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Abstract

Winter provides many challenges for insects, including direct injury to tissues and energy drain
due to a lack of food availability. As a result, the geographic distribution of many species is
tightly coupled to their ability to survive winter. Here we summarize molecular processes
associated with winter survival, with a particular focus on coping with cold injury and energetic
challenges. Anticipatory processes such as cold acclimation and diapause cause wholesale
transcriptional reorganization that increases cold resistance and promotes cryoprotectant
production and energy storage. Molecular responses to low temperature are also dynamic and
include signaling events during and after a cold stressor to prevent and repair cold injury. In
addition, we highlight mechanisms that are under selection as insects evolve to variable winter
conditions. Based on current knowledge, despite common threads molecular mechanisms of
winter survival vary considerably across species, and taxonomic biases must be addressed to

fully appreciate the mechanistic basis of winter survival across the insect phylogeny.

1. The importance of winter

The temperate and polar winter is a time of extreme challenge for insects. They face an
array of abiotic and biotic challenges that operate synergistically, and synchronizing life histories
with the timing of seasonal transitions is critical for survival (130, 148). Specific abiotic
challenges in winter include exposure to low temperatures and potential ice formation and
limited water availability, while biotic challenges include starvation due to low food availability
and immune challenges due to direct exposure to pathogens or being huddled in high density
overwintering conditions where disease transmission can easily occur (148). Insects have

developed a number of unique adaptations to cope with these challenge, and the molecular and
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biochemical mechanisms underlying these adaptations has been an intense area of focus in insect
physiology (60, 92, 129).

Low temperature is the most obvious challenge in winter, and as small ectotherms,
insects must be able to maintain homeostasis over a broad range of body temperatures.
Biochemical processes may be impaired at low temperatures for multiple reasons. First,
Arrhenius effects dictate that at lower temperatures, reaction rates are reduced. However, since
biochemical reactions are catalyzed by enzymes, reduced enzyme flexibility or outright protein
denaturation at low temperatures may have a much greater impact on reaction rates (125, 142).
Secondly, membrane fluidity is significantly reduced at low temperatures, which decreases
reaction rates of membrane-bound enzymes and reduces diffusion rates across membranes (50,
111). Finally, low temperatures increase hemolymph viscosity and may significantly decrease
physiological transport (58). As a result of each of these mechanisms, low temperature can
induce chilling injuries independently of ice formation (92).

Based on the strategy used to survive sub-freezing conditions, insects have been
classically divided into either freeze-tolerant or freeze-intolerant (120), with freeze-intolerant
species being further divided into those that survive down to the supercooling point (i.e., freeze-
avoiding) vs. those that succumb to cold injury at relatively high subzero temperatures (i.e., chill-
susceptible) (92). Cold tolerance is a complex trait and can be measured with a variety of
metrics, so we direct the reader to Sinclair et al. (120) as a useful primer. In particular, careful
measurement of survival following the onset of freezing (as detected by a transient increase in
body temperature due to a freezing exotherm) is essential for correctly classifying a species as

freeze-tolerant or freeze-avoidant.



57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

Freeze-tolerant insects must cope with internal ice formation, which poses both
mechanical and osmotic challenges. As ice crystals form and grow, they can cause outright
physical damage to tissues, and ice crystal formation is almost invariably lethal in intracellular
spaces (123). Ice crystals also tend to exclude solutes, thereby significantly increasing the
osmolarity of unfrozen fluids, and often leading to cellular desiccation as water leaves cells
(144). Ice formation can occur spontaneously below the supercooling point, but it can also be
nucleated at relatively high temperatures, either internally as a result of food particles or bacteria
in the gut, or from ice in the microenvironment nucleating across the cuticle (151). As a result of
these challenges, internal ice formation is lethal for most insects, and the handful that have
evolved the ability to tolerate ice formation are interesting case studies for evolutionary
physiologists (see 144 for a review).

While desiccation can happen internally due to ice formation, it is also an ecological
stressor that occurs due to low water availability in the environment when water is locked up in
ice and snow. Indeed, for some insects, water availability is one of the primary challenges of
winter (6). On the other side of the coin, dehydration can confer cross tolerance to cold stress, as
these two stressors share many features at the physiological level (121). Desiccation is coupled
with low food availability as many plants die back and prey species become scarce as most
invertebrates seek shelter in hibernacula. As a result, many insects are faced with severe
metabolic challenges, spending several months with extremely low food and water availability.
In these situations, low temperature and even freezing may be beneficial for overwintering
insects, as low temperature reduces metabolic rate and freezing suppresses metabolic rate even

further (79).
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The above challenges of winter mean that species distributions are often tightly linked to
winter conditions (148), and climate change has intensified the importance of understanding
insect overwintering biology. Climate warming is proceeding fastest both in the winter months
and at higher latitudes in the northern hemisphere (78). On one hand, winter climate change is
significantly shortening the winter season and reducing extreme cold events, and on the other,
snow cover depth and duration are simultaneously declining, potentially exposing overwintering
soil insects to colder and more variable conditions (109). And though the overall trend is an
increase in temperature, extreme cold events, such as the North American polar vortex of
2018/2019, are projected to continue. One consequence of increased average temperature is that
it may impair insects’ ability to properly acclimatize or remain acclimatized for winter (124).
Thus, winter climate change is expected to have complex consequences for insect populations,
and understanding the adaptations that permit winter survival is essential for predicting insect
responses to future conditions. Here, we review the molecular mechanisms that underscore two
of the primary adaptations for coping with winter stress, cold acclimation and diapause. The
review is intended to be an entryway into the topic for entomologists interested in exploring
winter adaptations for their system of interest, and a springboard for what we consider to be
fruitful questions for future research.

