2204.03037v2 [astro-ph.HE] 24 Apr 2022

.
.

arxiv

APS/123-QED

Universal Relations for Neutron Star F-Mode and G-Mode Oscillations

Tiangi Zhaol’Q’ and James M. Lattimer?

! Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
2Dept. of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794-3800
(Dated: April 26, 2022)

Among the various oscillation modes of neutron stars, f- and g- modes are the most likely to be
ultimately observed in binary neutron star mergers, due to the relatively large coupling and shared
frequencies with tidal excitations. The f-mode is known to correlate in normal neutron stars with
their tidal deformability, and therefore with their moment of inertia and quadrupole moment. Using
a piecewise polytropic parameterization scheme to model the uncertain hadronic high-density EOS
and a constant sound-speed scheme to model pure quark matter, we refine this correlation and show
that these universal relations also apply to both self-bound (quark) stars and hybrid stars containing
phase transitions. We identify a novel 1-node branch of the f-mode that occurs in low-mass hybrid
stars in a narrow mass range just beyond the critical mass necessary for a phase transition to appear.
This 1-node branch shows the largest, but still small, deviations from the universal correlation we
have found. It is characterized by a non-monotonic relation between neutron star mass and f~-mode
frequency, in contrast to the behavior otherwise observed in normal, quark and hybrid stars.

The g-mode frequency only exists in matter with a non-barotropic equation of state involving
temperature, chemical potential or composition (such as being out of beta equilibrium), or a phase
transition in barotropic matter. The g-mode therefore could serve as a probe for studying phase
transitions in hybrid stars. In contrast with the f-mode, g-mode frequencies do not correlate well
with tidal deformability, but depend strongly on properties of the transition (the density and the
magnitude of the discontinuity) at the transition. They also weakly depend on the equation of state
on either side of the transition. Imposing causality and maximum mass constraints, the g-mode
frequency in hybrid stars is found to have an upper bound of about 1.25 kHz. However, if the sound
speed ¢, in the inner core at densities above the phase transition density is restricted to ¢ < ¢? /3,
the g-mode frequencies can only reach about 0.8 kHz, which are significantly lower than f~mode
frequencies, 1.3-2.8 kHz. Also, g-mode gravitational wave damping times are usually extremely
long, > 10* s (102 s) in the inner core with ¢? < 02/3 (02)7 in comparison with the f-mode damping

time, 0.1-1 s.

I. INTRODUCTION

Isolated neutron stars (NSs) are expected to oscillate in
many modes, corresponding to different restoring forces.
In asteroseismology, fluid oscillations, including g-, f-
and p-modes, have been extensively studied in Newto-
nian gravity [I]. In this paper, we focus on f- and g-
modes under linearized general relativity formalism [2][3].
The f-mode is the lowest-order, fundamental, non-radial
breathing mode, characterized by a zero radial node num-
ber n = 0. The g-mode is a global oscillation with an
arbitrary number of nodes with gravity being the dom-
inant restoring force. They are a consequence of local
buoyancy oscillations, and characterized by small Eule-
rian pressure variations. The f- and g-modes we consider
have ¢ = 2 so that they may couple with gravitational
waves.

In addition, one could consider also p- and w-modes
that have an arbitrary number of nodes. The restoring
force of the p-mode is dominated by pressure variations
in matter. The w-mode is the strongly damped gravita-
tional wave (GW) mode dominated by variations of the
space-time metric [4]. However, p- and w-modes usually
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cannot be excited during neutron star mergers due to
their high frequencies, 5-12 kHz [5]. In any case, such
high frequencies are effectively unobservable, being well
beyond the range of next-generation GW detectors. We
will not consider them further.

The f-mode is a fundamental mode sitting between the
g- and p-modes, with frequency vy = wy/(27) ~ 1.3—2.8
kHz. It only exists in non-radial modes, £ >1. The
f-mode frequency is known to correlate with the mean
NS density wy x /Gp x /M/R® [6]. However, a
more precise, EOS-insensitive, correlation can be found
between the dimensionless frequency Qf = GMw;/c?
with other NS properties such as the dimensionless mo-
ment of inertia I = Ic*/(G?M?3) and the dimensionless
tidal deformability A. A semi-universal Qy — I corre-
lation was first proposed by Lau et. al. [7], estab-
lished with a limited number of EOSs. Later, the so-
called I-Love-Q relation was discovered [8] that provides a
rather precise, EOS-insensitive, correlation between I, A,
and the dimensionless quadrupole moment. Thus, there
exists a similar Q; — A correlation as well [9411]. In
this work, we refine this correlation to encompass any
causal EOS constrained by neutron star mass observa-
tions and low-density neutron matter studies employing
a polytropic parameterization scheme to model matter
at supra-nuclear densities. In particular, we quantify
the accuracy and bounds of this correlation and show
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that it also applies to self-bound (pure quark) and hy-
brid (hadron-quark) stars.

There are usually three types of non-zero frequency g-
modes corresponding to instabilities when matter moves
adiabatically through temperature, chemical composition
or density changes. The local g-mode frequency v, is
determined by the Brunt-Vaisala frequency,
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where v and A\ are the temporal and radial metric func-
tions. Here, g = (dp/dr)(e + p)~* is the local gravity,
p and € are the pressure and energy density, respec-
tively, c. = 1/dp/de is the equilibrium sound speed and
cs = v/yp(unp)~1 is the adiabatic sound speed. v =
(np/p)Op/Onp is the adiabatic index defining how the
matter reacts to the adiabatic compression. p = de/0np
and np are the chemical potential and baryon number
density, respectively. g-mode buoyancy oscillations are
stable when 2 > 0, while 1/3 < 0 corresponds to a
convective region. When matter is marginally buoyant,
the g-mode has zero frequency. When the thermal [12]
or chemical [13] [14] relaxation time scale is longer than
oscillation period, the sound speed in temperature and
chemical equilibrium is different from that of the mov-
ing, perturbed, matter. For the thermal and chemical
g-modes, an arbitrary number of nodes exist, and the
principle g-modes with n=1 have the highest frequency.
An universal relation between chemical g-mode frequency
and lepton fraction was discovered recently [15] provid-
ing key information of symmetry energy at high density.
However, these frequencies are relatively small (< 0.6
kHz) in most cases, except for exotic matter involving
quarks and hyperons [15][16]. A g-mode due to a density
discontinuity from a phase transition can be understand
as a special version of a g-mode due to chemical compo-
sition changes, since matter on the low-density side can
be treated as having a different composition from that on
the high-density side. This situation occurs when mat-
ter does not instantaneously change phase upon passing
through the phase transition boundary. For this reason,
this type of g-mode is also known as an i-mode (interface
mode) in the literature [17]. Higher order g-modes do not
exist, unless there are multiple density discontinuities.
Both the frequency and damping times of an i-mode are
significantly larger than that of other g-modes and are
more likely to be observed in gravitation wave observa-
tions [18]. When there is more than one phase transi-
tion (density discontinuity) in a NS, multiple groups of
g-modes could exist [19]. We will focus on the particu-
lar type of g-mode, which we will call the discontinuous
g-mode, with lowest order n = 1.

Quadruple oscillations (¢ = 2) of all modes can couple
to and lead to emission of GW radiation, and will be
characterized by the GW damping timescale 7. It is of
interest to estimate the observability of this radiation.
The amplitude of observed oscillations with frequency w

is [20]
h(t) = hoe VT coswt, (2)
where hg = h(0). The observed GW energy flux is
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The total radiated energy in corresponding oscillations
should be larger than this energy, since bulk viscosity also
contributes to dissipation. We use this formula as a lower
limit for the radiated energy in this oscillation mode in
order to be conservative. To scale this relation, we use
a typical frequency v = 1 kHz, damping time 7 = 0.1
s, and distance D = 15 Mpc (the distance to the Virgo
Cluster). The Advanced LIGO noise power spectrum
(sensitivity) at that frequency is about S,, = 4 x 10724,
Thus, to be potentially observable in Advanced LIGO
with a signal-to-noise ratio ~ 2.5 would require hy ~
107%% and a total radiated GW energy E ~ 4 x 10%°
ergs. With a next-generation instrument such as Cosmic
Explorer and Einstein Telescope that has about 10 times
the sensitivity of Advanced LIGO, the threshold values
become hg ~ 10724 and E ~ 4 x 107 erg.

