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ABSTRACT

Quantum entanglement is a fundamental property of quantum me-
chanics and it serves as a basic resource in quantum computation
and information. Despite its importance, the power and limitations
of quantum entanglement are far from being fully understood. Here,
we study entanglement via the lens of computational complexity.
This is done by studying quantum generalizations of the class NP
with multiple unentangled quantum proofs, the so-called QMA(2)
and its variants. The complexity of QMA(2) is known to be closely
connected to a variety of problems such as deciding if a state is en-
tangled and several classical optimization problems. However, deter-
mining the complexity of QMA(2) is a longstanding open problem,
and only the trivial complexity bounds QMA C QMA(2) € NEXP
are known.

In this work, we study the power of unentangled quantum
proofs with non-negative amplitudes, a class which we denote
QMA™(2). In this setting, we are able to design proof verification
protocols for (increasingly) hard problems both using logarithmic
size quantum proofs and having a constant probability gap in dis-
tinguishing yes from no instances. In particular, we design global
protocols for small set expansion (SSE), unique games (UG), and
PCP verification. As a consequence, we obtain NP C QMAI:)g(Z)
with a constant gap. By virtue of the new constant gap, we are able
to “scale up” this result to QMA™(2), obtaining the full character-
ization QMA™*(2) = NEXP by establishing stronger explicitness
properties of the PCP for NEXP. We believe that our protocols are
interesting examples of proof verification and property testing in
their own right. Moreover, each of our protocols has a single isolated
property testing task relying on non-negative amplitudes which if
generalized would allow transferring our results to QMA(2).

One key novelty of these protocols is the manipulation of quan-
tum proofs in a global and coherent way yielding constant gaps.
Previous protocols (only available for general amplitudes) are ei-
ther local having vanishingly small gaps or treating the quantum
proofs as classical probability distributions requiring polynomially
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many proofs. In both cases, these known protocols do not imply
non-trivial bounds on QMA(2).
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1 INTRODUCTION

Quantum entanglement is a fundamental property of quantum
mechanics and it plays a major role in several fields such as quan-
tum computation, information, cryptography, condensed matter
physics, etc [28, 42, 43, 51]. Roughly speaking, quantum entangle-
ment is a distinctive form of quantum correlation that is stronger
than classical correlations. Entanglement can lead to surprising
(and sometimes counter-intuitive) phenomena as presented in the
celebrated EPR paradox [23] and the violation of Bell’s (style) in-
equalities [8, 18]. In a sense, entanglement is necessary to access
the full power of quantum computation since it is known that quan-
tum computations requiring “little” entanglement can be simulated
classically with small overhead [48]. Entanglement is also crucial
in a variety of protocols such as quantum key distribution [9], tele-
portation [10], interactive proof systems [30], and so on. However,
despite this central role, the power and limitations of quantum
entanglement are far from being understood. Here, we study quan-
tum entanglement via the lens of computational complexity. More
precisely, we investigate the role of entanglement in the context of
quantum proof verification.

The notions of provers, proofs, and proof verification play a
central role in our understanding of classical complexity theory [3].
The quantum setting allows for various and vast generalizations of
these classical notions [49]. For instance, by allowing the proof to be
a quantum state of polynomial size and the verifier to be an efficient
quantum machine, one obtains the class QMA which is a natural
generalization of the class NP [50]. The QMA proof verification
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model can be further generalized to two quantum proofs from two
unentangled provers. This generalization gives rise to a class known
as QMA(2) [38] (see Definition 2.1). This latter complexity class
is known to be closely connected to a variety of computational
problems such as the fundamental problem of deciding whether a
quantum state (given its classical description) is entangled or not.
It is also connected to a variety of classical optimization problems
such as polynomial and tensor optimization over the sphere as well
as some norm computation problems [25].

Determining the complexity of QMA(2) is a major open prob-
lem in quantum complexity. Contrary to many other quantum
proof systems (e.g., QIP [29] and MIP* [30]), we still do not know
any non-trivial complexity bounds for QMA(2). On one hand, we
trivially have QMA C QMA(2) since a QMA(2) verifier can sim-
ply ignore one of the proofs. On the other hand, a NEXP verifier
can guess exponentially large classical descriptions of two quan-
tum proofs of polynomially many qubits and simulate the verifica-
tion protocol classically in exponential time. Hence, we also have
QMA(2) € NEXP. Despite considerable effort with a variety of
powerful techniques brought to bear on this question, such as semi-
definite programming hierarchies [6, 22, 26], quantum de Finetti
theorems [13, 14, 39], and carefully designed nets [15, 47], only the
trivial bounds QMA € QMA(2) € NEXP are known.

Even though there are no non-trivial complexity bounds for
QMA(2), there are results showing surprisingly powerful conse-
quences of unentangled proofs. An early result by Blier and Tapp
[12] shows that two unentangled proofs of a logarithmic number
of qubits suffice to verify the NP-complete problem of graph 3-
coloring. The version of QMA(2) with logarithmic-size proofs is
known as QMA|q4(2). It is know that QMA;,,(1) € BQP from the
work of Marriott and Watrous [41], and this together with their pro-
tocol provides some evidence that having two unentangled proofs
of logarithmic size is more powerful than having a single one. This
suggests that the lack of quantum entanglement across the proofs
can play an important role in proof verification. Furthermore, note
that this situation is in sharp contrast with the classical setting
where having two classical proofs of logarithmic size is no more
powerful than having a single one since two proofs can be combined
into a larger one.

The above protocol has a critical drawback, namely, the verifier
only distinguishes yes from no instances with a polynomially small
probability. This distinguishing probability is known as the gap of
the protocol. These weak gaps are undesirable for two reasons. First,
we cannot obtain tighter bounds on QMA(2) from these protocols
since scaling up these results to QMA(2) leads to exponentially
small gaps. Such tiny gaps fall short to imply NEXP = QMA(2)
as the definition of QMA(2) can tolerate up to only polynomially
small gaps. Second, the strength of the various hardness results that
can be deduced from these protocols depends on how large the gap
is. For instance, we do not know if several of these problems are also
hard to approximate within say a more robust universal constant.
A series of subsequent works extended Blier and Tapp’s result
in the context of QMAIOg(Z) protocols for NP-complete problems
[7, 17, 24]. However, all these protocols suffer from a polynomially
small gap.

1630

Fernando Granha Jeronimo and Pei Wu

Another piece of evidence pointing to the additional power
of unentangled proofs appears in the work of Aaronson et al. [1].
They show that O(y/n) quantum proofs of logarithmic size suffice
to decide an NP-complete variant of the SAT problem of size n with
a constant gap. Due to the work of Harrow and Montanaro [25], it
is possible to convert this protocol into a two-proof protocol where
each one has size O(yn) and the gap remains constant. Unfortu-
nately, this converted protocol does not imply tighter bounds for
QMA(2) since it only shows NP C QMA(2).

In this work, we study unentangled quantum proofs with non-
negative amplitudes. We name the associated complexity classes
introduced here as QMA*(2) and QMAﬁ)g(Z) (see Section 2.1) in

analogy to QMA(2) and QMAlog(Z), respectively. The main ques-
tion we consider is the following:

What is the power of unentangled proofs with non-negative
amplitudes?

This non-negative amplitude setting is intended to capture
several structural properties of the general QMA(2) model while
providing some restriction on the adversarial provers in order to
gain a better understanding of unentangled proof verification. In
this non-negative amplitude setting, we are able to derive much
stronger results and fully characterize QMAY (2). In particular, we
are able to design QMAﬂ)g(Z) protocols with constant gaps for

(increasingly) hard(er) problems. Each of these protocols contributes
to our understanding of proof verification and leads to different
sets of techniques, property testing routines, and analyses.

Our first protocol is for the small set expansion (SSE) prob-
lem [4, 45]. Roughly speaking, the SSE problem asks whether all
small sets of an input graph are very expanding’ or if there is a
small non-expanding set. The SSE problem arises in the context
of the unique games (UG) conjecture. This conjecture plays an
important role in the classical theory of hardness of approxima-
tion [31-33, 36, 37, 44]. One key reason is that the unique games
problem is a (seemingly) more structured computational problem
as opposed to more general and provably NP-hard constraint sat-
isfaction problems (CSPs) making it easier to reduce UG to other
problems. In this context, the SSE problem is considered an even
more structured problem than UG since some of its variants can
be reduced to UG. This extra structure of SSE compared to UG can
make it even easier to reduce SSE to other problems. So far the
hardness of SSE remains an open problem —it has evaded the best
known algorithmic techniques [46].

+
log

(2)

THEOREM 1.1 (INFORMAL). Small set expansion is in QMA

with a constant gap.

Our second protocol is for the unique games problem. The
UG problem is a special kind of CSP wherein the constraints are
permutations and it is enough to distinguish almost fully satisfiable
instances from those that are almost fully unsatisfiable. The fact
that the constraints of a UG instance are bijections which in turn
can be implemented as valid (i.e., unitary operators) is explored
in our protocol. Although the hardness of UG remains an open
problem, a weaker version of the UG problem was recently proven

n terms of edge expansion.
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to be NP-hard [5, 20, 35]. From our UG protocol and this weaker
version of the problem, we obtain NP C QMALg(Z) with a constant

gap (see Corollary 1.3 below).

THEOREM 1.2 (INFORMAL). Unique Games is in QMAﬂ)g(Z) with

a constant gap protocol.

A key novelty of our protocols is their global and coherent
manipulation of quantum proofs leading to constant gaps. The
previous protocols for QMA|,,(2) with a logarithmic proof size are
local in the sense that they need to read local information? from
the quantum proofs thereby suffering from vanishingly small gaps.
Furthermore, the previous protocol with a constant gap treats the
quantum proofs as classical probability distributions (e.g., relying on
the birthday paradox) and this classical treatment ends up requiring
polynomially many proofs to achieve the constant gap.

