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ABSTRACT

Quantum entanglement is a fundamental property of quantum me-

chanics and it serves as a basic resource in quantum computation

and information. Despite its importance, the power and limitations

of quantum entanglement are far from being fully understood. Here,

we study entanglement via the lens of computational complexity.

This is done by studying quantum generalizations of the class NP

with multiple unentangled quantum proofs, the so-called QMA(2)
and its variants. The complexity of QMA(2) is known to be closely

connected to a variety of problems such as deciding if a state is en-

tangled and several classical optimization problems. However, deter-

mining the complexity of QMA(2) is a longstanding open problem,

and only the trivial complexity bounds QMA ⊆ QMA(2) ⊆ NEXP

are known.

In this work, we study the power of unentangled quantum

proofs with non-negative amplitudes, a class which we denote

QMA
+ (2). In this setting, we are able to design proof verification

protocols for (increasingly) hard problems both using logarithmic
size quantum proofs and having a constant probability gap in dis-

tinguishing yes from no instances. In particular, we design global
protocols for small set expansion (SSE), unique games (UG), and

PCP verification. As a consequence, we obtain NP ⊆ QMA
+
log

(2)
with a constant gap. By virtue of the new constant gap, we are able
to “scale up” this result to QMA

+ (2), obtaining the full character-
ization QMA

+ (2) = NEXP by establishing stronger explicitness

properties of the PCP for NEXP. We believe that our protocols are

interesting examples of proof verification and property testing in

their own right. Moreover, each of our protocols has a single isolated

property testing task relying on non-negative amplitudes which if

generalized would allow transferring our results to QMA(2).
One key novelty of these protocols is the manipulation of quan-

tum proofs in a global and coherent way yielding constant gaps.

Previous protocols (only available for general amplitudes) are ei-

ther local having vanishingly small gaps or treating the quantum

proofs as classical probability distributions requiring polynomially

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585248

many proofs. In both cases, these known protocols do not imply

non-trivial bounds on QMA(2).
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1 INTRODUCTION

Quantum entanglement is a fundamental property of quantum

mechanics and it plays a major role in several fields such as quan-

tum computation, information, cryptography, condensed matter

physics, etc [28, 42, 43, 51]. Roughly speaking, quantum entangle-

ment is a distinctive form of quantum correlation that is stronger

than classical correlations. Entanglement can lead to surprising

(and sometimes counter-intuitive) phenomena as presented in the

celebrated EPR paradox [23] and the violation of Bell’s (style) in-

equalities [8, 18]. In a sense, entanglement is necessary to access

the full power of quantum computation since it is known that quan-

tum computations requiring “little” entanglement can be simulated

classically with small overhead [48]. Entanglement is also crucial

in a variety of protocols such as quantum key distribution [9], tele-

portation [10], interactive proof systems [30], and so on. However,

despite this central role, the power and limitations of quantum

entanglement are far from being understood. Here, we study quan-

tum entanglement via the lens of computational complexity. More

precisely, we investigate the role of entanglement in the context of

quantum proof verification.

The notions of provers, proofs, and proof verification play a

central role in our understanding of classical complexity theory [3].

The quantum setting allows for various and vast generalizations of

these classical notions [49]. For instance, by allowing the proof to be

a quantum state of polynomial size and the verifier to be an efficient

quantum machine, one obtains the class QMA which is a natural

generalization of the class NP [50]. The QMA proof verification
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model can be further generalized to two quantum proofs from two

unentangled provers. This generalization gives rise to a class known

as QMA(2) [38] (see Definition 2.1). This latter complexity class

is known to be closely connected to a variety of computational

problems such as the fundamental problem of deciding whether a

quantum state (given its classical description) is entangled or not.

It is also connected to a variety of classical optimization problems

such as polynomial and tensor optimization over the sphere as well

as some norm computation problems [25].

Determining the complexity of QMA(2) is a major open prob-

lem in quantum complexity. Contrary to many other quantum

proof systems (e.g., QIP [29] and MIP
∗
[30]), we still do not know

any non-trivial complexity bounds for QMA(2). On one hand, we

trivially have QMA ⊆ QMA(2) since a QMA(2) verifier can sim-

ply ignore one of the proofs. On the other hand, a NEXP verifier

can guess exponentially large classical descriptions of two quan-

tum proofs of polynomially many qubits and simulate the verifica-

tion protocol classically in exponential time. Hence, we also have

QMA(2) ⊆ NEXP. Despite considerable effort with a variety of

powerful techniques brought to bear on this question, such as semi-

definite programming hierarchies [6, 22, 26], quantum de Finetti

theorems [13, 14, 39], and carefully designed nets [15, 47], only the

trivial bounds QMA ⊆ QMA(2) ⊆ NEXP are known.

Even though there are no non-trivial complexity bounds for

QMA(2), there are results showing surprisingly powerful conse-

quences of unentangled proofs. An early result by Blier and Tapp

[12] shows that two unentangled proofs of a logarithmic number

of qubits suffice to verify the NP-complete problem of graph 3-

coloring. The version of QMA(2) with logarithmic-size proofs is

known as QMA
log

(2). It is know that QMA
log

(1) ⊆ BQP from the

work of Marriott andWatrous [41], and this together with their pro-

tocol provides some evidence that having two unentangled proofs

of logarithmic size is more powerful than having a single one. This

suggests that the lack of quantum entanglement across the proofs

can play an important role in proof verification. Furthermore, note

that this situation is in sharp contrast with the classical setting

where having two classical proofs of logarithmic size is no more

powerful than having a single one since two proofs can be combined

into a larger one.

The above protocol has a critical drawback, namely, the verifier

only distinguishes yes from no instances with a polynomially small

probability. This distinguishing probability is known as the gap of

the protocol. These weak gaps are undesirable for two reasons. First,

we cannot obtain tighter bounds on QMA(2) from these protocols

since scaling up these results to QMA(2) leads to exponentially

small gaps. Such tiny gaps fall short to imply NEXP = QMA(2)
as the definition of QMA(2) can tolerate up to only polynomially

small gaps. Second, the strength of the various hardness results that

can be deduced from these protocols depends on how large the gap

is. For instance, we do not know if several of these problems are also

hard to approximate within say a more robust universal constant.

A series of subsequent works extended Blier and Tapp’s result

in the context of QMA
log

(2) protocols for NP-complete problems

[7, 17, 24]. However, all these protocols suffer from a polynomially

small gap.

Another piece of evidence pointing to the additional power

of unentangled proofs appears in the work of Aaronson et al. [1].

They show that 𝑂 (
√
𝑛) quantum proofs of logarithmic size suffice

to decide an NP-complete variant of the SAT problem of size 𝑛 with

a constant gap. Due to the work of Harrow and Montanaro [25], it

is possible to convert this protocol into a two-proof protocol where

each one has size 𝑂 (
√
𝑛) and the gap remains constant. Unfortu-

nately, this converted protocol does not imply tighter bounds for

QMA(2) since it only shows NP ⊆ QMA(2).
In this work, we study unentangled quantum proofs with non-

negative amplitudes. We name the associated complexity classes

introduced here as QMA
+ (2) and QMA

+
log

(2) (see Section 2.1) in

analogy to QMA(2) and QMA
log

(2), respectively. The main ques-

tion we consider is the following:

What is the power of unentangled proofs with non-negative
amplitudes?

This non-negative amplitude setting is intended to capture

several structural properties of the general QMA(2) model while

providing some restriction on the adversarial provers in order to

gain a better understanding of unentangled proof verification. In

this non-negative amplitude setting, we are able to derive much

stronger results and fully characterize QMA
+ (2). In particular, we

are able to design QMA
+
log

(2) protocols with constant gaps for

(increasingly) hard(er) problems. Each of these protocols contributes

to our understanding of proof verification and leads to different

sets of techniques, property testing routines, and analyses.

Our first protocol is for the small set expansion (SSE) prob-

lem [4, 45]. Roughly speaking, the SSE problem asks whether all

small sets of an input graph are very expanding
1
or if there is a

small non-expanding set. The SSE problem arises in the context

of the unique games (UG) conjecture. This conjecture plays an

important role in the classical theory of hardness of approxima-

tion [31–33, 36, 37, 44]. One key reason is that the unique games

problem is a (seemingly) more structured computational problem

as opposed to more general and provably NP-hard constraint sat-

isfaction problems (CSPs) making it easier to reduce UG to other

problems. In this context, the SSE problem is considered an even

more structured problem than UG since some of its variants can

be reduced to UG. This extra structure of SSE compared to UG can

make it even easier to reduce SSE to other problems. So far the

hardness of SSE remains an open problem —it has evaded the best

known algorithmic techniques [46].

Theorem 1.1 (Informal). Small set expansion is in QMA
+
log

(2)
with a constant gap.

Our second protocol is for the unique games problem. The

UG problem is a special kind of CSP wherein the constraints are

permutations and it is enough to distinguish almost fully satisfiable

instances from those that are almost fully unsatisfiable. The fact

that the constraints of a UG instance are bijections which in turn

can be implemented as valid (i.e., unitary operators) is explored

in our protocol. Although the hardness of UG remains an open

problem, a weaker version of the UG problem was recently proven

1
In terms of edge expansion.
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to be NP-hard [5, 20, 35]. From our UG protocol and this weaker

version of the problem, we obtain NP ⊆ QMA
+
log

(2) with a constant
gap (see Corollary 1.3 below).

Theorem 1.2 (Informal). Unique Games is in QMA
+
log

(2) with
a constant gap protocol.

A key novelty of our protocols is their global and coherent
manipulation of quantum proofs leading to constant gaps. The
previous protocols for QMA

log
(2) with a logarithmic proof size are

local in the sense that they need to read local information
2
from

the quantum proofs thereby suffering from vanishingly small gaps.

Furthermore, the previous protocol with a constant gap treats the

quantum proofs as classical probability distributions (e.g., relying on

the birthday paradox) and this classical treatment ends up requiring

polynomially many proofs to achieve the constant gap.

Another interesting feature of our protocols is that they al-

ready almost work in the general amplitude case in the sense that

each protocol isolates a single property testing task relying on

non-negative amplitudes. If such a property testing task can be

generalized to general amplitudes, then the corresponding protocol

works in QMA
log

(2) as well.
As discussed earlier, by Theorem 1.2 together with the work on

the 2-to-2 conjecture, we obtain that NP is contained in QMA
+
log

(2)
with a constant gap.

Corollary 1.3 (Informal). NP ⊆ QMA
+
log

(2) with a constant gap.

By virtue of the constant gaps of our protocols for QMA
+
log

(2),
we can “scale up” our results to give an exact characterization of

QMA
+ (2) building on top of ideas of very efficient classical PCP

verifiers.

Theorem 1.4. QMA
+ (2) = NEXP.

