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Nonperturbative waveguide quantum electrodynamics
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Understanding physical properties of quantum emitters strongly interacting with quantized electromagnetic
modes is one of the primary goals in the emergent field of waveguide quantum electrodynamics (QED). When the
light-matter coupling strength is comparable to or even exceeds energies of elementary excitations, conventional
approaches based on perturbative treatment of light-matter interactions, two-level description of matter excita-
tions, and photon-number truncation are no longer sufficient. Here we study in and out of equilibrium properties
of waveguide QED in such nonperturbative regimes on the basis of a comprehensive and rigorous theoretical
approach using an asymptotic decoupling unitary transformation. We uncover several surprising features ranging
from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective
mass and potential; the latter may explain recent experiments demonstrating cavity-induced changes in chemical
reactivity as well as enhancements of ferromagnetism or superconductivity. To illustrate our general results
with concrete examples, we use our formalism to study a model of coupled cavity arrays, which is relevant
to experiments in superconducting qubits interacting with microwave resonators or atoms coupled to photonic
crystals. We examine the relation between our results and delocalization-localization transition in the spin-boson
model; notably, we point out that a reentrant transition can occur in the regimes where the coupling strength
becomes the dominant energy scale. We also discuss applications of our results to other problems in different
fields, including quantum optics, condensed matter physics, and quantum chemistry.
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I. INTRODUCTION

A. Background

Quantum states arising from strong coherent interaction
between light and matter are not only interesting from the
perspective of fundamental many-body physics, but also pro-
vide promising new platforms for quantum technologies.
Historically, analysis of light-matter systems focused on the
perturbative regime [1,2], since interaction of atomic dipoles
with vacuum electromagnetic fields is weak due to the small-
ness of the fine structure constant α = 1/137. Recent progress
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has led to experimental realizations of new systems in which
electromagnetic field is modified to reach stronger light-
matter coupling. In particular, (artificial) atoms coupled to
one-dimensional continuum of photons at microwave [3–11]
or optical [12–17] frequencies achieve enhancement of light-
matter interaction through strong spatial confinement of
electromagnetic modes. This rapidly growing field of re-
search has been dubbed waveguide quantum electrodynamics
(QED).

There exist many conceptual similarities between the ques-
tions addressed in waveguide QED and the problems analyzed
in the context of quantum dissipative systems [18–21]; in the
latter, bosonic modes represent phonons or other collective
excitations of condensed matter systems. More recently, light-
matter interaction has also been the subject of intense research
in the fields of polaritonic chemistry [22–31] and nanostruc-
tured plasmonics [32–36]. In light of such broad relevance,
models of quantum emitters interacting with a continuum of
bosonic excitations have played a crucial role in quantum
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information science as well as in condensed matter physics
and quantum chemistry. An outstanding challenge here is to
uncover the physical phenomena in nonperturbative regimes,
where strong interaction leads to the formation of quantum
many-body states with large entanglement among emitters
and bosonic excitations of the continuum.

Despite recent remarkable advances, our understanding of
waveguide QED at strong couplings is far from complete. Due
to virtual excitation of many photons, the problem becomes
intrinsically nonperturbative and standard approximations of
quantum optics fail in many crucial aspects. First and fore-
most, it is known that the usual rotating wave approximation
becomes no longer valid [2] due to the processes that create
or annihilate pairs of excitations. Moreover, the inclusion
of the diamagnetic Â2 term and the multilevel structure of
emitters becomes more essential at larger coupling strengths.
Importantly, the latter indicates that the comprehensive un-
derstanding of strong coupling physics cannot be achieved
unless one goes beyond the standard two-level descriptions.
Such multilevel structure of quantum emitters is also of cur-
rent technological importance. For instance, superconducting
transmon qubits are rarely operated as perfect two-level sys-
tems [37] and such multilevel structures are potentially useful
for the purpose of performing certain quantum information
operations [38,39].

While significant efforts have been devoted to eluci-
dating the strong and ultrastrong coupling regimes in the
last decade [40–63], the physics of waveguide QED in the
realms of even stronger light-matter interactions, namely,
the deep [64] and extremely strong [65] coupling regimes,
remains largely unexplored. There, the coupling strength
becomes comparable to elementary excitation energies or
exceeds them, and qualitatively different phenomena are ex-
pected to occur since vacuum fluctuations alone can lead to
large populations of photons in every coupled mode. However,
due to the aforementioned difficulties, a reliable theoretical
approach for unveiling these intriguing phenomena is cur-
rently lacking. The primary goal of this paper is to reveal
physics of strongly interacting light-matter systems in the
previously unexplored regimes on the basis of a comprehen-
sive theoretical framework that avoids problems discussed
above.

On another front, the spin-boson model, a suppos-
edly effective description of waveguide QED systems (e.g.,
Ref. [45]), has long been known to exhibit the delocalization-
localization transition at strong couplings [66,67]. Neverthe-
less, the breakdown of the usual two-level description [65,68]
and the relevance of the diamagnetic term [65,68–75] have
made it unclear until now how these known results for quan-
tum dissipative systems should be interpreted in the context
of waveguide QED. More specifically, the conditions un-
der which a counterpart of the delocalization-localization
transition exists should be carefully examined by using the
full-fledged QED Hamiltonian. One intriguing possibility is
that such a quantum phase transition can be extended to multi-
emitter systems and provide a new route toward realizing a
superradiant transition without external driving [76–78].

In view of recent experimental developments in realizing
stronger light-matter interactions [36,51,79], the time is ripe
to explore in and out of equilibrium physics of nonperturbative

waveguide QED in a comprehensive manner. Specifically, we
will ask the following questions:

(1) What are the defining physical features of waveguide
QED in the previously unexplored nonperturbative regimes?

(2) How can one construct a proper effective model of
waveguide QED at strong couplings, where existing theoreti-
cal descriptions are expected to fail?

(3) Starting from a fully microscopic theory, is it pos-
sible to identify a quantum phase transition akin to the
delocalization-localization transition in waveguide QED se-
tups, and if so, does there exist a new feature?

The main aim of this paper is to reveal the physics and
develop understanding of strongly interacting light-matter
systems by addressing these questions from a unified perspec-
tive. Below we summarize the main results at a nontechnical
level before presenting a detailed theoretical formulation in
subsequent sections.

B. Summary of the main results

Our first main result is the appearance of a ladder of
many-body bound states (BSs) and the many-body bound
states in the continuum (BICs) in nonperturbative regimes
(see Fig. 1). We point out formation of increasingly many
low-lying bound states whose energies decrease as ∝ g−1 in
the limit of strong light-matter coupling g. The exact BICs
emerge as a consequence of the Z2 symmetry that is linked
to microscopic QED Hamiltonians. Previous studies have so
far discussed the realizations of one-body BICs, which relied
on artificial tuning of either emitter positions or resonator
wavelengths/geometry [80–85]. In contrast, BICs found here
do not rely on either of them, but emerge from strong light-
matter interaction (without artificial fine tunings) and thus
have a many-body origin. Even when the symmetry is not
exact, the lifetime of these states diverges as ∝ g3/2 in the
strong-coupling limit, and thus they still behave as so-called
quasi-BIC (see Fig. 3 in Sec. IV).

We note that the BICs have recently attracted significant
attention in light of their potential applications for realizing
quantum memory [86] and nondissipative emitter interac-
tions [87,88]. It is in general challenging to detect BICs in
standard photon scattering experiments, since bound states
are orthogonal to delocalized states in the continuum. Instead,
we propose and numerically demonstrate an experimentally
feasible quench protocol to excite the states in a model of
cavity array [89–91], leading to rich nonequilibrium dynamics
in which the bound states and the dynamical Casimir effect
are intertwined (see Fig. 6 in Sec. IV). These results establish
one of the defining features in the nonperturbative regimes of
waveguide QED and thus address question 1.

We remark that the present work should be contrasted
to earlier studies of atom-field dressed bound states [92] in
several crucial aspects. In Refs. [49,50,58,93–99], the exis-
tence of bound states was predicted in perturbative regimes
on the basis of the rotating wave approximation. However,
it turns out that these bound states in general become reso-
nances with finite lifetimes once the counterrotating terms are
included [47,57]. In contrast, our analysis does not rely on
those simplifying approximations and rigorously establishes
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FIG. 1. (a) Schematic illustration of the analysis. (Left) In the original Coulomb gauge, a single emitter or multiple emitters interact
with common electromagnetic continuum in arbitrary geometry via light-matter coupling g. A quantum emitter is modeled by a charged
quantum particle of mass m and position Q that is trapped in a potential V . The potential is typically assumed to be a double-well potential as
appropriate for an effectively two-level emitter though our theory is equally applicable to a generic potential profile. (Right) We use the unitary
transformation to asymptotically decouple emitter and photon degrees of freedom in the strong-coupling limit. After the transformation,
emitters and photons interact with each other via vanishingly weak effective coupling that scales as geff ∝ g−1/2 at large g. In contrast, the
renormalized mass is enhanced as meff ∝ g2, leading to the tight localization of the emitter at the potential minima as well as the 1/g energy
spacing. The potential is renormalized to Veff with lower potential barrier due to the dressing by the vacuum electromagnetic fluctuations.
Note that, when going back to the Coulomb gauge, Q in the asymptotically decoupled frame contains both matter and light contributions.
(b) Formation of a ladder of the bound states (BSs) and the bound states in the continuum (BIC) on top of the ground state (GS) in the
nonperturbative regimes. The energy spacing and excitation energies decrease as ∝ g−1, and thus, these states become increasingly degenerate
at strong couplings. We note that there also exist the extra degeneracy corresponding to the number of degenerate potential minima, for which
the energy spacing closes exponentially as g is increased.

the presence of bound states at arbitrary coupling strengths
for general photonic dispersions. In particular, a ladder
of bound states or BICs revealed by our analysis are
appreciable only after multilevel structure of emitters is con-
sistently included in theory. We also remark that these bound
states are genuine quantum many-body states in contrast to
one-body wave phenomena, which have been the main focus
of earlier studies [100].

The second important result of our work is construction of
proper effective models for waveguide QED that remain valid
at arbitrary coupling strengths. This is made possible through
the use of a unitary transformation that achieves asymptotic
decoupling of emitter and photon degrees of freedom in the
limit where light-matter interaction becomes the dominant
energy scale [see Fig. 1(a)]. We point out that conventional de-
scriptions become inapplicable in the nonperturbative regimes
because of uncontrolled level truncations in the Coulomb or
Power-Zienau-Woolley (i.e., dipole) gauges. In contrast, fol-
lowing the unitary transformation used in the present work,
such truncations are well justified owing to vanishingly small
light-matter entanglement at strong couplings, ensuring the
validity of effective models constructed in this frame of ref-
erence. The obtained effective models take the same standard
forms as the Jaynes-Cummings-type Hamiltonian for a single-
emitter case [see Eq. (53) in Sec. IV] and the inhomogeneous
transverse-field Ising Hamiltonian for a multi-emitter case
[see Eq. (85) in Sec. V], but with suitably renormalized pa-
rameters. These results address question 2.