Another interesting feature of our protocols is that they al-
ready almost work in the general amplitude case in the sense that
each protocol isolates a single property testing task relying on
non-negative amplitudes. If such a property testing task can be
generalized to general amplitudes, then the corresponding protocol
works in QMAlog(Z) as well.

As discussed earlier, by Theorem 1.2 together with the work on
the 2-to-2 conjecture, we obtain that NP is contained in QMAf;g (2)

with a constant gap.

Corollary 1.3 (Informal). NP C QMAIJ:)g(Z) with a constant gap.

By virtue of the constant gaps of our protocols for QMAEg(Z),

we can “scale up” our results to give an exact characterization of
QMA™*(2) building on top of ideas of very efficient classical PCP
verifiers.

THEOREM 1.4. QMA™(2) = NEXP.

The characterization above is proven by designing a global
QOMA™(2) protocol for NEXP. To design this global protocol, we
not only rely on the properties of the known efficient classical
PCP verification for NEXP, but we need additional explicitness and
regularity properties. Regarding the explicitness, we call doubly
explicit the kind of PCP required in our global protocol (in analogy
to the terminology of graphs). Roughly speaking, doubly explic-
itness means that we can very efficiently not only determine the
variables appearing in any given constraint, but also reverse this
mapping by very efficiently determining the constraints in which
a variable appears. Here, we prove that these properties can be
indeed obtained by carefully combining known PCP constructions.

An intriguing next step is to explore the improved understand-
ing of the unentangled proof verification from our protocols in the
general amplitude case. Investigating problems like SSE and UG
might provide more structure towards this goal. Characterizing the
complexity of QMA(2) would be extremely interesting whatever
this characterization turns out to be.

ZRoughly speaking, they treat a quantum proof as quantum random access codes that
encodes n bits using log, (n) qubits. By Nayak’s bound the probability of recovering
a queried position is polynomially small in n.
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Organization. This document is organized as follows. In Sec-
tion 3, we give an overview of our global protocols. In Section 2,
we formally define QMA™*(2) and its variants as well as fix some
notation and recall basic facts. In Section 4, we develop some quan-
tum property testing primitives that will be common to our proto-
cols. In Section 5, we present our global protocol for SSE. In Sec-
tion 6, we present our global protocol for UG and we use it to prove
NP C QMAlt)g(Z) with a constant gap. In Section 7, we prove the

characterization QMA™ (2) = NEXP.

2 PRELIMINARIES

Let N, R, C stand for the natural, real, and complex numbers. N*
denotes the positive natural number. For any real number x,

1 x > 0;
sgn(x) =40 x=0;
-1 x<0.

In this paper, log stands for the logarithm to base 2. We adopt both
the Dirac notation and the usual notation of vectors (whichever
seems more appropriate) as we consider both quantum and classical
objects. For p € [1, o), we denote the £,-norm of u € C" as ||u||p,

ie., ||u||p = (27:1 |ui|p)1/p. We omit the subscript for the £-norm,

ie., |lull == ]|2||,. We denote the foo-norm of u € C” as ||u||, i.e.,
lullo = max;e[p) |uil- Let Sp == {u € C™*1 . jull = 1} be the
n-dimensional sphere and S}, = {u € (Rx0)™! : |lu|| = 1} be

the intersection of the n-dimensional sphere and the non-negative
orthant. The subscript will almost always be omitted in this manu-
script since it can be confusing and the dimension is normally clear
from the context. Adopt the short-hand notation [n] = {1,2,...,n}.
For any universe U and any subset S C U, let S := U \ S. Denote
the characteristic vector of S by 1g, i.e., 15 € RY and

15(x) = {

For a logical condition C, we use the Iverson bracket

if C hol
]1[C]={ if C holds,

otherwise.
2.1 Quantum Merlin-Arthur with Multiple
Provers

1

0 otherwise.

ifxes,

1
0

The class QMA (k) can be formally defined in more generality as
follows.

Definition 2.1 (QMA,(k,c,s)). Letk: N — Nandec,s,£: N —
R* be polynomial time computable functions. A promise problem
Lyes, Lno € {0,1}* is in QMA, (k, ¢, s) if there exists a BQP verifier
V such that for every n € N and every x € {0, 1}",
Completeness: If x € Lyes, then there exist unentangled states
[¥1), .- Yk (n))> each on at most £(n) qubits, s.t. Pr[V(x, |¢1) ®
= ® |k (n))) accepts] > c(n).
Soundness: If x € Ly, then for every unentangled
states |yn), ..., [Yk(n)), each on at most £(n) qubits, we have
Pr[V(x 1) ® -~ ® i (n))) accepts] < s(n).



STOC ’23, June 20-23, 2023, Orlando, FL, USA

Harrow and Montanaro proved that: For any state |} € C% ®
ch .. @Ch,if

max (| d1¢2...dk) =1—¢
$ieCei
then the product test rejects |1//)®Z with probability Q(¢). Based on

this product test, Harrow and Montanaro further showed in the
QMA protocols, the number of provers can always be reduced to 2.

THEOREM 2.2 (HARROW AND MONTANARO [25]). For any
6k,0<s<c<1,

OMA,(k,c,s) € QMA.,(2,5",¢),
wherec¢’ = (1+¢)/2 ands’ =1 — (1 —s)%/100.
The class QMA:Y(k, ¢, s) is defined exactly the same way, ex-

cept that the proofs |¢1), ..., |¢x) should have real, non-negative
amplitudes. In our work, we are only interested in

MA@ = | QMAd .., 2 es),
c—s=Q(1)
OMA*(2) = U OMAY ) (2.¢.59).
ieN, c—s=Q(1)

Instead of having only 2 provers, it is much more convenient to
consider k provers for some large constant k. This is without loss of
generality, as Theorem 2.2 generalizes to QMA™ as well. As a result,
as long as the QMA™ (k, ¢, 5) protocol is such that ¢ > 1—(1-s5)?/50,
it can be converted back to a QMA™(2) protocol with a constant
gap. The condition that ¢ > 1 — (1 — 5)%/50 is also not much of an
issue, since by a repetition involving more provers, we can amplify
any constant (c,s) gap to a (1 — ¢, §) gap for ¢, close to 0. In the
remainder of the paper, we will use constantly many proofs without
further referring to this result.

2.2 Trace Distances

A standard notion of distance for quantum states is that of the
trace distance. The trace distance between |¢/) and |$), denoted

DAY 1) s
STy (9001~ 1)),

The following fact provides an alternative definition for trace dis-
tance.

Fact 2.3. The trace distance between |$) and ) is given by

D(I$), [¥)) = 1= K 1P)I*.

The trace distance remains small under the tensor product.

Fact 2.4. Let |Yo), |¢o) € Sp and |Y1),|¢1) € Sm for arbitrary
n,m € N. Then

D(Iy0) ® [y1). I¢0) ® I$1)* < D(Iyo). [$0) + D(ly1). [$1))*.

Two states with small trace distance are indistinguishable to
quantum protocols.

Fact 2.5. If a quantum protocol accepts a state |$p) with probability
at most p, then it accepts |) with probability at most p +D(|¢), |{)).
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We will use the well-known swap test to compare unentangled
quantum states.

Fact 2.6 (Swap Test). Let |¢) and |¢) be two quantum states
on the same Hilbert space. Then the acceptance probability of

SwapTest(|), [)) is 5 + 1% lzl//>|2~

We can equivalently state the acceptance probability of the
swap test in terms of the trace distance as follows.

Remark 2.7. Any two quantum states |¢) and |{) pass the swap
test with probability 1 — %D(|¢), [¥))2.

We record the following elementary facts. They are special
cases of trace distance made explicit in the inner product language.

Claim 2.8. Letu,0,z € S; for any natural numberd. Let e > 0 be
some small real constant.

(i) (Closeness preservation) If (u,v)? > 1 — &. Then
|(u, z)% = (v, z)2| < 3e
(ii) (Triangle inequality) If (u,z)*> > 1 — ¢, and {0,z)? > 1 —¢.
Then
(,0)% > 1 - 2¢.

2.3 Expander Graphs

Let G = (V, E) be a d-regular graph. For non-empty sets S,T C V,
we denote by E(S, T) the following set of edges E(S,T) = {(x,y) €
E | x € S,y € T}.? The edge expansion of a non-empty S C V,
denoted ®;(S), is defined as
_ EGS, V)
D;(S) = —d|S| >
and it is a number in the interval [0,1]. For S C V, we refer to
relative size |S| /|V| as the measure of S. A closely related notion

called Cheeger constant for G, is defined as
|E(S,V\ S)|
SCGiSI<IGl/2 Is| -

3 OVERVIEW OF GLOBAL PROTOCOLS

We now give an overview of our global protocols for SSE in Sec-
tion 3.1, for UG in Section 3.2 and for NEXP in Section 3.3. As
alluded earlier, a key insight of these protocols is the manipulation
of quantum proofs in a global and coherent way in order to achieve
a constant gap. For the problems considered here, there is always an
underlying graph to the problem whose edge set can be (or almost)
decomposed into perfect matchings. Taking advantage of this col-
lection of perfect matchings will be one of the aspects in allowing
for a global manipulation of the quantum proofs in these proto-
cols. It will be more convenient to design protocols with constantly
many unentangled proofs rather than just two. Recall that due to
the result of Harrow and Montanaro [25], these protocols can be
converted into two-proof protocols with a constant multiplicative
increase in the proof size.

