇡ decay [62–64]. In the
factorization treatment the two contributions have the same sign, showing it to be inconsistent. We note that an opposite relative
sign also emerged in earlier non-lattice work using chiral perturbation theory and a large Nc analysis [65, 66]. The analysis of
K ! ⇡⇡ decays reveals features that do not occur in our analysis of the parity-violating meson-nucleon couplings. In particular,
since QCD dynamics are flavor-blind, we believe that the existing factorization tests in heavy to heavy-light transitions do have
bearing on our N ! NM analysis, supporting our results because the kinematics of the process does not support the existence
of factorization-violating resonances. We would like to emphasize that we employ the factorization approximation specifically
for the computation of the parity-violating meson-nucleon coupling constants. The issue of non-perturbative e↵ects beyond
the DDH model, which could be studied within the framework of 2N matrix elements within LQCD remains. Moreover, the
theoretical improvements we have made are specific to the computation of the meson-nucleon coupling constants. To put this in
context we now turn to the analysis of DDH [1].
The early landmark study of hadronic parity violation by DDH [1] is critical of the use of factorization, and that assessment

has appeared to hold sway despite later work suggesting that non-factorizable e↵ects are subdominant [27]. In regards to the
comparative study of DDH [1], both the factorization approximation computations and the quark model estimates to which
they were compared employed uncontrolled approximations, and poorly known inputs, so that inferring a deficiency in the
factorization approximation itself from di↵erences in such predictions is not a reliable conclusion. Moreover, what DDH term
“factorization” is not the same procedure as has been employed in the literature since the late 1980’s [18]. In their Fig. 1 they
present three di↵erent quark flow topologies for the parity-violating meson-nucleon couplings and note that “factorization” is
associated with the production of a color-singlet meson emerging as the result of Z0 exchange at tree level exclusively. Moreover,
di↵erent paths to computing factorized hadronic matrix elements are employed [1]. We, rather, have followed the now standard
practice of applying a Fierz transformation to a four-quark operator to expose the quark currents with the flavor content needed
to realize a particular hadronic final state, so that we factorize the matrix elements of the four-quark operators into products of
the matrix elements of the associated quark-level currents. In so doing the matrix elements of our LO weak Hamiltonian can
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generate all the pictorial contributions in Fig. 1 of [1], depending on the meson to be produced. For example, their Fig. 1b can
follow from multi-quark (in excess of three) Fock states of the nucleon, as associated with the strange quark axial charge of the
nucleon, which is pertinent to the assessment of the vector-meson-nucleon couplings.
In making our assessments, we have employed the recent, precision LQCD computations of the quark-flavor (scalar, axial)

charges of the nucleon [19], and we regard that as a great improvement over the poorly controlled flavor-symmetry-based
estimates used throughout the literature in the past, as we discuss in Sec. IV. This is key to a sharpened picture of the role of
strange quarks, which have been a source of great uncertainty [29, 67]. Thus greatly improved assessments of the factorized
matrix elements in the nucleon sector are now possible. Turning to the parity-violating n ! p(⇡±, ⇢±,!) transition matrix
elements, we note these processes, though now mediated by Z

0 exchange, also contain quark flow topologies of the same
forms studied by Ref. [55], and the kinematics of these transition matrix elements is also compatible with that of the heavy-
quark/hadron limit they employ. Thus we regard those tests of factorization in hadronic B meson decays, which speak to its
success in that context, as also acting in support of our own analysis. In the next section we use the factorization approximation
with input from state-of-the-art lattice QCD results to determine the parity-violating meson-nucleon coupling constants.

IV. ESTIMATES OF THE PARITY-VIOLATING MESON-NUCLEON COUPLING CONSTANTS

In this section, firstly we flesh out the calculation of h1⇡ in Ref.[17], particularly emphasizing and discussing the di↵erent input
choices made in arriving at this result. Then, we turn to estimating the remaining meson-nucleon couplings. Phenomenologically,
the pion contribution to hadronic parity violation with coupling h

1
⇡ is

H⇡DDH = ih
1
⇡(⇡

+
p̄n � ⇡�n̄p) . (8)

Matching the quark and hadron-level matrix elements we have

� ih1⇡ūnup = hn⇡+| H I=1
e↵ |pi , (9)

where uN with N 2 p, n is a Dirac spinor. Employing the Fierz identities, where we note the useful compilation of
Ref. [68], ⇥I=1

i
operators within the Hamiltonian are rearranged to yield scalar-pseudoscalar contributions. Using the defi-

nition h0|(d̄u)A(0)|⇡+(p)i = ip
µ
f⇡ and the result

h⇡+| (ū�5d) |0i =
m

2
⇡ f⇡

i(mu + md)
, (10)

we obtain the equation connecting the pion-nucleon coupling to the Wilson coe�cients in H I=1
e↵ :

h
1
⇡ūnup =

2GFs
2
w

3
p
2

0
BBBB@
C

I=1
1

3
+C

I=1
2 �

C
I=1
3

3
�CI=1

4

1
CCCCA

m
2
⇡ f⇡

(mu + md)
hn| d̄u |pi . (11)