Finally, building on these analyses, we answer question
3 in the affirmative way. Specifically, we show that the in-
frared divergence of the renormalized emitter mass occurs for
a certain gapless photonic dispersion. This in turn implies
the exact twofold degeneracy of the ground state and thus

leads to the transition to the symmetry-broken (i.e., local-
ized) phase in the thermodynamic limit, which is reminiscent
of the delocalization-localization transition in the spin-boson
models. Our results also indicate a qualitatively new feature,
not present in the simplified spin-boson descriptions, such
as the reentrant transition into the delocalized phase in the
extremely strong coupling regimes which originates from the
mass acquisition in the transformed frame (see Figs. 8 and 9
in Sec. VI). We demonstrate these results by applying the
functional renormalization group method to a concrete model
of resistively shunted Josephson junctions.

Overall, it is notable that the key features revealed by this
paper do not rely on fine-tuning of parameters, but should
appear generally in strongly coupled light-matter systems.
To obtain these results, it is crucial to accurately perform
analysis without resorting to uncontrolled approximations that
cannot be justified in the nonperturbative regimes. Below we
thus start by developing a rigorous framework for describ-
ing quantum emitters coupled to arbitrary multiple quantum
electromagnetic modes, including the case of a continuum
spectrum. This is done by extending the asymptotic light-
matter decoupling unitary transformation that we introduced
earlier in the context of single-mode cavity QED [65] to the
present waveguide QED setups. Most of the previous studies
approximated an emitter as a simplified two-level system,
which, however, is not a valid approximation for many exper-
imentally relevant systems, including superconducting qubits
as mentioned before [39,101–103]. The validity of the two-
level approximation becomes particularly questionable in the
nonperturbative regimes due to significant renormalization of
both the effective mass and potential as we demonstrate later
(see, e.g., Fig. 5 in Sec. IV C). To provide an adequate model
of the multilevel structure in realistic physical systems, in
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the present work we model a quantum emitter as a charged
particle moving in a potential with two degenerate minima
[see Fig. 1(a)].

While the emphasis of our discussion is on the waveguide
setups, the present formalism can be extended to other elec-
tromagnetic environments in arbitrary geometries. Examples
include cavity QED systems in 2D materials or polaritonic
chemistry, in which the inclusion of multiple photonic modes
becomes crucial depending on the cavity geometry and the
coupling strength. Our work thus establishes a foundation for
studying strongly coupled light-matter systems lying at the
intersection of quantum optics, condensed matter physics, and
quantum chemistry in genuinely nonperturbative regimes.

The remainder of the paper is organized as follows. In
Sec. II we present a general theoretical framework for a
quantum emitter coupled to electromagnetic continuum on
the basis of the asymptotically decoupling unitary transfor-
mation. In Sec. III we unravel key physical features emerging
in nonperturbative regimes of waveguide QED. In Sec. IV
we illustrate the general properties by providing an explicit
numerical solution of a concrete model of coupled cavity
arrays. In Sec. V we present the extension of the theoretical
formalism to multi-emitter systems. In Sec. VI we consider
the ground-state properties of waveguide QED systems with
a gapless photonic dispersion and discuss their relation to the
delocalization-localization transition. In Sec. VII we give a
summary of results and suggest several interesting directions
for future investigations.

II. ASYMPTOTIC LIGHT-MATTER DECOUPLING:
GENERAL FORMALISM

We first develop a general theory of a single quantum
emitter coupled to arbitrary quantized electromagnetic en-
vironment. We use a disentangling unitary transformation
that can asymptotically decouple light and matter degrees
of freedom in the strong-coupling limit. This asymptotically
decoupled (AD) frame significantly simplifies the analysis
of strongly interacting light-matter systems, which allows us
to explore the entire coupling region, even beyond the ultra-
strong coupling regimes. We will later apply the framework to
a concrete model of coupled cavity array in Sec. IV. While a
single-emitter setup is considered in this section, we will gen-
eralize the whole formalism to multi-emitter cases in Sec. V.

A. QED Hamiltonian in the Coulomb gauge

We consider a quantum emitter that is locally coupled
to quantized electromagnetic modes in arbitrary geometries.
The emitter is modeled as a quantum particle of mass m and
charge q trapped by a potential V , while the electromagnetic
environment is represented as a sum of harmonic oscillators
with frequencies ωk . The corresponding QED Hamiltonian in
the Coulomb gauge is given by

ĤC = (P̂ − qÂ)2

2m
+V (Q̂) +

∑
k

h̄ωkâ
†
k âk, (1)

where Q̂ (P̂) is the position (momentum) operator of the
emitter and âk (â†

k) is the annihilation (creation) operator of

photons in mode k, which satisfy the commutation relations

[Q̂, P̂] = ih̄, [âk, â
†
k′ ] = δkk′ . (2)

We denote the vector potential operator as

Â =
∑
k

fk (âk + â†
k ), (3)

where fk characterizes the electromagnetic amplitude of mode
k.

It is useful to diagonalize the quadratic photon part of ĤC

as follows (see Appendix A for details):

ĤC = P̂2

2m
+V (Q̂) − P̂

∑
n

ζn(b̂n + b̂†
n) +

∑
n

h̄�nb̂
†
nb̂n, (4)

where we perform the canonical transformation to introduce a
squeezed photon operator b̂n labeled by n ∈ Z via

âk =
∑
n

(O)kn[cosh (rnk )b̂n − sinh (rnk )b̂†
n], (5)

and ζn is given as

ζn =
√

h̄

m�n

∑
k

gkOkn. (6)

Here Okn is an orthogonal matrix that satisfies∑
kk′

(OT)nk
(
δkk′ω2

k + 2gkgk′
)
Ok′m = δnm�2

n, (7)

where �n is an eigenfrequency of mode n, rnk is a squeezing
parameter defined by ernk ≡ √

�n/ωk , and gk characterizes a
coupling strength to mode k:

gk ≡ q fk

√
ωk

mh̄
. (8)

We note that the magnitudes of gk depend on the size of
the electromagnetic environment L via gk ∝ fk ∝ L−1/2. In a
concrete model discussed later [cf. Eq. (41)], the environment
consists of the coupled cavity arrays and the variable L corre-
sponds to the total number of cavities.

Before proceeding further, we make two remarks. First,
while we follow the standard notation in atomic QED to
write the Hamiltonian (1), the present formulation is equally
applicable to circuit QED setups regardless of the physical
nature of each variable. In superconducting circuits, artificial
atoms are locally coupled to the continuum of microwave
electromagnetic fields in a transmission line. There is a well-
established analogy between circuit and atomic QED systems;
the charge number operator of a transmon qubit and its conju-
gate phase operator precisely correspond to P̂ and Q̂ in Eq. (1),
respectively, and the charge bias induced by the electromag-
netic fields of microwave resonator plays the role of the vector
potential Â (see also Sec. VI B). The same analogy holds true
also for a flux qubit, where Q̂ is coupled to photons through
the dipole-type coupling Q̂Ê with Ê being the electric field;
one can use the Power-Zienau-Woolley (PZW) transforma-
tion [104,105] to change this circuit Hamiltonian back to the
standard form as in Eq. (1) [see, e.g., Ref. [68] or Eq. (40)
below]. In practice, coefficients of the Â2 term in circuit setups
may have to be modified depending on resonator geometries.

023194-4



NONPERTURBATIVE WAVEGUIDE QUANTUM … PHYSICAL REVIEW RESEARCH 4, 023194 (2022)

Our formalism below can readily be generalized to include
such specifics.

Second, we invoke neither the two-level approximation
of an emitter nor the rotating wave approximation (RWA),
which are often used in the literature but will break down
when the light-matter interaction becomes sufficiently strong.
In particular, it will be crucial to take into account the mul-
tilevel structure of an emitter to unveil the key physics in
nonperturbative regimes as we demonstrate later. We also
note that the Â2 term must be incorporated to retain the
gauge invariance of the theory, and its inclusion becomes
particularly essential when one goes beyond the ultrastrong
coupling regime. Meanwhile, we assume that the length scale
of a quantum emitter is much smaller than the photon wave-
length in such a way that the Q̂ dependence of the vector
potential Â can be neglected. This long-wave assumption
ultimately puts an upper limit on the light-matter coupling
when the confinement length scale of the emerging localized
mode analyzed below becomes comparable to the emitter
size.

B. Asymptotic decoupling transformation

We now introduce a unitary transformation to asymptoti-
cally decouple light and matter degrees of freedom [65]:

Û = exp

(
− i

h̄
P̂ �̂

)
, (9)

where �̂ is given as

�̂ ≡
∑
n

iξn(b̂†
n − b̂n), (10)

ξn ≡ ζn

�n
. (11)

This transformation acts on individual operators via

Û †Q̂Û = Q̂ + �̂, (12)

Û †b̂nÛ = b̂n + ξnP̂

h̄
, (13)

where the emitter position is shifted by the gauge-field-
dependent displacement �̂ while each photon mode is subject
to the momentum-dependent shift ξnP̂/h̄ [106]. We note that
the displacement variables ξn in Eq. (11) are chosen in such
a way that the P̂(b̂+ b̂†) term in Eq. (4) will be precisely
canceled by the contributions arising from the displacement
of the b̂†b̂ term via Eq. (13).

The resulting Hamiltonian in the asymptotically decoupled
frame is

ĤU = Û †ĤCÛ = P̂2

2meff
+V (Q̂ + �̂) +

∑
n

h̄�nb̂
†
nb̂n. (14)

Here the effective mass is defined as

meff ≡ m(1 + 2	), (15)

	 ≡
∑
k

(
gk
ωk

)2

, (16)

where the mass enhancement is characterized by the di-
mensionless quantity 	 whose expression (16) follows from
Eq. (7). This renormalization comes from the P̂2 terms arising
from the residual contributions generated by displacing the
P̂(b̂+ b̂†) and b̂†b̂ terms. After the transformation, the light-
matter interaction is incorporated in the external potentialV in
the form of the gauge-field-dependent shift of the emitter, and
its effective coupling strength is characterized by ξn instead of
the bare coupling gk .

Hereafter we first focus on the case of a gapped dispersion
with frequencies ωk > 0 ∀k, for which 	 remains finite. This
includes experimentally relevant systems such as coupled cav-
ity arrays and open microwave transmission lines. The case
of a gapless dispersion should be analyzed separately, since
one can find an infrared divergence of 	 in that case; we will
revisit this issue in Sec. VI.