3The graphs are usually undirected. In this case, E(S, S) actually counts the same
edge twice by the definition.
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3.1 Small Set Expansion Protocol

We provide an overview of the SSE protocol in QMAf:)g(Z) with a

constant gap from Section 5. Suppose that we are given an input
n-vertex graph G on the vertex set V. Our goal is to decide whether
G is a yes or no instance of (7, §)-SSE. Recall that, in the yes case,
there exists a set S of measure §, such that S essentially does not
expand, i.e., &5 (S) < n ~ 0. Nonetheless, in the no case, every set
S of measure at most § has near-perfect expansion, i.e., ®G(S) >
1-n=~1

In the design of the protocol, we are allowed two unentangled
proofs on O, s(log(n)) qubits. It is natural to ask for one of these
proofs to be a state |/) “encoding” a uniform superposition of
elements of a purported non-expanding set S of the form

Zu).

i€S

1
|l//>—$

We now check the non-expansion of the support set of |¢/) as follows.
Suppose we could apply the adjacency matrix A of G directly to the
vector |¢/). While A is not necessarily a valid quantum operation, it
will not be difficult to resolve this issue later. If we are in the yes
case and the support of |/) indeed encodes a non-expanding set,
we would have supp(A|y)) N supp(|¥)) ~ supp(|¢)). However, if
we are in the no case, provided the size of supp(|¢)) is small (at
most a d fraction of the vertices), the small set expansion property
of G would imply supp(Al¢)) N supp(|y)) =~ 0.

How can we check the support conditions above? For this,
suppose that we have not only one copy of |¢) but rather two
equal unentangled copies |1) = |2). We apply A to |¢/1) and then
measure the correlation between A|;) and |). In the yes case,
the two vectors are almost co-linear, whereas in the no case they
are almost orthogonal. It is well-known that co-linearity versus
orthogonality of two unentangled quantum states can be tested via
the swap test.

We now address the issue that the adjacency matrix A may not
be a unitary matrix, and hence it is not necessarily a valid quantum
operation. Nonetheless, the adjacency matrix of a d-regular graph
can always be written as a sum of d permutation matrices Py, . .., Py,
which are special unitary matrices. In terms of the support guar-
antees described above, it is possible to show that applying one of
these permutation matrices uniformly at random in the protocol
leads to a similar behavior as applying A.

In the yes case, it can be shown that all goes well with the above
strategy. However, in the no case, things become more delicate
starting with the fact that |¢/) is an arbitrary adversarial state of

the form
) = > aili),
i€eS
where we have no control over the amplitudes ;’s magnitudes and
phases.

One important issue is that the support of |¢/) may not be
small (i.e., at most a ¢ fraction), and the graph G may have large
non-expanding sets even in the no case. We design a sparsity test
to enforce that its support is indeed small. The soundness of this
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sparsity test takes advantage of the non-negative amplitudes as-
sumption to achieve dimension-independent parameters and this is
the only test of the protocol that rely on the non-negative assump-
tion. This points to a very natural question in quantum property
testing: how efficiently can we test sparsity* with the help of a
prover in the general amplitude case?

In our protocol, the support conditions from above are actually
checked by considering the average magnitude of the overlap be-
tween P, |¢/) and |¢/). This overlap governs (part of) the acceptance
probability of the protocol which can be bounded as

1 1
S N1l < g 2 A bl = G AMAIID

where ||{/|) = X;es |@i| |i). With this bound, phases are no longer
relevant.

A second important and more delicate issue is that the mag-
nitude of the amplitudes «;’s of |i/) may be very far from flat. By
definition, the SSE property of the graph G only states that for every
“flat” indicator vector 1g, where S is any vertex set of measure at

15 | 15

most §, we have
A ~ 0
n.d
< N |5|>

Nonetheless, in order to not be fooled by the provers, we need a
stronger analytic condition

1

d

d

where u ranges over arbitrary unit vectors. For every disjoint set
S,T € V of combined measure at most J, the SSE property of G
i

allows us to deduce
A — ~ 0
n.d
< |S| IT| >

Ideally, we would like to leverage the bounds we have for flat
indicator vectors of small sets from (3.1) to conclude that arbitrary
unit vectors of small support have a bounded quadratic form. The
seminal work on 2-lifts [11] of Bilu and Linial dealt with a similar
question, but without the sparse support conditions. Surprisingly,
they gave sufficient conditions for this phenomenon. Here, we prove
that the same phenomenon also happens for the sparse version of
the problem. In particular, this shows that SSE graphs satisfy the
more “robust” analytic SSE property. Using this robust property,
we conclude the soundness of the protocol.

max Aulu) =0,
u: [lully=1,|supp(u)| <5|V|

1

d

1g

(3.1)

3.2 Unique Games Protocol

We provide an overview of the UG protocol in QMAﬂ)g(Z) with a
constant gap from Section 6. Suppose that we are given an input
UG instance with alphabet >, namely, an n-vertex d-regular graph
G = (V,E), where each directed® edge e € E is associated with
a permutation constraint f,: ¥ — X. We say that an assignment
¢: V — 3 satisfies an edge e = (i, j) if fz(£(i)) = £(j). This means
that for each assigned value for i there is a unique value for j and
“4For this task, we can have multiple unentangle copies of the state to be tested as well

multiple unentangle proofs to help the tester.
5The reverse edge of e is typically associated with the constraint £ .
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vice-verse satisfying the permutation constraint of edge e. The goal
is to distinguish between (yes) there exists an assignment satisfying
at least 1 — 5 fraction of the constraints, and (no) every assignment
satisfies at most a § fraction of constraints.

In the yes case, the protocol expects from the unentangled
provers copies of a quantum state |{/) encoding an assignment ¢ of
value at least 1 — 5 of the form

o1
= —|i)|£(i)) .
V)=, )

i=1

(3.2)

We will again explore the underlying graph structure of the problem
to make the proof verification global leading to a constant gap.
Similarly to the SSE protocol, we will also use the fact that the
adjacency matrix A of a d-regular graph can be written as a sum
of d permutation matrices Py, . .., P; and these matrices are special
cases of unitary operators. Using a permutation matrix P, and the
UG constraints, we will define a unitary operator II, intended to
help us check the constraints along the edges of P,. Each II, is
defined as follows

rli)la) = (Prli) | fiip,i) (@),

where i ranges in V and a ranges in £. The crucial observation is that
if the constraints along the edges of P, are almost fully satisfied
by ¢, we should have |¢) ~ II,|¢) whereas if they almost fully
unsatisfied by ¢, we should have |/) almost orthogonal to II,|¢).
By sampling a uniformly random IT, and checking this approximate
co-linearity versus orthogonality property, we obtain a global test
to check if an assignment is good.

In the no case, there is no reason the adversarial provers will
provide proofs of the form (3.2) encoding a valid assignment. In
general, we will have an arbitrary state of the form

) = Zazm (Z ﬁza|a>)

aey
There are two main issues. First, the adversary can omit the as-
signment to several vertices by making @; ~ 0. Second, even if
all the vertices are present in the superposition with amplitudes
@; = 1/+/n, the prover can assign a superposition of multiple values
to each position as in

|¢>—Z—|>(

Fortunately, both of these issues can be handled in a global way. In
addressing the second issue, we currently rely on the non-negative
amplitudes assumption. To give a flavor of why non-negative am-
plitudes can be helpful, consider the following simplified scenario
that > = {0,1} and

—10)+ —[1 ))

ly) = Z—m(w 7

Suppose that we measure the second register (containing the values
in %) of two copies of |{/) obtaining |0) and |1), and let |o) and |/1)
be the resulting states on the first register containing the indices
of the vertices, respectively. In the ideal scenario, if each vertex
has a single well defined value in |/) (which is not the case in this
example), we should have |/p) L |¢/1). If not (as in this toy example),

> Biala)

acy
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the supports of |/p) and |y/1) are not disjoint. With non-negative
amplitudes, if there is substantial “mass” in the intersection of their
supports, then this condition can be tested using a swap test since
(Yo | 1) will be large (in this toy example it is 1 as [p) = |¢1) =
i 1/nlD).

With this UG protocol and the recent proof® of the NP-hardness
of deciding UG with parameters n = 1/2 and § > 0 an arbitrarily
small chosen constant, we can deduce that NP C QMA log(2).

3.3 PCP Verification Protocol for NEXP

We provide an overview of the NEXP protocol in QMA*(2) with
constant gap from Section 7. Recall that scaling up to QMA(2) the
previous protocols for QMAlog(Z) from literature leads to expo-
nentially small gaps which are intolerable to QMA(2). This mo-
tivates our study of constant gap protocols for hard problems in
QMAf;g(Z). Our new constant gap protocols can be indeed scaled

up to QMA*(2) and the gap remains constant! Another issue un-
resolved in the previous work is that if we scale up the protocol
naively, the running time of the verifier becomes exponential and
this is also intolerable to QMA(2) (or QMA™*(2)) which requires
a polynomial-time BQP verifier. Simultaneously achieving a con-
stant gap with a polynomial-time verifier is quite interesting since
this requires considering very efficient forms of quantum proof
verification.

Classically, it is known that NEXP admits polynomial-time
proof verification protocols with a constant gap, i.e., very efficient
PCPs. Note that the proof size is exponentially large in the input
size and the verification runs in polylogarithmic time in the size of
the proof. These protocols manipulate exponentially large objects
given in very succinct and explicit forms. We will build on some of
these PCPs results to design our QMA™* (2) protocol for NEXP, but
our global verification of quantum proofs will require even stronger
explicitness and regularity properties of these objects. In this work,
we prove these additional properties by carefully investigating the
composition of known PCP constructions.

A PCP protocol naturally gives rise to a label cover CSP (via a
simple and standard argument). We give a global QMA™* (2) protocol
for label cover arising from the PCP for NEXP with the additional
explicitness and regularity properties alluded above. Recall that a
label cover instance is given by a bipartite graph G = (LUR, E) with
a left and right vertex partitions L and R, left and right alphabets
31 and X and constraints fz: X — Xg on the edges e € E.
Given assignments to the left and right partitions f1: L — X
and fg: R — 3R, a constraint on edge e = (i, ) is satisfied if
fe(€r(i)) = €r(j). In this correspondence of PCP and label cover,
the left vertices correspond to the constraints of the PCP verifier
and the right vertices correspond to the symbols of the proof which
are the variables in the PCP constraints.