In its numerical evaluation, we use the isovector scalar charge gu�d
s

computed within lattice QCD (LQCD) [19], where hn| d̄u |pi ⌘
g
u�d
s

ūnup. Modern LQCD calculations are “unquenched” so that the e↵ects of the light sea quarks are allowed to appear, noting
that these are characterized by Nf , the number of dynamical quark flavors in the simulation. As per Ref. [19], we suppose
simulations with Nf = 2 + 1 + 1 are more realistic but that Nf = 2 + 1 simulations are typically more precise. The evaluation
of Eq. (11) is sensitive to the precise value of m2

⇡/(mu + md), where the light quark masses are evaluated in LQCD. This ratio
gives a large enhancement, and its assessment should be made with care. Here m⇡ = 135MeV, because the LQCD simulations
used do not include electromagnetism, and the charged-pion decay constant f⇡ = 130MeV. As for the light quark masses, it is
appropriate to use the renormalization-group-invariant (RGI) mass (mu + md) = 2(4.695(56)m(54)⇤MeV) for Nf = 2 + 1 [19],
an appealing choice because it is scale and scheme independent, thus avoiding extreme sensitivity to the choice of scale. In
this case, combining errors in quadrature implies m2

⇡/(mu + md) = 1941(32)MeV, whereas using the result from a Nf = 2 + 1
simulation in the MS scheme at a scale of 2GeV, (mu + md) = 2(3.381(40)MeV) [19] we find 2695(32)MeV for this ratio.
(We note in this scheme at this scale that the PDG compilation recommends (mu + md) = 2(3.45+0.55�0.15 MeV) [42]; we note, too,
(mu + md) = 2(3.75(0.45)MeV) using scalar sum rules and chiral perturbation theory [69].) We can also assess it through the
use of the Gell-Mann–Oakes–Renner (GOR) relation [70–72]. The GOR relation captures the pion mass with a correction of
within a few percent [73–76], where the concomitant quark condensate B ⌘ |⌃|/F2, with ⌃ = |h0|ūu|0i| and F the pion decay
constant in the chiral limit, can all be computed in LQCD. Using Ref. [19] to compute B from ⌃ and F, in the SU(2) chiral
limit and Nf = 2 + 1 we have, assuming the errors are uncorrelated, 2560(240)MeV, whereas in the SU(3) chiral limit we
have 2280(280)MeV, a di↵erence reflecting the role of the strange sea quarks in its numerical evaluation. The result with the
RGI quark mass has been employed in what follows. Turning to the isovector quark scalar charge of the nucleon, Nf = 2 + 1
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result: we use gu�d
s

= 1.06(10)(06)sys [77], noting that this compares favorably with the result gu�d
s

= 1.02(11) determined from
strong-isospin breaking in the nucleon mass from LQCD [78], whereas the SU(3) estimate in Ref. [30] yields 0.6. Finally,

h
1
⇡ = (3.06 ± 0.34 +

✓
+1.29
�0.64

◆
+ 0.42 + (1.00)) ⇥ 10�7 , (12)

where the error estimates come, respectively, from the LQCD inputs employed, the change in the Wilson coe�cients over (i) a
scale variation of 1 � 4GeV and (ii) higher-order corrections in ↵s as per Eq. (5), and, finally, the estimates of the accuracy of
Eq. (11) through the contribution to it from O(1/Nc) terms, which are noted in parentheses.
We now turn to the assessment of other meson-nucleon coupling constants, starting with the remaining I = 1 couplings. For

the ⇢0 meson, e.g., h⇢0N| H I=1
e↵ |Ni = h

1
⇢✏
⇤µ
⇢ (ūNuN)A. With h⇢0| (ūu)V � (d̄d)V |0i ⌘

p
2✏⇤µ⇢ f⇢m⇢, m⇢ = 775.4MeV [42], and

f⇢ = 210MeV [50] and using the quark axial charges of the nucleon from LQCD [19]

hp| (ūu)A |pi = g
u

A
(ūpup)A ; g

u

A
= 0.777(25)(30) [0.847(18)(32)] ,

hp| (d̄d)A |pi = g
d

A
(ūpup)A ; g

d

A
= �0.438(18)(30) [�0.407(16)(18)] ,

hp| (s̄s)A |pi = g
s

A
(ūpup)A ; g

s

A
= �0.053(8) [�0.035(6)(7)] ,

(13)

in the MS scheme at µ = 2GeV from Nf = 2 + 1 + 1 [79] [Nf = 2 + 1 [80]] flavor simulations, we have

h
1
⇢ =

GFs
2
w

3
f⇢m⇢

 0BBBB@CI=1
3 +

C
I=1
4

3

1
CCCCA (guA + g

d

A
) +

0
BBBB@CI=1

3 +
C

I=1
4

3
+C

I=1
7 +

C
I=1
8

3
+C

I=1
9 +

C
I=1
10

3

1
CCCCA gsA

!
, (14)

and with Eq. (13) this yields

h
1
⇢ = �0.294 ± 0.045 +

✓
0.014
�0.036

◆
+ 0.009 + (0.026)) ⇥ 10�7 , (15)