There are multiple scenarios for pumping energy into
NS oscillations, including core-collapse supernovae, NS
mergers, close encounters of a NS with a black hole
(BH), and NS starquakes [5]. The requisite energy can
be compared with the results of hydrodynamic simula-
tions, which offer powerful methods to study oscillations
of proto-NSs from core-collapse supernovae and of rapidly
rotating supramassive NSs from NS mergers [21]. Core-
collapse supernovae have long been considered as promis-
ing GW sources [22]. f- and g-mode oscillations can be
identified in recent simulations and show the total GW
energy in core-collapse supernovae of order 10** — 1047
ergs depending on the mass and rotation rate of the pro-
genitor [23]. Thus, only galactic sources with D < 20
kpc are likely to be observed in Advanced LIGO obser-
vations, at a rate of, at best, a few per century [24]. Next-
generation instruments such as Cosmic Explore improves
the distance threshold to D < 200 kpc, but won’t change
the observed rate much since additional large galaxies lie
outside this distance. Since a proto-NS is hot and opaque
to neutrinos, its mean density is smaller and their f-mode
frequencies should be smaller than that of a cold NS.

For comparison, rapidly rotating supramassive NS
remnants from NS mergers have masses likely larger than



Miax, the maximum mass of cold, non-rotating NS, be-
ing temporarily supported by rotation acquired from the
binary’s orbital angular momentum [25]. Due to their
large expected ellipticities and oscillation amplitudes, a
GW energy from 1072 My c? to 1072 My c? could be emit-
ted within 5 ms [26]. In this case, the observable distance
range for an advanced LIGO signal-to-noise ratio of 2.5
is estimated to be D < 20 — 45 Mpc for Advanced LIGO
observations |27) [28]. The binary neutron star merger
rate has been estimated to be 3207530 Gpc=3 yr~! based
on the O1 and O2 LIGO—-Virgo observation runs as well
as on the first half of the O3 run [29]. Thus, the pre-
dicted event rate becomes more favorable, ranging from
6x 10~ yr=! to 0.04 yr—!. With next-generation instru-
ments such as Cosmic Explorer [30], the predicted event
rate improves further to 0.06 yr=! to 4 yr—!, which now
becomes reasonable.

Gravitational radiation observed in the post-merger
phase is complicated by spin-oscillation interactions.
Neutron star merger simulations show that the dominant
fluid oscillation of a supramassive NS coincides with the
m = 2 f-mode [31], and has a strong correlation with the
isolated NS f-mode frequency [11], especially for equal-
mass mergers. In the case of equal-mass mergers, the
peak frequency in supramassive NSs is almost equal to
that of the non-rotating f-mode frequency of isolated NSs
with the same mass as each of the merging components
[32].

Besides directly observing gravitational waves from
post-merger NS oscillations, there might be additional in-
direct possibilities during the inspiral phase. During the
inspiral, quadruple oscillations could be excited by the
periodic tidal interaction from a companion, especially
when the orbital frequency approaches the oscillation fre-
quency [33|. Orbital energy transferred to quadruple os-
cillation results in dissipation and an extra phase advance
in the gravitational waveform, and could have a large ef-
fect [34]. Because the g-mode has a low frequency, tidal
interactions could excite g-mode oscillations well before
resonances with the f-mode are reached during the last
part of the inspiral.

Since the f-mode frequency is much higher than the or-
bital frequency, resonant excitations of the f-mode are not
likely for non-rotating NSs. However, if an inspiralling
NS is counter-rotating, f-mode resonant frequencies could
be lowered significantly because the relevant frequency is
wf — 2w,, where wy is the spin frequency. The f-mode
has a larger coupling with tidal field compared with the
g-mode. For a millisecond pulsar, f~-mode resonances in
this case could cause phase advances up to hundreds of
cycles [34][35]. However, large phase shifts due to a res-
onance seemed not to have occurred in the case of the
recent binary NS merger GW170817, since its waveform
is consistent with a low spin prior. In any case, binary
evolution theory favors low spins as well [36], rendering
this scenario as unlikely.

Interestingly, a crude estimate of f-mode frequencies
of neutron stars can be obtained by combining observa-

tions with the information described above. Dynamical
tidal effects can be modeled based on an effective-one-
body approach, treating tidal deformability and f-mode
frequency as key parameters [37H39]. A lower bound to
the f-mode frequency can be estimated from the non-
detection of a significant resonance phase shift, while an
upper bound can be estimated from the 2y — A universal
relation previously alluded to. The resulting 90% credible
interval of f-mode frequency for GW170817 was reported
as 1.43 kHz < vy < 2.90 kHz for the more massive star
and 1.48 kHz < vy < 3.18 kHz [40] for the less massive
star.

Another source of NS oscillations could be starquakes
that lead to the release of the strain energy in the neu-
tron star crust. Starquakes might have a connection with
glitches observed in pulsar timing. Glitch models based
on superfluid vortex models generally predict a negligi-
ble amount of GW radiation [41]. But glitch models that
involve starquakes show a transfer of up to 107! of the
total NS rotation energy to f-mode oscillations [42]. For
a millisecond NS with spin frequency of 0.3 kHz and a di-
mensionless moment of inertia I = 10, starquakes could
emit up to 10%° ergs in GW. Therefore, only an event
very close to the Earth (D < 2 kpc) could be observable
even in next-generation instruments. The closest known
pulsar, RX J1856-3754, is about 0.12 kpc away, which lies
within the observable range. Assuming a uniform pulsar
distribution implies the existence of about 10° pulsars
within the Galaxy. However, only about 3000 pulsars
are observed [43], giving an average distance of about
1.3 kpc to the nearest pulsar, and indicating that most
remain undetected. Based on decades of pulsar monitor-
ing, about 10% of observed pulsars show glitches [44]. If
a similar percentage of unobserved pulsars are capable of
glitching, at most a few might lie in the observed range
of next-generation instruments.

In this paper, we calculate f-mode and g-mode frequen-
cies and damping times by solving relativistic non-radial
oscillation equations [3][45] which form an ordinary differ-
ential equation (ODE) eigenvalue problem. The f-mode
is the mode with zero radial nodes in these calculations,
and the g-mode is the mode with a single radial mode
having the next-lowest frequency. In such calculations,
NSs are usually assumed to be non-rotating, although ro-
tation could slightly increase the f-mode frequency [46].
Going beyond the slow-rotation limit requires a more
complicated solution involving the time evolution with
partial differential equations [47], which could be calcu-
lated from dynamical non-linear GR simulation [48][49].
Previous studies have mainly focused on hadronic NS.
The few existing calculations involving quark stars and
hybrid NSs generally have assumed an MIT bag model
with ¢2 a2 1/3 for the NS inner core [50H52]. However,
we will study models incorporating higher sound speeds
in both bare quark stars and in the inner core of hybrid
NSs. We employ a parameterized hadronic EOS omitting
temperature and chemical composition dependence, as
discussed in Section allowing us to explore a wide va-



riety of hadronic, hybrid and pure quark NSs. Since our
parameterized EOS doesn’t have temperature and chem-
ical composition information, we study NS oscillations in
equilibrium (i.e., equal equilibrium and adiabatic sound
speeds) for both hadronic and hybrid configurations. A
long transition timescale is assumed at quark-hadron in-
terfaces, meaning that particle concentrations are frozen
during oscillations at the interface.