We now give an abstract simplified description of our protocol
to convey some intuition and general ideas. The precise protocol is
actually more involved and somewhat different (see Section 7 for
its full description). In the yes case our QMA™(2) protocol expects

®Coming from the proof of the 2-to-2 conjecture.
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to receive copies of the state |7 ) and from it obtain copies of a
state similar to |/g) both described below

IAEDY IEDY

i€l jER

L 1i)leR()).

VIR

ﬁwmi» and

(3.3)

Note that the left assignment £ specifies the values of all variables
appearing in each PCP constraint, and g specifies the values of
variables appearing in the PCP proof. In this case, checking the
constraints (essentially) amounts to testing consistency of these
various assignments to the variables. To accomplish this goal, we
design two operations’ Iy and I'g such that,? if the label cover in-
stance is fully satisfiable (with £ and ¢g), then I7 (|¢r)) = Tr(|¥r)),
otherwise I (|¢r)) will be approximately orthogonal to I'r(|yr)).
In a vague sense, I7, tries to extract the value of some variables in
the constraints and I'g tries to replicate the values of each variable
in a quantum superposition so that I'; (|z)) and I'r(|¢/g)) become
equal if ¢, fg are fully satisfying assignments and they become
close to orthogonal if the CSP instance is far from satisfiable (re-
gardless of £, £g). At a high level, there is some parallel’ with the
SSE and UG protocols. There, we had |¢1) = |yr), I being the
identity and I'g being either P, (in SSE) or IT, (in UG).

A crucial point is that to make the operations I'7 and I'r efficient,
we need to be able to determine (1) the neighbors of any given vertex
in L in polynomial time, and (2) the neighbors of any given vertex
in R in polynomial time. We call an instance satisfying (1) and
(2) doubly explicit. While (1) follows easily from the definition of
PCP, to get property (2) we need to carefully compose known PCP
protocols and prove that this property holds.

Similarly to the UG protocol, we also need to check that the
quantum proofs are close to a valid encoding of an assignment to
the variables. The provers should not (substantially) omit the values
of variables nor provide a superposition of multiple values for the
same variable. Similarly, checking this second condition is the part
of the protocol that currently relies on non-negative amplitudes.

4 PROPERTY TESTING PRIMITIVES

In this section, we prove some property testing primitives that we
will use as the building blocks in designing protocols for general
problems.

The first test is the symmetry test. In many situations, we ask
the prover to provide a supply of constantly many copies of a state.
To make sure that all copies are approximately the same state, the
symmetry test will be invoked. The symmetry test in general can be
applied in any quantum protocol. A similar symmetry test has been
considered previously in [1]. Here we provide a stronger version.

The second test is the sparsity test. Consider the scenario where
we ask the prover to provide a state that is supposed to be some
subset state. In particular, let Sy C C" be the set of subset state

"We stress that this is a simplistic view of the protocol. See Section 7 for the precise
technical details.

8 Assuming |i/r.) and |/g) are of the above form.

9As in the SSE and UG protocols, there is also distribution on pairs of operator (T, Tg)
here.

1635

STOC ’23, June 20-23, 2023, Orlando, FL, USA
spanning a y fraction of computational basis, i.e.,
Dliy:SClnlIs=yn

1
SY - {ﬁies }

We call y the sparsity of the subset state in Sy. The sparsity test is
used to determine whether a given state is close to S).. Our sparsity
test relies on the fact that the amplitudes of the quantum proofs
are non-negative.

The third test is the validity test. A natural quantum proof for
many problems like the 3-SAT or 3COLOR problem is to put the
variables/vertices together with their values/colors in superposi-
tions. For example, for 3-SAT on n variables, such that variable i
has value x;, a valid proof should look like

D Il

1
Iy = —
\a icn]

This can be generalized for an arbitrary set of variables X and an
arbitrary value domain X of the variables. Then the valid set would
1 ; .
— Z|z)|x,~) :VieX,x;j €2

be
”:{miex }

The validity test tells whether a given state is close to a valid state.
Our validity test works only in the situation when the given state
is close to a state in S)|-1, which is guaranteed by the sparsity test.
Thus, this validity test does not generalize.

4.1 ¢-Tilted States

Before we discuss the tests, let’s make the following definition first.

Definition 4.1 (e-tilted states). A family of states
[Y1), [¥2), ..., |Yx) defined on a same space is an e-tilted state
if there is a subset R C [k] such that |R| > (1 — ¢)k and for any
i,j ER,

D([¢3), 1¥5)) < Ve.
Furthermore, we call ;) a representative state for anyi € R, and
the subset {|;) : i € R} the representative set.

Note that a 0-tilted state is simply a set of equal states, and any
e-tilted state is also a §-tilted state for any § > ¢. The name e-tilted
state may be confusing. Our message is that instead of treating this
object as a set of states, we should simply treat them as a single
state conceptually (for example, think of it as a representative state
tilted a little bit). As we will see later in Section 4.2, when the
symmetry test passes, we are supplied with an e-tilted state with
high probability. Having a large number of (almost) equal states
is very convenient, therefore we always take advantage of the
symmetry test and work with e-tilted states. We reserve the capital
letters, i.e., |¥) or simply ¥,'° to denote an ¢-tilted state. The size
of ¥, denoted |¥|, is the size of ¥ viewed as a set of states.

The tilted states tensorize. In particular, for two sets of states

Y= {lY1). [Y2). ... [Yi)} and @ = {[$1), [¢2). . ... |fx)} of the same
size, let ¥ @® denote the set of states {|¢1, ¢1), . . ., [¥k, Pi) } (if there

is not a default order, the order can be set arbitrarily).

191 this paper, we never use the density operator, so there should be no confusion.
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Proposition 4.2 (Tensorization of tilted states). If'¥ is an e-tilted
state and @ is a y-tilted state, and |¥| = |®| = k. Then ¥ ® ® is an
(¢ + y)-tilted state.

4.2 Symmetry Test

The symmetry test is described below.

Symmetry Test
Input: ¥ = {aj,ay,...,ar} € S for some even number k.

(i) Sample a random matching 7 within 1,2,..., k.
(if) SwapTest on the pairs based on the matching .
Accept if all SwapTests accept.

THEOREM 4.3 (SYMMETRY TEST). Suppose ¥ is not an e-tilted
state. Then the symmetry test passes with probability at most
exp(—0(e%k)). On the contrary, for 0-tilted state ¥, the symmetry
test accepts with probability 1.

4.3 Sparsity Test

Now we move on to the sparsity test, where the non-negative
assumption is used crucially. In the sparsity test, aside from the
state that we want to test whether it’s close to some subset state,
the prover will provide an auxiliary proof to assist the verifier.

In what follows, we provide two versions of the sparsity tests.
In the first version, we want to know if a given state |¢}) is close to
some subset state without prior knowledge of the sparsity y. In the
second version, there is a target sparsity y, and we want to know if
[) is close to Sy. We describe the first version below.

Sparsity test I (with precision ¢)
Input: ¥ = {uy,...,up} € SH, @ = {oy,...,09} C S
Partition ¥ into ¥ and ¥; of equal size, and partition ® into @
and ®; of equal size.
(i) SwapTest on (¥, 1{,]/Vn);

(i) SwapTest on (@0, 1[,,]/Vn);

(iii) SwapTest on (¥1, P1) .
Accept ifand only if a+f € [3/2—+/&,3/2++/e] and A < 1/2++/E,
where a, f and A are the fractions of accepted SwapTests in (i),
(ii), and (iii), respectively.
Output: o, §, .

THEOREM 4.4 (SPARSITY TEST). Given'¥ = {u; € S} }ic[2k], @ =
{vi € S} }ic[ak] two e-tilted states for e < 1/2. Let o, , and A be the
outputs.

(Completeness) For any 0-tilted states ¥ and ®, such that'¥ € Sg,
D e S;_5,and¥ L ®. Then with probability at least 1—exp(—O(¢ek))
the sparsity test accepts, furthermore,

|20 —1-6| < e,
[26-1-(1-0)| < Ve

(Soundness) The sparsity test accepts with probability at most
exp(—¢k), if either of the following fails to hold:

(i) ThereisS C [n], such that for anyy > 0,
yY
IS| < (20 — 1)n+ 9/ *n/y,
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and for any representativeu € ¥,
lulsll® = 1 -y - 2ve.
(ii) ThereisS < [n], such that
IS| = (2 — 1| < O(e/%(2a — 1) /?)n,

|

Key to the analysis of the sparsity test is the following lemma.

and for any representativeu € ¥,

D(u,ls/\/E) -0

£1/24

(2a —1)1/3

Lemma 4.5. Letu,v € S}, for an arbitrary natural number n. Let
d € (0,1) be some constant. If for some small constant ¢ > 0, the
following items are true:

() (o)’ <e

(i) 1,101 /V)? = 0] <

(i) (0, 1)/ VY = (1= 8)| < &.
Then, for any 0 < y < 1/2, and some |S| < (8 + 2v/e/y)n,

llulsll® > 1-y. (4.1)

Furthermore, for some S C [n] with

(8-0(e)n < S| < (5+0(e/081P))n

) |

Suppose that we have a target sparsity y, a constant number in
(0,1). We adapt the previous sparsity test slightly to test whether
some given state is close to Sj.

we have
£l/6

w1sISh 2 1-0| 573

Sparsity test II (with target sparsity y and precision ¢)
Input: ¥ = {uy,...,usr }, & = {v1,..., 09}
(i) Sparsity test I on (¥, ®) with precision ¢.
Accept if the sparsity test [ accepts and its output satisfies: 2a—1 €

[y = Ve y + Vel.