For the ! meson, h!N| H I=1
e↵ |Ni = h

1
!N
✏⇤µ! (ūNuN)A. With h!| (ūu)V + (d̄d)V |0i ⌘

p
2✏⇤µ! f!m!, m! = 782.65MeV [42], and

f! = 195MeV [50], we have

h
1
!N

=
GFs

2
w

3
f!m!

 0BBBB@CI=1
1 +

C
I=1
2

3

1
CCCCA ⌘N(guA � gdA) +

0
BBBB@CI=1

9 +
C

I=1
10

3

1
CCCCA gsA

!
, (16)

where ⌘ = ±1 for a proton or neutron state, respectively. With Eqs.(13)

h
1
! p

= +1.825 ± 0.111 +
✓
�0.047
0.125

◆
� 0.040 + (�0.020)) ⇥ 10�7 ; h1! n = �1.828 ± 0.112 +

✓
0.053
�0.134

◆
+ 0.043 + (0.000)) ⇥ 10�7 , (17)

where the di↵erence in their magnitudes speaks to the role of charged-current e↵ects. Similarly we can make use of HI=0�2
e↵ to

determine h!N | H I=0�2 |Ni = h
0
!✏
⇤µ
! (ūNuN)A. Thus

h
0
! =

GFs
2
w

3
f!m!

 0BBBB@C0+2
7 +

C
0+2
8

3
+C

0+2
9 +

C
0+2
10

3

1
CCCCA (guA + g

d

A
) +

0
BBBB@C0+2

1 +
C

0+2
2

3
+C

0+2
7 +

C
0+2
8

3

1
CCCCA gsA

!
, (18)

and with Eqs.(13) this gives

h
0
! = +0.270 ± 0.015 +

✓
�0.32
0.55

◆
� 0.202 + (1.148)) ⇥ 10�7 (19)

To determine the isocalar and isotensor ⇢ couplings fromH I=0�2
e↵ we note fromHDDH [1] that

h
0
⇢ +

1
p
6
h
2
⇢ = h

0�2
⇢0

;
p
2h0⇢ �

1
p
12

h
2
⇢ = h

0�2
⇢� . (20)

Computing h
0�2
⇢0

, with h⇢0N| H I=0�2
e↵ |Ni = h

0�2
⇢0
⌘N✏

⇤µ
⇢ (ūNuN)A,

h
0�2
⇢0

=
GFs

2
w

3
f⇢m⇢

0
BBBB@CI=0+2

5 +
C

I=0+2
6

3
�
C

I=0+2
9

6
�
C

I=0+2
10

2

1
CCCCA (guA � gdA) , (21)

which, with Eqs.(13), implies

h
0�2
⇢0

= �7.55 ± 0.46 +
✓
1.54
�2.76

◆
+ 1.00 + (�5.57)) ⇥ 10�7 . (22)
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Computing h
0�2
⇢� , with h⇢�p| H I=0

L
2

e↵ |ni = h
0�2
⇢� ✏

⇤µ
⇢ (ūNuN)A, noting h⇢�| (d̄u)v |0i = ✏⇤µ⇢ f⇢m⇢, and using the quark isovector axial

charge in LQCD in MS at 2GeV from a Nf = 2 + 1 [77] [Nf = 2 + 1 + 1 [81]] flavor simulation, namely,

hp| (ūd)A |ni = g
u�d
A

(ūpun)A; g
u�d
A

= 1.31(06)(05)sys [1.218(25)(30)sys] , (23)

we have

h
0�2
⇢� =

GFs
2
w

3
p
2
f⇢m⇢

0
BBBB@
�CI=0+2

5

3
�CI=0+2

6 +
C

I=0+2
7

3
+C

I=0+2
8 +C

I=0+2
9 +

C
I=0+2
10

3

1
CCCCA gu�dA

. (24)

With Eqs.(23), this implies

h
0+2
⇢� = �18.10 ± 1.1 +

✓
1.2
�2.4

◆
+ 0.72 + (�4.63)) ⇥ 10�7 . (25)

Solving Eq. (20) we find

h
0
⇢ = �11.05 ± 0.672 +

✓
1.079
�2.051

◆
+ 0.673 + (�4.039)) ⇥ 10�7 ; h

2
⇢ = +8.57 ± 0.519 +

✓
1.129
�1.736

◆
+ 0.802 + (�3.749)) ⇥ 10�7 . (26)

Although our determinations have been made at a scale of 2GeV, we follow the spirit of DDH [1] and compare our results with
the constraints on the coupling constants that emerge from experiments at much lower energies. In this way we hope to discern
the driving theoretical limitations in our approach.