Many previous studies, especially for hybrid NSs and
quark stars, have used the Cowling approximation [51}-
56], which lacks dissipation due to gravitational waves.
The Cowling approximation introduces about a 20-30%
error in the f-mode frequency [10] [57] 58], which is sig-
nificantly less accurate than that of the Q; — I — A uni-
versal relation to be studied [7, |9 [10]. An 5% error
in the g-mode frequency [58] from the Cowling approx-
imation has also been found in M < 1.2Mg. Massive
NSs with stronger gravity, in principle, result in even
larger error in g-mode from the Cowling approximation
[15]. Beside, non-linear numerical simulation could re-
produce the f-mode frequency, but the damping times
depart from linear perturbation theory [48]. Instead, in
Sec. we solve metric perturbation equations together
with fluid perturbation equations to study the oscillation
mode frequencies and gravitational damping time scales.
In Sec. we illustrate this formalism applied in the
case of Newtonian geometry to selected analytic equa-
tions of state, and compare to general relativistic results
with and without Cowling approximation. In Sec. we
develop a six-parameter hadronic EOS together with a
two-parameter extension to describe a hybrid EOS. Re-
sults for the f-mode are presented in Sec. where the
EOS-insensitive Q¢ — I — A relation is constructed. We
determine bounds for these relations and quantify their
uncertainties. Other fitting formulae are also described.
We describe, for the first time, a special 1-node branch
of the f-mode associated with so-called twin stars whose
masses are near the transition mass to hybrid stars in Sec.
The discontinuous g-mode, present in stars with a
phase transition density discontinuity, is analyzed in Sec.
where an EOS-insensitive correlation with stellar
compacntess is developed and quantified.

II. OSCILLATION FREQUENCIES AND
DAMPING TIMES

Thorne et. al. first studied NS oscillations coupled
with gravitational radiation [2]. Oscillations of NS are
expected to involve linear variations of matter and met-
ric in various sphercial harmonics. The angular decom-
position of variations will contain even and odd parity
components. Odd parity variations have a trivial zero
mode which corresponds to differential rotation, unless
axiel symmetry is broken by rotation which result in r-
modes [59]. In this work, we study only even parity per-

turbation of the Regge-Wheeler metric,
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where Hy, Hi, and K are metric perturbation functions.
w is the complex oscillation frequency; its real component
is the oscillation frequency and its imaginary component
is the inverse of the damping (growth) time if it’s posi-
tive (negative). The metric perturbation functions inside
the star must match those outside the star at the stellar
surface.

A. Perturbations inside the NS

Fluid perturbation vectors inside the star can be de-
composed in a babib of spherical harmonics in terms of
L 0pY,t and 8¢ . For non-rotating neutron stars, odd
parlty fluid perturbatlons have a trivial solution Wthh
corresponds to differential rotation, while fluid perturba-
tions with even parity are described by the Lagrangian
displacement vectors
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which define the fluid perturbation amplitudes W and
V. In case of radial oscillations when ¢ = 0, the angular
fluid perturbation V' is irrelevant due to the vanishing
of Oy and 0p. Perturbations of a spherical star have four
degrees of freedom: three coming from the metric pertur-
bations, which will be reduced by one applying Einstein’s
equation, G = 876T°!, and two coming from fluid per-
turbations. An additional fluid perturbation amplitude
X , related to Lagrangian pressure variations, is defined
according to

Ap = —rte V2XY! et (9)
In order to avoid potential singularity in the eigenvalue
problem, Lindblom et. al. pick the four independent
variables to be Hy, K, W, X [3|[45] and evaluate the two
remaining functions Hy and V according to
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where n = (¢ — 1)({ +2)/2, Q = b+ 47Gr?p/c* and
b = Gm/(rc?) with m(r) the mass interior to 7. By ex-
panding Einstein’s equation to first-order, homogeneous



linear differential equations for Hy, K, W and X can be

found [43],
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where the adiabatic sound speed cs of NS matter under
oscillation is different from the equilibrium sound speed
ce[13[14]. Here, we only consider zero-temperature EOSs
without varying chemical composition, so that ¢, = ce.
The central boundary conditions for the perturbation
amplitudes are

n+1

where 19 = v(0) and the last boundary condition is
achieved by solving the two trial solutions with K(0) =
+(g0 + po) and then linearly constructing the correct so-
lution satisfying the outer boundary condition X (R) =0
(corresponding to no pressure variations at the surface).
Note that Hy(0) = K(0) by construction. For a hybrid
NS (see Section , we assume no chemical changes at
the transition boundary [60} [61]. Thus, H;, K, W, X
should all be continuous at the transition, while Hy and
V are fixed by Eq. . In this paper, we confine the re-
mainder of our discussion to non-radial oscillations with
¢ =2, so that V and W, which are defined only inside a
star, are dimensionless functions.

As an example, Fig. shows the static and metric per-
turbation amplitudes inside a 1.4M; NS using the SLy4
EOS. The central pressure is p. = 85 MeV fm~2, the ra-
dius is R; 4 = 11.72 km, and the corresponding f-mode
frequency is w = 1.2146 x 10* +5.206i s~!, determined as
in Sec. Since the imaginary part of the perturbation

is very small compared with the real part, Fig. [I]shows
only the real parts of the perturbation amplitudes. The
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FIG. 1. Metric perturbation amplitudes, fluid perturbation
amplitudes for non-radial oscillations with £ = 2 with (dashed
curves) and without (solid curves) the Cowling approxima-
tion, and static metric functions (dotted curves) inside a
1.4Mg NS computed with the Sly4 EOS [62]. Ho, Hi and
K are in units of e, = 152.26 MeV fm ™2, X is in units of &2,
and W, V', v and X\ are dimensionless. Only real parts of the
perturbation amplitudes are plotted.

Cowling approximation gives w = 1.5130x 10* s~1, about
25% larger. The fluid perturbation amplitudes with the
Cowling approximation are in error by up to a factor of
2 at stellar surface for W and V', and by about 25% at
the center for X, as shown in Fig.

Outside the NS, Eq. reduces to 2 first-order equa-
tions for Hy and K; W and V are not defined in this re-
gion. These equations can be reformulated into a single
Schrodinger-like equation known as the Zerilli equation,

d*Z)dr** = (Vz(r) —w?)Z, (13)
by defining
() = () ) (o)
g(r):n(nJr(l?iiiZ)bjL%Q, (14)
M= =

and an effective potential

2n2(n + 1) 4 61n2b + 18nb? + 1863
r2(n 4 3b)2

Vz(r) = (1 — 2b) .(15)

Note that here b = GM /(c?r) since m(r > R) = M. Hy
can be fixed by a simplified form of the last of Eq.7



Hy =

Fig. shovvs the metric perturbation amplitudes outside
the NS modeled in Fig. In the far-field limit, the
solution becomes that of oscillating gravitational radia-
tion. The behavior of the metric perturbation amplitudes
shown in Figs. |1| and is generic for f-mode (n=0) and
relatively insensitive to the EOS.

B. Determining the oscillation frequency

Our goal is to find the frequencies of eigenmodes that
correspond to oscillations. The lowest order mode cor-
responds to the f-mode generally with zero node, while
solutions of higher radial nodes correspond to the g- and
p- modes. All the mode solutions should satisfy the cor-
rect boundary condition at infinity should be ‘free’, in
other words, at infinity, the gravitational radiation field
should be purely outgoing. We solve the Zerilli equation
for r < 25w, which is found to be adequate. For larger
r, the solution of Zerilli equation Z can be decomposed
into incoming (Z) and outgoing (Z_) radiation as

Z_(w)
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where A, (w) and A_(w) are the amplitudes of incoming
and outgoing radiation, respectively, Z, is the complex
conjugate of Z_. The amplitude of incoming radiation
Ay (w) vanishes for physical eigenmodes. «g can be any
complex number which represent an overall phase.