The characterization above is proven by designing a global
QMA

+ (2) protocol for NEXP. To design this global protocol, we
not only rely on the properties of the known efficient classical

PCP verification for NEXP, but we need additional explicitness and

regularity properties. Regarding the explicitness, we call doubly
explicit the kind of PCP required in our global protocol (in analogy

to the terminology of graphs). Roughly speaking, doubly explic-

itness means that we can very efficiently not only determine the

variables appearing in any given constraint, but also reverse this

mapping by very efficiently determining the constraints in which

a variable appears. Here, we prove that these properties can be

indeed obtained by carefully combining known PCP constructions.

An intriguing next step is to explore the improved understand-

ing of the unentangled proof verification from our protocols in the

general amplitude case. Investigating problems like SSE and UG

might provide more structure towards this goal. Characterizing the

complexity of QMA(2) would be extremely interesting whatever

this characterization turns out to be.

2
Roughly speaking, they treat a quantum proof as quantum random access codes that

encodes 𝑛 bits using log
2
(𝑛) qubits. By Nayak’s bound the probability of recovering

a queried position is polynomially small in 𝑛.

Organization. This document is organized as follows. In Sec-

tion 3, we give an overview of our global protocols. In Section 2,

we formally define QMA
+ (2) and its variants as well as fix some

notation and recall basic facts. In Section 4, we develop some quan-

tum property testing primitives that will be common to our proto-

cols. In Section 5, we present our global protocol for SSE. In Sec-

tion 6, we present our global protocol for UG and we use it to prove

NP ⊆ QMA
+
log

(2) with a constant gap. In Section 7, we prove the

characterization QMA
+ (2) = NEXP.

2 PRELIMINARIES

Let N,R,C stand for the natural, real, and complex numbers. N+

denotes the positive natural number. For any real number 𝑥 ,

sgn(𝑥) =


1 𝑥 > 0;

0 𝑥 = 0;

−1 𝑥 < 0.

In this paper, log stands for the logarithm to base 2. We adopt both

the Dirac notation and the usual notation of vectors (whichever

seems more appropriate) as we consider both quantum and classical

objects. For 𝑝 ∈ [1,∞), we denote the ℓ𝑝 -norm of 𝑢 ∈ C𝑛 as ∥𝑢∥𝑝 ,
i.e., ∥𝑢∥𝑝 =

(∑𝑛
𝑖=1 |𝑢𝑖 |

𝑝
)
1/𝑝

. We omit the subscript for the ℓ2-norm,

i.e., ∥𝑢∥ := ∥2∥
2
. We denote the ℓ∞-norm of 𝑢 ∈ C𝑛 as ∥𝑢∥∞, i.e.,

∥𝑢∥∞ = max𝑖∈[𝑛] |𝑢𝑖 |. Let S𝑛 := {𝑢 ∈ C𝑛+1 : ∥𝑢∥ = 1} be the

𝑛-dimensional sphere and S+𝑛 := {𝑢 ∈ (R≥0)𝑛+1 : ∥𝑢∥ = 1} be

the intersection of the 𝑛-dimensional sphere and the non-negative

orthant. The subscript will almost always be omitted in this manu-

script since it can be confusing and the dimension is normally clear

from the context. Adopt the short-hand notation [𝑛] = {1, 2, . . . , 𝑛}.
For any universe 𝑈 and any subset 𝑆 ⊆ 𝑈 , let 𝑆 := 𝑈 \ 𝑆 . Denote
the characteristic vector of 𝑆 by 1𝑆 , i.e., 1𝑆 ∈ R𝑈 and

1𝑆 (𝑥) =
{
1 if 𝑥 ∈ 𝑆,

0 otherwise.

For a logical condition 𝐶, we use the Iverson bracket

1 [𝐶] =
{
1 if 𝐶 holds,

0 otherwise.

2.1 Quantum Merlin-Arthur with Multiple
Provers

The class QMA(𝑘) can be formally defined in more generality as

follows.

Definition 2.1 (QMAℓ (𝑘, 𝑐, 𝑠)). Let 𝑘 : N → N and 𝑐, 𝑠, ℓ : N →
R+ be polynomial time computable functions. A promise problem
Lyes,Lno ⊆ {0, 1}∗ is in QMAℓ (𝑘, 𝑐, 𝑠) if there exists a BQP verifier
𝑉 such that for every 𝑛 ∈ N and every 𝑥 ∈ {0, 1}𝑛 ,

Completeness: If 𝑥 ∈ Lyes, then there exist unentangled states
|𝜓1⟩, . . . , |𝜓𝑘 (𝑛) ⟩, each on at most ℓ (𝑛) qubits, s.t. Pr[𝑉 (𝑥, |𝜓1⟩ ⊗
· · · ⊗ |𝜓𝑘 (𝑛) ⟩) accepts] ≥ 𝑐 (𝑛).
Soundness: If 𝑥 ∈ Lno, then for every unentangled
states |𝜓1⟩, . . . , |𝜓𝑘 (𝑛) ⟩, each on at most ℓ (𝑛) qubits, we have
Pr[𝑉 (𝑥, |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑘 (𝑛) ⟩) accepts] ≤ 𝑠 (𝑛).
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Harrow and Montanaro proved that: For any state |𝜓 ⟩ ∈ C𝑑1 ⊗
C𝑑2 ⊗ · · · ⊗ C𝑑𝑘 , if

max

𝜙𝑖 ∈C𝑑𝑖
⟨𝜓 | 𝜙1𝜙2 . . . 𝜙𝑘 ⟩ = 1 − 𝜀,

then the product test rejects |𝜓 ⟩⊗2 with probability Ω(𝜀). Based on

this product test, Harrow and Montanaro further showed in the

QMA protocols, the number of provers can always be reduced to 2.

Theorem 2.2 (Harrow and Montanaro [25]). For any
ℓ, 𝑘, 0 ≤ 𝑠 < 𝑐 ≤ 1,

QMAℓ (𝑘, 𝑐, 𝑠) ⊆ QMA𝑘ℓ (2, 𝑠′, 𝑐′),

where 𝑐′ = (1 + 𝑐)/2 and 𝑠′ = 1 − (1 − 𝑠)2/100.

The class QMA
+
ℓ
(𝑘, 𝑐, 𝑠) is defined exactly the same way, ex-

cept that the proofs |𝜓1⟩, . . . , |𝜓𝑘 ⟩ should have real, non-negative

amplitudes. In our work, we are only interested in

QMA
+
log

(2) :=
⋃

𝑐−𝑠=Ω (1)
QMA

+
𝑂 (log𝑛) (2, 𝑐, 𝑠),

QMA
+ (2) :=

⋃
𝑖∈N, 𝑐−𝑠=Ω (1)

QMA
+
𝑂 (𝑛𝑖 ) (2, 𝑐, 𝑠) .

Instead of having only 2 provers, it is much more convenient to

consider 𝑘 provers for some large constant 𝑘 . This is without loss of

generality, as Theorem 2.2 generalizes to QMA
+
as well. As a result,

as long as the QMA
+ (𝑘, 𝑐, 𝑠) protocol is such that 𝑐 > 1−(1−𝑠)2/50,

it can be converted back to a QMA
+ (2) protocol with a constant

gap. The condition that 𝑐 > 1 − (1 − 𝑠)2/50 is also not much of an

issue, since by a repetition involving more provers, we can amplify

any constant (𝑐, 𝑠) gap to a (1 − 𝜀, 𝛿) gap for 𝜀, 𝛿 close to 0. In the

remainder of the paper, we will use constantly many proofs without

further referring to this result.

2.2 Trace Distances

A standard notion of distance for quantum states is that of the

trace distance. The trace distance between |𝜓 ⟩ and |𝜙⟩, denoted
D( |𝜓 ⟩, |𝜙⟩), is

1

2

Tr

√︃
( |𝜓 ⟩⟨𝜓 | − |𝜙⟩⟨𝜙 |)2 .

The following fact provides an alternative definition for trace dis-

tance.

Fact 2.3. The trace distance between |𝜙⟩ and |𝜓 ⟩ is given by

D( |𝜙⟩, |𝜓 ⟩) =
√︃
1 − |⟨𝜙 |𝜓 ⟩|2.

The trace distance remains small under the tensor product.

Fact 2.4. Let |𝜓0⟩, |𝜙0⟩ ∈ S𝑛 and |𝜓1⟩, |𝜙1⟩ ∈ S𝑚 for arbitrary
𝑛,𝑚 ∈ N. Then

D( |𝜓0⟩ ⊗ |𝜓1⟩, |𝜙0⟩ ⊗ |𝜙1⟩)2 ≤ D( |𝜓0⟩, |𝜙0⟩)2 + D( |𝜓1⟩, |𝜙1⟩)2 .

Two states with small trace distance are indistinguishable to

quantum protocols.

Fact 2.5. If a quantum protocol accepts a state |𝜙⟩ with probability
at most 𝑝 , then it accepts |𝜓 ⟩ with probability at most 𝑝 +D( |𝜙⟩, |𝜓 ⟩).

We will use the well-known swap test to compare unentangled

quantum states.

Fact 2.6 (Swap Test). Let |𝜙⟩ and |𝜓 ⟩ be two quantum states
on the same Hilbert space. Then the acceptance probability of

SwapTest( |𝜙⟩, |𝜓 ⟩) is 1

2
+ | ⟨𝜙 |𝜓 ⟩ |2

2
.

We can equivalently state the acceptance probability of the

swap test in terms of the trace distance as follows.

Remark 2.7. Any two quantum states |𝜙⟩ and |𝜓 ⟩ pass the swap
test with probability 1 − 1

2
D( |𝜙⟩, |𝜓 ⟩)2.

We record the following elementary facts. They are special

cases of trace distance made explicit in the inner product language.

Claim 2.8. Let 𝑢, 𝑣, 𝑧 ∈ S+
𝑑
for any natural number 𝑑 . Let 𝜀 > 0 be

some small real constant.

(i) (Closeness preservation) If ⟨𝑢, 𝑣⟩2 ≥ 1 − 𝜀. Then��⟨𝑢, 𝑧⟩2 − ⟨𝑣, 𝑧⟩2
�� ≤ 3

√
𝜀.

(ii) (Triangle inequality) If ⟨𝑢, 𝑧⟩2 ≥ 1 − 𝜀, and ⟨𝑣, 𝑧⟩2 ≥ 1 − 𝜀.

Then
⟨𝑢, 𝑣⟩2 ≥ 1 − 2𝜀.

2.3 Expander Graphs

Let 𝐺 = (𝑉 , 𝐸) be a 𝑑-regular graph. For non-empty sets 𝑆,𝑇 ⊆ 𝑉 ,

we denote by 𝐸 (𝑆,𝑇 ) the following set of edges 𝐸 (𝑆,𝑇 ) = {(𝑥,𝑦) ∈
𝐸 | 𝑥 ∈ 𝑆,𝑦 ∈ 𝑇 }.3 The edge expansion of a non-empty 𝑆 ⊆ 𝑉 ,

denoted Φ𝐺 (𝑆), is defined as

Φ𝐺 (𝑆) B |𝐸 (𝑆,𝑉 \ 𝑆) |
𝑑 |𝑆 | ,

and it is a number in the interval [0, 1]. For 𝑆 ⊆ 𝑉 , we refer to

relative size |𝑆 | /|𝑉 | as the measure of 𝑆 . A closely related notion

called Cheeger constant for 𝐺 , is defined as

min

𝑆⊆𝐺 : |𝑆 | ≤ |𝐺 |/2
|𝐸 (𝑆,𝑉 \ 𝑆) |

|𝑆 | .