V. PERSPECTIVES FROM COMPARISONS WITH EXPERIMENT

In what follows we consider how the results of Sec. IV compare with the outcomes of hadronic parity violation experiments
with nucleons and nuclei. We anticipate that our results may be most closely suited to studies of hadronic parity violation in
few-body systems, though we also consider more complex nuclear systems, comparing, in particular, our h1⇡ result to a precise
limit extracted from a search for parity violation in the radiative decay of excited-state 18F [24]. Finally, following earlier
work [3, 5], we use the DDH potential [1], based on one-meson exchange, to evaluate the Danilov parameters and compare them
with the outcomes of low-energy experiments, particularly those from parity-violating proton-proton scattering. We regard these
computations as rough estimates, to be checked against the predictions of a large Nc analysis and that may serve as guidance in
determining the limitations of the DDH potential.
Comparing with the constraints on the parity-violating vector-meson-nucleon coupling constants that emerge from the com-

bined analysis of the ~np! d� [20] and ~n 3He! p
3H [21] experiments, within the theoretical framework of Ref. [82], we have

h
1
⇡ = (2.6 ± 1.2stat ± 0.2sys) ⇥ 10�7 [20], and h⇢�! ⌘ h

0
⇢ + 0.605h0! � 0.605h1⇢ � 1.316h1! + 0.026h2⇢ = (�17.0 ± 6.56) ⇥ 10�7 [21],

for which we compute

h⇢�! = �12.9 ± 0.52 +
✓
0.97
�1.9

◆
+ 0.62 + (�3.4)) ⇥ 10�7, (27)

so that both this and our h1⇡, Eq. (12), are within ±1� of the experimentally determined parameters. We note, moreover, that
analyzing the result of the ~np! d� [20] experiment within chiral perturbation theory yields h1⇡ = (2.7±1.8)⇥10�7 [6, 13]. Using
our results, we evaluate the asymmetry in ~n 3He ! p

3H as �0.69 ⇥ 10�8 in the framework of Ref. [82] but as 1.6 ⇥ 10�8 in the
framework of Ref. [83], as per Eqs.(8,9) of Ref. [21], to compare with the experimental result (1.55±0.97stat±0.24sys)⇥10�8 [21].
Evidently the value of the asymmetry is sensitive to a partial cancellation of the various contributions [21]. The h1⇡ determination
from the ~np ! d� experiment, h1⇡ = (2.6 ± 1.2stat ± 0.2sys) ⇥ 10�7 [20] is in slight tension with the value determined by the
non-observation of the photon circular polarization in 18F radiative decay from the 1.081 MeV J

P
T = 0�0 state, reflecting an

absence of mixing with the nearby 1.042 MeV 0+1 state, yielding the bound |h1⇡| < 1.3 ⇥ 10�7 at 68% CL [3]. The 18F system
is special in that the theoretical uncertainties can be largely controlled through the experimental assessment of the pertinent
nuclear matrix element, after an isospin rotation, from a well-measured �+-decay transition in 18Ne [2, 22, 23]. Thus the error
in each h

1
⇡ assessment is thought to be statistics dominated. Other reliably calculated, parity-violating observables that depend

on the couplings probed in the few-body reactions include the longitudinal asymmetry in elastic ~p � ↵ scattering at 46MeV,
AL[~p↵], and the gamma asymmetry in 19F decay, A�[19F]. Using the expressions in Ref. [3] we find �2.6 ⇥ 10�7, to compare
with AL[~p↵]expt = �(3.3 ± 0.9) ⇥ 10�7[84, 85], and �6.7 ⇥ 10�5, to compare with A�[19F]expt = �(7.4 ± 1.9) ⇥ 10�5[23, 86].
Therefore only the 18F study is precise enough to challenge the determination of h1⇡ in few-body systems, and we show these
results in Fig. 1, along with the value of h1⇡ determined from the parity-violating gamma asymmetry in ~np ! d� [20] using
chiral perturbation theory [6, 13], as well as our own determination of that and of h⇢�!. Our assessment of these couplings
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FIG. 1. Constraints on the parity-violating coupling constants h⇢�! and h
1
⇡, after Ref. [21]. The couplings are not direct physical observables

and thus can be sensitive to the energy scale of the system under consideration, see the text for further discussion. Combining statistical
and systematic errors in quadrature and working at 68% CL, we show the value h1⇡ = (2.6 ± 1.2) ⇥ 10�7 from the measured parity-violating
asymmetry in ~n + p ! d + � [20] as the vertical band bounded by a solid line, and its determination h