In order to determine w, we need to solve for the root of
A4 (w) = 0 in the complex plane. A straightforward, but
inefficient, way would be to use a complex root finding
algorithm. With the help of EOS-insensitive relations
between v = 27 Re[w] and the moment of inertia (see
Section , three digits accuracy can be achieved for
the f-mode within 8 trials. Other techniques are needed
to guess initial estimates for p- and g-modes. Note that
the imaginary part of the eigenfrequency is usually small
(< 1/1000 the magnitude of the real part) for f-, g- and
p-modes. As a result, Im[Z(r*)] << Re[Z(r*)] as well.
Therefore, it’s possible to approximately determine the
complex eigenfrequency by interpolating A (w) along the

[w?r? — (n+1)b] Hy + [n(1 — 2b) — w?r? 4+ b(1 — 3b)] K
(1 —2b)(3b+n) '

(

real axis of w,
Ay (w) = Ay + Ajw + Asw® =0, (18)

where Ay, Ay and As are real constants, by solving the
quadratic function Ay (w) for real w near the eigenfre-
quency. This method avoids using a complex root-finding
algorithm and is considerably more efficient.

Another simplified method to evaluate eigenmodes is
to use the WKB approximation [4][64]. The outside so-
lution is approximated by a WKB wave-function. Per-
turbation functions near the NS surface can be used to
fix amplitude of incoming and outgoing radiation with-
out solving the Zerilli equation. We have verified that
these two approximate methods agreed very well for low-
damping modes where the imaginary part is small com-
pared with the real part. Here, we use the interpolation
method to determine an initial guess for w to be used in
the full solution.

Fig. ShOWS the f-mode frequency for the SLy4 EOS
used in Figs. and as a function of neutron star com-
pactness 5. Note the approximately linear behavior with
(3/2, a universal scaling that becomes apparent when
examining analytic results in Newtonican geometry with
simple EOSs, as discussed in the next section.

A widely used approximation in the calculation of os-
cillation frequencies, the Cowling approximation, ignores
the metric perturbation K, H; and H, in Egs. -
(12). This reduces the 4 complex first-order ODEs Egs.
(11) to 2 real first-order ODEs and results in no gravita-
tional radiation damping, see Egs. (19) and (20) in Ref.
[15]. In addition, in this approximation the Zerilli equa-
tion for metric perturbations outside the NS, Eq. (13),
can be ignored which greatly simplifies the calculation.
However, since the Cowling approximation introduces f-
mode frequency errors of up to 30% [65|, as shown in
Fig. |3} it is not suitable for the study of the high accu-
racy universal relations sought in this work.

III. NEWTONIAN F-MODE FREQUENCY
WITH ANALYTICAL EOSS

Much insight can be gained by comparing general rel-
ativistic results for realistic EOSs with simplified cases
involving analytical EOSs both in general relativity and
Newtonian gravity. In Newtonian physics, a variational
analysis on the hydrostatic equilibrium equations with
a linear solenoidal velocity perturbation leads to the
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Kelvin-mode frequency [66]
) 20(0 = 1) Jy e(r)r®~3m(r)dr

WKelvin — 2 +1 fOR 6(7’)7’2€d7'
R _
_ G%(f— 1)(2¢—1) fy p(r)r2*~2dr (19)
20+1 fORs(r)r%dr

where ¢ is the angular quantum number. The second
equality in the above uses the hydrostatic equilibrium
equations. The Kelvin-mode frequency can be a good
approximation to the f-mode frequency of low-mass NSs
with realistic EOSs [9], which we confirm below for
M < 14Mg or 8 < 0.14. According to Eq. , Newto-
nian Kelvin-mode frequencies for the analytic EOSs must
satisfy w% .., = CGM/R3 [6], or Q% . = CB3, where
the coefficients C' are displayed in Table Fig. com—
pares those values to numerical general relativistic re-
sults. A slightly weaker dependence on 3 is apparent for
the relativistic results for more massive and compact, but
still observable, stars. Because the damping time origi-
nates from the general relativistic calculation, and is not
defined in the Newtonian calculation, there is no simple
analytic estimate for its S-dependence.

In the case of an homogeneous incompressible sphere
(Inc), the energy density is constant, e(r) = e, and one

TABLE I. Newtonian coefficients C' = Q%;,:,/8° for analytic
EOSs

EOS =2 /=3 f =4
Inc 4/5 12/7 8/3
T VII 4/3 204/77 | 152/39
Buch | 37%(57% —30)™! | 2.94766 | 4.24121
finds
200 —1)

2041 (20)
This EOS will be seen to be a good approximation to
that of pure quark stars.
In the case of the Tolman VII [68] (T VII) solution,
the energy density has a quadratic dependence, e(r) =
ge[l — (r/R)?], and

o 20(0 —1)(2¢ + 11)
(204 1)(20+5)

This analytic solution is seen to be an excellent approxi-
mation to the realistic SLy4 EOS for observable neutron
stars in the relativistic case for both f-mode frequencies
and damping times.

(21)
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FIG. 3. Dimensionless f-mode frequency versus compactness 3 for the SLy4 and three analytic EOSs. Solid lines show the result
of linear perturbation theory in general relativity, dashed lines show the Newtonian result (i.e., the Kelvin-mode frequency),
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A third analytical solution is due to Buchdahl [69]
(Buch), and it is the only one stemming from an an-
alytic EOS, ¢ = 12,/p,p — 5p where p, is a constant.
In the Newtonian limit, Buch becomes equivalent to
the n = 1 polytropic EOS p = £2/(144p,), for which
g(r) < (R/r)sin(r/R) and

o 26(4—1) 1F2(£—%;%7£+%;—7T2) (22)
(20— 3) 1 Fo(0+ 3; 3,04 3, -2y’

where 4Fp is the generalized hypergeometric function.
This analytic solution has less success approximating a
realistic EOS such as SLy4 than does T VII.

The relativistic Cowling approximation is applied to
the three analytic and the SLy4 EOS, see dotted lines
in Fig. and is seen to generally overestimate 2y by
20-30%. In case of Inc, the deviations exceed 40% at low
compactness where the Newtonian result is extremely ac-
curate. Even in the SLy4 case, the Newtonian estimation
is much more reliable except for extreme compactness
where the error introduced by static Newtonian gravity
dominates over that due to ignoring gravitational pertur-
bations.

IV. EOS FOR HADRONIC, HYBRID AND
PURE QUARK STARS

We are interested in hadronic, pure quark and hybrid
NSs with first-order phase transition. Previous studies
of NS f-and g-modes with first-order phase transitions
used polytropic EOSs with the same polytropic index for
both low- and high-density parts of EOS or vari-
ous hadronic EOSs with the MIT bag model [50H52]. An
improvement we seek is to calculate with a more general
hadronic NS EOS constrained by yEFT N3LO calcula-

tions and causality coupled, if necessary, to constant
sound speed matter at densities above a first-order phase
transition.

The well-understood outer crust EOS is dominated
by relativistic degenerate electron with pressure p, =
(3/72)/3n2% /4 with a small (negative) contribution
from the ionic lattice. Dripped neutrons appear in the
NS inner crust and slightly further modify the pressure.
The hadronic contributions cause no more than a 10% de-
viation from p.. Uncertainties in the nuclear interaction
in the crust have a relatively negligible effect compared
with uncertainties in the core EOS. As a result we use
the same fixed crust EOS for all hadronic and hybrid NSs
in this study. We employ an analytic crust EOS, which
is presented in Appendix[A] to avoid interpolation errors
and to speed up the eigenvalue solver, so that a multi-
tude of models may be considered. We have ensured this
simplification introduces a negligible error (Fig. .