2. Mechanisms of cold acclimation, rapid cold hardening, and recovery from cold stress

For the purpose of this review, we will divide our discussion into the molecular
mechanisms of cold acclimation and diapause, although we acknowledge that sometimes these
mechanisms may be difficult to disentangle. Coping with winter stress occurs on several distinct
timescales, which are summarized in Figure 1. In brief, cold acclimation occurs in the weeks and

months leading up to winter, as temperature gradually decreases (17). Short-term responses to
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low temperature are also prevalent. Rapid cold hardening is a short-term (i.e., minutes to hours)
acclimation response that occurs in response to sudden decrease in temperatures (135), and rapid
physiological responses also occur during recovery from a cold stressor. Thus, we will highlight
molecular mechanisms that are 1) activated in preparation for winter, 2) activated in direct
response to winter stressors, and 3) involved in recovery from winter stress. Recent reviews have
highlighted physiological mechanisms (e.g., organ and systems-level) of chilling (92) and
freezing (144) tolerance, molecular mechanisms of cold and freezing injury (110), and
evolutionary responses to changing winters (78). Here, we will focus primarily on processes that
protect against winter stress at the molecular (i.e. gene) level, with an emphasis on recent work.
For earlier reviews on molecular mechanisms of cold tolerance, see (16, 49, 85). While the
specific strategy used to survive cold (e.g., freeze-tolerant vs. freeze-intolerant; see above) is an
important consideration, most of the information presented here is for chill-susceptible insects,
which have had the greatest number of molecular studies.
2.1. Mechanisms of cold acclimation

As discussed above, cold and other abiotic stressors are the primary challenges for insects
in the winter. Like many traits, cold tolerance is a function of both genotype and environment,
and in many cases phenotypic plasticity has a stronger impact on cold tolerance than genetic
adaptation (4). While anticipatory processes like diapause can increase cold tolerance in the
absence of temperature change (70, 145), cold acclimation (and acclimatization) in response to
decreasing temperature is the primary means by which insects enhance cold hardiness in the
winter (43, 55, 92). The capacity for cold acclimation appears to be nearly ubiquitous among
insects, especially those in temperate regions, although the exact mechanisms by which it is

accomplished appear to vary across species (see 133 and discussion below). Cold acclimation
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can be further distinguished depending on whether it occurs throughout the life-cycle or is
restricted to a single life-stage (17), although whether distinct types of cold acclimation have
different mechanisms at different stages within a single species is an open area of investigation.

Cold acclimation involves large-scale changes in gene expression, and many of these
changes are directly involved in enhancing abiotic stress tolerance during winter. Perhaps the
best-studied genes involved in stress tolerance are the heat shock proteins, molecular chaperones
that assist in refolding damaged proteins (40). These genes are unfortunately named because they
also play an important role in cold stress. Heat shock proteins belong to several different
families, and while the specific heat shock protein-encoding genes and even families that are
involved in winter stress tolerance vary from species to species, there is considerable evidence
that these genes are an important part of the overwintering machinery (60). Heat shock proteins
are commonly upregulated during cold acclimation (27, 29, 75, 127), and knocking down heat
shock protein expression impairs cold tolerance in overwintering insects (108, 127). Importantly,
while heat shock protein expression typically occurs in direct response to protein denaturation
(87), upregulation during cold acclimation is often observed at non-stressful temperatures,
suggesting a different mode of transcriptional regulation is involved beyond the usual heat shock
factor-mediated expression that occurs during protein denaturation.

Cold acclimation includes large-scale transcriptional changes beyond canonical stress
genes, suggesting complex molecular regulation of these phenotypes. For example, in the
common fruit fly Drosophila melanogaster, approximately 1/3 of the transcriptome is
differentially expressed during cold acclimation (75). Comparing transcriptomes of diverse
insects reveals a few common threads, despite this complexity. For example, cold acclimation