C. Scaling analysis of the effective parameters

To demonstrate the asymptotic light-matter decoupling, we
perform the scaling analysis of the renormalized parameters
with respect to the interaction strength. To this end, we intro-
duce the characteristic photonic frequency ω and the coupling
strength g as follows:

ω2 ≡
∑
k

ω2
k/L, (17)

g2 ≡
∑
k

g2
k, (18)

where we note g = O(L0). since gk ∝ L−1/2. We begin by con-
sidering the regime g/ω > 1 in which the coupling strength
is dominant over other energy scales; we shall refer to it as
the extremely strong coupling (ESC) regime [65]. There, the
eigenvalue problem (7) has a single dominant mode (which
we label n = 0) with the largest eigenfrequency �0 ∝ g and∑

k gkOk0 � g, while the other frequencies remain �n 	=0 =
O(ω) with

∑
k gkOkn 	=0 ∝ O(g−1). This leads to the scalings

ξ0 ∝ g−1/2 and ξn 	=0 ∝ g−1, i.e., the light-matter interaction in
ĤU asymptotically vanishes in the strong-coupling limit.

In the deep strong coupling (DSC) regime g/ω ∼ 1 [64],
one can continue the scaling analysis in the similar man-
ner and obtain slightly refined expressions as summarized in
Table I. There we denote the variance of a photonic dispersion
(or the effective bandwidth) as

δ2 =
∑
k

(ωk − ω)2/L, (19)

and normalize the length scale by the characteristic one,

xω =
√

h̄

mω
. (20)

In Table I we also summarize the scaling relations in the ultra-
strong coupling (USC) regime g/ω ∼ 0.1, which can readily
be obtained by the perturbative analysis. All these scalings
will later be demonstrated in a case study of coupled cavity
array (see Fig. 2 below).

Besides the asymptotic decoupling in the strong-coupling
limit, one notable result of this scaling analysis is that the
displacement parameters ξn and consequently the effective
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TABLE I. Summary of the scaling analysis for each of the renor-
malized parameters at different coupling strengths g in Eq. (18)
normalized by the characteristic photon frequency ω in Eq. (17). The
second, third, and fourth columns represent the results in the ultra-
strong coupling (USC), deep strong coupling (DSC), and extremely
strong coupling (ESC) regimes, respectively. The renormalized fre-
quencies �n are determined by the eigenvalue problem (7). The label
n = 0 indicates the dominant electromagnetic mode with the largest
eigenfrequency. The length scales ξn in Eq. (11) are normalized by
xω in Eq. (20) and characterize the effective light-matter coupling
strengths for the dominant n = 0 and the other modes n 	= 0 in the
transformed frame. The effective mass meff is defined by Eq. (15)
with the renormalization factor (16). The two lowest rows correspond
to the expectation values of the total photon numbers with respect to
the low-energy eigenstates in the transformed frame (denoted by U )
or in the Coulomb gauge (denoted by C); see Eqs. (30) and (38).

USC DSC ESC
Parameter g/ω ∼ 0.1 g/ω ∼ 1 g/ω > 1

�0/ω � 1 � √
1 + 2g2/ω2 ∝ g

�n 	=0/ω � 1 � 1 ∝ g0

ξ0/xω � g2/ω2 �
√

g2/ω2

(1+2g2/ω2 )3/2 ∝ g−1/2

ξn 	=0/xω � g/(ω
√
L) = O[δ2/(gω

√
L)] ∝ g−1

meff/m � 1 � 1 + 2g2/ω2 ∝ g2

〈∑n b̂
†
nb̂n〉U = O(g2/ω2) � g2/ω2

(1+2g2/ω2 )5/2 ∝ g−3, g−2

〈∑k â
†
k âk〉C = O(g2/ω2) = o(g2/ω2) ∝ g

light-matter couplings in the AD frame remain small over the
entire region of g. As detailed below, this fact allows us to
significantly simplify the analysis in a broad range of cou-
pling strengths, including the realms beyond the USC regime
which are otherwise challenging to investigate in any previous
theoretical approaches.

D. Vacuum-dressed potential and decoupled excitations

To analyze low-energy eigenstates of ĤU , it is useful to
rewrite it in the following manner:

ĤU = Ĥmatter + Ĥint + Ĥlight, (21)

where we define the matter Hamiltonian by

Ĥmatter = P̂2

2meff
+Veff (Q̂) (22)

with meff being the renormalized mass (15) and Veff being the
dressed potential given as

Veff (Q) ≡ V (Q) +
∑
l=1

ξ 2l

(2l )!!
V (2l )(Q), (23)

ξ 2 ≡
∑
n

ξ 2
n , (24)

where V (l ) is the lth derivative of V . The interaction Hamilto-
nian is given by

Ĥint =
∑
l=1

: �̂l :

l!
V (l )(Q̂), (25)

where Ô :≡ Ô − 〈0|Ô|0〉 represents the normal ordering of
photonic operators with |0〉 being the vacuum state in the AD
frame:

b̂n|0〉 = 0 ∀n. (26)

We emphasize that this vacuum state is distinct from the
original vacuum of â operators in the Coulomb gauge due
to the squeezing [cf. Eq. (5)]. Finally, we denote the photon
Hamiltonian as

Ĥlight =
∑
n

h̄�nb̂
†
nb̂n. (27)

Equations (23) and (25) can be obtained by expanding the
interaction term in Eq. (14) with respect to �̂ and using the
relations 〈0|�̂2l |0〉 = (2l − 1)!!ξ 2l and 〈0|�̂2l−1|0〉 = 0.

Arguably, the most celebrated signature of quantum fluctu-
ations of the electromagnetic field for an isolated ground-state
atom is the Lamb shift. Incorporation of light-matter coupling
exclusively through a modification of the external potential
V (Q̂ + �̂) renders the origin of the Lamb shift explicit; fluc-
tuations in �̂ add to the intrinsic fluctuations of Q̂ to enhance
the variance of the effective particle position. This feature
manifests itself as the nonvanishing dressing in the effective
potential (23) without any externally excited photons; it orig-
inates from the zero-point fluctuations of the electromagnetic
fields. Here the dominant contribution to the dressing strength
ξ comes from the mode n = 0, and thus ξ basically obeys the
same scaling relation satisfied by ξ0 in Table I. If necessary,
the summation over l can in practice be truncated at a cer-
tain order that scales inversely with the coupling strength g
owing to the asymptotic vanishing of ξ . In particular, in the
limit of weak light-matter coupling, the energy shift of the
ground state is captured by the l = 1 term of Eq. (23) and the
effective-mass enhancement in Eq. (15).

Because of the decoupling ξ0 ∝ g−1/2 and enhancement
of the effective photon frequency �0 ∝ g, low-energy eigen-
states of ĤU in the strong-coupling limit can be written as a
product of the emitter eigenstates and the photon vacuum as
follows:

|
α〉U = |ψα〉|0〉, (28)

where |ψα〉 with α = 1, 2, . . . are single-particle eigenstates
of Ĥmatter in Eq. (22); we then represent it as

Ĥmatter =
∑

α

Eα (g)|ψα〉〈ψα| (29)

with E1 � E2 � · · · being the corresponding eigenenergies.
These single-particle energies Eα provide asymptotically ex-
act excitation energies of the total Hamiltonian ĤU , which
in the original Coulomb gauge corresponds to an intrinsi-
cally many-body problem with highly entangled light-matter
degrees of freedom [cf. Eq. (1)]. Said differently, when trans-
forming back to the original Coulomb gauge, the above
decoupled emitter states are in general entangled, light-matter
correlated states. We note that the mass enhancement meff ∝
g2 leads to the tight localization of |ψα〉 around the bottom
of Veff ; accordingly, the excitation energies δEα ≡ Eα − E1

decrease as δEα ∝ g−1 in the nonperturbative regimes as long
as Veff has well-defined minima.
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E. Few-photon ansatz at arbitrary coupling strengths

The scaling analysis indicates that the total number of pho-
tons in the AD frame remains small over the entire coupling
region (cf. Table I). In particular, in the ESC regime, the
standard perturbation theory predicts that the photon number
in the ground state is on the order of (ξ0/�0)2 as long as the
bandwidth δ is narrow, resulting in the scaling〈∑

n

b̂†
nb̂n

〉
U

∝ g−3, (30)

where 〈· · · 〉U represents an expectation value with respect
to a low-energy eigenstate in the AD frame. As the band-
width becomes broad, the contributions from n 	= 0 modes
eventually dominate the n = 0 contribution above, and the
perturbation theory leads to

∑
n 	=0(ξn/�n)2 ∝ g−2, where we

used ξn 	=0 ∝ δ2/(gω
√
L) and �n 	=0 ∼ ω (see Table I). This

crossover occurs when the bandwidth reaches a value around
gδ4/ω5 = O(1), at which the contributions from n 	= 0 and
n = 0 modes become comparable. In any case, the total pho-
ton number in the transformed frame asymptotically vanishes
in the strong-coupling limit.

This fact motivates us to introduce the few-photon ansatz
by projecting the whole Hilbert space onto the following
subspace:

HNc ≡ span{|ψα〉 ⊗ |ψphoton,i〉}, (31)

where we recall that |ψα〉 are single-particle eigenstates of
Ĥmatter in Eq. (22) while we denote |ψphoton,i〉 as an arbitrary
bosonic many-body state that satisfies

〈ψphoton,i|
∑
n

b̂†
nb̂n|ψphoton,i〉 � Nc (32)

with a photon-number cutoff Nc; note that this cutoff is im-
posed on the total photon number summed over all the modes,
but not on each individual electromagnetic mode. With this
definition, the decoupled excitations (28) discussed above cor-
respond to the simplest subspace H0 with no photons.

We here emphasize that the complexity is no longer expo-
nential, but it is polynomial with respect to the system size L;
the Hilbert-space dimension of the few-photon manifold HNc

scales as ∝ LNc . This allows us to study the (exact) waveguide
QED Hamiltonian (1) at arbitrary coupling strengths in a very
efficient and accurate manner. Indeed, our exact diagonaliza-
tion analysis shows that the results converge within (at most)
∼1% deviation already at a small total photon-number cutoff
Nc = 2–4 (see Appendix B for further details).