3 OVERVIEW OF GLOBAL PROTOCOLS

We now give an overview of our global protocols for SSE in Sec-

tion 3.1, for UG in Section 3.2 and for NEXP in Section 3.3. As

alluded earlier, a key insight of these protocols is the manipulation

of quantum proofs in a global and coherent way in order to achieve

a constant gap. For the problems considered here, there is always an

underlying graph to the problem whose edge set can be (or almost)

decomposed into perfect matchings. Taking advantage of this col-

lection of perfect matchings will be one of the aspects in allowing

for a global manipulation of the quantum proofs in these proto-

cols. It will be more convenient to design protocols with constantly

many unentangled proofs rather than just two. Recall that due to

the result of Harrow and Montanaro [25], these protocols can be

converted into two-proof protocols with a constant multiplicative

increase in the proof size.

3
The graphs are usually undirected. In this case, 𝐸 (𝑆, 𝑆 ) actually counts the same

edge twice by the definition.
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3.1 Small Set Expansion Protocol

We provide an overview of the SSE protocol in QMA
+
log

(2) with a

constant gap from Section 5. Suppose that we are given an input

𝑛-vertex graph𝐺 on the vertex set𝑉 . Our goal is to decide whether

𝐺 is a yes or no instance of (𝜂, 𝛿)-SSE. Recall that, in the yes case,

there exists a set 𝑆 of measure 𝛿 , such that 𝑆 essentially does not

expand, i.e., Φ𝐺 (𝑆) ≤ 𝜂 ≈ 0. Nonetheless, in the no case, every set

𝑆 of measure at most 𝛿 has near-perfect expansion, i.e., Φ𝐺 (𝑆) ≥
1 − 𝜂 ≈ 1.

In the design of the protocol, we are allowed two unentangled
proofs on 𝑂𝜂,𝛿 (log(𝑛)) qubits. It is natural to ask for one of these

proofs to be a state |𝜓 ⟩ “encoding” a uniform superposition of

elements of a purported non-expanding set 𝑆 of the form

|𝜓 ⟩ =
1

√
𝑆

∑︁
𝑖∈𝑆

|𝑖⟩ .

Wenow check the non-expansion of the support set of |𝜓 ⟩ as follows.
Suppose we could apply the adjacency matrix𝐴 of𝐺 directly to the

vector |𝜓 ⟩. While 𝐴 is not necessarily a valid quantum operation, it

will not be difficult to resolve this issue later. If we are in the yes

case and the support of |𝜓 ⟩ indeed encodes a non-expanding set,

we would have supp(𝐴|𝜓 ⟩) ∩ supp( |𝜓 ⟩) ≈ supp( |𝜓 ⟩). However, if
we are in the no case, provided the size of supp( |𝜓 ⟩) is small (at

most a 𝛿 fraction of the vertices), the small set expansion property

of 𝐺 would imply supp(𝐴|𝜓 ⟩) ∩ supp( |𝜓 ⟩) ≈ ∅.
How can we check the support conditions above? For this,

suppose that we have not only one copy of |𝜓 ⟩ but rather two
equal unentangled copies |𝜓1⟩ = |𝜓2⟩. We apply 𝐴 to |𝜓1⟩ and then

measure the correlation between 𝐴|𝜓1⟩ and |𝜓2⟩. In the yes case,

the two vectors are almost co-linear, whereas in the no case they

are almost orthogonal. It is well-known that co-linearity versus

orthogonality of two unentangled quantum states can be tested via

the swap test.

We now address the issue that the adjacency matrix 𝐴 may not

be a unitary matrix, and hence it is not necessarily a valid quantum

operation. Nonetheless, the adjacency matrix of a 𝑑-regular graph

can always be written as a sum of𝑑 permutationmatrices 𝑃1, . . . , 𝑃𝑑 ,

which are special unitary matrices. In terms of the support guar-

antees described above, it is possible to show that applying one of

these permutation matrices uniformly at random in the protocol

leads to a similar behavior as applying 𝐴.

In the yes case, it can be shown that all goes well with the above

strategy. However, in the no case, things become more delicate

starting with the fact that |𝜓 ⟩ is an arbitrary adversarial state of

the form

|𝜓 ⟩ =
∑︁
𝑖∈𝑆

𝛼𝑖 |𝑖⟩ ,

where we have no control over the amplitudes 𝛼𝑖 ’s magnitudes and

phases.

One important issue is that the support of |𝜓 ⟩ may not be

small (i.e., at most a 𝛿 fraction), and the graph 𝐺 may have large

non-expanding sets even in the no case. We design a sparsity test

to enforce that its support is indeed small. The soundness of this

sparsity test takes advantage of the non-negative amplitudes as-

sumption to achieve dimension-independent parameters and this is

the only test of the protocol that rely on the non-negative assump-

tion. This points to a very natural question in quantum property

testing: how efficiently can we test sparsity
4
with the help of a

prover in the general amplitude case?

In our protocol, the support conditions from above are actually

checked by considering the average magnitude of the overlap be-

tween 𝑃𝑟 |𝜓 ⟩ and |𝜓 ⟩. This overlap governs (part of) the acceptance

probability of the protocol which can be bounded as

E
𝑟 ∈[𝑑 ]

[|⟨𝑃𝑟𝜓 |𝜓 ⟩|] ≤ 1

𝑑

∑︁
𝑖, 𝑗

𝐴𝑖, 𝑗 |𝛼𝑖 |
��𝛼 𝑗 �� = 1

𝑑
⟨𝐴 |𝜓 | | |𝜓 |⟩ ,

where | |𝜓 |⟩ = ∑
𝑖∈𝑆 |𝛼𝑖 | |𝑖⟩. With this bound, phases are no longer

relevant.

A second important and more delicate issue is that the mag-

nitude of the amplitudes 𝛼𝑖 ’s of |𝜓 ⟩ may be very far from flat. By

definition, the SSE property of the graph𝐺 only states that for every

“flat” indicator vector 1𝑆 , where 𝑆 is any vertex set of measure at

most 𝛿 , we have

1

𝑑

〈
𝐴

1𝑆√︁
|𝑆 |

����� 1𝑆√︁
|𝑆 |

〉
≈𝜂,𝑑 0 .

Nonetheless, in order to not be fooled by the provers, we need a

stronger analytic condition

max

𝑢 : ∥𝑢 ∥
2
=1, |supp(𝑢 ) |≤𝛿 |𝑉 |

1

𝑑
⟨𝐴𝑢 |𝑢⟩ ≈ 0 ,

where 𝑢 ranges over arbitrary unit vectors. For every disjoint set

𝑆,𝑇 ⊆ 𝑉 of combined measure at most 𝛿 , the SSE property of 𝐺

allows us to deduce

1

𝑑

〈
𝐴

1𝑆√︁
|𝑆 |

����� 1𝑇√︁
|𝑇 |

〉
≈𝜂,𝑑 0 . (3.1)

Ideally, we would like to leverage the bounds we have for flat

indicator vectors of small sets from (3.1) to conclude that arbitrary

unit vectors of small support have a bounded quadratic form. The

seminal work on 2-lifts [11] of Bilu and Linial dealt with a similar

question, but without the sparse support conditions. Surprisingly,

they gave sufficient conditions for this phenomenon. Here, we prove

that the same phenomenon also happens for the sparse version of

the problem. In particular, this shows that SSE graphs satisfy the

more “robust” analytic SSE property. Using this robust property,

we conclude the soundness of the protocol.

3.2 Unique Games Protocol

We provide an overview of the UG protocol in QMA
+
log

(2) with a

constant gap from Section 6. Suppose that we are given an input

UG instance with alphabet Σ, namely, an 𝑛-vertex 𝑑-regular graph

𝐺 = (𝑉 , 𝐸), where each directed
5
edge 𝑒 ∈ 𝐸 is associated with

a permutation constraint 𝑓𝑒 : Σ → Σ. We say that an assignment

ℓ : 𝑉 → Σ satisfies an edge 𝑒 = (𝑖, 𝑗) if 𝑓𝑒 (ℓ (𝑖)) = ℓ ( 𝑗). This means

that for each assigned value for 𝑖 there is a unique value for 𝑗 and

4
For this task, we can have multiple unentangle copies of the state to be tested as well

multiple unentangle proofs to help the tester.

5
The reverse edge of 𝑒 is typically associated with the constraint 𝑓 −1𝑒 .
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vice-verse satisfying the permutation constraint of edge 𝑒 . The goal

is to distinguish between (yes) there exists an assignment satisfying

at least 1 − 𝜂 fraction of the constraints, and (no) every assignment

satisfies at most a 𝛿 fraction of constraints.

In the yes case, the protocol expects from the unentangled

provers copies of a quantum state |𝜓 ⟩ encoding an assignment ℓ of

value at least 1 − 𝜂 of the form

|𝜓 ⟩ =
𝑛∑︁
𝑖=1

1

√
𝑛
|𝑖⟩|ℓ (𝑖)⟩ . (3.2)

Wewill again explore the underlying graph structure of the problem

to make the proof verification global leading to a constant gap.

Similarly to the SSE protocol, we will also use the fact that the

adjacency matrix 𝐴 of a 𝑑-regular graph can be written as a sum

of 𝑑 permutation matrices 𝑃1, . . . , 𝑃𝑑 and these matrices are special

cases of unitary operators. Using a permutation matrix 𝑃𝑟 and the

UG constraints, we will define a unitary operator Π𝑟 intended to

help us check the constraints along the edges of 𝑃𝑟 . Each Π𝑟 is

defined as follows

Π𝑟 |𝑖⟩|𝑎⟩ ↦→ (𝑃𝑟 |𝑖⟩) |𝑓(𝑖,𝑃𝑟 𝑖 ) (𝑎)⟩ ,
where 𝑖 ranges in𝑉 and𝑎 ranges in Σ. The crucial observation is that
if the constraints along the edges of 𝑃𝑟 are almost fully satisfied

by ℓ , we should have |𝜓 ⟩ ≈ Π𝑟 |𝜓 ⟩ whereas if they almost fully

unsatisfied by ℓ , we should have |𝜓 ⟩ almost orthogonal to Π𝑟 |𝜓 ⟩.
By sampling a uniformly random Π𝑟 and checking this approximate

co-linearity versus orthogonality property, we obtain a global test
to check if an assignment is good.

In the no case, there is no reason the adversarial provers will

provide proofs of the form (3.2) encoding a valid assignment. In

general, we will have an arbitrary state of the form

|𝜓 ⟩ =
𝑛∑︁
𝑖=1

𝛼𝑖 |𝑖⟩
(∑︁
𝑎∈Σ

𝛽𝑖,𝑎 |𝑎⟩
)
.