often alters expression of ionoregulatory genes and/or aquaporins to maintain osmotic balance
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during prolonged periods of cold (29, 37, 75, 143), which is one of the primary physiological
challenges associated with both low temperature and internal ice formation (reviewed by 92).
These classes of genes are also involved in local adaptation to low temperature, as genes related
to ion transport and neuromuscular structure and function are differentially expressed between
high and low-elevation populations of bumble bees that have variable critical thermal minima
(95). Another well-established mechanism associated with winter cold hardiness is
cryoprotectant synthesis, and the biochemical regulation of this process has been extensively
covered (e.g., 129). At the gene level, diapause and cold acclimation can result in differential
expression of genes that promote glycolysis, gluconeogenesis, and cryoprotectant synthesis (16,
37, 92). In the case of the cricket Gryllus veletis, genes encoding cryoprotectant transporters are
upregulated, presumably to facilitate uptake of cryoprotectants into tissues (143), but genes
involved in cryoprotectant synthesis are unchanged by cold acclimation. A third common feature
of cold acclimation involves cytoskeletal rearrangements and accompanying changes in
expression of genes like actin (28, 59), presumably to maintain cell structure at low temperature.
Finally, for some cold-adapted species, seasonal production of specialized ice-binding
proteins can contribute to cold hardening (33). These proteins are typically secreted into the
hemolymph to control ice formation and may increase cold hardiness in the following ways 1)
preventing ice crystal growth to stabilize the supercooling point, 2) nucleating ice formation to
facilitate controlled ice crystal growth, and 3) inhibiting ice crystal recrystallization (reviewed in
9). While these activities may seem at odds, they should be interpreted relative to the cold
tolerance strategy of the species they occur in. For example, preventing ice crystal growth occurs
in freeze-avoidant species such as the eastern spruce budworm Choristoneura fumiferana (31).

The latter two mechanisms may improve survival in freeze-tolerant species (151), such as the
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fire-colored beetle Dendroides canadensis (61). In all cases, these proteins act in a non-
colligative fashion, with high activities at relatively low concentrations. Interestingly, these
proteins appear to have evolved convergently over multiple times in insect evolution (Fig. 2)
(and indeed animal evolution broadly) (9), suggesting they are readily evolvable from a wide
range of potential precursors.
2.2 Mechanisms of rapid cold hardening

In addition to preparatory processes, responses to cold stress are dynamic, and there are
many molecular changes that occur both during and after a cold event. Rapid cold hardening is a
type of rapid plasticity that allows insects to quickly adjust physiology during a sudden cold
event, and the mechanisms of this widely used adaptation are reviewed in (135). Unlike gradual
cold acclimation and diapause, rapid cold hardening appears to operate in the absence of large-
scale changes in gene expression. As discussed above, one of the primary causes of physiological
injury during cold stress is membrane depolarization followed by ion dysregulation (92).
However, in the context of rapid cold hardening (i.e. mild cold in advance of more severe cold),
insects use these ion movements to trigger protective responses. Chilling that induces cold
hardening elicits a gradual influx of intracellular calcium, and blocking calcium entry or
inhibiting downstream calcium-sensing proteins prevents hardening from occurring (138).
Interestingly, calcium influx also appears to be responsible for triggering cell death in the cold
(5), and thus the degree of calcium influx determines whether a protective or detrimental
response occurs. Cold also leads to rapid activation of the stress signaling protein p38 mitogen-
activated protein kinase (MAPK) (41), but the downstream actions of calcium and p38 that lead
to enhanced function in the cold are unknown. Using an unguided phosphoproteomics approach,

Teets et al. (134) identified a number proteins that are differentially phosphorylated in the cold,
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including cytoskeletal proteins, heat shock proteins, signaling proteins, and proteins involved in
lipid metabolism. While the functional significance of these changes requires further
investigation, these results suggest that posttranslational modifications like phosphorylation may
be an important physiological regulator during acute low temperature stress, when transcription
and translation may not be possible.
2.3. Mechanisms of recovery from cold stress

Although gene expression appears to play only a minor role during severe cold stress,
numerous gene expression changes are activated during recovery. For example, in the flesh fly
Sarcophata bullata, roughly 10% of the transcriptome is differentially expressed 2 h after a
severe cold shock (137), and in larvae of D. melanogaster roughly 2% of genes remain
differentially expressed 24 h after cold stress (128). As with preparation for cold, heat shock
proteins are overexpressed during recovery from cold stress (18, 122, 127, 137), indicating this
class of genes has a dual role in both preparatory and repair processes. However, in the honey
bee Apis cerana cerana, while two heat shock proteins are upregulated during recovery from
cold stress, a majority are downregulated (149), again indicating that heat shock protein
responses to cold are species-specific. In D. melanogater, knocking down expression of the 22
and 23-kDa heat shock proteins impairs recovery (18), which suggests that restoring protein
homeostasis is critical for successful recovery from cold stress. In Drosophila, frost is robustly
upregulated during recovery from cold stress (8, 122), but frost appears to lack orthologs in other
insect taxa, so it is not clear whether this gene has a role in cold stress in other insects.