Read et al. found the pressure p of realistic high-
density cold matter could be relatively faithfully rendered
using three polytropic segments, each segment being de-
scribed by p = K;n" within the region n;_1 < n < n;
where ¢ = 1—3. The matching condition at the core-crust
transition together with continuity of both pressure p and
energy density € at the boundaries determine K, leaving
6 free parameters, n; and v; where ¢ €= [1 — 3]. Equiva-
lently, n; and p; can be used as parameters. Within the
polytropic segment ¢, the energy density is given by

n o p—pi-1(n/ni_1)

E=¢€&;1 + ,
;1 v —1

n;—1 <n < n;.

(23)
The polytropic exponents and the energy densities at the
boundaries are given by

Di Pi—1 2
g = + <€i1 - > S
v —1 vi—1) ni—1




b= In(p;i/pi—1) (24)

ln(ni/ni,l) ’

We take ng = 0.04 fm=3, ¢y = 37.88 MeV fm—3,
po = 0.1239 MeV fm~3 from the crust EOS of SLy4
( see Appendix A). Following Read et al., we choose
ny = 0.3 fm™3, ny = 0.6 fm=3, ng = 1.2 fm=3 [72].
The polytrope for ng < n < ny is fitted to o (+20) NS
matter EOS with a xXEFT N3LO calculation [71], giv-
ing p1 = 15.63 £ 3.54(£7.09) MeV fm~—3. The EOS in
the higher density region n > n; is controlled by ps and
p3, which are free parameters limited by causality and
maximum neutron star mass constraints [73]. We gen-
erate about 3000 hadronic EOSs by exploring the entire
allowed ranges of py, p2 and ps. This 3-parameter model
is called PPS3.

For the high-density matter above the phase transi-
tion in hybrid stars, or for strange quark stars, we use
a constant sound speed (called CSS) [74] EOS. In the
high-density matter with p > p; in hybrid stars, one has

e=(p—po)/cs +et+Ae (25)

where p; is the pressure at the first-order phase tran-
sition, €; is the energy density at the low-density side
of the phase transition, Ae is the density jump at the
phase transition, and c¢s is the (constant) sound speed
for p > p;.

There are 3 parameters for the CSS part of the hybrid
EOS; ni/ns € [1,4], Ae/e; € [0.1,1], and ¢ € [1/3,1].
In order to minimize parameters in the hadronic EOS
for hybrid stars, we only vary p; within the 20 YEFT
band and fix ps = 7.3p; and p3 = 7.3p2, so that v =
v3 = 2.867 v1 = 2 = 2.868 for n > n; whenever needed.
We therefore utilize only 3 hadronic EOSs, which we call
N3LO-cen and N3LO4o, for hybrid stars. Note that this
is not the same as using the published N3LO EOS, which
is only given up to about 2n,, but employs a particular
extrapolation for n > 2n, as described in Ref. [71]. In
total, there are 4 parameters for the hybrid stars.

In pure quark stars at all densities

€ Zp/Cg +5surf (26)

where €4, is the energy density at the surface (where
p = 0). The quark and hybrid expressions are the same
when p; = Ae = 0 and &; = €4ury. For the pure quark
EOS, there are only two parameters, ¢, and €y, ¢.

V. F-MODE FREQUENCIES OF HADRONIC,
HYBRID AND QUARK STARS

We first compare f-mode frequencies as a function of
stellar mass for pure quark stars (i.e., self-bound stars)
using the C'SS parameterization with those for represen-
tative hadronic EOSs corresponding to the central values
of xXEFT neutron matter calculation (N3LO-cen) and its
one-sigma uncertainty bounds (N3LO=o) for all densities

in excess of the crust-core boundary. In this example, c2
ranges from 1/3 to 1 while the other parameter €4,y s is
selected to give a maximum neutron star mass My, ,x from
2.0 to 2.6 M. Note that quark stars with smaller M.«
have larger f-mode frequencies, and that in all cases, the
frequency increases with stellar mass. Quark stars also
have a lower limiting frequency whereas the hadronic fre-
quencies decrease continuously with decreasing mass to
low frequency and mass. Damping times for quark stars,
on the other hand, generally decrease with mass except
near My, and there is no threshold damping time.

Next we explore the behavior of hybrid stars in Fig.
Various values of n;, Ae/e; and 2 are utilized. No
restrictions are placed on M.« for this study. As in Fig.
the hadronic EOS N3LO-cen is used in the hadronic
parts of the hybrid stars. For n; = ng, the phase transi-
tion occurs for masses so small that the resulting f-mode
frequencies and damping times show a similar behavior
to those of pure quark stars. Just above the transition
masses, the frequencies increase more rapidly with mass
for hybrid stars than for the N3LO-cen hadronic stars,
but this behavior can reverse close to M ax.

Next, we proceed to an examination comparing larger
numbers of hadronic, hybrid and quark matter stars in
order to identify systematic trends. Fig. @shows the re-
lation between the f-mode frequency and the stellar com-
pactness for thousands of stars of varying mass: hadronic
stars having a fixed crust with the PP3 parameterized
EOS, hybrid stars having a four-parameter EOS with a
fixed crust, and the three parameter CSS quark mat-
ter stars, all subject to the constraints of causality and
Mmax > 2Mg. As expected from our earlier comparison
of Sly4 and the three analtyic EOSs, there is a global
correlation between {2y and 5. However, in contrast to
the Newtonian analytic EOSs, the purely linear relation
between {2y and (3/2 is broken. The right-hand panel
in Fig. @shows that the effective power of § that would
best fit quark stars remains close to 3/2, but best fits
to the body of hadronic and hybrid stars is considerably
less than 3/2.

We find a power-law fit with the minimum uncertainty,
applicable to stars with M > 1Mg), is

QO = Ap°1, (27)

where A = 0.714 £ 0.056 for hadronic stars and A =
0.711 £ 0.072 for hybrid stars (see the left panel of Fig.
7). If we further impose the GW170817 binary tidal de-
ormability constraint Agwi7os17 < 521 [75], the respec-

tive values of A stay the same for hadronic stars and
A =0.720 +0.063 for hybrid stars (see the right panel of

Fig. [7).

VI. Q; —I—A RELATION

Although we found a simple power-law fit relating €2
to B5/* for all hadronic and hybrid stars that has only



10

— N3LO-cen

M

T T T T T
Mmax/M o =

2.0 22 2.4 2.6 2=
- 1/3

1/2

2/3

5/6

== 1

101

FIG. 4. The left (right) panel shows the f-mode frequency (damping time) as a function of M for pure quark stars with the

CSS parameterization.

an 8% uncertainty, more powerful correlations exist that
relate Qy to I and A. It has already been demonstrated
that the universal relations relating the f-mode to mo-
ment of inertia and tidal deformability are much tighter
than similar relations involving other modes, e.g. p-
modes [6], and w-modes [76].

Although for Newtonian stars the relation between €2
and ($3/2 is exact, for moderate and high compactness
in general realtivity it breaks down. A general power
expansion of Q¢(5) has shown to be relatively accurate
[11] [77]. With our parametric approach, we study the
accuracy of such relations for hadronic, hybrid and quark
NSs in Fig. |8} We fit the hadronic and hybrid Q; — 3

2
[ pln =) a:fp +

results for M > 1M with
6
i=0 i=4

This relation fits Re[Q2] for hadronic stars slightly better
than for hybrid NSs, and to better than 6.3% (11.5%)
accuracy for all physically-relevant § values. Damping
times are fit to a similar precision 13.5% for hadronic
stars, but the uncertainty for hybrid stars is about 23.8%.
It is seen that the Buch and T VII solutions are good
representations for both hadronic and hybrid stars. The
1y — B relation for frequencies and damping times for
pure quark stars are much closer to the Inc analytic case,
due to lack of a soft compressible crust. For the pure
quark case, we employ the fit

6
27 -slo = aoB®* + <Z ai5i> i

=4

(28)

(29)

applicable to stars with M > 1Mg. The precision of the
quark Q¢ — f relation is about 7.6% for the real part and

6.1% for the imaginary part. The Inc analytic model is a
good representation of quark stars. For comparison, we
also show in Fig. the fits and accuracies for hadronic
stars developed by Refs. (Tsui), [6] (Andersson), and
(Lioutas).