There are two main issues. First, the adversary can omit the as-

signment to several vertices by making 𝛼𝑖 ≈ 0. Second, even if

all the vertices are present in the superposition with amplitudes

𝛼𝑖 = 1/
√
𝑛, the prover can assign a superposition of multiple values

to each position as in

|𝜓 ⟩ =
𝑛∑︁
𝑖=1

1

√
𝑛
|𝑖⟩

(∑︁
𝑎∈Σ

𝛽𝑖,𝑎 |𝑎⟩
)
.

Fortunately, both of these issues can be handled in a global way. In

addressing the second issue, we currently rely on the non-negative

amplitudes assumption. To give a flavor of why non-negative am-

plitudes can be helpful, consider the following simplified scenario

that Σ = {0, 1} and

|𝜓 ⟩ =
𝑛∑︁
𝑖=1

1

√
𝑛
|𝑖⟩

(
1

√
2

|0⟩ + 1

√
2

|1⟩
)
.

Suppose that we measure the second register (containing the values

in Σ) of two copies of |𝜓 ⟩ obtaining |0⟩ and |1⟩, and let |𝜓0⟩ and |𝜓1⟩
be the resulting states on the first register containing the indices

of the vertices, respectively. In the ideal scenario, if each vertex

has a single well defined value in |𝜓 ⟩ (which is not the case in this

example), we should have |𝜓0⟩ ⊥ |𝜓1⟩. If not (as in this toy example),

the supports of |𝜓0⟩ and |𝜓1⟩ are not disjoint. With non-negative

amplitudes, if there is substantial “mass” in the intersection of their

supports, then this condition can be tested using a swap test since

⟨𝜓0 |𝜓1⟩ will be large (in this toy example it is 1 as |𝜓0⟩ = |𝜓1⟩ =∑𝑛
𝑖=1 1/

√
𝑛 |𝑖⟩).

With this UG protocol and the recent proof
6
of the NP-hardness

of deciding UG with parameters 𝜂 = 1/2 and 𝛿 > 0 an arbitrarily

small chosen constant, we can deduce that NP ⊆ QMA
+
log

(2).

3.3 PCP Verification Protocol for NEXP

We provide an overview of the NEXP protocol in QMA
+ (2) with

constant gap from Section 7. Recall that scaling up to QMA(2) the
previous protocols for QMA

log
(2) from literature leads to expo-

nentially small gaps which are intolerable to QMA(2). This mo-

tivates our study of constant gap protocols for hard problems in

QMA
+
log

(2). Our new constant gap protocols can be indeed scaled

up to QMA
+ (2) and the gap remains constant! Another issue un-

resolved in the previous work is that if we scale up the protocol

naively, the running time of the verifier becomes exponential and

this is also intolerable to QMA(2) (or QMA
+ (2)) which requires

a polynomial-time BQP verifier. Simultaneously achieving a con-

stant gap with a polynomial-time verifier is quite interesting since

this requires considering very efficient forms of quantum proof

verification.

Classically, it is known that NEXP admits polynomial-time

proof verification protocols with a constant gap, i.e., very efficient

PCPs. Note that the proof size is exponentially large in the input

size and the verification runs in polylogarithmic time in the size of

the proof. These protocols manipulate exponentially large objects

given in very succinct and explicit forms. We will build on some of

these PCPs results to design our QMA
+ (2) protocol for NEXP, but

our global verification of quantum proofs will require even stronger

explicitness and regularity properties of these objects. In this work,

we prove these additional properties by carefully investigating the

composition of known PCP constructions.

A PCP protocol naturally gives rise to a label cover CSP (via a

simple and standard argument). We give a global QMA
+ (2) protocol

for label cover arising from the PCP for NEXP with the additional

explicitness and regularity properties alluded above. Recall that a

label cover instance is given by a bipartite graph𝐺 = (𝐿⊔𝑅, 𝐸) with
a left and right vertex partitions 𝐿 and 𝑅, left and right alphabets

Σ𝐿 and Σ𝑅 and constraints 𝑓𝑒 : Σ𝐿 → Σ𝑅 on the edges 𝑒 ∈ 𝐸.

Given assignments to the left and right partitions ℓ𝐿 : 𝐿 → Σ𝐿
and ℓ𝑅 : 𝑅 → Σ𝑅 , a constraint on edge 𝑒 = (𝑖, 𝑗) is satisfied if

𝑓𝑒 (ℓ𝐿 (𝑖)) = ℓ𝑅 ( 𝑗). In this correspondence of PCP and label cover,

the left vertices correspond to the constraints of the PCP verifier

and the right vertices correspond to the symbols of the proof which

are the variables in the PCP constraints.

We now give an abstract simplified description of our protocol

to convey some intuition and general ideas. The precise protocol is

actually more involved and somewhat different (see Section 7 for

its full description). In the yes case our QMA
+ (2) protocol expects

6
Coming from the proof of the 2-to-2 conjecture.
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to receive copies of the state |𝜓𝐿⟩ and from it obtain copies of a

state similar to |𝜓𝑅⟩ both described below

|𝜓𝐿⟩ =
∑︁
𝑖∈𝐿

1√︁
|𝐿 |

|𝑖⟩|ℓ𝐿 (𝑖)⟩ and |𝜓𝑅⟩ =
∑︁
𝑗∈𝑅

1√︁
|𝑅 |

| 𝑗⟩|ℓ𝑅 ( 𝑗)⟩.

(3.3)

Note that the left assignment ℓ𝐿 specifies the values of all variables

appearing in each PCP constraint, and ℓ𝑅 specifies the values of

variables appearing in the PCP proof. In this case, checking the

constraints (essentially) amounts to testing consistency of these

various assignments to the variables. To accomplish this goal, we

design two operations
7 Γ𝐿 and Γ𝑅 such that,

8
if the label cover in-

stance is fully satisfiable (with ℓ𝐿 and ℓ𝑅 ), then Γ𝐿 ( |𝜓𝐿⟩) ≈ Γ𝑅 ( |𝜓𝑅⟩),
otherwise Γ𝐿 ( |𝜓𝐿⟩) will be approximately orthogonal to Γ𝑅 ( |𝜓𝑅⟩).
In a vague sense, Γ𝐿 tries to extract the value of some variables in

the constraints and Γ𝑅 tries to replicate the values of each variable

in a quantum superposition so that Γ𝐿 ( |𝜓𝐿⟩) and Γ𝑅 ( |𝜓𝑅⟩) become

equal if ℓ𝐿, ℓ𝑅 are fully satisfying assignments and they become

close to orthogonal if the CSP instance is far from satisfiable (re-

gardless of ℓ𝐿, ℓ𝑅 ). At a high level, there is some parallel
9
with the

SSE and UG protocols. There, we had |𝜓𝐿⟩ = |𝜓𝑅⟩, Γ𝐿 being the

identity and Γ𝑅 being either 𝑃𝑟 (in SSE) or Π𝑟 (in UG).

A crucial point is that tomake the operations Γ𝐿 and Γ𝑅 efficient,

we need to be able to determine (1) the neighbors of any given vertex

in 𝐿 in polynomial time, and (2) the neighbors of any given vertex

in 𝑅 in polynomial time. We call an instance satisfying (1) and

(2) doubly explicit. While (1) follows easily from the definition of

PCP, to get property (2) we need to carefully compose known PCP

protocols and prove that this property holds.

Similarly to the UG protocol, we also need to check that the

quantum proofs are close to a valid encoding of an assignment to

the variables. The provers should not (substantially) omit the values

of variables nor provide a superposition of multiple values for the

same variable. Similarly, checking this second condition is the part

of the protocol that currently relies on non-negative amplitudes.

4 PROPERTY TESTING PRIMITIVES

In this section, we prove some property testing primitives that we

will use as the building blocks in designing protocols for general

problems.

The first test is the symmetry test. In many situations, we ask

the prover to provide a supply of constantly many copies of a state.

To make sure that all copies are approximately the same state, the

symmetry test will be invoked. The symmetry test in general can be

applied in any quantum protocol. A similar symmetry test has been

considered previously in [1]. Here we provide a stronger version.

The second test is the sparsity test. Consider the scenario where
we ask the prover to provide a state that is supposed to be some

subset state. In particular, let S𝛾 ⊆ C𝑛 be the set of subset state

7
We stress that this is a simplistic view of the protocol. See Section 7 for the precise

technical details.

8
Assuming |𝜓𝐿 ⟩ and |𝜓𝑅 ⟩ are of the above form.

9
As in the SSE and UG protocols, there is also distribution on pairs of operator (Γ𝐿, Γ𝑅 )
here.

spanning a 𝛾 fraction of computational basis, i.e.,

S𝛾 :=

{
1

√
𝛾𝑛

∑︁
𝑖∈𝑆

|𝑖⟩ : 𝑆 ⊆ [𝑛], |𝑆 | = 𝛾𝑛

}
.

We call 𝛾 the sparsity of the subset state in S𝛾 . The sparsity test is

used to determine whether a given state is close to S𝛾 . Our sparsity
test relies on the fact that the amplitudes of the quantum proofs

are non-negative.

The third test is the validity test. A natural quantum proof for

many problems like the 3-SAT or 3COLOR problem is to put the

variables/vertices together with their values/colors in superposi-

tions. For example, for 3-SAT on 𝑛 variables, such that variable 𝑖

has value 𝑥𝑖 , a valid proof should look like

|𝜙⟩ = 1

√
𝑛

∑︁
𝑖∈[𝑛]

|𝑖⟩|𝑥𝑖 ⟩.

This can be generalized for an arbitrary set of variables 𝑋 and an

arbitrary value domain Σ of the variables. Then the valid set would

be

V =

{
1√︁
|𝑋 |

∑︁
𝑖∈𝑋

|𝑖⟩|𝑥𝑖 ⟩ : ∀𝑖 ∈ 𝑋, 𝑥𝑖 ∈ Σ

}
.

The validity test tells whether a given state is close to a valid state.

Our validity test works only in the situation when the given state

is close to a state in S|Σ |−1 , which is guaranteed by the sparsity test.

Thus, this validity test does not generalize.

4.1 𝜀-Tilted States

Before we discuss the tests, let’s make the following definition first.

Definition 4.1 (𝜀-tilted states). A family of states
|𝜓1⟩, |𝜓2⟩, . . . , |𝜓𝑘 ⟩ defined on a same space is an 𝜀-tilted state
if there is a subset 𝑅 ⊆ [𝑘] such that |𝑅 | ≥ (1 − 𝜀)𝑘 and for any
𝑖, 𝑗 ∈ 𝑅,

D( |𝜓𝑖 ⟩, |𝜓 𝑗 ⟩) ≤
√
𝜀.

Furthermore, we call |𝜓𝑖 ⟩ a representative state for any 𝑖 ∈ 𝑅, and
the subset {|𝜓𝑖 ⟩ : 𝑖 ∈ 𝑅} the representative set.