Recovery from cold stress also elicits expression of immune-related genes (128, 152),
possibly because cold-stressed insects are more susceptible to pathogens, but it could also be the

result of cross-talk between cold and immunity pathways (121). In addition to changes in gene
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expression, recovery from cold stress involves neuroendocrine signaling (reviewed by 73). In D.
melanogaster, CAPA neuropeptide accumulates during cold stress and is released during
recovery. Knockdown of the transcript encoding CAPA increases recovery time (140). These
processes that are activated during recovery from cold are also likely responsible for the
beneficial effects of fluctuating thermal regimes (i.e., repeated cycles of cooling and warming)
during prolonged cooling (19). Together, recent research indicates that recovery from cold stress
is a dynamic, and likely underappreciated aspect of coping with winter environments. However,
molecular studies thus far are heavily biased towards Diptera, so additional work is needed to
identify key processes that operate during recovery from cold stress across the diversity of

Insects.

3. Diapause as a solution to the challenges of winter.

Entering diapause prior to the onset of winter stressors is a strategy used by numerous
insects to mitigate the challenges of winter — especially issues with energetic stress and physical
damage to cell structures and macromolecules. Diapause is obligatory for some insects, but for
many diapause is an alternative developmental pathway initiated in response to token cues (e.g.,
changes in photoperiod, temperature, or food quality) that signal the advent of winter (24).
Diapause is generally characterized by developmental arrest, metabolic depression, and increased
tolerance of environmental stresses (45, 47, 60). Given its importance in insect life histories, and
the profound developmental and physiological changes that accompany it, the mechanistic basis
of diapause has been an intense area of investigation. In this section, we summarize the
molecular regulation of diapause, from the upstream signals that trigger diapause to the

downstream effectors. These molecular mechanisms are also summarized in Fig. 3.
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While initially viewed as a period of stasis, diapause is a dynamic developmental
program that is divided into distinct phases, including preparation, maintenance, and termination
phases (63). During the last 20 years, candidate gene approaches and high-throughput
transcriptome studies have identified genes that are up or down regulated during these distinct
phases of diapause. For example, a microarray study in Chymomyza costata found distinct
mRNA expression profiles for each phase of diapause (65). The molecular regulation of diapause
initiation will be covered extensively below, but in brief it involves endocrine signals involved in
reprogramming development and gene expression changes that facilitate metabolic
reprogramming (e.g., 65, 101). During diapause maintenance, development is repressed, and
insects are prepared to cope with winter stressors, so molecular processes during this phase of
diapause are predominantly involved in cryoprotection and shifts in energy metabolism (60, 96,
99, 101, 103). While diapause termination is not well-studied, in both C. costata and Rhagoletis
pomonella termination is accompanied by upregulation of Wnt and target of rapomycin (TOR)
genes (65, 100), although studies on additional species are necessary to determine whether this
pattern extends beyond Diptera. Because diapause involves such a dramatic developmental shift,
the processes involved in upstream regulation and initiation of diapause are best characterized, so
the remainder of this section will focus on upstream processes like the circadian clock and
endocrine signaling pathways, and when possible, how these pathways are coupled to

metabolism and stress-resistance.

3.1. Mechanisms of photoperiodic measurement

Accumulating evidence from gene expression studies, knockdown experiments, and/or
screens for genetic variants across populations suggests circadian clock genes (e.g, period,

timeless, chryptomechrome 2, and others) have important timekeeping roles in regulating

12



262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

photoperiodic diapause (64, 67, 83, 94, 98, 154). Transcriptome studies on Delia antiqua (103),
Chymomyza costata (126), and Nasonia vitripennis (22) show period and timeless are
differentially regulated in diapausing individuals relative to nondiapause counterparts. Knocking
down period, timeless, or cryptochrome 2 in Culex pipiens produces female mosquitoes with a
nondiapause phenotype, even if they are reared in short-day diapause-inducing conditions (84).
Conversely, knocking down the clock-associated gene pigment dispersing factor (PDF) leads to
ovarian arrest in long-day conditions that normally avert diapause. Similarly, in the cabbage
beetle, Colaphellus bowringi knockdown of period and timeless during pre-diapause prevents
lipid accumulation by altering the expression of genes involved in lipogenesis and lipolysis
(154). A whole genome study on Ostrinia nubilalis shows a correlation between clock-related
proteins Period and Pigment Dispersing Factor Receptor and the timing of diapause termination
(67). However, the precise nature of the relationship is still unclear. In Drosophila melanogaster,
which does not have a robust diapause, seasonal differences in chill coma recovery times
observed for wild type females are not found in null mutants of period, timeless, or clock (94).
Together these results indicate that at least some circadian clock genes have a general role

regulating diapause and other seasonal responses.

3.2. Endocrine signaling and physiological outcomes

Diapause entry, maintenance, and termination are endogenously regulated by the
endocrine system. Diapause during larval and pupal stages is associated with reduced levels of
ecdysone, while adult, reproductive diapause is characterized by reduced levels of juvenile
hormone (JH) (26). The endocrine system is recognized as a link between the circadian clock or
endogenous timekeeping mechanisms and physiological outcomes that define diapause (2, 36).