1
⇡ = (2.7 ± 1.8) ⇥ 10�7 in chiral

perturbation theory as the vertical band bounded by a dotted line [6, 13], and the diagonal constraint from the measured parity-violating
asymmetry in ~n +3 He ! p + t [21], with the combined fit of the two experiments yielding the ellipse shown. The analysis of 18F radiative
decay from its 1.081 MeV excited state yields the bound |h1⇡| < 1.3 ⇥ 10�7 [3], shown as the leftmost vertical band. Our ab initio result at
a scale of 2 GeV is represented by the star with the associated error from its inputs roughly by its size. The tension with the 18F result at a
nominal scale of less than 100 MeV, may also be reflective of an extraction in a di↵erent physical setting.

at a renormalization scale of µ = 2 GeV is compatible with the determinations from the few-body results, but both it and the
experiment values are in tension with the 18F result. Of course it is possible that the disagreement between the experiments
could be experimental in origin, though the procedures used in the NPDGamma experiment have been validated through the
experimental study of parity-violating ~n capture on 35Cl [87], or be the result of an underestimated theoretical systematic error,
yet we emphasize that these couplings are not directly observable. Thus they can be expected to vary with the renormalization
scale of the system in which they are determined, which is typically bounded from above by the cuto↵ scale that determines
the active degrees of freedom in a particular EFT. In the current context we contrast chiral perturbation theory, a NN EFT with
active pion degrees of freedom and a cuto↵ scale of about 1 GeV [72, 74], with chiral e↵ective theory, an EFT in which pion
degrees of freedom are absent and thus with a cuto↵ scale of about 100 MeV. In settings where the scale variation is set by
perturbative physics, such as in the case of the running of sin2 ✓W in the SM, noting Fig. 5 of Ref. [37], in which the natural
scale choice is the typical momentum transfer Q of the experiment, the computed variations are numerically very small, a few
percent at most. However, in low-energy QCD, the scale variation is no longer controlled by weakly-coupled e↵ects, and it need
not be very small. To illustrate, we turn to a NN e↵ective theory without pions, so-called pionless e↵ective theory [88–90]. The
large S -wave scattering lengths aJ0, with J = 0, 1, associated with the low-energy NN system reflect the possibility of nearly
or weakly bound states, and to address the incompatibility of that large length scale in an e↵ective theory with a break-down
scale of ⇤/⇡[91–94], where aJ0 � 1/⇤/⇡, a power-divergence subtraction (PDS) scheme can be employed at a subtraction point of
µ ⇡ Q [92]. In this scheme the LECs that result vary with µ as a ratio of simple polynomials, and we note that the µ variation in
ratios of LECs can vary by a factor of a few over scales µ ranging from 80 to 180 MeV [95]. Although the PDS scheme enlarges
the range of momenta for which the EFT is valid, other, long-standing approaches to the systematic organization of a chiral EFT
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continue to be followed [96]. We note Ref. [97] for a detailed comparative study of the PDS renormalization and the Wilsonian
renormalization group schemes in an analytically solvable NN EFT; here we consider the implications of their conjecture that
fitting LECs to a data set implicitly selects a renormalization scheme. To us, this means the particular parity-violating couplings
shown in Fig. 1 can intrinsically depend on the physical momentum scale of the studies in which they are extracted. Here we
note that a cuto↵ scale of the EFT that would describe the radiative decay of an excited state of 18F, which is pertinent even if
the existing extraction is regarded as semi-empirical [2, 22, 23], is much lower than the one associated with chiral perturbation
theory for ~n + p ! d + �. The extracted couplings could be discernibly di↵erent in the two settings, and we consider probes of
this possibility in what follows.
Recent analyses have suggested that matrix elements of a quark-based e↵ective Hamiltonian can be matched to chiral pertur-

bation theory at a renormalization scale of µ = 2GeV [34, 36]. Conventionally, however, the cuto↵ scale of chiral perturbation
theory is taken to be 1GeV [71, 74], or the ⇢ mass [19]. If we were to try to evolve our description to still lower scales, we
expect to encounter the charm quark scale at µ = mc [98]. For µ � mc ⇡ 1.3GeV, the e↵ects of the charm-quark mass are
negligible, allowing u-like quark penguin contributions from the charged-current contributions in the weak e↵ective Hamiltonian
to cancel. However, at scales for which µ & mc, this cancellation is no longer e�cient, and if µ  mc, it no longer operates.
Thus for µ < 2GeV the e↵ects of these additional operators, all of I = 0 character, can exist [17], along with the possibility of
non-perturbative matching [39] that we have already noted. These e↵ects are presumably small with respect to the precision of
the h1⇡ extraction from chiral perturbation theory [6, 13], nominally at a scale of µ = 1GeV, shown in Fig. 1. Nevertheless, to
begin to assess the possible numerical implications of these e↵ects, we use the coupling constants we have computed as they
stand to estimate the LECs of very-low-energy, parity-violating observables in the NN system, which are essentially the Danilov
parameters [8], to compare more broadly with existing experiments. Working within the context of the DDH potential, with
parameters g2⇡NN