THEOREM 4.6 (SPARSITY TEST WITH TARGET SPARSITY y). Let
& > 0 be such that e < y4/5. Suppose that ¥ and ® are e-tilted states.
Then the sparsity test accepts with probability at most exp(—¢k) if
the following fails to hold:

If'¥ is the O-tilted states from Sy, then there is ® such that the sparsity
test accepts with probability 1 — exp(—O(ek))

£1/24

Y1/3

D(¥,Sy) <0 (4.2)

4.4 Validity Test

{1,2,...,n}, and domain X
.,q}. Recall that the valid set is the following

Consider the variable set X
{1,2,..

V= |i)|x,~) : Vie [n],xi e

i€[n]

L
n

The goal is to test whether a state is close to V.
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Validity test (with precision d)
Input: ¥ = {[y1), [y2), ..., [y} € S*.
(i) Apply discrete Fourier transform to the second register
of ¥.
(if) Measure the second register.
Accept if a < 1/q+d, where « is the fraction of |0) observed after
measuring.

THEOREM 4.7 (VALIDITY TEST). Suppose that'¥ is an e-tilted state
for some small e > 0. Further suppose that for any representative state
[¥) € ¥, D(|¢), S1/q) < d for2e < d < 1/q. Then the probability
that in the validity test the fraction of measured |0) is less than
(1+qd)/q is at most exp(—0©(qd®k)), if

D(|¢), V) > /6qd +d.

If'¥ is a O-tilted state from V, then the validity test accepts with
probability at least 1 — exp(—0(qd?k)).

5 SSE € QMA[ (2)

Definition 5.1 ((7, §)-SSE graph). Letn,§ € (0,1). We say that
G is a (1, 8) small set expander, or simply (n, §)-SSE for short, if for
every® S CV of size|S| < § |V| we have dg(S) = 1 — 1.

Definition 5.2 ((1,6)-SSE). Letn,§ € (0, 1). An instance of (1, §)
small set expansion (SSE) problem is a graph G on the vertex set V
such that

(Yes) There exists S C V with measure at most § and &5 (S) < n;
(No) Every setS C V of measure at most § has expansion g (S) >

1-n.

We now show that SSE can be verified with constant copies of
unentangled proofs of non-negative amplitudes and a logarithmic
number of qubits with constant completeness-soundness gap. More
precisely, we prove the following theorem.

THEOREM 5.3. The (n,8)-SSE  problem is in
+ . _
QMAO5(log(n))(2’ ¢, s) with completeness ¢ > 1 — n and soundness

s < 5/6+0(4/log(1/n)).

We will prove the theorem by showing that the QMA;,,(2)
protocol described in Algorithm 5.4 is complete and sound for (1, 6)-
SSE.
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Algorithm 5.4: (1, 5)-SSE Protocol

Let £ = 86%/C, and k = Clog(1/n)/e? for some large enough
constant C.
Let S be the vertex set such that |S| < dn and ®5(S) < 7.
Provers: Send
(i) 2k copies of the superpositions of the non-expanding
set S, ie.,

|¢1>s |¢2>> R |I//2k> =

=

— ), 1D

\/& i€S

(ii) 2k copies of the superpositions of the complement of
S, ie.,

[$1), 162), - - ok =

1

— > |i).
V(1 =98)n ;

Verifier: Choose uniformly at random one of the following
tests.
(i) Symmetry test on {|i/;)} and symmetry test on {|¢@;)}.
(ii) Sparsity test on ({|¢i)}, {|¢:)}) with precision e. If the
output « is such that 2a — 1 > (1 + )4, reject.
(iii) Expansion test on |¢/;) and |¢/;) for two distinct random
ije{1,2..., 2k}

Since G is a d regular graph, its adjacency matrix A can be
written as a sum of d permutation matrices Py, ..., P;. This repre-
sentation as a sum of unitary matrices will be important to view
these matrices as valid quantum operations. To test the lack of ex-
pansion of the support of |/1), we apply to this state a permutation
P;, chosen uniformly at random. Then, we test if the resulting state
(mostly) overlaps with |¢/2) (which is supposed to encode the same
set in its support). This test is described in Algorithm 5.5.

Algorithm 5.5: Expansion Test

Input: 1), [y2) € ST
(i) Choose r € [d] uniformly at random;
(if) Compute Pr|y1);

(iii) SwapTest(Pr[y1), [}2)).
Accept if the swap test accepts.

6 GapUG € QMA{, (2) AND NP C QMA] (2)

Definition 6.1 (Unique Games). A unique game instance I consists
of ad-regular graphG = (V,E). Each edgee = (a, b) € E is associated
with a bijective constraint fp : & — X, where X = {1,2,...,q} for
some constant q.

For any labeling ¢ : [n] — %, the value associated with the
labeling is the fraction of edge constraints satisfied by the labeling,
ie.,

%I{(a, b) € E: fiap) (£(a)) = £(D)}|."

The value of 3, denoted val(S3), is the max value over all possible
labelings.

Though we can think of the graph in the definition being undirected, when we
describe an edge constraint for e = (a, b) using a bijection, we need labels of one
vertex as the domain and labels of the other as the range of f. So when we say f, we
always have an implicit orientation of the edge. So the set here counts each edge twice,
that is val can take the value up to 1.
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Definition 6.2 ((1-6, )-GapUG problem). Given any unique games
instance 3. Determine which of the following two cases is true: (Yes)
val(J) > 1-6; (No) val(J) < 1.

The purpose of this section is to establish the following theorem.

THEOREM 6.3. For any 8,1 € (0,1) such that (1 - 8)% > , then
(1-6,n)-GapUG € QMAlt)g(Z).

It suffices to present a QMAK}g(k) protocol (see Algorithm 6.4)
for some constant k for the (1-4, 1)-GapUG problem. For the given
graph G = (V,E),say V = {1,2,...,n}. Since G is a regular graph,
we can partition E into d permutations 71, 7y, . . ., g : {n} — {n}.
The permutation can also be thought of as a perfect matching
between two vertex sets L and R with L = R = V. We find the
matching view more convenient, so we often call 7 a matching. For
any labeling ¢ : [n] — X, we represent it by the following quantum

state
1 . .
o ,-GZ[,;] li)]e(i)).

Recall that V C Sl/q denote the set of all valid labelings, i.e.,

1 C 5 . .
V= {$;|l>|o,~>.ul ez}.

Let IT, be the unitary map associated with the matching =, such
that for any r € [d],i € [n],andv € X :

I [D]o) = |mr (D) S, 2, (1)) (0))-
In words, when we pick a matching 7z, and a labeling |¢/) on L,
then IT,|¢/) represents the unique labeling on R that satisfies all the
edge constraints for the edges in 7,. In reality, L and R are the same
vertex set, they have the same labeling. Let

o2
1+(1-9?
2

) =

1+7p
2

(1-9)?
2

1
f== _n
2 2

. A=

Algorithm 6.4: (1 — 8, n)-GapUG Protocol

Let ¢ = 1*8/(Cq>?), and k = C/¢? for some large enough con-
stant C.
Provers: send

(i) 2k copies of labelings realize val(3), i.e.,

W) 1) 1) = % 3 blec.

i€[n]

(i) 2k copies of the labelings but complemented, ie.,

FoE= W

le[n v#—t’(z)

yi) lyz)s o lyaie) =
Verifier: Let ¥ = {|¢1), ..., |[{2x)}, and similarly for I'. Run a
uniformly random test of the following
(i) Two symmetry tests on ¥ and I
(ii) Sparsity test on (¥,T’) with target sparsity 1/q and
precision e.
(iii) Validity test on ¥ with precision v = ¢
(iv) Labeling test on ¥y, ¥1, where ¥y and ¥; are partition
of ¥ into two subsets with equal size.

1/24q1/3.

1638

Fernando Granha Jeronimo and Pei Wu

The labeling test is described below.

Labeling Test
Input: ¥ = {|¢1), [¢2), .. .. Vi) }, @ = {Ip1), |¢p2), - .. [ ) }-

(i) Forifrom 1to k, SwapTest on (I1-|¢/;), |$i)) for uniformly
random r € [d] (each iteration with a fresh random
choice).

Accept if more than a 0 fraction the SwapTests accept.

We record the following lemma about the labeling test.

Lemma 6.5 (Labeling test). Suppose val(J) < n. Given e-tilted
states ¥ such that any representative state |{) satisfies D(|/), V)
and ¢ sufficiently small (for example, D(|/), V) < A/8 and ¢ <
A2/256). Then the labeling test accepts ¥ with probability at most
exp(-0(1%k)).

Regularization—NP C QMAlt)g(Z). Due to the works [20, 21,
34, 35], it is known that the (1/2, )-GapUG problem is NP-hard. An
optimistic reader would happily conclude that NP C QMAI:)g(Z).
This is indeed the case, with a small caveat though: In our previous
discussion, we assumed the graph instance to be regular. However,
when we convert a general graph into a regular one, the value of
the game will change. We address this issue here.