A much more precise EOS-insensitive relation relating
Qf to I can be found, as first shown by Lau et. al. [7],
but only using a small sample of EOSs. Later, the [ —A—
Q relation was discovered (8], so a similarly good 2 —
A relation should also exist [9}H11]. However, Ref.
claimed quark matter EOSs violate the hadronic 2y —
I — A relation.

We tested the accuracy of the Qy — I — A relation to
the extreme for hadronic, quark and hybrid NS, and es-
tablished fits valid for M > 0.7Mq:

6
Qf—f = Zaij_i/2

(30)
=0
6
Qpa =Y ai(lnA) (31)
1=0

The fitting parameters are given in Table[I]

Figs. @ and show the Qf — I — A relations for
hadronic, hybrid and quark NS. No hybrid nor quark
star significantly violates the 2y — I — A fits in Eqgs.
and with a few exceptions of low-mass hybrid stars
< 1M with strong phase transitions. Otherwise, the ac-
curacy is better than about 1%. The correlation for the
real part is somewhat more accurate than for the imagi-
nary part. For I > 15, i.e., M < 1.6M), the maximum
deviation of the real part reduces to only 0.3%. Interest-
ingly, the Q; — A relation is generally even more precise
than for the Q; — I relation except for low-mass configu-
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FIG. 5. The same as Fig. but for hybrid NSs with the hadronic EOS fitted to N3LO-cen and CSS sound speeds ¢? =
[1/3,2/3,1] from top to bottom, respectively.

rations near 1Mg. In hadronic NSs, the maximum devia- VII. THE SPECIAL 1-NODE F-MODE BRANCH
tion of the real (imaginary) part is about 0.2% (2%). The
fits due to Refs. [7] (Lau), (Chirenti), [9] (Chan),

(Lioutas), and [78] (Sotani) are also shown The f-mode is characterized by the lowest radial order

(n=0) for normal EOS. We found the f-modes of low-
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FIG. 7. Left: the same as the right panel of Fig.
but including the additional GW170817 A constraint [75).

mass hybrid stars with strong phase transition that lead
to the so-called twin star phenomenon can be qualita-
tively different than the normal f-modes. The twin star
phenomenon is the situation where, as central density is
increased through the phase transition density, the mass
and radii both initially decrease. Such configurations are
dynamically unstable. As the central density is further
increased, the mass may begin to rise while the radius
continues to fall, leading to a twin branch of stable config-
urations. Note that the normal and twin stable branches
are disconnected in M — R space. It is then possible to
have stable stars with the same mass but differing radii
(and also f-mode frequencies). Such a situation can be
seen in Fig. for a few cases, including ¢? = 1, ny = 2n,
and Ae/e; = 0.8 (solid red curves in lowest panels). To
demonstrate the different f-mode behavior on the more
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|§|but with the y-axis replaced by €y B%/*. Right: the same as the left panel

compact twin star branch, we utilize this particular EOS
in Figs. [11] and[12]

In a normal star without a first-order transition, all
perturbation amplitudes are continuous and smooth, see
Fig. or the top left panel of Fig. In a hybrid
star with a first-order transition, however, the slopes of
all perturbation amplitudes become discontinuous, and
V itself becomes discontinuous, at the transition bound-
ary (last 7 panels of Fig. . For hybrid stars with
relatively small quark cores that occupy the twin star
branch, all fluid and metric perturbation amplitudes can
become negative in some parts of the star between the
phase transition and the surface (second through sixth
panels of Fig. The overall sign of the perturbations
is trivial since we define a positive fluid perturbation am-
plitude W =1 at the center of the NS. What’s nontrivial
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is that the unstable and some stable hybrid stars have
a radial node (zero) in the fluid and metric perturbation
amplitudes X, W, Hy, Hy, K (but not V', which, however
discontinuously changes sign) at a radius slightly larger
than the phase transition radius R;. We will call this

type of behavior 1-node II (second through fourth pan-
els of Fig. . The radial nodes move outward with
increasing central density or pressure and R;. Above
some critical Ry, the radial nodes for X, W, Hy, H; and
K simultaneously vanish, but the discontinuity and sign
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change in V remains (fifth and sixth panels of Fig. .
Stars with radial nodes in V' only we refer to as 1-node
I. For hybrid stars with even larger cores, the disconti-
nuity in V remains, but it no longer has a sign change
at R;, and the f-mode oscillations recover the standard

n = 0 behavior of hadronic stars (last two panels of Fig.
11). Although V is always discontinuous at Ry, see Eq.
(10), the discontinuity magnitude becomes small for mas-
sive hybrid stars. The exotic behavior of the perturba-
tion amplitudes causes f-mode frequencies of twin stars
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FIG. 11. Metric and real parts of fluid perturbation amplitudes (solid), and static metric functions (dotted) for the case of
a hybrid star (except for the upper left panel where the central pressure equals the transition pressure, p. = p:). The phase

transition is marked with a vertical solid line at » = R;. Five of the panels have the same p. as in Fig. and are so

indicated with colored crosses. Ho, Hy and K are in units of e, = 152.26 MeV fm™2, X is in units of €2 and W, V, X and v are
dimensionless.
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TABLE II. Fitting parameters of real and imaginary parts of Q2 in Egs. - .

ao al a as aq as ae a7
[Q_glm | -0.03044  0.6629  -0.1234 0 0.1020  -0.4752  0.5519 0
[Q_plo | 0.8823 0 0 0 0.05455 -0.1912  0.1347 0
Re[Q; ;]| 0.09006  -2.41 29.47 -179.8 659.5 -1427 1689 -845.4
Im[Q;_7]|7.506e-05 -0.002054 0.02363 -0.1484  0.5589  -1.226 1.493  -0.8139
Re[Qy_a]| 0.1817 -0.006652 -0.004105 0.0004072 1.712¢-05 -4.796e-06 2.838¢-07 -5.743¢-09
Im[Q;_A]|4.514e-05 1.907e-05 4.3¢-06 -5.025¢-06 1.133e-06 -1.165¢-07 5.851e-09 -1.167¢-10
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FIG. 12. f-mode frequency and damping time for hybrid NSs with small quark cores as functions of mass and tidal deformability.
Brown and yellow dots represent stars with normal f-modes having no radial nodes, while pink and grey dots represent stars
with the special 1-mode behavior. The colored crosses correspond to 5 configurations displayed in Fig. In the tidal
deformability plots, the universal relations from Eq. are shown.

to somewhat deviate from universal relations for masses
near M, see Fig. A gap of about 0.1 kHz can appear
in the f-mode frequency spectrum for M ~ M;. The f-
mode frequencies and damping times of both 0-node and
1-node hybrid stars show deviations as well, see middle
panels of Fig. and Fig. @ The f-mode frequency
of hybrid NSs is not continuous between the 1-node I
and 1-node II branches. The 1-node II branch side has a

lower frequency than the 1-node I branch, and the damp-
ing time greatly increases near the critical point between
1-node I and 1-node II branches.

While the particular configurations explored here
would never be expected to be observed because of the
small value of M, such behavior could have observational
consequences for hybrid EOSs where M; > 1Mg. For ex-
ample, the case cg = 1,n; = 4ns and Ae/e; = 0.8 shown



in Fig. (red dashed line in the bottom row) has a
transition mass M; ~ 1.6My. However, even this case
cannot be observationally realized since Mpyax ~ 1.6Mg
is too small. Indeed, for the N3LO-cen and +o hadronic
EOSs, which are relatively soft, we do not find it possible
to produce twin stars simultaneously having M > 1Mg
and Mpax > 2Mg. It is possible, however, for these
conditions to be realized for stiffer hadronic EOSs. The
models of Refs. [80] and [81] provide some examples for
which the hadronic EOSs can both satisfy saturation den-
sity symmetry energy and GW170817 tidal deformability
constraints. One caveat is that the quark matter EOSs
must have ¢2 > 1/3. The twin star cases in these stud-
ies are of two types, one having M; below that of the
largest component of GW170817 but > 1My, and the
other having M; 2 2Mg. Therefore the 1-node behav-
ior we find might be potentially observable. In any case,
our previously established universal relations can be ac-
curately extended to hybrid stars, with small violations
in the case of twin stars with masses near M;.