This point should be contrasted to previous approaches;
eigenstates in the Coulomb gauge can possess large photon
occupation numbers (see also Sec. III D below), and one has
to include more excitations for each electromagnetic mode at
a greater coupling g. Hence, the corresponding Hilbert-space
dimension exponentially increases with L, which severely
limits their applicabilities in the strong-coupling regions.
Some variational states, such as the displaced-oscillator
states [53,57,107,108], can provide useful approximative
methods up to a rather modest coupling regime. However, they
should also ultimately become inaccurate especially beyond
the USC regime because of the breakdown of the polaron pic-

ture. More importantly, the usual two-level description of an
emitter, on which most of the previous studies rely, becomes
invalid once one enters into the DSC and ESC regimes as
detailed below. We will show that it is actually such multilevel
structure that leads to a defining feature of the waveguide
QED in genuinely nonperturbative regimes. Our approach
gets around these difficulties by employing the (asymptoti-
cally exact) disentangling unitary transformation, after which
the whole low-energy eigenstates are well restricted into the
few-photon manifold (31) at any coupling strengths.

III. GENERIC FEATURES OF NONPERTURBATIVE
WAVEGUIDE QED

We now present key physical features of waveguide QED
that emerge when one enters into the nonperturbative regimes
on the basis of the theoretical formalism developed in Sec. II.
To understand the qualitative physics, it is sufficient, as a
first step, to consider the decoupled excitations (28) that be-
long to the simplest, zero-photon subspace H0. The results
discussed here establish universal nonperturvative features
which hold true independent of specific choices or fine-tuning
of microscopic parameters. We will make these predictions
quantitatively accurate in the next section by extending the
analysis to the few-photon ansatz in the subspace HNc>0.

A. Ladder of many-body bound states

One of the most surprising results is the appearance of a
ladder of many-body bound states. To see this, we recall that
the excitation energies of the decoupled states (28) decrease
as δEα ∝ 1/g due to the mass enhancement, and eventually
lie outside of the photon continuum,

δEα /∈ [h̄ωL, h̄ωU], (33)

where ωL(U) represents the lower (upper) frequency limit of
the photon dispersion. These states are energetically separated
from scattering states and thus form bound states (BSs), i.e.,
the excitation energies are localized to the emitter degree
of freedom and cannot decay to the continuum at all. This
emergence of multiple low-lying BSs is inaccessible by the
commonly used two-level treatments that can be valid only
up to the USC regime. For this reason, the appearance of BS
ladder can be considered as one of the defining features of the
DSC and ESC regimes of waveguide QED.

Interestingly, these bound states appear with equal energy
spacing that narrows as δE ∝ 1/g. This results from the in-
crease of the emitter mass meff ∝ g2 and the ensuing tight
localization of the wave function, which can be best under-
stood in the AD frame. The low-energy spectrum then reduces
to the harmonic one as long as the potential is well behaved
and can be expanded quadratically around the minima. Im-
portantly, in the original frame, these states behave as the
many-body BS, which are strongly entangled states including
high-momentum emitter states and exponentially localized
(virtual) photons. It is worthwhile to note that photon localiza-
tion in these bound states becomes increasingly tight at greater
g and can be much smaller than the (bare) emitter-transition
wavelength; this feature should be contrasted to usual atom-
field dressed bound states [92].
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B. Many-body bound states in the continuum

Even when the decoupled excitations (28) lie within the
photon continuum, they can behave as either symmetry-
protected bound states in the continuum (BIC) or quasi-BIC
with lifetime that diverges in the strong-coupling limit. To un-
derstand the origin of such symmetry-protected BIC, suppose
that the potential respects the inversion symmetry, V (Q) =
V (−Q). The total light-matter Hamiltonian then satisfies the
following Z2 symmetry:

P̂−1ĤU P̂ = ĤU , (34)

P̂2 = 1, (35)

where P̂ acts on the emitter operators as P̂−1P̂P̂ =
−P̂, P̂−1Q̂P̂ = −Q̂, and transforms the photon field via
P̂−1b̂nP̂ = −b̂n. We emphasize that this Z2 symmetry is in-
trinsically linked to microscopic light-matter Hamiltonians
without making artificial fine tuning. For instance, in a circuit
setup, the potential term V (Q) typically consists of the sum
of the Josephson energy −EJ cos(Q) and the inductive term
ELQ2/2, both of which clearly satisfy the above symmetry.
At a more fundamental level, since the first-principle QED
Hamiltonian in the Coulomb gauge also naturally satisfies this
symmetry [2], the present QED Hamiltonian (1) should also
respect that in general.

It is then clear that, if a decoupled excitation lying in the
photon continuum has a different parity from that of scattering
states, it leads to the exact BIC protected by the above Z2

symmetry. For instance, the lowest photon continuum has the
odd parity, while a half of the decoupled excitations (28) have
the even parity and thus can behave as the BIC when the
excitation energies lie within the continuum.

Interestingly, even if a decoupled excitation has the same
parity as scattering states, it can still behave as a long-lifetime
resonance, which is often called quasi-BIC. Indeed, the scal-
ing analysis of its decay rate given by the Fermi’s golden rule
results in

�qBIC ∝ g−3/2, (36)

which vanishes in the strong-coupling limit. The same argu-
ment also applies to the case when the Z2 symmetry is not
exact due to, e.g., the broken inversion symmetry, V (Q) 	=
V (−Q); the symmetry-protected BIC discussed above then
become resonances in this case, however, their lifetimes
still diverge in the strong-coupling limit. Physically, these
(quasi-) BICs originate from the strong light-matter interac-
tion containing the diamagnetic effect, which tends to prevent
scattering photons from interacting with the many-body BS
consisting of virtual photons localized around the emitter. We
emphasize that the physics of (quasi-) BIC discussed here
qualitatively remains the same also in the case of a gapless
dispersion unless the mass renormalization factor 	 diverges
(see Sec. V).

It is worthwhile to note again that fine-tuning of the cou-
pling strength is not necessary to observe the (quasi-) BIC
here. Specifically, there always exists a non-zero-measure pa-
rameter regime of g such that a certain excitation lies in the
photon continuum,

δEα (g) ∈ [h̄ωL, h̄ωU]. (37)

The reason for this is as follows. At zero coupling, one can
find an emitter state lying above the continuum, i.e., δEα (g =
0) > h̄ωU. In the ESC regime, this excitation energy asymp-
totically decreases as δEα (g) ∝ g−1 and ultimately converges
to zero. Thus, between these two limits, there must exist an
intermediate coupling regime such that the relation (37) is
satisfied. The metastability of these states stems from the fact
that radiation field modes that are resonant with them have
small amplitudes at the emitter position.

C. Vacuum-induced suppression in potential barrier

Yet another common feature in the nonperturbative regimes
is the vacuum-induced suppression of potential barrier in Veff .
This can readily be understood from Eq. (23), where the
vacuum fluctuations decrease (increase) the energies at local
maxima (minima), thus lowering the potential barrier felt by
the particle when tunneling to a different local minimum (see
Fig. 4 below for an illustrative example of the double-well
potential). The amount of this suppression nonmonotonically
depends on the coupling strength, since it is solely determined
by the displacement parameter ξ that exhibits the nonmono-
tonic g dependence [see Eq. (24) and Table I].

When one considers quantum tunneling, the mass renor-
malization eventually dominates the barrier suppression and
thus the tunneling rate is ultimately exponentially suppressed
in the strong coupling limit. In contrast, if thermal activation
over the barrier, i.e., thermal escape, is of interest, the escape
rate is basically characterized by the ratio of the potential bar-
rier to the temperature, but independent of the mass. Thus, it is
a universal feature that a thermal escape should be enhanced
by strong light-matter couplings owing to the vacuum-induced
suppression of the barrier. This may provide a physical ex-
planation of recent experimental observations in polaritonic
chemistry [28–30], where the thermally activated chemical
reaction was found to be enhanced due to cavity confinement.

D. Breakdown of level truncations in the Coulomb
and PZW gauges

We finally point out that an analysis relying on the
Coulomb or PZW gauges must in general become invalid
at a sufficiently strong light-matter coupling. This difficulty
arises from the breakdown of level truncations in photon and
emitter degrees of freedom in the nonperturbative regimes.
Specifically, we first note that the mean photon number in the
Coulomb gauge grows as (cf. Table I)〈∑

k

â†
k âk

〉
C

∝ g. (38)

The same scaling also applies to the photon-number fluctu-
ations. The number of photon basis required to analyze the
Coulomb-gauge Hamiltonian (1) thus exponentially diverges
as g is increased. This eventually invalidates truncation of pho-
ton levels, which is actually inevitable in almost any analysis
of bosonic many-body systems.

Similarly, the truncation of matter levels also becomes ill-
justified at a sufficiently large g in the conventional gauges; in
particular, this fact indicates the breakdown of the usual two-
level descriptions of quantum emitters in the nonperturbative
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regimes. To see this, we use the unitary transformation (9) to
express the decoupled states (28) in the Coulomb gauge

|
α〉C = Û |ψα〉|0〉 =
∫

dPψα (P)|P〉e−iP�̂|0〉, (39)

where we expand an emitter state |ψα〉 in terms of the momen-
tum eigenstates |P〉. In the strong-coupling limit, the variance
of the momentum distribution |ψα (P)|2 diverges with σP ∝ g
due to the mass renormalization meff ∝ g2. Thus, an energy
eigenstate in the Coulomb gauge is a strongly entangled
emitter-photon state consisting of a superposition of higher
momentum states at larger g. This fact eventually invalidates
the common analyses that rely on either two-level approxima-
tion or a fixed momentum cutoff for an emitter.

Note that these difficulties are carried over in the PZW
gauge (also known as the dipole gauge). To see this, we recall
that the corresponding Hamiltonian in the long-wavelength
limit is given by ĤPZW = Û †

PZWĤCÛPZW with the PZW trans-
formation ÛPZW = exp(iqQ̂Â/h̄):

ĤPZW = P̂2

2m
+V (Q̂) + mg2Q̂2 + qQ̂Ê +

∑
k

h̄ωkâ
†
k âk,

Ê ≡
∑
k

i fkωk (â†
k − âk ). (40)

As is the case with the Coulomb gauge, the mean/fluctuation
of the photon number in this gauge rapidly grows at strong
couplings, while the mass remains at the bare value which
leads to eventual breakdown of matter-level truncation. In
contrast, the AD frame makes both photon- and emitter-level
truncations well justified and allows us to reveal the key fea-
tures in the nonperturbative regimes as outlined above. We
remark that, when transforming back to the Coulomb gauge,
Ê in the above PZW gauge corresponds to the dielectric dis-
placement field consisting of the electric field and the emitter
shift.

IV. APPLICATION TO COUPLED CAVITY ARRAY

We here demonstrate all the generic features discussed
in Sec. III by analyzing a concrete model of coupled cav-
ity arrays. Extending the above analysis to the few-photon
ansatz (31), we provide experimentally testable predictions
of bound states, excitation energies, and quench dynamics,
which are quantitatively accurate over the entire coupling
region.