/4⇡ = 14.4, g2⇢/4⇡ = 0.62, g2!/4⇡ = 9g2⇢/4⇡, �⇢ = 3.70, and �! = �0.12, we compute the Danilov parameters to
find

⇤
1
S 0�3P0
0 = �g⇢(2 + �⇢)h0⇢ � g!(2 + �!)h0! ! 176 [210]

⇤
3
S 1�1P1
0 = �3g⇢�⇢h0⇢ + g!�!h

0
! ! 343 [360]

⇤
1
S 0�3P0
1 = �g⇢(2 + �⇢)h1⇢ � g!(2 + �!)h1! ! 4.67 [21]

⇤
3
S 1�3P1
1 =

g⇡NNp
2

 
m⇢

m⇡

!2
h
1
⇡ + g⇢(h1⇢ � h1⇢

0) � g!h1! ! 859 [1340]

⇤
1
S 0�3P0
2 = �g⇢(2 + �⇢)h2⇢ ! �137 [160] ,

(28)

where we neglect h1⇢
0 [3, 99] and provide our numerical values, with the DDH “best values [1]” given in brackets — and all in

units of 10�7. Following the large Nc analysis of Ref. [5], we compute

⇤+
0 ⌘

1
4
⇤

1
S 0�3P0
0 +

3
4
⇤

3
S 1�1P1
0 ! 301 ; ⇤�0 ⌘

1
4
⇤

3
S 1�1P1
0 � 3

4
⇤

1
S 0�3P0
0 ! �46 , (29)

and recall the scaling predictions ⇤+
0 ⇠ Nc, ⇤

1
S 0�3P0
2 ⇠ Nc sin2 ✓w, ⇤�0 ⇠ 1/Nc, ⇤

1
S 0�3P0
1 ⇠ sin2 ✓w, ⇤

3
S 1�3P1
1 ⇠ sin2 ✓w [5, 25, 26].

Certainly the value of h1⇡ we compute yields a value of⇤
3
S 1�3P1
1 at odds with the large Nc expectation, though⇤

3
S 1�3P1
1 |

h
1
⇡=0 = �31.

We note, too, that in this we have ignored the possibility of scale dependence entirely, though an explicit study [95] in the parity-
conserving case shows that only certain ranges of µ are compatible with large Nc expectations for partial waves beyond the
S -wave channels.
We now turn to other observables, starting with the parity-violating longitudinal asymmetry in low-energy ~pp scattering,

AL(~pp), for which the Danilov parameters associated with S � P interference should su�ce. Fixed target ~pp experiments at
beam energies of 13.6 MeV, 15 MeV, and 45 MeV can be analyzed within a DDH framework [100] to yield [3]

2
5
⇤+

0 +
1
p
6
⇤

1
S 0�3P0
2 +

"
⇤

1
S 0�3P0
1 � 6

5
⇤�0

#
= 419 ± 43 , (30)

which we evaluate as 120 � 56 + 60 = 124. Thus our results in this case do not compare favorably. For context, we note that
an analysis of this observable in chiral e↵ective theory shows that correlated two-pion exchange (TPE) also plays an important
role [11, 12, 83], bringing in an interaction largely controlled by h1⇡ as well, although TPE is not present in the DDH framework.
As for the other observables we have considered, the value of h1⇡ plays an important numerical role, with the subleading contribu-
tions, which are largely isovector, and the leading ones, which are isoscalar, playing comparable numerical roles. Thus although
our original assessment of the Danilov parameters, with the exception of the one in which h