VIII. THE DISCONTINUOUS G-MODE OF

HYBRID NS

We are also interested in the g-mode frequency per-
mitted by a discontinuity inside a NS. Since the EOSs of
both strange quark stars and hadronic stars have no dis-
continuities, their g-mode frequencies are trivially zero.
In this section, we focus on the discontinuous g-mode for
hybrid stars described in Section We calculated g-
mode frequencies with and without the Cowling approxi-
mation (left panel of Fig. . The relative error reaches
12% (22%) for ¢2 = 1/3 (¢ > 1/3). This error is signifi-
cantly lower than that of the Cowling approximation for
the f-mode. Considering that there’s no universal rela-
tion accurate to the few percent level for the g-mode, the
Cowling approximation can be a reasonable approxima-
tion. However, previous studies have been too optimistic
about its accuracy, e.g. a claimed 5% error by Refs. [58]
and [60]. Partly, this is due to our consideration of a
wider variety of first order transitions, not just the rela-
tively weak core-crust transition, as well as our inclusion
of more realistic NSs (M > 1.2M).

Furthermore, given that even the Cowling approxima-
tion involves a complex numerical calculation, it is useful
to find an analytic fit to the general relativistic results.
In Newtonian fluid mechanics, the frequency of surface
gravity waves between two stratified fluids with a uni-
form gravitational field (i.e., the slab approximation) is
analytically solvable [82]:

W2 = (e+ —e-)gk
9 ey /tanh[kdy] 4+ e_ /tanh [kd_]’

(32)

where g is the gravitational acceleration and k is the an-
gular wave number. ¢4y = ¢, +Ae (e =¢;) and dy = Ry
(d— = R — R;) stand for the energy density and depth,
respectively, on the high (low) density side. When the
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discontinuity at R; happens near the surface R of a star,
the geometry approximates a stratified two-fluid prob-
lem with k& = y/l(l +1)/R;. Red shifts in the frequency
and gravitational acceleration approximately cancel, so g
can be taken to be that of Newtonian gravity, GM,/R3.
Ref. [60] concludes that discontinuous g-modes near the
NS surface can be approximated, using R — R; << Ry,
M — M; << My, and Ae << g, as

(1-Ri/R).  (33)

We tested this approximation with £ = 2 and find rel-
atively large deviations, see the middle panel of Fig.
113] partly because their assumption of infinite depth
dy >> d_ breaks down for R;/R < 0.5 [70. In-
stead, we don’t assume Ae << g;,, M — M; << M; or
R—R; << Ry, and we also approximate the wave number
with ¥ = D/R;, where the fitting parameter D = 1.21.
This leads to

02 ~ B3(My/M)(R/R;)3(Ae/ey) D tanh[D]
9" 1+ Ae/e; + tanh[D]/ tanh[D(R/R; — 1)]’

which performs significantly better than Eq. and
comparably to the Cowling approximation, see Fig.
We note these fits for the g-mode frequency depends only
on M/R,M;/M,R;/R and Aec/e; and are otherwise in-
sensitive to the hybrid EOS parameters ¢; and ¢2 as well
as the assumed hadronic EOS.

Fig. shows the mass dependence of the g-mode
frequency and damping time with various high-density
sound speeds, transition densities and density discontinu-
ities. In most cases for stable NSs, g-mode frequencies are
not very sensitive to NS mass. However, damping times
have a very strong mass dependence. Both very low and
very high mass hybrid NSs have relatively long damp-
ing times. A previous study with a different EOS pa-
rameterization suggested that g-mode damping times are
significantly larger than those of other damping mecha-
nisms [70]. Our calculation shows smaller g-mode damp-
ing times. When the density discontinuity approaches
Ae/ey = 1, g-mode damping times become comparable
to the neutrino damping time, 0.1 — 10 s [83]. How-
ever, these configurations have parameterizations with
relatively low Mp.x. If we impose Mpyax > 2Mg and
causality constraints, the discontinuous g-mode damping
times should satisfy 7, > 109 s.

Since the g-mode frequency is insensitive to NS mass
(Fig. , we focus on the maximum mass configurations
for hybrid NS EOSs, shown in Fig. If we additionally
impose the M, > 2M and causality constraints, the
discontinuous g-mode frequency should satisfy v, < 1.25
kHz. A fitting formula for the g-mode frequency of hybrid
Mnax NSs is

Yg
_ P [As (e
Vg,max = g (MeV fm3) €t (Cs) - 35

where ag = 326.4+36.1Hz and v, = 0.2683+0.1462¢;,/c.
g-modes of observed stars will be at larger frequencies.

(34)
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FIG. 13. Deviations of various estimations of g-mode frequencies from fully general relativistic calculations. The left, middle
and right panels show the Cowling approximation and the fits of Eq. (33) and (34), respectively. Colored lines correspond to
cases with ¢ =1 /3 while gray lines show results with higher values of cz.
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FIG. 14. The left (right) panel shows the g-mode frequency (damping time) versus mass for hybrid NSs modeled with xEFT
and the CSS parameterization. Colored lines correspond to cases with ¢2 = 1/3 while gray lines show results with higher values

of ¢2.

IX. DISCUSSION AND CONCLUSION

With the improvement provided by the next generation
of gravitational-wave telescopes, we may detect gravita-
tional waves from quasi-normal modes of NS oscillation.
In this paper, we focus on the f-mode and the disconti-
nuity g-mode which frequencies in the detectable range.
The f-mode has a relatively large coupling with tidal ex-

citations, while the discontinuity g-mode has a lower fre-
quency that would be excited earlier in the inspiral stage
of a BNS merger and which would give a larger phase
shift due to the additional orbital momentum decay.

The NS oscillations were calculated using three meth-
ods. In asteroseismology, fluid oscillations, including g-,
f- and p-modes, have been extensively studied in New-
tonian gravity [I]. In compact object where general rel-
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FIG. 15. The g-mode frequencies vg,max of maximum mass hybrid configurations are shown as black contours using the hadronic
N3LO-cen chiral EFT EOS, with dotted lines representing the +¢ uncertainties in the hadronic EOS. Intermediate frequency
values are indicated by blue shading. Red contours indicate Mmax.

ativistic effects are important, the canonical ODEs for
non-radial oscillation were proposed by [2| and reformu-
lated by Refs. in full general relativity and by Ref.
[53] utilizing the relativistic Cowling approximation.

We first compared Newtonian calculations with both
the widely-used relativistic Cowling approximation and
the linearized relativistic formulation for the f-mode of
3 analytic solutions and also the SLy4 EOS. Due to the
finite densities at the NS surface, the analytic incom-
pressible (Inc) solution is manifestly different from those
of the analytic Tolman VII (T VII) and Buchdahl (Buch)
as well as the SLy4 EOS. Although both the Newtonian
and approximate Cowling calculations tend to overesti-
mate f-mode frequencies, the Newtonian calculation per-
forms extremely well in low mass NSs and better than the
Cowling approximation in canonical mass NSs. However,
the Newtonian approximation becomes worse than the
Cowling approximation in the highest mass NSs. This is
reasonable since the Newtonian calculation keeps grav-
itational perturbations, which the Cowling approxima-
tion ignores. However, for massive and extremely com-
pact NSs, relativistic corrections overwhelm the correc-
tions due to gravitational perturbations. Since we require
accurate results to formulate EOS-insensitive and quasi-
universal relations with the compactness, tidal deforma-
bility and/or moment of inertia, further calculations are
only performed in the full linearized general relativistic
limit.