In brains from pupae of the sugar beet moth, Scobilpalpa ocellatella, there is a negative
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correlation between levels of Period and Timeless proteins and amounts of Prothoracicotropic
hormone (PTTH) and ecdysone (2). In Bombyx mori, knocking out Period increases expression
of the gamma-aminobutyric acid (GABA) receptor, which inhibits the release of Diapause
hormone (DH) in adult females and prevents diapause initiation in the subsequent generation of
embryos (21). In Antheraea pernyi, Period and the Clock/Cycle heterodimer regulate synthesis of
melatonin which, in turn, controls PTTH release from the prothoracic gland, synthesis and
release of ecdysone, and ultimately, diapause termination (86). Additional studies with
Lepidoptera suggest neuropeptides and neuromodulators (e.g., dopamine, serotonin, melatonin,
and PDF) connect circadian-clock related genes with the endocrine system (52, 115). While
several of these, including PDF and dopamine, regulate diapause in at least some species of
Lepidoptera and Diptera (46, 54, 64, 68, 84) the mechanics have yet to be completely worked

out.

Insulin and insulin-like peptides also play an important role in diapause, particularly in
regulating metabolic shifts (101, 118). Unlike mammals, insects can have multiple insulin-like
peptides that play diverse roles, leading to complex regulation of metabolism. A recent review of
insulin-like peptides suggests that this complex regulation can be co-opted to produce dramatic
metabolic phenotypes like diapause (14). In Drosophila, insulin signaling is coupled to the
circadian clock through a feedback loop that includes insulin and Timeless (30, 88).
Neuropeptides and neuromodulators (e.g., serotonin, dopamine, octopamine, GABA, and short
neuropeptide F precursor (sNPF)) also regulate insulin production and secretion by acting on
insulin producing cells in brains of D. melanogaster (89). Whether these interactions regulate

diapause has not been experimentally tested.
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In Cx. pipiens, insulin-signaling is coupled to diapause-related changes in metabolism
and stress-resistance through the transcription factor Forkhead box protein O (FoxO). In Cx.
pipiens reduced levels of insulin activate FoxO and regulate genes involved in energy
homeostasis, environmental stress-resistance, and other key features of diapause (91, 117, 119).
FoxO has been best studied in Cx. pipiens, but it is also associated with diapause in Locusta
migratoria (48), Bombyx mori (12), Laodelphax striatellus (150), Bombus terrestris (66),
Bactrocera minax (13), and Antheraea pernyi (72). As we discover more about the molecular
regulation of diapause, it will be interesting to see whether FoxO has a conserved role in
integrating information from the circadian clock, endocrine signaling pathways, and

physiological outcomes, despite diapause having evolved multiple times through the insect

phylogeny (98).

3.3. Epigenetic regulation of diapause

Accumulating evidence suggests that epigenetic processes (e.g., DNA methylation,
histone modifications, and noncoding RNAs) regulate diapause-specific changes in gene
expression (104, 105). DNA methylation (i.e. covalent attachment of a methyl group to DNA)
has been implicated in diapause initiation in B. mori and N. vitripennis (104). However, it is
worth that Diptera appears incapable of DNA methylation, and the extent of methylation varies
considerably across the insect phylogeny (7). Histone modifications (i.e. reversable attachment
of acetyl-, methyl-, or other functional groups to nucleosomes), which make certain regions of
the genome more or less accessible to the polymerase machinery, may regulate gene expression
in diapausing S. bullata (106). Histone modifications may be also be important for other aspects
of winter survival, including responding to temperature fluctuations (116). Small noncoding

RNAs, especially microRNAs, likely influence gene expression during diapause by regulating

15



330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

translation of target gene transcripts. MicroRNAs are differentially expressed before, during,
and/or post-diapause in flies, mosquitoes, and moths (for specific examples, see Fig. 3) (105,
107). While this area of research is new, it is becoming increasingly clear that modification to
DNA and chromatin structure, as well as noncoding RNAs likely play important roles in the

wholesale changes in gene expression that accompany diapause.

4. Evolutionary genetics of winter survival

The complex molecular regulation of cold tolerance and diapause, discussed above,
provides many opportunities for selection to act on these phenotypes in subtle and sometimes
complex manners. Understanding the evolution of overwintering traits contributes to our
understanding of insect diversification and distribution at large, and evolutionary genetics studies
can also yield novel mechanistic insights. Also, with winter conditions rapidly changing, both in
terms of higher average temperatures and increased variability (148), evolutionary studies of
overwintering biology are needed to determine whether insects can keep pace with these
changes. Broadly speaking, work on the evolutionary genetics of overwintering survival in
insects has either focused on cold tolerance or diapause. In either case, the vast majority of work
has focused on Drosophila species, which are neither remarkable in their cold hardiness nor their
diapause. However, by leveraging the tools available in Drosophila, its cosmopolitan nature that
allows collection and study across a wide geographical area, and the power of the Drosophila
radiation itself for evolutionary studies, significant progress has been made on the importance of
the genetics of overwintering traits as an important driver of adaptation in insect populations. In
addition, work on other models such as the apple maggot fly R. pomonella, the European corn
borer O. nubilalis, the pitcher plant mosquito Wyeomyia smithii and the flesh fly S. crassipalpis

has broadened this work. This work has generally proceeded one species at a time (although see
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34, 101), so while we will comment on generalities where possible, we will also present case
studies where the evolutionary genetics have been well worked out.