THEOREM 6.6 (REGULARIZATION [19]). For any general unique
games instance 3, there is a new unique games instance 3’ that is
polynomial time constructible such that

o o L e, 1
val(3J) > 7= val(J') > 1 2@+’ (6.1)
val(3) < p = val(¥) < 1 - EI_TZ' (6.2)

The regularization process follows closely that of Dinur’s treat-
ment [19]. Define a new graph G’ = (V’, E’), such that

V' ={(v,e) € VXE : v is incident to e}

E =E"U U Ey,
veV
where E” = {((v,e),(u,e)) : (v,u) = e € E} and E, is the set
of edges in the d-regular expander graph G, = (V, = {(v,e) €
V’}, Ey), for some constant d, whose Cheeger constant is at least
2.12 In words, we replace every vertex v with a cluster of vertices of
size equal to the number of edges that v is incident to in G. Within
each cluster, the vertices are connected based on expander graphs.
For every edge, e = (u,v) in the original graph, connect the vertex
(u, €) with vertex (v, e) in the new graph. The constraints f” on
E”” will be like that of f on E. In particular, ]?’(u’e)’(v,e)) = flu)-
Further, the constraints on edges E, will be the equality constraints,
which can be represented as a bijective map. This new UG instance
3’ satisfies that described in Theorem 6.6. Therefore, for the regular

graph, (1 — z(dl+1)’ d+1) GapUG problem is NP-hard.
We verify that for any n < 1/4(d + 1),

1 2
(1_2(d+1)) >1-

Therefore, by Theorem 6.3, we have

I-n

d+1°

12A random graph G, would be good, and various explicit constructions are known.
We refer interested readers to the wonderful survey on this topic [27].
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THEOREM 6.7. With constant completeness and soundness gap,
NP C QMAﬂ)g(z).

7 NEXP = QMA*(2)

In this section, we scale up our previous result to NEXP
QOMA™*(2). The direction that QMA*(2) € NEXP follows the same
trivial argument that QMA(2) € NEXP—guess the quantum proofs.
Our focus will be on the other direction. The starting point would
be a PCP for NEXP. For the moment, we abstract things out and
focus on the constraints satisfaction problem (CSP) with the under-
standing that the CSP system will come from the corresponding

PCP.

Definition 7.1. An (N, R, q,X)-CSP system € on N variables with
values in ¥ consists of a set (possibly a multi-set) of R constraints
{C1,Cy,...,CR}, and the arity of each constraint is exactly q. The
value of €, denoted val(C€), is the maximum fraction of the satisfiable
constraints over all possible assignment o : [N] — X. The (1,6)-
GapCSP problem is to distinguish whether a given system € is such
that (Yes) val(€) = 1 or (No) val(€) < 6.

For any CSP system €, we think of a bipartite graph Gg where
the left vertices are the constraints and the right vertices are the
variables. Whenever a constraint queries a variable there is an edge
in the graph between the corresponding vertices. For any j € [R],
let Adj-(j) denote the list of variables that C; queries; and for any
i € [N],let Adjy, (i) denote the list of constraints that query variable
i. An efficient CSP system € should satisfy that for any j € [R],
there is an algorithm that compute C; in time poly log(NR). That
includes deciding which variables are queried by C;, and based on
the values of the relevant variables compute C;. For our purpose, we
require stronger properties, which we refer to as double explicitness.
Informally, we require that given any variable i, we can also “list”
the constraints that query i efficiently.

Definition 7.2 (Doubly explicit CSP). For any (family of)
(N, R, q,%)-CSP system €, we say that € is doubly explicit if the
following are computable in time poly log(NR):
(i) The cardinality of Adj-(j) for any j € [R] and the cardinal-
ity of Adjy (i) for anyi € [N].
. .global—local
(11) Adj%o al oca

Adj%l()bal_)local(j, i) = 1 if i is ith variable that C; queries.

[R] x [N] — |[ql], such that

13

(i) Adjlgcalaglobal [R] x [q]

— [N], such that

Adjlgcal_)gk)bal(j, 1) is the ith variable that C; queries.

(iv) Adioloe [N] x [R] — [R], such that
Adj%,lObal_)local(i, J) = 1 if 1 is the index of constraint j in
Adjy (i).

) Adjl‘(,)Calﬂglobal : [N]X[R] — [R] such that for anyi € [N]
and 1 € [|Adjy (D], let j = Adji;calngbal(i, 1), then ith
constraints in Adjy (i) is C;.

131f C;j does not query i, we don’t care about the value of AdjélDbalﬁlOCﬂl

Adj{‘g/lobalalocal.

. Similarly for
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In words, in the bipartite graph G . For each vertex, say i € [N],
there is a local view of its neighborhood Adjy, (i). We should be
able to efficiently switch from this local representation to a global

. .local—global , .
representation, by Adj‘?Ca TR,

Another property we require is the uniformity, defined below.

-), and vice versa.

Definition 7.3 (T-Strongly uniform CSP). For any (N,R,q,X)-
CSP system € and T € Z, we say that € is T-strongly uniform
if the variable set [N] can be partitioned into at most T subsets
Vi UVa U .- UVr, such that the cardinality of Adjy (i) for any
variable i only depends on which subset it belongs to. Furthermore,
let 7 : [N] — [T], such that (i) = j ifi € V. Then (i) can be
computed in time poly log(NR).

Given some (N, R, g, {0, 1})-CSP system € that is T-strongly
uniform for some constant T and is strongly explicit. Then it is
NEXP-hard to decide whether val(€) = 1 or val(€) < & for some
absolute constant §. This CSP € comes from the efficient PCP for
NEXP. Although not all PCP satisfies doubly explicitness or unifor-
mity, there is some PCP construction that enjoys these properties.
We discuss such PCP in more detail and prove the related properties
in the full paper.

THEOREM 7.4 (PCP FOor NEXP). There is a PCP system for a
NEXP-complete problem, in which the verifier tosses poly(n) random
bits and makes a constant number of queries to the proof II such that
if the input is a “Yes” instance, then the verifier always accept; if the
input is a “no” instance, then the verifier accepts with probability at
most 8 for some constant 8. Furthermore, this PCP is doubly explicit
and T-strongly uniform for some constant T.

This PCP gives rise to a (1,5)-GapCSP instances for some
(N = 2poly(m) g = 2poly(n) ¢ = O(1),{0,1})-CSP system that
are T-strongly uniform for some constant T and doubly explicit.
In the remainder of the section, our goal is to prove the following
theorem:

THEOREM 7.5. For any constant strongly uniform and doubly
explicit (N, R, q, £)-CSP system €, there is a QMAY(2) protocol that
solves the (1, §)-GapCSP problem for € with constant completeness
and soundness gap.

Theorem 7.4 together with Theorem 7.5 imply that

THEOREM 7.6. NEXP C QMA™*(2) with constant completeness
and soundness gap.

7.1 Explicit Regularization

The first step towards proving Theorem 7.5 is regularization for
the CSP €, very much like that in Theorem 6.6. The main technical
issue is that everything happening in the previous case needs to be
efficient for the exponentially large expander graphs. Fortunately,
explicit constructions of expander graphs are very well-studied.

THEOREM 7.7 (EXPLICIT REGULAR EXPANDER GRAPHS [2, 40]).
There is some constant d, for which we have the following explicit
constructions on expander graphs with Cheeger constant at least 2:

(i) For any n, there is a d-regular expander graph on n vertices.
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(if) For any prime p > 17, there exists a d-regular expander
graph on n = p(p? — 1) vertices. Furthermore, the graph
G can be decomposed into d matchings 1, 7o, . . ., g, such
that given i € [n] and j € [d], there is a poly log(n)-time
algorithm I1g : [n] x [d] — [n], such that

Og (i, j) = mj(i).

For both constructions, given i € [n], the neighbors of i can be listed
in time poly log(n).

Since the second construction of expander graphs from the
above theorem does not work for any number of vertices, we also
need the following theorem about primes in short intervals.

THEOREM 7.8 (PRIMES IN SHORT INTERVALS [16]). There is some
absolute constant ng, such that for any integern > ny, there is a prime
between the interval [n — 4n?/3, n].

With the above tools at our disposal, we discuss the explicit
regularization for this exponentially large CSP €. Replace the vari-
able i with a cluster of variables labeled (i, 1) for 1 € [n;], where
n; = |Adjy (i)|. If n; < ng for some absolute constant ng (this can be
a larger constant than that in Theorem 7.8), then we can simply use
the expander graph provided by Theorem 7.7 (i). For n; > ng, we
use the expander graph provided by Theorem 7.7 (ii). In particular,
let p; be some prime such that

1/3 1/3 1/3
pi € [ln}) = aln* P2, ().

The existence of p; is guaranteed by Theorem 7.8. Let n} := pi(pl? -
1) € [n— 0(n%°),n], and let

Vi=A{(.)):j<n}

V= () s ) < j < mi).
Depending on no, [V/’| < nn; for n = n(no). As we set ny to be a
large enough constant, 7 is arbitrarily small. Connect the vertices in
V! by a d-regular expander graph G;, whose existence is guaranteed
by Theorem 7.7 (ii). For all vertices in V;’, add d self-loops. Associate
these edges with equality constraints. Let € denote the new CSP

instance. Recall that q is the number of variables queried by each
constraint in €

Claim 7.9. Ifval(€) = 1, then val(€’) = 1. Ifval(€) = § < 1,
then the total number of unsatisfied constraints in €’ is at least
(1-6—-qn)R.

7.2 The Protocol

In the protocol, the provers are supposed to provide the following

state:
=D 1o,

JjelR]

(7.1)

where v; € €%, which should indicate that the q variables with
order listed in Adj-(j) queried by C; have value vj1,0;2, ..., vj.g»
respectively. This way of encoding is very convenient for evaluating
whether each constraint is satisfied or not. But requires some work
to make sure that the values v; are consistent: Different constraints
will share variables and the value of any variable across different
constraints should be the same. Recall that, in the previous section
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when we discuss the regularization step for our CSP € with variable
set V = [N] and constraints Cy, ..., Cg, from which we obtain a
new CSP €’ such that each variable appears in exactly d number
of the new constraints. Furthermore, a new variable in €’ will be a
tuple composed of a variable i € V and a constraint C; that queries
i. Therefore, our way of encoding in (7.1), in a sense, is to write the
superpositions of the new variables along with their values in the
regularized CSP.