Note that a 0-tilted state is simply a set of equal states, and any

𝜀-tilted state is also a 𝛿-tilted state for any 𝛿 > 𝜀. The name 𝜀-tilted

state may be confusing. Our message is that instead of treating this

object as a set of states, we should simply treat them as a single

state conceptually (for example, think of it as a representative state

tilted a little bit). As we will see later in Section 4.2, when the

symmetry test passes, we are supplied with an 𝜀-tilted state with

high probability. Having a large number of (almost) equal states

is very convenient, therefore we always take advantage of the

symmetry test and work with 𝜀-tilted states. We reserve the capital

letters, i.e., |Ψ⟩ or simply Ψ,10 to denote an 𝜀-tilted state. The size
of Ψ, denoted |Ψ|, is the size of Ψ viewed as a set of states.

The tilted states tensorize. In particular, for two sets of states

Ψ = {|𝜓1⟩, |𝜓2⟩, . . . , |𝜓𝑘 ⟩} andΦ = {|𝜙1⟩, |𝜙2⟩, . . . , |𝜙𝑘 ⟩} of the same

size, letΨ⊗Φ denote the set of states {|𝜓1, 𝜙1⟩, . . . , |𝜓𝑘 , 𝜙𝑘 ⟩} (if there
is not a default order, the order can be set arbitrarily).

10
In this paper, we never use the density operator, so there should be no confusion.
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Proposition 4.2 (Tensorization of tilted states). If Ψ is an 𝜀-tilted
state and Φ is a 𝛾-tilted state, and |Ψ| = |Φ| = 𝑘 . Then Ψ ⊗ Φ is an
(𝜀 + 𝛾)-tilted state.

4.2 Symmetry Test

The symmetry test is described below.

Symmetry Test

Input: Ψ = {𝑎1, 𝑎2, . . . , 𝑎𝑘 } ⊆ S for some even number 𝑘 .

(i) Sample a random matching 𝜋 within 1, 2, . . . , 𝑘 .

(ii) SwapTest on the pairs based on the matching 𝜋 .

Accept if all SwapTests accept.

Theorem 4.3 (Symmetry test). Suppose Ψ is not an 𝜀-tilted
state. Then the symmetry test passes with probability at most
exp(−Θ(𝜀2𝑘)). On the contrary, for 0-tilted state Ψ, the symmetry
test accepts with probability 1.

4.3 Sparsity Test

Now we move on to the sparsity test, where the non-negative

assumption is used crucially. In the sparsity test, aside from the

state that we want to test whether it’s close to some subset state,

the prover will provide an auxiliary proof to assist the verifier.

In what follows, we provide two versions of the sparsity tests.

In the first version, we want to know if a given state |𝜓⟩ is close to
some subset state without prior knowledge of the sparsity 𝛾 . In the

second version, there is a target sparsity 𝛾 , and we want to know if

|𝜓⟩ is close to S𝛾 . We describe the first version below.

Sparsity test I (with precision 𝜀)

Input: Ψ = {𝑢1, . . . , 𝑢2𝑘 } ⊆ S+,Φ = {𝑣1, . . . , 𝑣2𝑘 } ⊆ S+ .
Partition Ψ into Ψ0 and Ψ1 of equal size, and partition Φ into Φ0

and Φ1 of equal size.

(i) SwapTest on (Ψ0, 1[𝑛]/
√
𝑛);

(ii) SwapTest on (Φ0, 1[𝑛]/
√
𝑛);

(iii) SwapTest on (Ψ1,Φ1) .

Accept if and only if 𝛼 +𝛽 ∈ [3/2−
√
𝜀, 3/2+

√
𝜀] and 𝜆 ≤ 1/2+

√
𝜀,

where 𝛼, 𝛽 and 𝜆 are the fractions of accepted SwapTests in (i),

(ii), and (iii), respectively.

Output: 𝛼, 𝛽, 𝜆.

Theorem 4.4 (Sparsity test). Given Ψ = {𝑢𝑖 ∈ S+𝑛}𝑖∈[2𝑘 ] ,Φ =

{𝑣𝑖 ∈ S+𝑛}𝑖∈[2𝑘 ] two 𝜀-tilted states for 𝜀 < 1/2. Let 𝛼, 𝛽 , and 𝜆 be the
outputs.

(Completeness) For any 0-tilted states Ψ and Φ, such that Ψ ∈ S𝛿 ,
Φ ∈ S

1−𝛿 , andΨ ⊥ Φ. Then with probability at least 1−exp(−Θ(𝜀𝑘))
the sparsity test accepts, furthermore,

|2𝛼 − 1 − 𝛿 | ≤
√
𝜀,

|2𝛽 − 1 − (1 − 𝛿) | ≤
√
𝜀.

(Soundness) The sparsity test accepts with probability at most
exp(−𝜀𝑘), if either of the following fails to hold:

(i) There is 𝑆 ⊆ [𝑛], such that for any 𝛾 > 0,

|𝑆 | ≤ (2𝛼 − 1)𝑛 + 9𝜀1/4𝑛/𝛾,

and for any representative 𝑢 ∈ Ψ,

∥𝑢 |𝑆 ∥2 ≥ 1 − 𝛾 − 2

√
𝜀.

(ii) There is 𝑆 ⊆ [𝑛], such that

| |𝑆 | − (2𝛼 − 1)𝑛 | ≤ 𝑂 (𝜀1/12 (2𝛼 − 1)1/3)𝑛,
and for any representative 𝑢 ∈ Ψ,

D

(
𝑢, 1𝑆/

√︁
|𝑆 |

)
= 𝑂

(
𝜀1/24

(2𝛼 − 1)1/3

)
.

Key to the analysis of the sparsity test is the following lemma.

Lemma 4.5. Let 𝑢, 𝑣 ∈ S+𝑛 for an arbitrary natural number 𝑛. Let
𝛿 ∈ (0, 1) be some constant. If for some small constant 𝜀 > 0, the
following items are true:

(i) ⟨𝑢, 𝑣⟩2 ≤ 𝜀,

(ii) |⟨𝑢, 1[𝑛]/
√
𝑛⟩2 − 𝛿 | ≤ 𝜀,

(iii) |⟨𝑣, 1[𝑛]/
√
𝑛⟩2 − (1 − 𝛿) | ≤ 𝜀.

Then, for any 0 < 𝛾 < 1/2, and some |𝑆 | ≤ (𝛿 + 2

√
𝜀/𝛾)𝑛,

∥𝑢 |𝑆 ∥2 ≥ 1 − 𝛾 . (4.1)

Furthermore, for some 𝑆 ⊆ [𝑛] with

(𝛿 −𝑂 (𝜀))𝑛 ≤ |𝑆 | ≤ (𝛿 +𝑂 (𝜀1/6𝛿1/3))𝑛
we have

⟨𝑢, 1𝑆/
√︁
|𝑆 |⟩ ≥ 1 −𝑂

(
𝜀1/6

𝛿2/3

)
.

Suppose that we have a target sparsity 𝛾 , a constant number in

(0, 1). We adapt the previous sparsity test slightly to test whether

some given state is close to S𝛾 .

Sparsity test II (with target sparsity 𝛾 and precision 𝜀)

Input: Ψ = {𝑢1, . . . , 𝑢2𝑘 },Φ = {𝑣1, . . . , 𝑣2𝑘 }
(i) Sparsity test I on (Ψ,Φ) with precision 𝜀.

Accept if the sparsity test I accepts and its output satisfies: 2𝛼−1 ∈
[𝛾 −

√
𝜀,𝛾 +

√
𝜀].

Theorem 4.6 (Sparsity test with target sparsity 𝛾 ). Let
𝜀 > 0 be such that 𝜀 < 𝛾4/5. Suppose that Ψ and Φ are 𝜀-tilted states.
Then the sparsity test accepts with probability at most exp(−𝜀𝑘) if
the following fails to hold:

D(Ψ,S𝛾 ) ≤ 𝑂

(
𝜀1/24

𝛾1/3

)
. (4.2)

If Ψ is the 0-tilted states fromS𝛾 , then there is Φ such that the sparsity
test accepts with probability 1 − exp(−Θ(𝜀𝑘))

4.4 Validity Test

Consider the variable set 𝑋 = {1, 2, . . . , 𝑛}, and domain Σ =

{1, 2, . . . , 𝑞}. Recall that the valid set is the following

V =


1

√
𝑛

∑︁
𝑖∈[𝑛]

|𝑖⟩|𝑥𝑖 ⟩ : ∀𝑖 ∈ [𝑛], 𝑥𝑖 ∈ Σ

 .

The goal is to test whether a state is close to V .
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Validity test (with precision 𝑑)

Input: Ψ = {|𝜓1⟩, |𝜓2⟩, . . . , |𝜓𝑘 ⟩} ⊆ S+ .
(i) Apply discrete Fourier transform to the second register

of Ψ.
(ii) Measure the second register.

Accept if 𝛼 ≤ 1/𝑞 +𝑑 , where 𝛼 is the fraction of |0⟩ observed after
measuring.

Theorem 4.7 (Validity test). Suppose that Ψ is an 𝜀-tilted state
for some small 𝜀 > 0. Further suppose that for any representative state
|𝜓 ⟩ ∈ Ψ, D( |𝜓 ⟩,S

1/𝑞) ≤ 𝑑 for 2𝜀 ≤ 𝑑 < 1/𝑞. Then the probability
that in the validity test the fraction of measured |0⟩ is less than
(1 + 𝑞𝑑)/𝑞 is at most exp(−Θ(𝑞𝑑2𝑘)), if

D( |𝜓 ⟩,V) ≥
√︁
6𝑞𝑑 + 𝑑.

If Ψ is a 0-tilted state from V , then the validity test accepts with
probability at least 1 − exp(−Θ(𝑞𝑑2𝑘)).

5 SSE ∈ QMA+
log

(2)

Definition 5.1 ((𝜂, 𝛿)-SSE graph). Let 𝜂, 𝛿 ∈ (0, 1). We say that
𝐺 is a (𝜂, 𝛿) small set expander, or simply (𝜂, 𝛿)-SSE for short, if for
every ∅ ≠ 𝑆 ⊆ 𝑉 of size |𝑆 | ≤ 𝛿 |𝑉 | we have Φ𝐺 (𝑆) ≥ 1 − 𝜂.

Definition 5.2 ((𝜂, 𝛿)-SSE). Let 𝜂, 𝛿 ∈ (0, 1). An instance of (𝜂, 𝛿)
small set expansion (SSE) problem is a graph 𝐺 on the vertex set 𝑉
such that

(Yes) There exists 𝑆 ⊆ 𝑉 with measure at most 𝛿 and Φ𝐺 (𝑆) ≤ 𝜂;
(No) Every set 𝑆 ⊆ 𝑉 of measure at most 𝛿 has expansion Φ𝐺 (𝑆) ≥

1 − 𝜂.

We now show that SSE can be verified with constant copies of

unentangled proofs of non-negative amplitudes and a logarithmic

number of qubits with constant completeness-soundness gap. More

precisely, we prove the following theorem.