At the broadest level, it is clear that insect cold tolerance evolves readily. The ability to
survive freezing has independently evolved numerous times both across insect orders and within
particular insect lineages (reviewed by 144). Species of Drosophila with higher cold tolerance
tend to have higher latitude poleward range limits (51), and similarly, poleward populations of a
given species are generally more cold tolerant than equatorward populations (10, 97). Similarly,
in the widespread bumble bee Bombus vosnesenskii, population-specific critical thermal
minimum is strongly correlated with local minimum temperatures that vary with both latitude
and altitude (95). This ready evolution of cold tolerance is not particularly surprising as the
molecular mechanisms of cold tolerance are generally exaptations—i.e., repurposing of molecules
that evolved for other purposes. For example, glycerol is one of the most common insect
cryoprotectants, and it is used in multiple biochemical pathways and structures such as
phospholipid membranes and ATP generation (125). Similarly, ice binding proteins have
evolved repeatedly from multiple independent origins such as proteases, c-type lectins, and even
from non-coding DNA (Fig. 2) (reviewed in 9). These single mechanism-focused examples are
supported by work at the transcriptome level across New Zealand stick insects, which repeatedly
and independently colonized alpine zones and show species-specific transcriptomic responses to
cold shock (34). This ready evolution of molecular mechanisms of cold tolerance suggests
significant selective pressure and relatively simple adaptations.

Macromolecules can evolve greater ability to maintain function in cold conditions by
increasing their fluidity. For example, the glycolytic enzyme phosphoglucose isomerase (PGI)

has frequently been found to evolve intraspecifically, with well-worked out genotypes in the
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willow leaf beetle Chrysomela aenicollis that correlate with latitude and altitude (102). Similarly,
Pgi genotype determines low temperature flight ability in the Glanville fritillery Melitaea cinxia
(112). In the eastern spruce budworm C. fumiferana, a single nucleotide polymorphism (SNP) in
the glycolytic enzyme glycerol 3-phosphate dehydrogenase (GPDH) has been identified as
segregating on a linkage block between more poleward vs more equatorward populations (74).
While sequence variation in conserved metabolic enzymes appears to drive cold adaptation in
many in cases, occasionally biochemical novelty can appear. For example, the extremely freeze
tolerant Eurosta solidaginis has evolved a novel acetylated triacylglycerol as a storage lipid,
which allows it to remain liquid (and therefore accessible to metabolism) at much lower
temperatures than usual storage lipids (81). With the advent of novel algorithms like AlphaFold
that allow for routine predictions of protein structure and greater access to non-model organism
genomes, we anticipate an increasing number of studies that test the links between cold
tolerance, selection, and population variation across latitude.

Within Drosophila, several genetic screens have identified important loci for cold
tolerance. In Drosophila ananasse, just three quantitative trait loci explain 60% of the variation
in chill coma recovery time (62). In Drosophila melanogaster, many genes have been linked to
cold tolerance, but their mechanisms remain unclear. For example, selection for increased cold
resistance changed expression of 94 genes, none of which corresponded to previously-identified
cold tolerance genes (139). The underlying genetic architecture of “cold tolerance” likely
depends on the particular cold tolerance trait being measured, as, at least in D. melanogaster,
many different cold tolerance traits do not correlate well across genotypes and often have sex-
specific correlations (42). However, when a particular cold tolerance trait such as critical thermal

minimum is studied in depth, GWAS can identify multiple candidate genes that are also
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differentially expressed in response to cold, indicating there is at least some overlap between
variants that associate with cold tolerance and those that are dynamically expressed during a cold
event (69). Interestingly, in the Drosophila Genetic Reference Panel (DGRP), SNPs associated
with variation in baseline cold tolerance (measured by survival after a cold shock) do not overlap
with SNPs associated with capacity for short or long term plasticity in cold tolerance (44),
although SNPs associated with each trait had overlapping molecular functions. Taken together, it
appears that there are many ways to achieve increased cold tolerance from a genetic perspective.
The evolutionary genetics of diapause have also been investigated thoroughly (Reviewed
by 98). As described above, diapause is a complex trait that can be divided into multiple phases.
Studies on the evolution of diapause have, out of necessity, focused on easily-distinguished traits
such as diapause incidence and phenology to allow for robust association with genetic variation.
Even still, the role of diapause-related genes in local adaptation is clear. In Drosophila
melanogaster, single nucleotide polymorphisms in genes associated with insulin-sensing and
couch potato (cpo) is clinal (35, 113), and similar variants are also associated with the time of
year a particular population is collected (38). In the apple maggot fly R. pomonella, the
introduction of apple trees (which fruit earlier) to North America initiated an allochronic
speciation event as some populations switched from their native hawthorn host, which fruits
later. The separation in host plant timing caused a separation in reproductive timing in the flies,
leading to speciation (39). This divergence again evolved rapidly, with transcriptional evidence
indicating that it is likely due to differences in development rate during diapause (32). Thus,
selection on diapause phenotypes can also be an important driver of speciation, as changes in
phenology restrict gene flow and can allow for canalization of the diapause phenotype under