Let ni,ny,...,nT be the
Adjy (i1), Adjy (i2), .. . Adjy (it) where iy,ip,...,i7 are arbi-
trary variables from V1, Vs, ..., VT, respectively. Next, we describe
our protocol for the CSP instance that we have.

cardinalities of

Algorithm 7.10: Protocol for doubly explicit CSP
Let ¢ be some small enough constant, and k some large enough
constant.
Prover provides:
(i) T primes p1,p2, ..
1/3 3
alnl 123 g ).
(ii) ¥ := 2k copies of the state
> Iiley),  VielR] o €3,
Jj€[R]
(iii) @ := 2k copies of the state
L

JjelR]

.,pr, such that p; € [Ln}ﬂj -

o)
UEZ;:U#U Vlzlq -1

Verifier:
(i) Testif p1, pa, ..., pr are primes satisfying the size con-
straints, reject if not.
(if) Symmetry test on ¥ and ®.
(iii) Sparsity test Il on (¥, @) with target sparsity |%| ™9 and
precision &
(iv) Validity test on .
(v) Constraints test ¥.

The constraints test will be used to check the new constraints of
our CSP after the regularization. But before we formally describe the
constraints test, we make some preparations. Let H = CRecPl’g
cN @ CIZl. The first register is the constraint register. The second
register is used to encode the values of the g variables queried by
the constraint stored in the first register. The third register is the
variable register to store the variable name. The last register is used
to store the value of the variable in the third register. Now we define
three quantum channels that will be used to manipulate our state
in the constraints test.

e A, the operator that converts a given state from (7.1) to an actual
superposition of the new variables from €’ together with their
values.

e M for k € [d], the operator that “implements” the kth one after
we decompose the d-regular expander graphs into matchings.

e B, the operator that given |j)|v;), evaluates if C; outputs 1 if
the values of the variables it queries are given by the string v;.

Precisely, let 8 acting on CR ® €4l @ C2 be such that

B : 1) 0)10) = )[0)IC;j(0)).
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Recall that the constraints of € consist of that from € and the
consistency constraints induced by the expander graphs and self-
loops we add. As B checks if the value v satisfies the constraints
C;j, it takes care of the first kind of constraints of €’.

Define the operator A actingon H = CR @ cPl*ecN g cl®l
such that

9
A [))10)10)]0) = % ; L) o)) o.),

where x;,, Xiy, . .., Xj , are the variables listed in Adj-(j). In words,
given the constraints j, and the values v to the variables that j
queries, we put the third and fourth register (the variable register)
into the superposition of the variables in Adj-(j) together with
their value based on .

Next, we define M formally. Recall that for any variable i €
[N], after regularization, the set of variables constructed from i
includes

Vi ={(,j):j<nl},
V=G )) nf < j < mi).

The new constraints include an expander G; on V’ and self-loops
on Vl.' ’. We can decompose G; into d matchings, and for variables
in V/”/, they are matched with themselves. For any k € [d], let My
be the operator such that:

M= D)D" = 1) o) i),
where
, [ AadieeE G g, (k) <),

) (7.2)
Js

otherwise,

L= Adﬁ/lobal—»local(l., ])

That is, suppose we take the kth matching to permute the variables
in €, then j’ in (7.2) determines that (i, j) € € should be switched
to (i, /') € €’. But the expander graphs are labeled by {1,2,...,n’},
corresponding to indices of Adjy, (i), to obtain the actual constraint
Cjr, we need to convert from local index to global index, and later
convert it back.

A together with M} takes care of the consistency constraints
just like how we do it for UG games. Take a pair of equal states |¢/)
and |¢) supposed to be valid. Apply A to both states. But apply
My only to |¢). Now the two states are equal if the original states
encode a consistent value for all constraints, except we should
ignore the second register. To get rid of the second register, we
make a measurement. In particular, let

3 o).

-9
|2| veXd

) =

Consider the measurement M = {II| (), 1 — I}y }- It's easy to
see that after the measurement, with probability p = |Z|79, the
second register is set to |p) and thus disentangled from the other
registers. Since we have a larger number of provers, with p fraction
of proofs left is enough.

Note that A, M, B are all valid quantum operations.
Claim 7.11. A, B, M. can be implemented by BQP circuits.
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With the above preparation, we now describe the constraints
test.

Constraints test
Input: ¥y, ¥, each is a set of k states for some large constant k.
Pair the states in ¥ and @.
For each pair |¢) and |¢), with probability 2d/(2d + 1) take the
consistency check, with the remaining probability take the inner
constraints test

(i) Consistency check

- Apply A to |$) and [¢)).

- Apply My to |¢) for a uniformly random k € [d].

- Measure the second register of |i), |¢) based on M, if

either measurement does not output |y), ignore this pair.

- SwapTest on |¢/) and |¢).

(ii) Inner constraints test

- With probability 1 — |%|~29, ignore this pair.

- Apply B to |y)

- Measure the third register, Accept if 1 is observed.
Accepts if more than 0 fraction of the pairs (that are not ignored)
get accepted, where

1 1-6
T 42d+ 1)

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation Grant No. CCF-1900460. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

We thank Vijay Bhattiprolu for the discussions during the initial
stages of this project. We thank STOC reviewers and Avi Wigderson
for their valuable feedback on our earlier draft.

REFERENCES
[1] Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman, and Peter Shor.
2008. The Power of Unentanglement. In Proceedings of the 23rd IEEE Conference
on Computational Complexity. 223-236. https://doi.org/10.1109/CCC.2008.5
Noga Alon. 2021. Explicit Expanders of Every Degree and Size. Combinatorica
(Feb. 2021). https://doi.org/10.1007/s00493-020-4429-x
Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern Ap-
proach. Cambridge University Press. https://doi.org/10.1017/CB09780511804090
Boaz Barak, Fernando G.S.L. Brandao, Aram W. Harrow, Jonathan Kelner, David
Steurer, and Yuan Zhou. 2012. Hypercontractivity, Sum-of-Squares Proofs, and
Their Applications. In Proceedings of the 44th ACM Symposium on Theory of
Computing. https://doi.org/10.1145/2213977.2214006
Boaz Barak, Pravesh Kothari, and David Steurer. 2019. Small-Set Expansion in
Shortcode Graph and the 2-to-2 Conjecture. In ITCS 2019. https://doi.org/10.
4230/LIPIcs.ITCS.2019.9
Boaz Barak, Pravesh K. Kothari, and David Steurer. 2017. Quantum Entanglement,
Sum of Squares, and the Log Rank Conjecture. In Proceedings of the 49th ACM
Symposium on Theory of Computing. ACM, 975-988. https://doi.org/10.1145/
3055399.3055488
Salman Beigi. 2010. NP VS QMAlog(2). Quantum Info. Comput. (2010). https:
//doi.org/10.5555/2011438.2011448
J.S. Bell. 1964. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1
(Nov 1964), 6 pages. Issue 3. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
Charles H. Bennett and Gilles Brassard. 2014. Quantum cryptography: Public
key distribution and coin tossing. Theoretical Computer Science (2014). https:
//doi.org/10.1016/j.tcs.2014.05.025
Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres,
and William K. Wootters. 1993. Teleporting an unknown quantum state via dual

[2]
(3]

—
o)

=
=


https://doi.org/10.1109/CCC.2008.5
https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1145/2213977.2214006
https://doi.org/10.4230/LIPIcs.ITCS.2019.9
https://doi.org/10.4230/LIPIcs.ITCS.2019.9
https://doi.org/10.1145/3055399.3055488
https://doi.org/10.1145/3055399.3055488
https://doi.org/10.5555/2011438.2011448
https://doi.org/10.5555/2011438.2011448
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[11]

[12]

[13

[14]

(15

[16]

(17

classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70 (Mar 1993).
Issue 13. https://doi.org/10.1103/physrevlett.70.1895

Yonatan Bilu and Nathan Linial. 2006. Lifts, Discrepancy and Nearly Optimal
Spectral Gap. Combinatorica 26, 5 (Oct. 2006), 495-519. https://doi.org/10.1007/
500493-006-0029-7

Hugue Blier and Alain Tapp. 2009. All Languages in NP Have Very Short Quantum
Proofs. In 2009 Third International Conference on Quantum, Nano and Micro
Technologies. 34-37. https://doi.org/10.1109/icgnm.2009.21

Fernando G.S.L. Brand4o and Aram W. Harrow. 2013. Quantum de Finetti Theo-
rems under Local Measurements with Applications. In Proceedings of the 45th ACM
Symposium on Theory of Computing. https://doi.org/10.1145/2488608.2488718
Fernando G. S. L. Branddo, Matthias Christandl, and Jon Yard. 2011. Faithful
Squashed Entanglement. Communications in Mathematical Physics (2011). https:
//doi.org/10.1007/s00220-011-1302-1

Fernando G. S. L. Brandao and Aram W. Harrow. 2015. Estimating operator
norms using covering nets. arXiv:1509.05065

Yuan-You Fu-Rui Cheng. 2010. Explicit Estimate on Primes Between Consecutive
Cubes. Rocky Mountain Journal of Mathematics 40, 1 (2010), 117 — 153. https:
//doi.org/10.1216/RMJ-2010-40-1-117

Alessandro Chiesa and Michael A. Forbes. 2013. Improved Soundness for QMA
with Multiple Provers. Chic. J. Theor. Comput. Sci. (2013). https://doi.org/10.
4086/cjtcs.2013.001

[18] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. 1969.