We consider a waveguide realized by a one-dimensional
array of coupled cavities with nearest-neighbor coupling

Ĥlight = −J

2

∑
x

(â†
x+1âx + H.c.) + h̄ωc

∑
x

â†
x âx, (41)

where J is a hopping parameter, ωc is a resonator frequency,
and âx ≡ 1√

L

∑
k âke

−ikx is a photonic annihilation operator of
the resonator mode at site x. The corresponding dispersion is

h̄ωk = h̄ωc − J cos k (42)

with wave vector k ∈ [−π, π ). This specific choice of the
waveguide is not essential to the qualitative physics we dis-
cuss below, but is amenable to numerical calculations and

experimental implementations. The emitter is coupled to the
waveguide at x = 0 and the vector potential in the Coulomb-
gauge Hamiltonian (1) is given by

Â = A(âx=0 + â†
x=0), (43)

which corresponds to electromagnetic amplitudes fk [see
Eq. (3)]

fk = A√
L

. (44)

As the amplitudes are independent of k, it is useful to define
the characteristic light-matter coupling strength by

g = qA
√

ωc

mh̄
. (45)

Note that this expression is consistent with the definition (18).
We model a quantum emitter as a charged particle trapped

in the standard double-well potential,

V (Q) = v

(
1 − Q2

d2

)2

, (46)

FIG. 2. (a) Renormalized photon frequencies �n in Eq. (7),
(b) displacement parameters ξn in Eq. (11), and (c) expectation values
of the total photon number plotted against the light-matter coupling
strength g in Eq. (45). In (a) and (b) the red solid (blue dashed)
curve shows the values corresponding to the dominant mode n = 0
(the other modes n 	= 0), where the dominant mode is characterized
by the highest frequency �0 � √

ω2
c + 2g2. Note that only a part

of n 	= 0 modes is plotted for the sake of visibility. In (c) the red
solid curves show the total number of dressed photons for the two-
lowest eigenstates in the asymptotically decoupled (AD) frame [cf.
Eq. (30)], while the blue dashed ones show the corresponding num-
ber of bare photons in the Coulomb gauge [cf. Eq. (38)]. Parameters
are J = 0.2 in (a,b), and J = 0.2, v = 0.5, and d = 1.2 in (c).
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FIG. 3. (Left) Low-energy excitation spectrum obtained by the exact diagonalization (ED) of the AD-frame Hamiltonian (14) with
the double-well potential (46) at different coupling strengths g. The red dashed curves show the energies corresponding to the decoupled
excitations (28), which become asymptotically exact in the strong-coupling limit. Panels (a) and (b) are closeups of the main panel, where the
exact BIC shows no anticrossings in (a), while the quasi-BIC exhibits tiny anticrossings in (b). Parameters are J = 0.1, v = 0.5, d = 0.87,
and L = 19. The emitter parameters correspond to the on-resonant condition �/ωc � 1 with � being the bare emitter frequency [see Eqs. (54)
and (58) for the definition of �]. Note that only the energy eigenvalues up to 42 lowest eigenstates are plotted in the left panel for the sake of
visibility.

where v is a potential depth and d characterizes a position of
the potential minima. While we here focus on this minimal
model for a quantum emitter, our theoretical formalism is
equally applicable to a general potential landscape that may be
more complex depending on each specific system or problem,
such as transmon/flux qubits or chemical reactions.

Figures 2(a) and 2(b) show the renormalized parameters in
the AD frame at different coupling strengths; all the numeri-
cal values are shown in the unit ωc = h̄ = m = 1 throughout
this paper. These results are fully consistent with the scaling
analysis summarized in Table I. Specifically, beyond the USC
regime, a single mode labeled by n = 0 turns out to have a
large renormalized eigenfrequency and dominantly couples
to the emitter, while the other modes with n 	= 0 basically
remain at the bare frequencies and are almost decoupled from
the emitter. As shown in Fig. 2(c), the total photon number
in the AD frame vanishes as ∝ g−3 as consistent with the
scalings �0 ∝ g and ξ0 ∝ g−1/2, while in the Coulomb gauge
the photon number increases as ∝ g.

A. Bound states, symmetry-protected BIC, quasi-BIC

Figure 3 shows the low-energy excitation spectrum of a
quantum emitter coupled to the cavity array in a broad range
of the coupling strength g. This spectrum is obtained by the
exact diagonalization of the QED Hamiltonian in the AD
frame (14) within the few-photon ansatz (31) (see Appendix B
for details about the method). We note that the emitter pa-
rameters v and d in Fig. 3 are chosen in such a way that the
bare emitter frequency is resonant to the cavity frequency, i.e.,
(E2 − E1)/h̄ � ωc at g = 0.

The eigenstates insensitive to g and staying in the photonic
band,

δEsca ∈ [h̄ωc − J, h̄ωc + J], (47)

correspond to the single-photon scattering states, which are
extended over the waveguide and constitute the energy contin-

uum in the thermodynamic limit. In contrast, the eigenstates
lying out of the band continuum,

δEBS /∈ [h̄ωc − J, h̄ωc + J], (48)

behave as the bound states and are accompanied by virtual
photons localized around the emitter. In the nonperturbative
regimes, the energies of these bound states decrease as δEBS ∝
g−1 and are asymptotically determined by the excitation ener-
gies δEα of the decoupled states (28). This point is confirmed
in the left panel of Fig. 3, where the exact spectrum (blue
solid curves) eventually agrees with the asymptotic values
(red dashed curves).

As discussed earlier, when these bound states lie in the
band continuum,

δE(q)BIC ∈ [h̄ωc − J, h̄ωc + J], (49)

they behave either as the Z2-symmetry-protected BIC or as
the quasi-BIC. These features manifest themselves as the ab-
sence of anticrossings in the finite-size spectrum [Fig. 3(a)]
or as the presence of tiny anticrossings with scattering states
[Fig. 3(b)], respectively. We note that this tiny anticrossing
of the quasi-BIC originates from its vanishingly small decay
rate, which can be estimated as [cf. Eq. (36) and the related
discussions in Sec. III B]

�qBIC ∼ (J/h̄)2

g
√
mω3

cd
3

(
v3

meff

)1/4

∝ g−3/2. (50)

In the ESC regime, the origin of these bound states can also
be understood from the fact that the cavity mode spatially
overlapping with the emitter is shifted in frequency outside
the photonic continuum and thereby hopping to neighboring
cavities is strongly suppressed. All the excited light-emitter
states within the photonic continuum will then become
(quasi-) BIC because of this suppression.

We also remark that, in Fig. 3, one can also find several
continuum spectra that connect the two-photon continuum
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FIG. 4. Potential barrier veff of the vacuum-dressed effective po-
tential Veff (Q) at different coupling strengths g [see Eq. (52)]. The
suppression and eventual restoration of the barrier arises from the
nonmonotonic g dependence of ξ in Eq. (24) [cf. Fig. 2(b)]. Insets
show typical spatial profiles of the effective potential in each regime.
Parameters are J = 0.1, v = 0.5, and d = 1 in (a), and J = 0.1,
v = 0.5, and d = 0.6 in (b).

with the single-photon one as g is increased. Physically, these
states consist of the single-photon scattering states on top
of the first, second, and third excited bound states. The g
dependence of those energies can be understood as follows.
They first rapidly decrease with increasing g until g/ωc ∼ 5.
There, bound-state energies are initially above the height of
the potential barrier at Q = 0 and hence there are no double
degeneracies. As we increase g further and bound-state ener-
gies go well below the potential barrier, these states become
nearly degenerate because they now form a pair of symmet-
ric and antisymmetric combinations of excitations localized
around each of the two minima in the double-well potential.
For instance, in Fig. 3 the energy of the third excited state
eventually approaches that of the second excited state and
they begin to overlap and become doubly degenerate from
g/ωc > 5. Meanwhile, the apparent absence of two-photon
scattering states in this regime is motivated by the clarity
of presentation, because of which only a certain number of
the lowest eigenstates are presented in Fig. 3; this avoids
excessive overlaps of the continuous spectra.

B. Dressed potential

The effective emitter potential (23) in the AD frame is
dressed by vacuum electromagnetic fields. In the present case
of the double-well potential, the corresponding dressed poten-
tial is given by

Veff (Q) = veff

(
1 − Q2

d2
eff

)2

, (51)

where we neglect an irrelevant constant, introduce the renor-
malized potential barrier veff as

veff =
{

v
(
1 − 3ξ 2

d2

)2
ξ � d√

3

0 ξ > d√
3

, (52)

and define the effective dipole length by deff/d ≡ (veff/v)1/4.
As expected from the general argument in Sec. III C, the
barrier veff is always suppressed compared to the bare value v

and the suppression is most significant when ξ becomes max-
imum, which occurs around the DSC regime [see Fig. 4(a)].
Interestingly, when the displacement parameter ξ becomes
sufficiently large such that ξ > d/

√
3, even the full sup-

pression of the potential barrier, i.e., veff = 0, is possible.
Nevertheless, this does not mean that the entire potential is
suppressed because the dipole length deff in Eq. (51) also
converges to zero in this case. The resulting potential then
contains both the quartic and quadratic contributions with the
same sign, leading to the single minimum [see Fig. 4(b) for an
illustrative example].

FIG. 5. Comparisons of the first-excited energy between the ex-
act result and the two-level effective models. The blue solid curves
are obtained by the exact diagonalizion (ED) of the AD-frame Hamil-
tonian (14). (a) The green dots represent the results of the two-level
model with the rotating wave approximation (RWA) in the AD frame
[cf. Eq. (53)]. The red dashed curve shows the corresponding results
in the Coulomb gauge [cf. Eq. (57)]. (b) The green dots represent the
results of the quantum Rabi model in the AD frame, i.e., the two-level
model without RWA [see Eq. (60)]. Parameters are J = 0.1, v = 0.5,
and d = 0.87.
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C. Two-level effective model and its breakdown
in the Coulomb gauge

Construction of the Jaynes-Cummings-type effective
model is often useful to simplify the analysis of the original
QED Hamiltonian, especially when low-energy excitations
are of interest. This can be done by performing the two-level
truncation of the emitter and assuming the rotating wave ap-
proximation. In the AD frame, such procedure leads to the
standard Jaynes-Cummings Hamiltonian, but with the suitably
renormalized parameters,

Ĥ JC
U = h̄�g

2
σ̂ z +

(
σ̂− ∑

n

h̄g̃nb̂
†
n + H.c.

)
+

∑
n

h̄�nb̂
†
nb̂n,

(53)
where the renormalized emitter frequency �g and the effective
coupling strengths g̃n are defined by

�g ≡ E2 − E1

h̄
> 0, (54)

g̃n ≡ ξn

h̄
〈ψ1|dV

dQ
|ψ2〉. (55)

We recall that E1,2 (|ψ1,2〉) represent the two-lowest eigenen-
ergies (eigenstates) of the renormalized emitter Hamilto-
nian (22) and thus depend on the coupling strength g through
meff and Veff .