selection.
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5. Broader implications and practical applications for molecular studies of

overwintering

Given the heritability, latitudinal variation in, and selection for cold tolerance traits, it is
clear that cold tolerance is a key fitness trait in insect populations. However, cold tolerance can
be difficult to study. It is a complex trait that can be measured multiple ways and involves not
only a wide array of biochemical and physiological mechanisms and but also a variety of
underlying genetic architectures. As climate change proceeds, the ability of a given insect
population or species to take advantage of warming climate and spread poleward will rely on the
genetic resources available, as well as the evolvability of cold tolerance and its plasticity.
Therefore, broadly speaking, predicting the impacts of climate change on insect populations will
rely on better linking these mechanisms of cold tolerance to population-level impacts.

One potentially fruitful way to link these diverse traits to fitness is through the use of
energetics. Overwintering insects are frequently unable to feed, yet they must deploy
cryoprotective mechanisms from the same energetic stores that supply ATP supply for
maintaining homeostasis. As a result, increased investment in cryoprotection can come at the
cost of future egg production (141) or can result in lowered survival at the end of winter (80).
While there have been multiple studies investigating the correlations between lower thermal
limits and poleward range expansion (1, 131), we caution that these studies often do not assess
cold tolerance of overwintering life stages and therefore may not provide an accurate
representation of the cold tolerance for a particular species. Therefore, we look forward to
development of population and mechanistic models (e.g., NicheMapR; 76) that include realistic
assessments of insect overwintering that encompass lethal limits, plasticity in cold tolerance, and

sublethal traits like energetics and post-winter reproduction.
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In addition to providing fundamental insights into processes that limit insect survival and
that may be under selection in changing environments, there are potential field applications for
molecular studies of overwintering insects. For example, the ability to manipulate diapause at the
molecular level may improve management of both pests and beneficial insects. Hormone
agonists can be used to either prevent either entry or termination of diapause in the corn earworm
Helicopverpa zea (153), and field application of these compounds could reduce overwintering
populations. Similar disruptions of diapause may also benefit beneficial insect release programs.
For example, the lady beetle Hippodamia convergens is one of the most popular commercial
biological control agents for gardens and greenhouses, but beetles in diapause either disperse
from the release point or fail to consume prey (23). Thus, the ability to prevent, break, or extend
diapause through molecular means could improve the field performance of beneficial predators
and pollinators.

Organismal-level thermal traits have long played a role in improving species distribution
models (15, 77), and we propose that molecular studies may be similarly able to contribute to
predictions of insect distributions. It is impossible to characterize the overwintering biology of
every insect species, but phylogenetically-informed mechanistic studies can identify the key
genes and processes that limit overwintering ability in select insects. Then, with large-scale
genome-sequencing initiatives like the Sequencing Five Thousand Arthropod Genomes (i5K; 20)
and Earth BioGenome Project (71), it may be possible to predict the overwintering biology of a
novel species through an analysis of gene content and sequence. We recognize that this idea is
somewhat speculative, but small-scale metanalyses suggest there are transcriptional hallmarks
for specific diapause strategies (101), and it is likely similar signatures exist in in the genome.

For an example, the success of the invasive mosquito Aedes albopictus can be partly attributed to
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its ability to overwinter in environments much colder than its native range and to rapidly evolve
its diapause timing in different environments (25). Perhaps future invasions could be anticipated
by using genomics to determine whether a particular species has the requisite complement of

genes to overwinter in a particular habitat.

6. Future Directions and Conclusions

As detailed above, molecular research on insect overwintering biology has exploded in
recent years. However, while information has increased dramatically, in many ways our
understanding has not advanced as rapidly. While some common threads are emerging, variation
in study designs, methodology, and species of interest has made it challenging to develop a
unified model for molecular responses to low temperature and other winter stresses, and it
remains unclear if one even exists. Moving towards a unified model requires phylogenetically
informed studies and careful considerations of ecologically relevant conditions, as has been done
for some groups of for organismal-level assessments of cold tolerance (3, 57). A metanalysis of
transcriptional responses to diapause suggests a lack of phylogenetic signal but rather similarity
depending on the specific stage of diapause and thus some evolutionary convergence in
mechanisms (101). However, at the time of that metanalysis, the taxonomic breadth of diapause
transcriptomes was limited, and whether such convergence characterizes other overwintering
phenotypes (i.e., cold acclimation, recovery from cold stress, etc.) remains to be seen. As was
probably clear from the rest of this review, in-depth molecular studies of cold tolerance traits are
biased towards Drosophila, a taxon that has robust plastic responses to cold but is otherwise
unremarkable in its cold tolerance. While the past decade has brought incredible new insights to
insect overwintering physiology, the next decade will require carefully designed studies and

collaboration among groups specializing in different insect groups.