[19]

[20

[21]

[22]

[23]

™
=t

[25]

[26]

[27]

[28]

[29

[30]

[31

Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23
(Oct 1969). Issue 15. https://doi.org/10.1103/physrevlett.24.549

Irit Dinur. 2007. The PCP Theorem by Gap Amplification. J. ACM 54, 3 (jun
2007), 12—-es. https://doi.org/10.1145/1236457.1236459

Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. 2018. On Non-
Optimally Expanding Sets in Grassmann Graphs. In Proceedings of the 50th ACM
Symposium on Theory of Computing. https://doi.org/10.1145/3188745.3188806
Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. 2018. To-
wards a Proof of the 2-to-1 Games Conjecture?. In Proceedings of the 50th
ACM Symposium on Theory of Computing (Los Angeles, CA, USA) (STOC
2018). Association for Computing Machinery, New York, NY, USA, 376-389.
https://doi.org/10.1145/3188745.3188804

Andrew C. Doherty, Pablo A. Parrilo, and Federico M. Spedalieri. 2004. Complete
family of separability criteria. Physical Review A 69 (2004). https://doi.org/10.
1103/physreva.69.022308

A. Einstein, B. Podolsky, and N. Rosen. 1935. Can Quantum-Mechanical Descrip-
tion of Physical Reality Be Considered Complete? Phys. Rev. 47 (May 1935). Issue
10. https://doi.org/10.1007/978-3-322-91080-6_6

Francois Le Gall, Shota Nakagawa, and Harumichi Nishimura. 2012. On QMA
Protocols with Two Short Quantum Proofs. Quantum Info. Comput. (2012).
https://doi.org/10.26421/qic12.7-8-4

Aram W. Harrow and Ashley Montanaro. 2013. Testing Product States, Quantum
Merlin-Arthur Games and Tensor Optimization. J. ACM 60, 1, Article 3 (feb 2013),
43 pages. https://doi.org/10.1145/2432622.2432625

Aram W. Harrow, Anand Natarajan, and Xiaodi Wu. 2017. An Improved Semi-
definite Programming Hierarchy for Testing Entanglement. Communications in
Mathematical Physics (2017). https://doi.org/10.1007/s00220-017-2859-0
Shlomo Hoory, Nathan Linial, and Avi Wigderson. 2006. Expander Graphs
and Their Applications. Bull. Amer. Math. Soc. 43, 04 (Aug. 2006), 439-562.
https://doi.org/10.1090/S0273-0979-06-01126-8

Ryszard Horodecki, Pawel Horodecki, Michat Horodecki, and Karol Horodecki.
2009. Quantum entanglement. Rev. Mod. Phys. 81 (Jun 2009), 865-942. Issue 2.
https://doi.org/10.1103/RevModPhys.81.865

Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. 2011. QIP =
PSPACE. J. ACM (dec 2011). https://doi.org/10.1145/1806689.1806768
Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen.
2020. MIP*=RE. https://doi.org/10.1145/3485628

Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In
Proceedings of the 34th ACM Symposium on Theory of Computing. 767-775.

1642

[32

[33

[34

[37

[38

[39

[40

[42

[43]

(44

[45

=
&

[47

[48

[49]

Fernando Granha Jeronimo and Pei Wu

https://doi.org/10.1145/509907.510017

Subhash Khot. 2010. Inapproximability of NP-complete Problems, Discrete
Fourier Analysis, and Geometry. In Proceedings of the International Congress
of Mathematicians. https://doi.org/10.1142/9789814324359_0163

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. 2004. Op-
timal inapproximability results for MAX-CUT and other two-variable CSPs?.
In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science.
146-154. https://doi.org/10.1109/focs.2004.49

Subhash Khot, Dor Minzer, and Muli Safra. 2017. On Independent Sets, 2-to-2
Games, and Grassmann Graphs. In Proceedings of the 49th ACM Symposium on
Theory of Computing (Montreal, Canada). Association for Computing Machinery,
New York, NY, USA, 576-589. https://doi.org/10.1145/3055399.3055432
Subhash Khot, Dor Minzer, and Muli Safra. 2018. Pseudorandom Sets in Grass-
mann Graph Have Near-Perfect Expansion. In Proceedings of the 59th IEEE Sympo-

sium on Foundations of Computer Science. https://doi.org/10.1109/focs.2018.00062
Subhash Khot and Ryan O’Donnell. 2009. SDP Gaps and UGC-hardness for

Max-Cut-Gain. Theory of Computing 5, 4 (2009), 83-117. https://doi.org/10.1109/
focs.2006.67

Subhash Khot and Oded Regev. 2003. Vertex Cover Might be Hard to Approximate
to within 2 — ¢. In Proceedings of the 18th IEEE Conference on Computational
Complexity. https://doi.org/10.1109/ccc.2003.1214437

Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami. 2003. Quantum
Merlin-Arthur Proof Systems: Are Multiple Merlins More Helpful to Arthur?. In
Algorithms and Computation. https://doi.org/10.1007/978-3-540-24587-2_21
Robert Konig and Graeme Mitchison. 2009. A most compendious and facile
quantum de Finetti theorem. J. Math. Phys. 50, 1 (2009). https://doi.org/10.1063/
1.3049751

Alexander Lubotzky. 2011. Finite simple groups of Lie type as expanders. Journal
of the European Mathematical Society 013, 5 (2011), 1331-1341. http://eudml.org/
doc/277517

Chris Marriott and John Watrous. 2005. Quantum Arthur—Merlin games. Com-
putational Complexity (2005). https://doi.org/10.1007/s00037-005-0194-x
Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University Press.
https://doi.org/10.5555/1972505

Roman Orus. 2019. Tensor networks for complex quantum systems. Nature
Reviews Physics (2019). https://doi.org/10.1038/s42254-019-0086-7

Prasad Raghavendra. 2008. Optimal algorithms and inapproximability results for
every CSP?. In Proceedings of the 40th ACM Symposium on Theory of Computing.
245-254. https://doi.org/10.1145/1374376.1374414

Prasad Raghavendra and David Steurer. 2010. Graph Expansion and the Unique
Games Conjecture. In Proceedings of the 42nd ACM Symposium on Theory of
Computing. https://doi.org/10.1145/1806689.1806792

Prasad Raghavendra, David Steurer, and Prasad Tetali. 2010. Approximations
for the Isoperimetric and Spectral Profile of Graphs and Related Parameters.
In Proceedings of the 42nd ACM Symposium on Theory of Computing. https:
//doi.org/10.1145/1806689.1806776

Yaoyun Shi and Xiaodi Wu. 2012. Epsilon-Net Method for Optimizations over
Separable States. In Proceedings of the 39th International Colloquium on Automata,
Languages and Programming. https://doi.org/10.1016/j.tcs.2015.03.031

Guifré Vidal. 2003. Efficient Classical Simulation of Slightly Entangled Quantum
Computations. Phys. Rev. Lett. 91 (Oct 2003). https://doi.org/10.1103/physrevlett.
91.147902

Thomas Vidick and John Watrous. 2016.
and Trends® in Theoretical Computer Science (2016).
9781680831276

Quantum Proofs.  Foundations
https://doi.org/10.1561/

[50] John Watrous. 2000. Succinct quantum proofs for properties of finite groups. In

FOCS. IEEE Computer Society, 537-546. https://doi.org/10.1109/sfcs.2000.892141

[51] John Watrous. 2018. The Theory of Quantum Information. Cambridge University

Press. https://doi.org/10.1017/9781316848142

Received 2022-11-07; accepted 2023-02-06


https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1109/icqnm.2009.21
https://doi.org/10.1145/2488608.2488718
https://doi.org/10.1007/s00220-011-1302-1
https://doi.org/10.1007/s00220-011-1302-1
https://arxiv.org/abs/1509.05065
https://doi.org/10.1216/RMJ-2010-40-1-117
https://doi.org/10.1216/RMJ-2010-40-1-117
https://doi.org/10.4086/cjtcs.2013.001
https://doi.org/10.4086/cjtcs.2013.001
https://doi.org/10.1103/physrevlett.24.549
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/3188745.3188806
https://doi.org/10.1145/3188745.3188804
https://doi.org/10.1103/physreva.69.022308
https://doi.org/10.1103/physreva.69.022308
https://doi.org/10.1007/978-3-322-91080-6_6
https://doi.org/10.26421/qic12.7-8-4
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1007/s00220-017-2859-0
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1145/1806689.1806768
https://doi.org/10.1145/3485628
https://doi.org/10.1145/509907.510017
https://doi.org/10.1142/9789814324359_0163
https://doi.org/10.1109/focs.2004.49
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1109/focs.2018.00062
https://doi.org/10.1109/focs.2006.67
https://doi.org/10.1109/focs.2006.67
https://doi.org/10.1109/ccc.2003.1214437
https://doi.org/10.1007/978-3-540-24587-2_21
https://doi.org/10.1063/1.3049751
https://doi.org/10.1063/1.3049751
http://eudml.org/doc/277517
http://eudml.org/doc/277517
https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.5555/1972505
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/1806689.1806776
https://doi.org/10.1145/1806689.1806776
https://doi.org/10.1016/j.tcs.2015.03.031
https://doi.org/10.1103/physrevlett.91.147902
https://doi.org/10.1103/physrevlett.91.147902
https://doi.org/10.1561/9781680831276
https://doi.org/10.1561/9781680831276
https://doi.org/10.1109/sfcs.2000.892141
https://doi.org/10.1017/9781316848142

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Quantum Merlin-Arthur with Multiple Provers
	2.2 Trace Distances
	2.3 Expander Graphs

	3 Overview of Global Protocols
	3.1 Small Set Expansion Protocol
	3.2 Unique Games Protocol
	3.3 PCP Verification Protocol for NEXP

	4 Property Testing Primitives
	4.1 epsilon-Tilted States
	4.2 Symmetry Test
	4.3 Sparsity Test
	4.4 Validity Test

	5 SEE in QMA+log(2)
	6 GapUC in QMA+log(2) and NP subset of QMA+log(2) 
	7 NEXP=QMA+(2)
	7.1 Explicit Regularization
	7.2 The Protocol

	Acknowledgments
	References