Theorem 5.3. The (𝜂, 𝛿)-SSE problem is in
QMA

+
𝑂𝛿 (log(𝑛) ) (2, 𝑐, 𝑠) with completeness 𝑐 ≥ 1 − 𝜂 and soundness

𝑠 ≤ 5/6 +𝑂 (√𝜂 log(1/𝜂)).

We will prove the theorem by showing that the QMA
log

(2)
protocol described in Algorithm 5.4 is complete and sound for (𝜂, 𝛿)-

SSE.

Algorithm 5.4: (𝜂, 𝛿)-SSE Protocol

Let 𝜀 = 𝜂8𝛿4/𝐶 , and 𝑘 = 𝐶 log(1/𝜂)/𝜀2 for some large enough

constant 𝐶 .

Let 𝑆 be the vertex set such that |𝑆 | ≤ 𝛿𝑛 and Φ𝐺 (𝑆) ≤ 𝜂.

Provers: Send
(i) 2𝑘 copies of the superpositions of the non-expanding

set 𝑆 , i.e.,

|𝜓1⟩, |𝜓2⟩, . . . , |𝜓2𝑘 ⟩ =
1

√
𝛿𝑛

∑︁
𝑖∈𝑆

|𝑖⟩.

(ii) 2𝑘 copies of the superpositions of the complement of

𝑆 , i.e.,

|𝜙1⟩, |𝜙2⟩, . . . , |𝜙2𝑘 ⟩ =
1√︁

(1 − 𝛿)𝑛

∑︁
𝑖∉𝑆

|𝑖⟩.

Verifier: Choose uniformly at random one of the following

tests.

(i) Symmetry test on {|𝜓𝑖 ⟩} and symmetry test on {|𝜙𝑖 ⟩}.
(ii) Sparsity test on ({|𝜓𝑖 ⟩}, {|𝜙𝑖 ⟩}) with precision 𝜀. If the

output 𝛼 is such that 2𝛼 − 1 > (1 + 𝜂)𝛿 , reject.
(iii) Expansion test on |𝜓𝑖 ⟩ and |𝜓 𝑗 ⟩ for two distinct random

𝑖, 𝑗 ∈ {1, 2, . . . , 2𝑘}.

Since 𝐺 is a 𝑑 regular graph, its adjacency matrix 𝐴 can be

written as a sum of 𝑑 permutation matrices 𝑃1, . . . , 𝑃𝑑 . This repre-

sentation as a sum of unitary matrices will be important to view

these matrices as valid quantum operations. To test the lack of ex-

pansion of the support of |𝜓1⟩, we apply to this state a permutation

𝑃𝑖 , chosen uniformly at random. Then, we test if the resulting state

(mostly) overlaps with |𝜓2⟩ (which is supposed to encode the same

set in its support). This test is described in Algorithm 5.5.

Algorithm 5.5: Expansion Test

Input: |𝜓1⟩, |𝜓2⟩ ∈ S+
(i) Choose 𝑟 ∈ [𝑑] uniformly at random;

(ii) Compute 𝑃𝑟 |𝜓1⟩;
(iii) SwapTest(𝑃𝑟 |𝜓1⟩, |𝜓2⟩).

Accept if the swap test accepts.

6 GapUG ∈ QMA+
log

(2) AND NP ⊆ QMA+
log

(2)

Definition 6.1 (Unique Games). A unique game instance ℑ consists
of a𝑑-regular graph𝐺 = (𝑉 , 𝐸). Each edge 𝑒 = (𝑎, 𝑏) ∈ 𝐸 is associated
with a bijective constraint 𝑓𝑒 : Σ → Σ, where Σ = {1, 2, . . . , 𝑞} for
some constant 𝑞.

For any labeling ℓ : [𝑛] → Σ, the value associated with the
labeling is the fraction of edge constraints satisfied by the labeling,
i.e.,

1

𝑛𝑑
|{(𝑎, 𝑏) ∈ 𝐸 : 𝑓(𝑎,𝑏 ) (ℓ (𝑎)) = ℓ (𝑏)}|.11

The value of ℑ, denoted val(ℑ), is the max value over all possible
labelings.

11
Though we can think of the graph in the definition being undirected, when we

describe an edge constraint for 𝑒 = (𝑎,𝑏 ) using a bijection, we need labels of one

vertex as the domain and labels of the other as the range of 𝑓 . So when we say 𝑓𝑒 , we

always have an implicit orientation of the edge. So the set here counts each edge twice,

that is val can take the value up to 1.
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Definition 6.2 ((1−𝛿, 𝜂)-GapUG problem). Given any unique games
instance ℑ. Determine which of the following two cases is true: (Yes)
val(ℑ) ≥ 1 − 𝛿 ; (No) val(ℑ) ≤ 𝜂.

The purpose of this section is to establish the following theorem.

Theorem 6.3. For any 𝛿, 𝜂 ∈ (0, 1) such that (1 − 𝛿)2 > 𝜂, then

(1 − 𝛿, 𝜂)-GapUG ∈ QMA
+
log

(2) .

It suffices to present a QMA
+
log

(𝑘) protocol (see Algorithm 6.4)

for some constant 𝑘 for the (1−𝛿, 𝜂)-GapUG problem. For the given

graph 𝐺 = (𝑉 , 𝐸), say 𝑉 = {1, 2, . . . , 𝑛}. Since 𝐺 is a regular graph,

we can partition 𝐸 into 𝑑 permutations 𝜋1, 𝜋2, . . . , 𝜋𝑑 : {𝑛} → {𝑛}.
The permutation can also be thought of as a perfect matching

between two vertex sets 𝐿 and 𝑅 with 𝐿 = 𝑅 = 𝑉 . We find the

matching view more convenient, so we often call 𝜋 a matching. For

any labeling ℓ : [𝑛] → Σ, we represent it by the following quantum
state

|𝜓 ⟩ = 1

√
𝑛

∑︁
𝑖∈[𝑛]

|𝑖⟩|ℓ (𝑖)⟩.

Recall that V ⊆ S
1/𝑞 denote the set of all valid labelings, i.e.,

V :=

{
1

√
𝑛

𝑛∑︁
𝑖=1

|𝑖⟩|𝑣𝑖 ⟩ : 𝑣𝑖 ∈ Σ

}
.

Let Π𝑟 be the unitary map associated with the matching 𝜋𝑟 , such

that for any 𝑟 ∈ [𝑑], 𝑖 ∈ [𝑛], and 𝑣 ∈ Σ :

Π𝑟 |𝑖⟩|𝑣⟩ ↦→ |𝜋𝑟 (𝑖)⟩|𝑓(𝑖,𝜋𝑟 (𝑖 ) ) (𝑣)⟩.
In words, when we pick a matching 𝜋𝑟 and a labeling |𝜓 ⟩ on 𝐿,

then Π𝑟 |𝜓 ⟩ represents the unique labeling on 𝑅 that satisfies all the

edge constraints for the edges in 𝜋𝑟 . In reality, 𝐿 and 𝑅 are the same

vertex set, they have the same labeling. Let

𝜃 =
1

2

(
1 + (1 − 𝛿)2

2

+ 1 + 𝜂
2

)
, 𝜆 =

(1 − 𝛿)2
2

− 𝜂

2

.

Algorithm 6.4: (1 − 𝛿, 𝜂)-GapUG Protocol

Let 𝜀 = 𝜆48/(𝐶𝑞32), and 𝑘 = 𝐶/𝜀2 for some large enough con-

stant 𝐶 .

Provers: send
(i) 2𝑘 copies of labelings realize val(ℑ), i.e.,

|𝜓1⟩, |𝜓2⟩, . . . , |𝜓2𝑘 ⟩ =
1

√
𝑛

∑︁
𝑖∈[𝑛]

|𝑖⟩|ℓ (𝑖)⟩.

(ii) 2𝑘 copies of the labelings but complemented, i.e.,

|𝛾1⟩, |𝛾2⟩, . . . , |𝛾2𝑘 ⟩ =
1

√
𝑛

∑︁
𝑖∈[𝑛]

|𝑖⟩ 1

√
𝑞 − 1

∑︁
𝑣≠ℓ (𝑖 )

|𝑣⟩.

Verifier: Let Ψ = {|𝜓1⟩, . . . , |𝜓2𝑘 ⟩}, and similarly for Γ. Run a

uniformly random test of the following

(i) Two symmetry tests on Ψ and Γ.
(ii) Sparsity test on (Ψ, Γ) with target sparsity 1/𝑞 and

precision 𝜀.

(iii) Validity test on Ψ with precision 𝜈 = 𝜀1/24𝑞1/3.
(iv) Labeling test on Ψ0, Ψ1, where Ψ0 and Ψ1 are partition

of Ψ into two subsets with equal size.

The labeling test is described below.

Labeling Test

Input: Ψ = {|𝜓1⟩, |𝜓2⟩, . . . , |𝜓𝑘 ⟩},Φ = {|𝜙1⟩, |𝜙2⟩, . . . , |𝜙𝑘 ⟩}.
(i) For 𝑖 from 1 to𝑘 , SwapTest on (Π𝑟 |𝜓𝑖 ⟩, |𝜙𝑖 ⟩) for uniformly

random 𝑟 ∈ [𝑑] (each iteration with a fresh random

choice).

Accept if more than a 𝜃 fraction the SwapTests accept.

We record the following lemma about the labeling test.

Lemma 6.5 (Labeling test). Suppose val(ℑ) ≤ 𝜂. Given 𝜀-tilted
states Ψ such that any representative state |𝜓 ⟩ satisfies D( |𝜓 ⟩,V)
and 𝜀 sufficiently small (for example, D( |𝜓 ⟩,V) ≤ 𝜆/8 and 𝜀 ≤
𝜆2/256). Then the labeling test accepts Ψ with probability at most
exp(−Θ(𝜆2𝑘)).

Regularization—NP ⊆ QMA+
log

(2). Due to the works [20, 21,

34, 35], it is known that the (1/2, 𝜂)-GapUG problem is NP-hard. An

optimistic reader would happily conclude that NP ⊆ QMA
+
log

(2).
This is indeed the case, with a small caveat though: In our previous

discussion, we assumed the graph instance to be regular. However,

when we convert a general graph into a regular one, the value of

the game will change. We address this issue here.

Theorem 6.6 (Regularization [19]). For any general unique
games instance ℑ, there is a new unique games instance ℑ′ that is
polynomial time constructible such that

val(ℑ) ≥ 1

2

=⇒ val(ℑ′) ≥ 1 − 1

2(𝑑 + 1) , (6.1)

val(ℑ) ≤ 𝜂 =⇒ val(ℑ′) ≤ 1 − 1 − 𝜂

𝑑 + 1

. (6.2)

The regularization process follows closely that of Dinur’s treat-

ment [19]. Define a new graph 𝐺 ′ = (𝑉 ′, 𝐸′), such that

𝑉 ′ = {(𝑣, 𝑒) ∈ 𝑉 × 𝐸 : 𝑣 is incident to 𝑒}

𝐸′ = 𝐸′′ ∪
⋃
𝑣∈𝑉

𝐸𝑣,

where 𝐸′′ = {((𝑣, 𝑒), (𝑢, 𝑒)) : (𝑣,𝑢) = 𝑒 ∈ 𝐸} and 𝐸𝑣 is the set

of edges in the 𝑑-regular expander graph 𝐺𝑣 = (𝑉𝑣 = {(𝑣, 𝑒) ∈
𝑉 ′}, 𝐸𝑣), for some constant 𝑑 , whose Cheeger constant is at least

2.
12

In words, we replace every vertex 𝑣 with a cluster of vertices of

size equal to the number of edges that 𝑣 is incident to in 𝐺 . Within

each cluster, the vertices are connected based on expander graphs.