We next calculated the f-mode frequencies and damp-
ing times of hadronic, hybrid and pure quark (self-bound)
NSs employing parameterized EOSs. Always enforcing
both causality and lower and upper maximum mass lim-

its (i.e., 2Mg < Mpax < 2.6Mg), f-mode frequencies
lie in the range 1.3-2.8 kHz and damping times in the
range 0.1-1 s for all configurations. The f-mode frequency
of pure quark stars with canonical masses depends rela-
tively weakly on mass, similarly to the mass-dependence
of the radius of hadronic NSs. Whereas the f-mode fre-
quencies of hadronic NSs increase smoothly with mass,
hybrid NSs with strong first order transitions can result
in twin star configurations which have different f-mode
frequencies for the same mass. We note that low mass
stars (= 1 Mg) with high f-mode frequencies can only
be achieved without the existence of a crust, i.e., only for
self-bound (pure quark) stars, just as the radius of a 1Mg
NS with a normal crust cannot be smaller than ~ 10.5
km. If such large frequencies are observed, it would be
an indication of a very small radius, and evidence for the
existence of pure quark stars.

Employing a range of parameterizations covering the
allowed physical limits, we find that the dimensionless f-
mode frequency is proportional to 3%/4 for hadronic and
hybrid NS. In contrast, pure quark stars follow €27 o 53/2
which is found for analytic solutions in the Newtonian ap-
proximation. We also verify that the f-mode correlates
strongly (to better than 1%) with other radial moments
of NSs, even for hybrid and pure quark stars. These are
known as the I — A — Qy relations [7]. We note that the
A-Qy correlation is slightly more accurate than the I —Qy
correlation, reaching 0.1% accuracy expect for low mass
hybrid NSs with large quark cores. We provide fitting
formula for these universal relations, as well as less accu-
rate EOS-insensitive correlations with the compactness
B. Our fitting formulae agree with previous works but



are more accurate and applicable to wider range of NS
masses and EOSs.

We discovered an abnormal f-mode in hybrid NSs dis-
playing the twin star phenomenon with central pres-
sures just above the quark-hadron transition pressure p;.
These exhibit manifestly different profiles of fluid and
metric perturbation amplitudes. Canonical f-modes have
no nodes for both fluid and metric perturbation ampli-
tudes, e.g. Fig. [1] left upper panel, and Fig. lower
two panels. As the quark core first develops, the ampli-
tude V' becomes discontinuous and flips its sign at the
quark-hadron interface, while the amplitudes Hy, X and
W form nodes close to the interface (the 1-node II state).
With increasing central pressure and quark core size, the
nodes in Hy, X and W eventually disappear, while V'
simultaneously forms a node (the 1-node I state. Further
increases in central pressure lead to the disappearance of
the node in V' and normal 0-node behavior is restored.
In both 1-node cases, the f-mode frequency moderately
deviates from the I — A — 2y universal relation (the only
violations we have found), and also a gap forms in the
f-mode frequency spectrum. This might provide an op-
portunity to directly observe the existence of a strong
first order transition. Although the example we show in
Fig. is outside of the canonical NS mass range, hav-
ing M; < 1M which would prove to be unobservable in
practice, the use of a stiffer EOS above about 1.5 — 2n
(even while continuing to satisfy the tidal deformability
constraint from GW170817, neutron matter and nuclear
systematic constraints near ng, and the Mpy,x > 2Mg
constraint) could provide suitable conditions for obtain-
ing the twin star phenomenon with M, > 1Mg. To our
knowledge, we are the first to report the existence of this
special 1-node behavior of the f-mode.

The discontinuous g-mode frequency (which requires
the existence of a discontinuity in the density) depends
strongly on the magnitudes of both the transition den-
sity and its discontinuity. On the other hand, for a given
set of EOS parameters, it depends weakly on the stel-
lar mass. Uncertainties in the low-density hadronic EOS
contribute less than about 5% uncertainty to the g-mode
frequency. Due to causality and maximum mass con-
straints, the discontinuous g-mode frequency has an up-
per bound of about 1.5 kHz. However, if the squared
sound speed in the inner core is restricted to ¢? < 1/3,
the discontinuous g-mode can only reach about 0.8 kHz,
which is significantly lower than the f-mode frequency of
1.3-2.8 kHz. Also, in this eventuality, the g-mode grav-
itational wave damping time is usually extremely long,
being larger than 10* s compared to about 102 s for an
inner core in which ¢2 < 1, and is also large compared
with the usual fmode damping time, 0.1-1 s. We found
an improved fit for the g-mode frequency that depends
only on M/R, My/M, R,/R and Ac/e; and which is oth-
erwise insensitive to the hybrid EOS parameters ¢; and
c? as well as the assumed hadronic EOS. We found the
Cowling approximation is accurate to within 20%, which
is significantly less accurate than previously estimated,
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due to the consideration of a larger variety of first order
transitions and realistic NS masses. Our analytic approx-
imation has a similar accuracy.

In this work, we assume the perturbed fluid is ideal.
Superfluidity inside the NS introduces an additional flow
component which is discussed in other works, such as
Ref. [84]. The fluid perturbations are also assumed to
be barotropic, which holds only when matter is adiabatic
and always in equilibrium except for the phase conver-
sion between quarks and hadrons. Non-barotropic EOSs
involving composition or temperature gradients could
lead to modification of our present results and this war-
rants further investigation. Non-adiabatic effects, such
as from the neutrino Urca processes during the inspiral
and merger phases, could introduce significant additional
damping due to bulk viscosity [85] [86].
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Appendix A: Piecewise Polytrope Crust EOS

TABLE III. Piecewise polytropic EOS parameter set fitting
the SLy4 crust EOS

i|ni (fm™?) g (MeV fm™3) p; (MeV fm™3) ;1
0] 2x107%  1.8658 x10~® 1.1763 x10~% 1.35
1| 0.0003 0.28163 6.1751 x10™*  5/4
2| 0.0013 1.2232 1.2855 x10™3  1/2
3 0.04 37.889 0.12394 4/3

The requirements of high accuracy (due to the small
imaginary part of the quasi-normal oscillation frequency)
and reasonable computation times suggests the use of an
analytical crust EOS to reduce interpolation error. The
crust EOS used in this study is a piecewise polytrope
EOS with 4 segments, with adiabatic indices 1.35, 5/4,
1/2, and 4/3 chosen to mimic the Sly4 crustal EOS. The
1st and 2nd segments correspond to the NS outer crust.
The 3rd segment represents the region where the electron
fraction decreases rapidly, from about 0.4 to 0.04, with
increasing density. In the 4th segment, the electron frac-
tion remains nearly constant, and neutron pressure dom-
inates electron pressure. This segment terminates at the
core-crust boundary, fixed at np = 0.04 fm~3, smoothly
matching the Sly4 energy density and pressure at that
density, namely ¢ = 37.88 MeV fm ™2 and p = 0.1239
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FIG. 16. Comparing the energy density as a function of
baryon density for piecewise polytrope and SLy4 NS crust
EOSs. Blue dots correspond to boundaries of the piecewise
polytrope EOS in Table
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MeV fm~3, respectively. Densities, pressures and poly-
tropic indices at the boundaries of the crustal piecewise
poplytrope segments are presented in Table [ITI}

Fig. compares the crust piecewise polytrope
and SLy4 EOSs. The relative error of the piecewise-
polytropic approximation is generally less than 10% for
ng > 10719 fm~3. The piecewise polytrope more than
adequately portrays the EOS from the core-crust bound-
ary at ng = 0.04 fm~3 to vacuum at the surface, where
the energy per baryon is 931.2 MeV. We verified that
the masses and radii, as functions of central density or
pressure, employing this piecewise-polytropic crust EOS
agree with those employing the full SLy4 EOS to within
0.03% and 0.001%, respectively, for canonical mass NSs.
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