Importantly, since the effective spin-bath couplings g̃n re-
main small over the entire region [cf. Fig. 2(b)], the rotating
wave approximation in Eq. (53) can be performed even be-
yond the USC regime. Also, the two-level truncation for the
emitter in the AD frame here should remain meaningful as dis-
cussed in Sec. III D. We thus expect the effective model Ĥ JC

U
to be valid not only at weak g, but also in the nonperturbative
regimes.

To demonstrate this, we plot in Fig. 5(a) the lowest excita-
tion energy Eex of Ĥ JC

U which is obtained from the following
analytic relation for the single-excitation subspace,

Eex − �g =
∑
n

g̃2
n

Eex − �n
. (56)

Indeed, it agrees well with the exact values even in the DSC
regime. In contrast, the conventional two-level model con-
structed from the Coulomb-gauge Hamiltonian is given by

Ĥ JC
C = h̄�

2
σ̂ z +

(
σ̂− ∑

k

h̄g̃k â
†
k + H.c.

)
+

∑
k

h̄ωkâ
†
k âk,

(57)

where � and g̃k are the bare parameters defined by

� ≡ �g=0, (58)

g̃k ≡ g√
L
xωc

〈
ψ

g=0
1

∣∣∂Q∣∣ψg=0
2

〉
(59)

with xωc = √
h̄/mωc. This simplified Hamiltonian Ĥ JC

C takes
exactly the same form as Ĥ JC

U in Eq. (53), but with unrenor-
malized parameters. While this construction is valid at weak
g, it is well known that such a naive two-level description
in the Coulomb gauge breaks down once one enters into the
USC regime in which nonresonant processes become relevant

and the two-level truncation becomes ill-justified [see the red
dashed curve in Fig. 5(a)].

In this respect, the AD frame significantly expands the
applicability of the Jaynes-Cummings description beyond the
weak coupling regimes, and thus allows one to use the stan-
dard techniques valid within the rotating wave approximation,
such as the Wigner-Weisskopf theory, in a broad range of g.
Nevertheless, we remark that the effective Hamiltonian Ĥ JC

U
constructed in the AD frame should also ultimately become
invalid when �g < g̃n � ωc, where the counter-rotating terms
turn out to be equally important as rotating ones; this typically
occurs in g� 5.

Instead, a more accurate description including the counter
rotating terms still remains valid even in such ESC regime.
Specifically, we can construct the quantum Rabi model in the
AD frame,

ĤRabi
U = h̄�g

2
σ̂ z + σ̂ x

(∑
n

h̄g̃nb̂
†
n + H.c.

)
+

∑
n

h̄�nb̂
†
nb̂n,

(60)
which gives almost the exact results in the ESC regime [see,
for instance, the comparison in Fig. 5(b)]. There, we note
that the lowest excitation energy exponentially vanishes as g
is increased [cf. Eq. (93) below], while the higher excitation
energies lie well above this two-level manifold with the energy
spacing that scales as ∝ 1/g. This is the reason why the quan-
tum Rabi description becomes asymptotically exact in the AD
frame.

D. Quench dynamics

The many-body bound states and the BIC lead to rich
nonequilibrium dynamics in the nonperturbative regimes. To
be concrete, we consider the quench protocol with the emitter
parameter d in the double-well potential (46) being abruptly
changed as di → d f at time t = 0 while keeping all the other
parameters constant. This effectively changes the positions of
the minima of Veff and also modifies the qubit frequency. The
initial state |
(0)〉 is chosen to be the ground state of the QED
Hamiltonian at d = di and large fixed g. We emphasize that,
in the Coulomb gauge, this initial state is already a strongly
entangled light-matter state consisting of virtual photons lo-
calized around the emitter. The quench protocol discussed
here should be realized in the current experimental techniques
of, e.g., circuit QED that deals with photons in microwave
regime. As detailed below, this procedure provides a feasible
way to experimentally detect the signature of the predicted
many-body BIC, which cannot be excited by a single-photon
scattering by definition.

We calculate the real-time dynamics by transforming to the
AD frame, since the analysis in the Coulomb gauge becomes
exponentially hard at large g as discussed earlier. Specifically,
we exactly diagonalize the post-quench Hamiltonian ĤU at
d = d f (see Appendix B for details) and obtain the time
evolution via

|
(t )〉U = e−iĤU t |
(0)〉U =
∑
i

cie
−iEit |
i〉U , (61)

where Ei (|
i〉U ) are the corresponding energies (eigenstates),
and ci are expansion coefficients of the initial state. We then

023194-12



NONPERTURBATIVE WAVEGUIDE QUANTUM … PHYSICAL REVIEW RESEARCH 4, 023194 (2022)

FIG. 6. (a)–(c) Spatiotemporal dynamics of photon occupancy nx = 〈â†
x âx〉C after the quench at different coupling strengths g. (a), (b)

Excitations of propagating photons in the deep strong coupling regimes and (c) photon confinement around the emitter at x = 0 in the extremely
strong coupling regime. (d)–(f) Corresponding dynamics of the photon occupancy nx=0 at the emitter position and (g)–(i) the initial weights in
terms of eigenstates of the postquench Hamiltonian [cf. Eq. (61)]. In (d) and (e) the excitations of the (quasi-) BIC lead to the slow, long-lasting
oscillatory dynamics whose period is characterized by the bound-state energies. In (f) a ladder of bound states manifests itself as the oscillatory
dynamics with a long period Tosc = 2π/ωosc that diverges in the strong-coupling limit [cf. Eq. (63)]. Parameters are g = 1.2, J = 0.1, v = 0.5,
di = 0.6, and df = 0.87 in (a), (d), and (g), g = 1.3, J = 0.2, v = 1, di = 0.9, and df = 2.7 in (b), (e), and (h), and g = 5, J = 0.1, v = 1,
di = 2, and df = 2.5 in (c), (f), and (i).

calculate the evolution of an observable Ô in the original
Coulomb gauge through the unitary transformation

〈Ô〉C = 〈Û †ÔÛ 〉U . (62)

Figures 6(a) and 6(b) shows the typical spatiotemporal
dynamics of photon occupancy nx = 〈â†

x âx〉C in the DSC
regimes. One can find the nondecaying oscillatory dynamics
that is most pronounced around the emitter position x = 0
as well as the emission of propagating photons. The for-
mer originates from the existence of the many-body bound
states and the (quasi-) BIC, while the latter can be con-
sidered as the analog of the dynamical Casimir effect in
which physical photons are generated by quenching the
vacuum [109,110].

To gain further insights into the oscillatory dynamics, we
plot the time evolution of the photon occupancy at the origin
x = 0 in Figs. 6(d) and 6(e). We also show the corresponding
initial weights |ci| in Figs. 6(g) and 6(h), where the blue-
shaded regions represent the energy continuum. One can see
that the quench protocol excites the (quasi-) BIC and the
bound states with substantial weights and that their frequen-
cies characterize the long-period oscillation in the dynamics,
which typically has a period T = O(10). Thus, those bound
states manifest themselves as the long-lasting oscillatory

behavior that associates with photons bouncing back and forth
around the emitter.

In the ESC regime, photons are so strongly bound by the
emitter that they cannot propagate into the waveguide [see
Fig. 6(c)]. Besides such photon confinement, the dynamics
exhibits the increasingly slow coherent oscillation at larger g
[see Fig. 6(f)]. This oscillatory behavior can be understood
as follows. In the AD frame, the emitter and photons are
asymptotically disentangled and the low-energy dynamics is
solely governed by the renormalized emitter Hamiltonian (22)
with no photon excitations. The present quench protocol then
corresponds to the sudden shift of the potential minima of
Veff . Because the mass is enhanced as meff ∝ g2 and the wave
packet is tightly localized, this quench initiates the oscillatory
dynamics where the wave packet (initially localized at d � di)
oscillates around the new minima at d � d f . Such oscillation
frequency can be estimated as

ωosc =
√√√√ 8v

d2
f meff

(
1 − 3ξ 2

d2
f

)
∝ g−1, (63)

which vanishes in the strong-coupling limit. The esti-
mated period Tosc = 2π/ωosc agrees well with the observed
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long-period oscillation in Fig. 6(f). In the energy basis, this
slow coherent dynamics manifests itself as excitations of a
ladder of bound states corresponding to the decoupled eigen-
states (28) [see Fig. 6(i)].

V. EXTENSION TOMULTIPLE QUANTUM EMITTERS

We now extend our theoretical formalism to the case of
multiple quantum emitters. We discuss several limiting cases
and construct the effective two-level model that is valid in a
broad range of the light-matter coupling strength.

A. General formalism

We consider N emitters of mass mj that are subject to
potential Vj and locally interact with the common electro-
magnetic modes at positions x j with j = 1, 2, . . . ,N . We thus
start from the multi-emitter QED Hamiltonian in the Coulomb
gauge,

ĤC =
N∑
j=1

[(
P̂j − qÂx j

)2

2mj
+Vj (Q̂ j )

]
+

∑
k

h̄ωkâ
†
k âk, (64)

where the position and momentum operators of the emitters
satisfy

[Q̂i, P̂j] = ih̄δi j, (65)

and the vector potential is given by

Âx j =
∑
k

fk j (âke
ikx j + â†

ke
−ikx j ) (66)

with fk j characterizing an electromagnetic coupling between
photonic mode k and emitter j; for the sake of simplicity, we
assume fk j = f−k j .

Generalizing the unitary transformation (9) to such multi-
emitter case, we obtain the following Hamiltonian (see
Appendix C for details):

ĤU = Ĥmatter + Ĥint + Ĥlight, (67)

where the emitter part is given by

Ĥmatter =
∑
j

[
P̂2
j

2meff, j
+Veff, j (Q̂ j )

]
+

∑
i> j

μi j P̂iP̂j (68)

with

meff, j = mj/[(1 + 2G)−1] j j, (69)

μi j = [(1 + 2G)−1]i j/
√
mimj . (70)

Here G is the N×N matrix defined by

Gi j ≡
∑
k

gkigk j
ω2
k

cos[k(xi − x j )], (71)

gk j ≡ q fk j

√
ωk

mj h̄
. (72)

Physically, meff, j in Eq. (69) represents the renormalized mass
similar to meff in the single-emitter case considered before
except for its dependence on emitter positions through G. The
coupling μi j in Eq. (70) represents the waveguide-mediated
interaction between emitters; in the original Coulomb gauge,

this corresponds to the nondissipative coupling mediated by
virtual photons in the waveguide.