For every edge, 𝑒 = (𝑢, 𝑣) in the original graph, connect the vertex

(𝑢, 𝑒) with vertex (𝑣, 𝑒) in the new graph. The constraints 𝑓 ′ on
𝐸′′ will be like that of 𝑓𝑒 on 𝐸. In particular, 𝑓 ′( (𝑢,𝑒 ),(𝑣,𝑒 ) ) = 𝑓(𝑢,𝑣) .
Further, the constraints on edges 𝐸𝑣 will be the equality constraints,

which can be represented as a bijective map. This new UG instance

ℑ′
satisfies that described in Theorem 6.6. Therefore, for the regular

graph, (1 − 1

2(𝑑+1) , 1 −
1−𝜂
𝑑+1 )-GapUG problem is NP-hard.

We verify that for any 𝜂 < 1/4(𝑑 + 1),(
1 − 1

2(𝑑 + 1)

)
2

> 1 − 1 − 𝜂

𝑑 + 1

.

Therefore, by Theorem 6.3, we have

12
A random graph𝐺𝑣 would be good, and various explicit constructions are known.

We refer interested readers to the wonderful survey on this topic [27].
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Theorem 6.7. With constant completeness and soundness gap,
NP ⊆ QMA

+
log

(2) .

7 NEXP = QMA+(2)
In this section, we scale up our previous result to NEXP =

QMA
+ (2). The direction that QMA

+ (2) ⊆ NEXP follows the same

trivial argument that QMA(2) ⊆ NEXP—guess the quantum proofs.

Our focus will be on the other direction. The starting point would

be a PCP for NEXP. For the moment, we abstract things out and

focus on the constraints satisfaction problem (CSP) with the under-

standing that the CSP system will come from the corresponding

PCP.

Definition 7.1. An (𝑁, 𝑅, 𝑞, Σ)-CSP system ℭ on 𝑁 variables with
values in Σ consists of a set (possibly a multi-set) of 𝑅 constraints
{C1, C2, . . . , C𝑅}, and the arity of each constraint is exactly 𝑞. The
value of ℭ, denoted val(ℭ), is the maximum fraction of the satisfiable
constraints over all possible assignment 𝜎 : [𝑁 ] → Σ. The (1, 𝛿)-
GapCSP problem is to distinguish whether a given system ℭ is such
that (Yes) val(ℭ) = 1 or (No) val(ℭ) ≤ 𝛿.

For any CSP system ℭ, we think of a bipartite graph𝐺ℭ where

the left vertices are the constraints and the right vertices are the

variables. Whenever a constraint queries a variable there is an edge

in the graph between the corresponding vertices. For any 𝑗 ∈ [𝑅],
let Adj𝐶 ( 𝑗) denote the list of variables that C𝑗 queries; and for any

𝑖 ∈ [𝑁 ], letAdj𝑉 (𝑖) denote the list of constraints that query variable
𝑖 . An efficient CSP system ℭ should satisfy that for any 𝑗 ∈ [𝑅],
there is an algorithm that compute C𝑗 in time poly log(𝑁𝑅). That
includes deciding which variables are queried by C𝑗 , and based on

the values of the relevant variables compute C𝑗 . For our purpose, we

require stronger properties, which we refer to as double explicitness.
Informally, we require that given any variable 𝑖 , we can also “list”

the constraints that query 𝑖 efficiently.

Definition 7.2 (Doubly explicit CSP). For any (family of)
(𝑁, 𝑅, 𝑞, Σ)-CSP system ℭ, we say that ℭ is doubly explicit if the
following are computable in time poly log(𝑁𝑅):

(i) The cardinality of Adj𝐶 ( 𝑗) for any 𝑗 ∈ [𝑅] and the cardinal-
ity of Adj𝑉 (𝑖) for any 𝑖 ∈ [𝑁 ].

(ii) Adj
global→local

𝐶
: [𝑅] × [𝑁 ] → [𝑞], such that

Adj
global→local

𝐶
( 𝑗, 𝑖) = 𝜄 if 𝑖 is 𝜄th variable that C𝑗 queries.13

(iii) Adj
local→global

𝐶
: [𝑅] × [𝑞] → [𝑁 ], such that

Adj
local→global

𝐶
( 𝑗, 𝜄) is the 𝜄th variable that C𝑗 queries.

(iv) Adj
global→local

𝑉
: [𝑁 ] × [𝑅] → [𝑅], such that

Adj
global→local

𝑉
(𝑖, 𝑗) = 𝜄 if 𝜄 is the index of constraint 𝑗 in

Adj𝑉 (𝑖).

(v) Adj
local→global

𝑉
: [𝑁 ]× [𝑅] → [𝑅] such that for any 𝑖 ∈ [𝑁 ]

and 𝜄 ∈ [|Adj𝑉 (𝑖) |], let 𝑗 = Adj
local→global

𝑉
(𝑖, 𝜄), then 𝜄th

constraints in Adj𝑉 (𝑖) is C𝑗 .

13
If C𝑗 does not query 𝑖 , we don’t care about the value of Adj

global→local

𝐶
. Similarly for

Adj
global→local

𝑉
.

In words, in the bipartite graph𝐺ℭ . For each vertex, say 𝑖 ∈ [𝑁 ],
there is a local view of its neighborhood Adj𝑉 (𝑖). We should be

able to efficiently switch from this local representation to a global

representation, by Adj
local→global

𝑉
(𝑖, ·), and vice versa.

Another property we require is the uniformity, defined below.

Definition 7.3 (𝑇 -Strongly uniform CSP). For any (𝑁, 𝑅, 𝑞, Σ)-
CSP system ℭ and 𝑇 ∈ Z, we say that ℭ is 𝑇 -strongly uniform
if the variable set [𝑁 ] can be partitioned into at most 𝑇 subsets
𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉𝑇 , such that the cardinality of Adj𝑉 (𝑖) for any
variable 𝑖 only depends on which subset it belongs to. Furthermore,
let 𝜏 : [𝑁 ] → [𝑇 ], such that 𝜏 (𝑖) = 𝑗 if 𝑖 ∈ 𝑉𝑗 . Then 𝜏 (𝑖) can be
computed in time poly log(𝑁𝑅) .

Given some (𝑁, 𝑅, 𝑞, {0, 1})-CSP system ℭ that is 𝑇 -strongly

uniform for some constant 𝑇 and is strongly explicit. Then it is

NEXP-hard to decide whether val(ℭ) = 1 or val(ℭ) < 𝛿 for some

absolute constant 𝛿 . This CSP ℭ comes from the efficient PCP for

NEXP. Although not all PCP satisfies doubly explicitness or unifor-

mity, there is some PCP construction that enjoys these properties.

We discuss such PCP in more detail and prove the related properties

in the full paper.

Theorem 7.4 (PCP for NEXP). There is a PCP system for a
NEXP-complete problem, in which the verifier tosses poly(𝑛) random
bits and makes a constant number of queries to the proof Π such that
if the input is a “Yes” instance, then the verifier always accept; if the
input is a “no” instance, then the verifier accepts with probability at
most 𝛿 for some constant 𝛿 . Furthermore, this PCP is doubly explicit
and 𝑇 -strongly uniform for some constant 𝑇 .

This PCP gives rise to a (1, 𝛿)-GapCSP instances for some

(𝑁 = 2
poly(𝑛) , 𝑅 = 2

poly(𝑛) , 𝑞 = 𝑂 (1), {0, 1})-CSP system that

are 𝑇 -strongly uniform for some constant 𝑇 and doubly explicit.

In the remainder of the section, our goal is to prove the following

theorem:

Theorem 7.5. For any constant strongly uniform and doubly
explicit (𝑁, 𝑅, 𝑞, Σ)-CSP system ℭ, there is a QMA

+ (2) protocol that
solves the (1, 𝛿)-GapCSP problem for ℭ with constant completeness
and soundness gap.

Theorem 7.4 together with Theorem 7.5 imply that

Theorem 7.6. NEXP ⊆ QMA
+ (2) with constant completeness

and soundness gap.

7.1 Explicit Regularization

The first step towards proving Theorem 7.5 is regularization for

the CSP ℭ, very much like that in Theorem 6.6. The main technical

issue is that everything happening in the previous case needs to be

efficient for the exponentially large expander graphs. Fortunately,

explicit constructions of expander graphs are very well-studied.

Theorem 7.7 (Explicit regular expander graphs [2, 40]).

There is some constant 𝑑 , for which we have the following explicit
constructions on expander graphs with Cheeger constant at least 2:

(i) For any 𝑛, there is a 𝑑-regular expander graph on 𝑛 vertices.
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(ii) For any prime 𝑝 > 17, there exists a 𝑑-regular expander
graph on 𝑛 = 𝑝 (𝑝2 − 1) vertices. Furthermore, the graph
𝐺 can be decomposed into 𝑑 matchings 𝜋1, 𝜋2, . . . , 𝜋𝑑 , such
that given 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑], there is a poly log(𝑛)-time
algorithm Π𝐺 : [𝑛] × [𝑑] → [𝑛], such that

Π𝐺 (𝑖, 𝑗) = 𝜋 𝑗 (𝑖) .

For both constructions, given 𝑖 ∈ [𝑛], the neighbors of 𝑖 can be listed
in time poly log(𝑛).

Since the second construction of expander graphs from the

above theorem does not work for any number of vertices, we also

need the following theorem about primes in short intervals.

Theorem 7.8 (Primes in short intervals [16]). There is some
absolute constant 𝑛0, such that for any integer 𝑛 > 𝑛0, there is a prime
between the interval [𝑛 − 4𝑛2/3, 𝑛].

With the above tools at our disposal, we discuss the explicit

regularization for this exponentially large CSP ℭ. Replace the vari-

able 𝑖 with a cluster of variables labeled (𝑖, 𝜄) for 𝜄 ∈ [𝑛𝑖 ], where
𝑛𝑖 = |Adj𝑉 (𝑖) |. If 𝑛𝑖 < 𝑛0 for some absolute constant 𝑛0 (this can be

a larger constant than that in Theorem 7.8), then we can simply use

the expander graph provided by Theorem 7.7 (i). For 𝑛𝑖 ≥ 𝑛0, we

use the expander graph provided by Theorem 7.7 (ii). In particular,

let 𝑝𝑖 be some prime such that

𝑝𝑖 ∈ [⌊𝑛1/3
𝑖

⌋ − 4⌊𝑛1/3
𝑖

⌋2/3, ⌊𝑛1/3
𝑖

⌋] .