22



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

In addition to increasing the taxonomic diversity of molecular studies, there is ripe
opportunity to functionally validate the expanding list of molecular correlates of diapause and
cold hardiness. RNA interference (RNA1) has been used to test important hypotheses including
the importance of heat shock proteins (18, 108) and cryoprotectant synthesis genes (93, 146), the
role of clock genes in regulating diapause entry (53, 84), and the functional role of genes
associated with cold tolerance through GWAS approaches (136). However, RNA1 and other
reverse genetic approaches are relatively underutilized in studies of overwintering stressors.
Newer approaches like CRISPR/Cas9 allow sequence-specific modifications to genes and/or the
routine creation of null mutants, but thus far only one study has used this approach to investigate
molecular responses to cold, in which Newman et al. (90) demonstrated that frost, which has
long been associated with cold responses in Drosophila, plays a minor role in preserving
reproduction after cold stress but has no other effect on cold tolerance phenotypes. A major
challenge to adopting CRISPR/Cas9 to other species is reagent delivery, as embryonic injection
has not been optimized or is challenging/impossible for many species. However, new approaches
to delivery, including those that use maternal injection coupled with reagents that are taken up by
ovaries (11), may pave the way to expand this powerful tool into insects with unique
overwintering adaptations. In principle, the tools are in place to turn any insect into a “model
species” (82), and these tools are necessary to predict responses to climate change, manipulate

overwintering biology for pest control, and improve overwintering survival of beneficial insects.
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Figure 1. Distinct timescales on which molecular responses to winter stress occur. The top part

of the figure summarizes a representative time course for a photoperiodically controlled

diapause, while the bottom part summarizes direct responses to temperature change. In this

example, the insect enters diapause in early fall prior to the onset of temperatures that elicit cold

acclimation. Depending on the timing of diapause entry and the onset of low temperatures, cold

acclimation could also occur before the onset of diapause. Also, in this example, diapause

terminates in mid-winter, meaning the insect has the capacity for development, but post-diapause
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quiescence caused by low temperatures prevents the resumption of development until spring.
The solid black line shows an arbitrary temperature progression, and the dashed line indicates
0°C. Thermal fluctuations are shown in winter to highlight the potential challenges of fluctuating
thermal regimes (FTRs). In reality, temperature would fluctuate all seasons, but attempting to
capture realistic fluctuations in this schematic would obscure the general trends we are
highlighting. The boxes summarize molecular mechanisms associated with distinct aspects of
winter; these lists are not meant to be comprehensive but to highlight some of the important

functions that have been identified. FTR: fluctuating thermal regime; RCH: rapid cold hardening.
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Figure 2. Ice binding proteins as a case study for the evolvability of cold tolerance. Left:
Similarity tree of all known terrestrial arthropod ice binding proteins with both sequence data
and confirmed laboratory activity (obtained from 9) and inferred by using the Maximum
Likelihood method and Whelan and Goldman model (147). The tree with the highest log
likelihood (-8659.18) is shown. Initial tree(s) for the heuristic search were obtained automatically
by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated
using the JTT model, and then selecting the topology with superior log likelihood value. A

discrete Gamma distribution was used to model evolutionary rate differences among sites (5
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categories (+G, parameter = 3.0607)). The tree is drawn to scale, with branch lengths measured
in the number of substitutions per site. This analysis involved 69 amino acid sequences with a
total of 439 positions in the final dataset. Evolutionary analyses were conducted in MEGAT11
(132). Silhouette images were obtained from PhyloPic (credits to Didier Descouens, T. Michael
Keesey, Melissa Ingala, Mathilde Cordellier, Gregor Bucher, Max Farnworth, Maxime Dabhirel,
and Birgit Lang and licensed under https://creativecommons.org/licenses/by-sa/3.0/), and protein
models for select species were produced from primary sequence by AlphaFold (56) and
visualized in Mol* Viewer (114). Triangles indicate where several very similar sequences from
a single taxon (as indicated by label) were collapsed and are sized relative to the number of
sequences. The tree indicates convergent evolution of ice binding proteins across the arthropod
phylogeny. Right: Taxonomic relatedness of the insects on the 1 eft tree, as generated by the

NCBI Taxonomy Browser. Only the topology is represented here.
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Figure 3. General schematic for diapause regulation. Changes in the number of daylight
hours are detected by the central circadian clock. In turn, changes in the expression of Period,
Timeless, and other clock-associated genes alter the production of neurotransmitters and
neuromodulators (e.g. dopamine, serotonin, and pigment dispersing factor (pdf)) that regulate the
production and secretion of insulin-like peptides (ILPs) by Insulin secreting cells (ISC) in the
brain. Downstream of the ILPs, Juvenile Hormone (JH) and FoxO influence the expression of
genes responsible for physiological changes. Note that pathways involving JH signaling would
likely only operate during an adult reproductive diapause. Neurosignaling events also regulate
the production and release of prothoracicotropic hormone (PTTH) and the production of

ecdysone. MicroRNAs that are regulated by ecdysone titers (e.g., let-7, miR-252, and miR-8-3p)
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