In the renormalized multi-emitter Hamiltonian (68), the
vacuum-dressed effective potentials Veff, j are given by

Veff, j (Q) ≡ Vj (Q) +
∑
l=1

ξ 2l
j

(2l )!!
V (2l )
j (Q), (73)

ξ 2
j ≡

∑
n

|ξn j |2. (74)

The interaction Hamiltonian is

Ĥint =
∑
j

: Vj (Q̂ j + �̂ j ) : (75)

with

�̂ j ≡
∑
n

i(ξn j b̂
†
n − ξ ∗

n j b̂n), (76)

where the displacement parameters ξn j characterize the effec-
tive coupling strengths between dressed photon mode n and
emitter j (see Appendix C). The photon part Ĥlight takes the
same form as the single-emitter case in Eq. (27) [111].

To be concrete, from now on we consider the case of
identical emitters with mj = m, Vj = V , and fk j = fk ∀ j.
This simplification leads to the identical bare light-matter
couplings, gk j = gk ∀ j. In contrast, we note that the effec-
tive masses meff, j , the displacement parameters ξn j , and the
dressed potentials Veff, j can still depend on the emitter po-
sitions, and thus we need subscript j to distinguish them in
general. Below we illustrate aspects of several limiting cases,
but leave the full understanding of multi-emitter waveguide
QED systems to a future work.

B. Two emitters

We begin by discussing the two-emitter case. Figure 7
plots the waveguide-mediated coupling μ21 and the effective
mass meff against the emitter separation at different coupling
strengths g. We here assume the waveguide to be the same
cavity array as considered in Sec. IV. In the USC regime,
the coupling μ21 exhibits the oscillatory behavior and can be
long ranged. As g is further increased, it becomes increasingly
short ranged with oscillations being damped [see Fig. 7(a)].
Such suppression can be interpreted as a nonperturbative
effect originating from the tighter confinement of virtual pho-
tons around the emitters.

Figure 7(b) shows that the effective mass monotonically
increases at larger g. As noted earlier, the effective mass in
multi-emitter systems is sensitive to the emitter separation;
for the two-emitter case, it starts from m 1+4	

1+2	
at zero separa-

tion and eventually saturates to the single-emitter limit m(1 +
2	) when the separation surpasses the cavity length xωc = 1
[cf. Eqs. (15) and (16)].

C. Localized N emitters

We next consider the case in which all the emitters are
coupled to the waveguide at the same position x1 = · · · =
xN = 0. This corresponds to the case of N (artificial) atoms
collectively coupled to the common electromagnetic fields,
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FIG. 7. Renormalized parameters in the two-emitter case.
(a) Waveguide-mediated emitter-emitter interaction strength μ21 in
Eq. (70) and (b) effective mass meff in Eq. (69) are plotted against the
emitter separation at different light-matter couplings g. The waveg-
uide is assumed to be the coupled cavity array as in Sec. IV, and we
set J = 0.2.

which is relevant to various experimental setups. It is useful
to introduce the collective momentum and coordinate by

P̂CM ≡ 1√
N

∑
j

P̂j, Q̂CM ≡ 1√
N

∑
j

Q̂ j, (77)

as well as the relative ones via

p̂ j ≡ P̂j − P̂CM√
N

, q̂ j ≡ Q̂ j − Q̂CM√
N

. (78)

The Hamiltonian can be rewritten as

ĤU = ĤCM + Ĥint + Ĥlight + Ĥrel, (79)

where

ĤCM = P̂2
CM

2Meff
+ N Veff

(
Q̂CM√
N

)
(80)

governs the dynamics of the collective mode with the effective
mass

Meff = m(1 + 2N	). (81)

The electromagnetic interaction between the collective mode
and photons is given by

Ĥint = : N V

(
Q̂CM√
N

+ �̂

)
: . (82)

The relative motion of emitters is governed by

Ĥrel =
∑
j

[
p̂2
j

2m
+V

(
q̂ j + Q̂CM√

N
+ �̂

)
−V

(
Q̂CM√
N

+ �̂

)]
.

(83)

Here we recall that the relative variables satisfy the constraints∑
j p̂ j = ∑

j q̂ j = 0, and thus they contain N − 1 degrees
of freedom. When the collective mode dominantly couples
to the electromagnetic fields, one may neglect fluctuations
and dynamics of the relative degrees of freedom. The to-
tal QED Hamiltonian (79) then becomes equivalent to the
single-emitter one (14) upon the replacements Q̂ → Q̂CM,

P̂ → P̂CM, gk → √
Ngk , d → √

Nd , and v → Nv. While this
equivalence is nothing but the well-known

√
N collective

enhancement of the dipole and the coupling strength, our
analysis indicates that it can remain even in the DSC/ESC
regimes where the multilevel nature of emitters becomes cru-
cial, as long as relative motion does not play a substantial
role.

D. Two-level effective model

We next extend the construction of the two-level effec-
tive model discussed in Sec. IV C to arbitrary multi-emitter
systems. The projection onto the two-lowest dressed emitter
states in the AD frame results in the effective model

ĤU = ĤIsing + Ĥ JC
int + Ĥlight, (84)

where the matter part corresponds to the (inhomogeneous)
transverse-field Ising model,

ĤIsing =
∑
j

h̄�g, j

2
σ̂ z
j +

∑
i> j

Ji j σ̂
x
i σ̂ x

j , (85)

with Ji j being the waveguide-mediated qubit-qubit interaction
given by

Ji j = −h̄2μi j〈ψ1i|∂Qi |ψ2i〉〈ψ1 j |∂Qj |ψ2 j〉. (86)

Here |ψ1,2 j〉 represent the two-lowest eigenstates of the renor-
malized emitter Hamiltonian P̂2

j /2meff, j +Veff, j , and �g, j � 0
is the corresponding excitation energy. We recall that �g, j

depends on emitter positions through meff, j and Veff, j . The
Jaynes-Cummings-type light-matter interaction is

Ĥ JC
int =

∑
j

σ̂−
j

∑
n

h̄g̃n j b̂
†
n + H.c., (87)

where g̃n j are the effective qubit-boson couplings given by

g̃n j = ξn j

h̄
〈ψ1 j |dVj

dQ
|ψ2 j〉. (88)

As discussed before, in contrast to the Coulomb/PZW gauges,
our construction in the AD frame should remain valid even
at large g because the level truncations can increasingly be
well justified in the strong-coupling limit. Thus, the two-level
effective model (84) can be used to accurately capture low-
energy physics of the original multi-emitter QED Hamiltonian
in a broad range of the coupling strength. Nevertheless, we
note that in the ESC regime the counterrotating terms can
be important and, in such a case, the Rabi-type interaction
instead of Eq. (87) should give more accurate results. In the
single-emitter case, we recall that the asymptotic decoupling
and the enhanced photon frequency led to the decoupled
eigenstates (28). Similarly, in the present multi-emitter case,
one may set the photon state to be the vacuum and reduce
the whole problem to the Ising Hamiltonian (85), from which
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the ground-state properties and elementary excitations can be
extracted. To make the results quantitatively accurate, one
can extend the analysis to the few-photon sector in the same
manner as done in Sec. IV when necessary.

It is worthwhile to discuss a simple case of homoge-
neous configuration, in which the emitters are periodically
placed with the same separation. In this case, the renor-
malized frequency and the spin-boson couplings are inde-
pendent of an emitter, �g, j = �g, g̃n j = g̃n ∀ j, and the
spin-spin interaction becomes translationally invariant Ji j =
J|i− j|. Then, the multi-emitter Hamiltonian (85) reduces to
the standard homogeneous transverse-field Ising model with
couplings J|i− j| that are in general long ranged. In partic-
ular, in the limit of zero emitter separation, the effective
Hamiltonian reduces to the Lipkin-Meshkov-Glick (LMG)
model:

ĤLMG = h̄�g

2
Ŝz + J ′(Ŝx )2, (89)

where J ′ > 0 is the all-to-all antiferromagnetic coupling,
Ŝγ ≡ ∑

j σ̂
γ

j are the collective spin operators with γ ∈
{x, y, z}, and we neglect the irrelevant constant.

These simplifications in the AD frame allow us to export
the insights and techniques originally developed in stud-
ies of the transverse-field Ising models to the analysis of
the multi-emitter QED Hamiltonian in the nonperturbative
regimes. Indeed, it is known that, in the many-emitter limit
N → ∞, such model exhibits rich phase diagrams depend-
ing on dimension, lattice geometry, or sign/decay exponent
of the long-range coupling J|i− j| [112–115]. Moreover, a
disordered transverse-field Ising model is argued to realize
many-body localization [116,117], and such disorder is fairly
ubiquitous in the multi-emitter Hamiltonian (85) where dis-
order comes into play through emitter positions. While we
leave the full understanding of such multi-emitter physics
at strong light-matter couplings to future investigations, our
analysis provides a reliable starting point for this and shows
promise for realizing the above exotic phases in the waveguide
QED.

VI. QUANTUM PHASE TRANSITIONS
WITH GAPLESS DISPERSIONS

We finally turn our attention to the case of gapless disper-
sions. Specifically, we consider the photon frequencies that, in
the low-energy limit, scale as

ωk ∝ kl , (90)

where l > 0 is an exponent characterizing the gapless disper-
sion. This type of dispersions can be realized in waveguide
QED systems by using transmission lines or by designing
mode frequencies with fabricated resonators. One of the key
questions here is whether or not a waveguide QED system
governed by the Hamiltonian (1) undergoes a quantum phase
transition as the light-matter coupling is increased. Below we
discuss that the presence or absence of transition can be un-
derstood in terms of the mass renormalization after the unitary
transformation, and demonstrate it by analyzing a concrete
model of circuit QED.

A. Delocalization-localization transition
and mass renormalization

The ground state of a single-emitter system displays either
delocalized or localized phase that is characterized by the
following order parameter:

O ≡ lim
h→+0

lim
L→∞

〈Q̂〉h,C (91)

= lim
h→+0

lim
L→∞

〈Q̂ + �̂〉h,U , (92)

where 〈Q̂〉h,C represents an emitter displacement in the ground
state of the QED Hamiltonian in the Coulomb gauge (1) with
a bias potential −hQ̂ being added to V (Q̂); from now on, we
assumeV to be the standard double-well potential (46) though
our arguments can be applied to a generic potential profile. In
the AD frame, this order parameter corresponds to an expec-
tation value of 〈Q̂ + �̂〉U [cf. Eq. (62)]. The delocalized phase
is characterized by the vanishing order parameter O = 0 and
the unique, nondegenerate ground state. In contrast, in the
localized phase, the ground state exhibits the twofold degen-
eracy in the thermodynamic limit L → ∞ corresponding to
localization to each of the two minima in the potential. In this
case, the order parameter takes a nonzero value O > 0, which
indicates the broken Z2 symmetry in Eq. (34).