The existence of 𝑝𝑖 is guaranteed by Theorem 7.8. Let 𝑛′
𝑖
:= 𝑝𝑖 (𝑝2𝑖 −

1) ∈ [𝑛 −𝑂 (𝑛8/9), 𝑛], and let

𝑉 ′
𝑖 = {(𝑖, 𝑗) : 𝑗 ≤ 𝑛′𝑖 },

𝑉 ′′
𝑖 = {(𝑖, 𝑗) : 𝑛′𝑖 < 𝑗 ≤ 𝑛𝑖 }.

Depending on 𝑛0, |𝑉 ′′
𝑖
| ≤ 𝜂𝑛𝑖 for 𝜂 = 𝜂 (𝑛0). As we set 𝑛0 to be a

large enough constant, 𝜂 is arbitrarily small. Connect the vertices in

𝑉 ′
𝑖
by a𝑑-regular expander graph𝐺𝑖 , whose existence is guaranteed

by Theorem 7.7 (ii). For all vertices in𝑉 ′′
𝑖
, add𝑑 self-loops. Associate

these edges with equality constraints. Let ℭ′
denote the new CSP

instance. Recall that 𝑞 is the number of variables queried by each

constraint in ℭ

Claim 7.9. If val(ℭ) = 1, then val(ℭ′) = 1. If val(ℭ) = 𝛿 < 1,
then the total number of unsatisfied constraints in ℭ′ is at least
(1 − 𝛿 − 𝑞𝜂)𝑅.

7.2 The Protocol

In the protocol, the provers are supposed to provide the following

state:

|𝜓 ⟩ =
∑︁
𝑗∈[𝑅 ]

| 𝑗⟩|𝑣 𝑗 ⟩, (7.1)

where 𝑣 𝑗 ∈ C |Σ
𝑞 |
, which should indicate that the 𝑞 variables with

order listed in Adj𝐶 ( 𝑗) queried by C𝑗 have value 𝑣 𝑗,1, 𝑣 𝑗,2, . . . , 𝑣 𝑗,𝑞 ,

respectively. This way of encoding is very convenient for evaluating

whether each constraint is satisfied or not. But requires some work

to make sure that the values 𝑣 𝑗 are consistent: Different constraints

will share variables and the value of any variable across different

constraints should be the same. Recall that, in the previous section

when we discuss the regularization step for our CSPℭ with variable

set 𝑉 = [𝑁 ] and constraints C1, . . . , C𝑅 , from which we obtain a

new CSP ℭ′
such that each variable appears in exactly 𝑑 number

of the new constraints. Furthermore, a new variable in ℭ′
will be a

tuple composed of a variable 𝑖 ∈ 𝑉 and a constraint C𝑗 that queries

𝑖 . Therefore, our way of encoding in (7.1), in a sense, is to write the

superpositions of the new variables along with their values in the

regularized CSP.

Let 𝑛1, 𝑛2, . . . , 𝑛𝑇 be the cardinalities of

Adj𝑉 (𝑖1),Adj𝑉 (𝑖2), . . .Adj𝑉 (𝑖𝑇 ) where 𝑖1, 𝑖2, . . . , 𝑖𝑇 are arbi-

trary variables from 𝑉1,𝑉2, . . . ,𝑉𝑇 , respectively. Next, we describe

our protocol for the CSP instance that we have.

Algorithm 7.10: Protocol for doubly explicit CSP

Let 𝜀 be some small enough constant, and 𝑘 some large enough

constant.

Prover provides:
(i) 𝑇 primes 𝑝1, 𝑝2, . . . , 𝑝𝑇 , such that 𝑝𝑖 ∈ [⌊𝑛1/3

𝑖
⌋ −

4⌊𝑛1/3
𝑖

⌋2/3, ⌊𝑛1/3
𝑖

⌋] .
(ii) Ψ := 2𝑘 copies of the state∑︁

𝑗∈[𝑅 ]
| 𝑗⟩|𝑣 𝑗 ⟩, ∀𝑗 ∈ [𝑅], 𝑣 𝑗 ∈ Σ𝑞 .

(iii) Φ := 2𝑘 copies of the state∑︁
𝑗∈[𝑅 ]

| 𝑗⟩
∑︁

𝑣∈Σ𝑞 :𝑣≠𝑣𝑗

|𝑣⟩√︁
|Σ|𝑞 − 1

.

Verifier:
(i) Test if 𝑝1, 𝑝2, . . . , 𝑝𝑇 are primes satisfying the size con-

straints, reject if not.
(ii) Symmetry test on Ψ and Φ.
(iii) Sparsity test II on (Ψ,Φ) with target sparsity |Σ|−𝑞 and

precision 𝜀

(iv) Validity test on Ψ.
(v) Constraints test Ψ.

The constraints test will be used to check the new constraints of

our CSP after the regularization. But before we formally describe the

constraints test, we make some preparations. Let 𝐻 = C𝑅 ⊗C |Σ |𝑞 ⊗
C𝑁 ⊗ C |Σ | . The first register is the constraint register. The second
register is used to encode the values of the 𝑞 variables queried by

the constraint stored in the first register. The third register is the

variable register to store the variable name. The last register is used

to store the value of the variable in the third register. Nowwe define

three quantum channels that will be used to manipulate our state

in the constraints test.

• A, the operator that converts a given state from (7.1) to an actual

superposition of the new variables from ℭ′
together with their

values.

• M𝑘 for 𝑘 ∈ [𝑑], the operator that “implements” the 𝑘th one after

we decompose the d-regular expander graphs into matchings.

• B, the operator that given | 𝑗⟩|𝑣 𝑗 ⟩, evaluates if C𝑗 outputs 1 if

the values of the variables it queries are given by the string 𝑣 𝑗 .

Precisely, let B acting on C𝑅 ⊗ C𝑞 |Σ | ⊗ C2 be such that

B : | 𝑗⟩|𝑣⟩|0⟩ ↦→ | 𝑗⟩|𝑣⟩|C𝑗 (𝑣)⟩.
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Recall that the constraints of ℭ′
consist of that from ℭ and the

consistency constraints induced by the expander graphs and self-

loops we add. As B checks if the value 𝑣 satisfies the constraints

C𝑗 , it takes care of the first kind of constraints of ℭ′
.

Define the operator A acting on 𝐻 = C𝑅 ⊗ C |Σ |𝑞 ⊗ C𝑁 ⊗ C |Σ |
such that

A : | 𝑗⟩|𝑣⟩|0⟩|0⟩ ↦→ 1

√
𝑞

𝑞∑︁
𝜄=1

| 𝑗⟩|𝑣⟩|𝑖𝜄⟩|𝑣𝜄⟩,

where 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑞 are the variables listed in Adj𝐶 ( 𝑗). In words,

given the constraints 𝑗 , and the values 𝑣 to the variables that 𝑗

queries, we put the third and fourth register (the variable register)

into the superposition of the variables in Adj𝐶 ( 𝑗) together with
their value based on 𝑣 .

Next, we define M formally. Recall that for any variable 𝑖 ∈
[𝑁 ], after regularization, the set of variables constructed from 𝑖

includes

𝑉 ′
𝑖 = {(𝑖, 𝑗) : 𝑗 ≤ 𝑛′𝑖 },

𝑉 ′′
𝑖 = {(𝑖, 𝑗) : 𝑛′𝑖 < 𝑗 ≤ 𝑛𝑖 }.

The new constraints include an expander 𝐺𝑖 on 𝑉
′
and self-loops

on 𝑉 ′′
𝑖
. We can decompose 𝐺𝑖 into 𝑑 matchings, and for variables

in 𝑉 ′′
𝑖
, they are matched with themselves. For any 𝑘 ∈ [𝑑], let M𝑘

be the operator such that:

M𝑘 : | 𝑗⟩|𝑣⟩|𝑖⟩|𝑣 ′⟩ ↦→ | 𝑗 ′⟩|𝑣⟩|𝑖⟩|𝑣 ′⟩,
where

𝑗 ′ =

{
Adj

local→global

𝑉
(𝑖,Π𝐺𝑖

(𝜄, 𝑘)), 𝜄 ≤ 𝑛′
𝑖
,

𝑗, otherwise,
(7.2)

𝜄 = Adj
global→local

𝑉
(𝑖, 𝑗) .

That is, suppose we take the 𝑘th matching to permute the variables

in ℭ′
, then 𝑗 ′ in (7.2) determines that (𝑖, 𝑗) ∈ ℭ′

should be switched

to (𝑖, 𝑗 ′) ∈ ℭ′
. But the expander graphs are labeled by {1, 2, . . . , 𝑛′

𝑖
},

corresponding to indices of Adj𝑉 (𝑖), to obtain the actual constraint

C𝑗 ′ , we need to convert from local index to global index, and later

convert it back.

A together with M𝑘 takes care of the consistency constraints

just like how we do it for UG games. Take a pair of equal states |𝜓 ⟩
and |𝜙⟩ supposed to be valid. Apply A to both states. But apply

M𝑘 only to |𝜙⟩. Now the two states are equal if the original states

encode a consistent value for all constraints, except we should

ignore the second register. To get rid of the second register, we

make a measurement. In particular, let

|𝜇⟩ = 1

|Σ|−𝑞
∑︁
𝑣∈Σ𝑞

|𝑣⟩.

Consider the measurement𝑀 = {Π |𝜇⟩⟨𝜇 | , 1 − Π |𝜇⟩⟨𝜇 | }. It’s easy to

see that after the measurement, with probability 𝑝 = |Σ|−𝑞 , the
second register is set to |𝜇⟩ and thus disentangled from the other

registers. Since we have a larger number of provers, with 𝑝 fraction

of proofs left is enough.

Note that A,M,B are all valid quantum operations.

Claim 7.11. A,B,M𝑘 can be implemented by BQP circuits.

With the above preparation, we now describe the constraints

test.

Constraints test

Input: Ψ0,Ψ1, each is a set of 𝑘 states for some large constant 𝑘 .

Pair the states in Ψ and Φ.
For each pair |𝜓⟩ and |𝜙⟩, with probability 2𝑑/(2𝑑 + 1) take the
consistency check, with the remaining probability take the inner

constraints test

(i) Consistency check

- Apply A to |𝜙⟩ and |𝜓⟩.
- Apply M𝑘 to |𝜙⟩ for a uniformly random 𝑘 ∈ [𝑑].
- Measure the second register of |𝜓 ⟩, |𝜙⟩ based on 𝑀 , if

either measurement does not output |𝜇⟩, ignore this pair.
- SwapTest on |𝜓⟩ and |𝜙⟩.

(ii) Inner constraints test

- With probability 1 − |Σ|−2𝑞 , ignore this pair.
- Apply B to |𝜓⟩
- Measure the third register, Accept if 1 is observed.

Accepts if more than 𝜃 fraction of the pairs (that are not ignored)

get accepted, where

𝜃 = 1 − 1 − 𝛿

4(2𝑑 + 1) .
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