1
⇡ appears, are crudely consistent

with large Nc scaling, it appears that the large Nc relationships are not e↵ective in predicting the aggregate size of the various
contributions. In this the parameter h1⇡ drives this conclusion, making its computation within LQCD [15, 16], noting the pioneer-
ing work of Ref. [14], or an improved experimental assessment of it, possibly through a next-generation ~np ! d� experiment,
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extremely welcome. Another interesting possibility would be a neutron spin rotation experiment in liquid 4He; the existing limit
is consistent with zero but is statistics limited [101], and a new experiment with a planned factor of 10 improvement in sensitivity
is being developed [102]. With our Danilov parameter estimates that experiment should be able to measure a non-zero result.
As for our suggestion that the extraction of h1⇡, and possibly other couplings, could vary with the cuto↵ scale of the physical
description, we hope that further studies of hadronic parity violation in complex systems could be made and be of su�cient
precision to reveal this e↵ect in other isosectors as well. Since we have noted that additional penguin contributions, of purely
isoscalar character, emerge once the charm quark is no longer an active degree of freedom, we think that precision experimental
studies of hadronic parity violation in the isoscalar sector, as detailed in Ref. [5], both in few-body and complex nuclei, would
be needed to assess the quantitative importance of these long-neglected e↵ects. A particularly appealing example would be the
measurement of the parity-violating asymmetry in ~n+ d ! t+ �, because the asymmetry is expected to be somewhat larger than
those of other measured reactions, with little sensitivity to the isotensor sector — and it would be interesting to compare that
outcome to the measured �-ray asymmetry in 19F decay [3, 5] and even more so if the precision of the latter experiment could
be improved.

VI. SUMMARY

We have used the LO QCD e↵ective weak Hamiltonian for parity-violating, �S = 0 hadronic processes to determine the
parity-violating meson-nucleon coupling constants, h1⇡, h

0,1,2
⇢ , h0,1! , familiar from the DDH framework. We have achieved this by

employing the factorization Ansatz and assessments of the pertinent quark charges of the nucleon in lattice QCD at the 2GeV
scale. Working further, we have found that our assessment of h1⇡ and h⇢�! agree within 1� of their experimental determinations
in few-body nuclear systems [20, 21], though both our h1⇡ result and the size of the asymmetry in ~np ! d� [20] are in slight
tension with the null result from the study of P�[18F] [2, 22, 23], and we have noted the possibility that the extracted coupling
could depend on the cuto↵ scale of the EFT description that would describe it.

Turning to the study of the parity-violating asymmetries in low-energy ~pp scattering, which is sensitive to the I = 2 Davilov
parameter⇤

1
S 0�3P0
2 as well, we do not find agreement with experiment. The analysis of this process within chiral e↵ective theory,

however, suggests that TPE, an e↵ect not included in the DDH potential, plays an important role [83], and this can also modify
the I = 1 Danilov parameters, though it may be that our factorization assessment of h2⇢, or of neglected higher order e↵ects in
↵s, and thus of ⇤

1
S 0�3P0
2 that is to blame. We note that the parameter h⇢�! depends only very weakly on the I = 2 sector.

Five independent parameters characterize low-energy hadronic parity violation, and the use of pionless e↵ective theory in
the large Nc limit gives insight into the relative size of the contributions [5, 25, 26, 103]. Yet these are scaling relationships,
rather than numerical predictions, and we have noted that our numerical assessments in Eq. (28), save for the I = 1 parameter
containing h

1
⇡, compare favorably with those expectations. Thus the overall success of the large Nc predictions very much

depends on the precise value of h1⇡, with future input from either LQCD or experiment important to a definitive test. Despite
this, the application of our results, within the DDH framework, to parity-violating observables in A > 3 systems suggest that
it is not e↵ective, because the subleading pieces are not only quite large, but they are also needed for theoretical compatibility
with the observed e↵ects. This outcome is nevertheless suggestive that the systematic study of hadronic parity violation in
A > 3 systems, for which studies in molecular systems [104] also show great promise [105, 106], is within reach. Precision
experimental studies, particularly in the isoscalar sector, can illuminate the additional theoretical e↵ects we have noted, providing
an important opportunity to bench-mark end-to-end EFT descriptions of low-energy weak observables in nuclei, which play a
broad role in searches for physics beyond the SM.

The hints of success in our work of updating DDH come from comparing our estimations of meson-nucleon couplings with
the outcomes of recent experiments, as discussed at length in the current paper. We are careful not to claim any such com-
parisons with our crude estimations of the Danilov parameters. Yet, we are of the opinion that such rough estimations can be
checked against the predictions of large Nc analysis and may serve as a supplement in assessing the limitations of our approach.
We would like to emphasize that our work neither discounts the possibility of TPE nor of the importance of additional non-
perturbative e↵ects in a complete picture of hadronic parity violation at low energies. But, in striving to refine the benchmark
expectations of the parity-violating meson-nucleon couplings, we have updated the work of DDH [1] via the introduction of
renormalization-group methods, a modern definition of factorization, and lattice QCD inputs and thus in so doing overcome
many challenges in such theoretical computations starting in the 1980s. Future theoretical work that would aspire to confront
low-energy experiments more directly would surely benefit from the realization of a LQCD program for the computation of 2N
matrix elements for hadronic parity violation, which is under development [107–109], though there are ongoing challenges [7].
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Appendix A: Four-quark Operators

The operators of the complete theory (HPV
e↵ ) with all three isosectors are:

⇥1 = [(ūu)V + (d̄d)V + (s̄s)V ]↵↵[(ūu)A � (d̄d)A � (s̄s)A]��

⇥2 = [(ūu)V + (d̄d)V + (s̄s)V ]↵�[(ūu)A � (d̄d)A � (s̄s)A]�↵

⇥3 = [(ūu)A + (d̄d)A + (s̄s)A]↵↵[(ūu)V � (d̄d)V � (s̄s)V ]��

⇥4 = [(ūu)A + (d̄d)A + (s̄s)A]↵�[(ūu)V � (d̄d)V � (s̄s)V ]�↵

⇥5 = [(ūu)V � (d̄d)V � (s̄s)V ]↵↵[(ūu)A � (d̄d)A � (s̄s)A]��

⇥6 = [(ūu)V � (d̄d)V � (s̄s)V ]↵�[(ūu)A � (d̄d)A � (s̄s)A]�↵

⇥7 = [(ūu)A + (d̄d)A + (s̄s)A]↵↵[(ūu)V + (d̄d)V + (s̄s)V ]��

⇥8 = [(ūu)A + (d̄d)A + (s̄s)A]↵�[(ūu)V + (d̄d)V + (s̄s)V ]�↵

⇥9 = (ūd)↵↵
V
(d̄u)��

A
+ (d̄u)↵↵

V
(ūd)��

A

⇥10 = (ūd)↵�
V
(d̄u)�↵

A
+ (d̄u)↵�

V
(ūd)�↵

A

⇥11 = (ūs)↵↵
V
(s̄u)��

A
+ (s̄u)↵↵

V
(ūs)��

A

⇥12 = (ūs)↵�
V
(s̄u)�↵

A
+ (s̄u)↵�

V
(ūs)�↵

A
.

(A1)

Operators for isovector sector (H I=1
e↵ ) are:

⇥1
I=1 = [(ūu)V + (d̄d)V + (s̄s)V ]↵↵[(ūu)A � (d̄d)A]��

⇥2
I=1 = [(ūu)V + (d̄d)V + (s̄s)V ]↵�[(ūu)A � (d̄d)A]�↵

⇥3
I=1 = [(ūu)A + (d̄d)A + (s̄s)A]↵↵[(ūu)V � (d̄d)V ]��

⇥4
I=1 = [(ūu)A + (d̄d)A + (s̄s)A]↵�[(ūu)V � (d̄d)V ]�↵

⇥5
I=1 = (s̄s)↵↵

V
[(ūu)A � (d̄d)A]��

⇥6
I=1 = (s̄s)↵�

V
[(ūu)A � (d̄d)A]�↵

⇥7
I=1 = (s̄s)↵↵

A
[(ūu)V � (d̄d)V ]��

⇥8
I=1 = (s̄s)↵�

A
[(ūu)V � (d̄d)V ]�↵

⇥9
I=1 = (ūs)↵↵

V
(s̄u)��

A
+ (s̄u)↵↵

V
(ūs)��

A

⇥10
I=1 = (ūs)↵�

V
(s̄u)�↵

A
+ (s̄u)↵�

V
(ūs)�↵

A

, (A2)
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and the operators for I = 0 � 2 sector (H I=0�2
e↵ ) are:

⇥1
I=0�2 = [(ūu)V + (d̄d)V + (s̄s)V ]↵↵[(s̄s)A]��

⇥2
I=0�2 = [(ūu)V + (d̄d)V + (s̄s)V ]↵�[(s̄s)A]�↵

⇥3
I=0�2 = [(ūu)A + (d̄d)A + (s̄s)A]↵↵[(s̄s)V ]��

⇥4
I=0�2 = [(ūu)A + (d̄d)A + (s̄s)A]↵�[(s̄s)V ]�↵

⇥5
I=0�2 = [(ūu)V � (d̄d)V ]↵↵[(ūu)A � (d̄d)A]�� + (s̄s)↵↵

V
(s̄s)��

A

⇥6
I=0�2 = [(ūu)V � (d̄d)V ]↵�[(ūu)A � (d̄d)A]�↵ + (s̄s)↵�

V
(s̄s)�↵

A

⇥7
I=0�2 = [(ūu)V + (d̄d)V + (s̄s)V ]↵↵[(ūu)A + (d̄d)A + (s̄s)A]��

⇥8
I=0�2 = [(ūu)A + (d̄d)A + (s̄s)A]↵�[(ūu)V + (d̄d)V + (s̄s)V ]�↵

⇥9
I=0�2 = (ūd)↵↵

V
(d̄u)��

A
+ (d̄u)↵↵

V
(ūd)��

A

⇥10
I=0�2 = (ūd)↵�

V
(d̄u)�↵

A
+ (d̄u)↵�

V
(ūd)�↵

A

. (A3)
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