At sufficiently large coupling g, the emitter and photons
are decoupled in the AD frame, and the first excitation energy
�g can be estimated from the tunneling rate in the dressed
potential (23), resulting in [118]

h̄�g � h̄2

meffd2
eff

exp

⎡
⎣−4

3

√
2meffd2

effveff

h̄2

⎤
⎦. (93)

Thus, the divergent meff leads to the gap closing limL→∞ �g =
0, indicating a possible ground-state degeneracy, i.e., transi-
tion to the localized phase. In contrast, as long as meff remains
finite, such exact twofold degeneracy of the ground state is
unlikely to happen; this implies the absence of transition. We
delineate general properties in each of these cases on the basis
of this observation.

First, when the effective mass remains finite meff < ∞ the
whole results discussed in Secs. II–IV for a gapped dispersion
qualitatively remain the same, except for the point that all the
bound states now behave as the (quasi-) BIC in the present
gapless case. Importantly, the ground state can thus be well
approximated by the lowest decoupled eigenstate |ψ0〉|0〉 [cf.
Eq. (28)], which has O = 0 and provides the unique ground
state due to the nonvanishing excitation energy �g > 0 [see
Eq. (93)]. Note that, while �g can be exponentially small
as g is increased, it still remains nonzero in L → ∞ at any
finite g. Thus, the ground state is not expected to exhibit the
exact twofold degeneracy and should remain delocalized. It is
worthwhile to note that the same argument should also rule out
the possibility of a phase transition for general gapped disper-
sions, which include some experimentally relevant situations,
such as cavity array and (finite-size) open transmission lines.

Second, in certain gapless dispersions, the effective mass
meff exhibits the infrared divergence and grows polynomially
as a function of system size L. One can also check that this
leads to the polynomial divergence of ξ in the dressed emitter
potential (23); the resulting effective potential Veff then has
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FIG. 8. Schematic illustrating the ground-state phase diagram of
the QED Hamiltonian (1). A salient feature which is not present in
the simplified spin-boson models is that the waveguide QED system
considered here should ultimately reenter into the delocalized phase
at a sufficiently large light-matter coupling (red dashed horizontal
arrow).

the unique minimum at Q = 0 [cf. Eq. (52)] and becomes
infinitely tight in L → ∞. Thus, in the thermodynamic limit,
the emitter wave function in the AD frame is completely
localized at Q = 0, and the total system is solely governed
by the photonic part

ĤU = : V (�̂) : +
∑
n

h̄�nb̂
†
nb̂n. (94)

An order of its ground state is characterized by the expec-
tation value of 〈�̂〉U [see Eq. (92)]. In the limit of a deep
potential with large v, the first term in Eq. (94) is dominant,
and the ground state should exhibit the twofold degeneracy at
〈�̂〉U = ±d in L → ∞. This leads to the localized phase with
O > 0. In contrast, in the opposite limit of a shallow potential,
the second (harmonic) term in Eq. (94) dominates over the
potential term, and the vacuum state gives the unique ground
state, which has 〈�̂〉U = 0 and leads to the delocalized phase
with O = 0. Finally, between these two limits, the potential
landscape effectively changes from the double-well profile to
the harmonic one, and accordingly, the order parameter O
continuously decreases from d and vanishes at certain v∗ > 0.
We recall that, in general, a deep (shallow) potential depth
v corresponds to a small (large) bare qubit frequency �. To
sum up, one expects a continuous quantum phase transition
between the localized phase at strong v (resp. small �) and
the delocalized phase at weak v (resp. large �); see the blue
dashed vertical arrow in Fig. 8.

Finally, the present consideration of the full QED Hamil-
tonian in nonperturbative regimes also reveals an intriguing
possibility beyond what is commonly expected before.
Namely, as inferred from the nonmonotonic g dependence
of the coupling coefficients ζn in Eq. (4) and accordingly ξn
[cf. Fig. 2(b)], the system should again transition into the delo-
calized phase at a sufficiently large light-matter coupling (see
the red dashed horizontal arrow in Fig. 8). This is expected
to occur in the ESC regime, where the coupling strength
dominates all the other energy scales. Physically, the origin
of this favoring of the delocalized phase can be traced back
to the diamagnetic Â2 term that suppresses the displacements
of the bosonic modes from the vacuum. The latter prohibits
populating a macroscopic number of low-momentum photons,
which is necessary to induce the transition to the localized

phase [119]; this is reminiscent of what has been discussed
in the context of the no-go theorems of the superradiant
transition [68–73].

B. Case study of the circuit QED Hamiltonian

One may expect that the present QED Hamiltonian with
the double-well potential should feature the similar physics
as known for the spin-boson model. For instance, it is often
supposed that the two-level projection of the PZW Hamil-
tonian (40) should allow for the spin-boson description of
the waveguide QED systems. However, as discussed before,
such level-truncation procedure cannot in general be justified
at strong couplings, and we must carefully reexamine the
ground-state properties of nonperturbative waveguide QED
systems separately from the simplified spin-boson descrip-
tion. Indeed, in the previous section, we point out that the
full-fledged QED systems should exhibit a new feature which
is not present in the usual spin-boson models [120], such as
the reentrant transition into the delocalized phase at suffi-
ciently large light-matter coupling.

In this section, we concretely demonstrate these results in
the case of resistively shunted Josephson junctions by using
the functional renormalization group (FRG) analysis. For the
sake of convenience, we here switch to the notation familiar
with the circuit QED community. Specifically, we consider a
microscopic circuit Hamiltonian (we set h̄ = 1) [121]:

ĤC = ECN̂
2 +V (ϕ) − N̂

M−1∑
m=1

ζm(b̂m + b̂†
m) +

M−1∑
m=1

�mb̂
†
mb̂m,

(95)
where ϕ is the Josephson junction phase and N̂ = −i∂/∂ϕ is
the charge operator, which play roles as the position Q̂ and
momentum P̂ operators in the previous notation, respectively.
The form of the Hamiltonian (95) precisely corresponds to the
Coulomb-gauge-type Hamiltonian in Eq. (4) obtained after
the Bogoliubov transformation. The charging energy is de-
noted by EC and the potential term V (ϕ) is chosen to be the
double-well potential in the same way as before:

V (ϕ) = v

8

(
ϕ2 − ϕ2

0

)2
. (96)

In practice, such potential is routinely realized in flux qubits
by combining the inductive energy and flux-tuned Josephson
energy. The coupling coefficient ζm and the environmental
frequency �m of mode m ∈ {1, 2, . . . ,M − 1} are given by

ζm =
√

πW�m

Mα
{
1 + [(

πW
αEC

− 1
)

tan
(
mπ
2M

)]2} , (97)

�m = W sin

(
mπ

2M

)
, (98)

where W is the environmental cutoff frequency and α is the
dimensionless parameter characterizing the coupling strength;
the latter is related to the shunt resistance R via α = RQ/R
with RQ = h/(4e2) being the quantum of resistance. The char-
acteristic coupling strength g and environmental frequency ω

defined in Eqs. (18) and (17) basically correspond to
√

αECW
andW in the present notation, respectively. Thus, for instance,
the ESC regime corresponds to the region αEC �W . We
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FIG. 9. Ground-state phase diagram of the circuit QED Hamil-
tonian (95) determined from the FRG analysis. The vertical
(horizontal) axis represents the inverse of the potential barrier (the
normalized coupling strength); the potential barrier v is defined in
Eq. (96). A reentrant transition to the delocalized phase can occur
in the ESC regime where the coupling strength αEC dominates over
the other energy scales including environmental cutoff W (compare
it with Fig. 8). We set the FRG UV cutoff �0 = 1 as the energy unit,
and choose the parameters EC = 1, W = 30, and ϕ0 = 1.

note that, when the environmental cutoff W satisfies the weak
coupling condition αEC � W , the low-energy limit (m � M)
of Eq. (95) reproduces the Caldeira-Leggett description of the
Ohmic dissipation [18,121,122]. Since we are here interested
in the ESC regime αEC �W , we need to analyze the original
circuit QED Hamiltonian (95) without taking such limit.

Before providing a quantitative analysis, we illustrate the
general features by transforming to the AD frame:

ĤU =
(
EC −

M−1∑
m=1

ζ 2
m

�m

)
N̂2 +V (ϕ + �̂) +

∑
m

�mb̂
†
mb̂m

=
{

: V (�̂) : +∑
m �mb̂†

mb̂m + O
(

1
M

)
η � 1

EC
η−1
η− 1

2
N̂2 +V (ϕ + �̂) + ∑

m �mb̂†
mb̂m η > 1

,

(99)

where we define the dimensionless coupling strength (which
basically corresponds to g/ω in the previous notation) by

η ≡ αEC

πW
, (100)

and use ĤU = Û †ĤCÛ with Û = exp(−iN̂�̂) and �̂ =∑
m i(b̂†

m − b̂m)ζm/�m. Importantly, the effective “mass” in
the transformed frame shows the infrared divergence in
η � 1, while it remains finite in the ESC regime η > 1.
Thus, following our arguments above, we expect that as the
coupling strength is increased there occurs the delocalization-
localization transition in η � 1, while the ground state should
ultimately exhibit the reentrant transition to the delocalized
phase above η ∼ 1.

To make these predictions concrete, in Fig. 9 we show the
ground-state phase diagram of the circuit QED system (95),

which is obtained by the FRG analysis with the local po-
tential approximation (see, e.g., Refs. [121,123] for technical
details). In the limit of deep potential barrier 1/v → 0, ϕ0

always remains to be positive during the RG flows, and thus
the localized phase is realized. As the potential barrier be-
comes shallow (1/v increases), the value of ϕ0 is eventually
renormalized to zero in the IR limit and the transition to the
delocalized phase occurs. Notably, the behavior of the transi-
tion point drastically changes around η = 1 (vertical dashed
line); in η < 1, the localized phase expands as the coupling
strength η is increased, while the ordering is suppressed in
the ESC regime η > 1. This is consistent with our arguments
based on the AD frame above and also with the nonmonotonic
dependence of ζm on the coupling strength α in Eq. (97). We
expect that these results might be tested by recent experiments
realizing galvanic coupling of Josephson junctions to a high-
impedance long transmission line [124,125].

VII. SUMMARY AND DISCUSSION

We analyzed equilibrium and dynamical properties of
light-matter systems consisting of quantum emitters strongly
interacting with quantized electromagnetic continuum in the
nonperturbative regimes, including the previously unexplored
deep and extremely strong coupling regimes. There, tradi-
tional theoretical approaches utilizing the Coulomb or PZW
gauges are no longer sufficient, since substantial light-matter
entanglement invalidates truncations of emitter/photon levels
in these gauges. We resolved this problem by using the unitary
transformation (9) that asymptotically disentangles emitter
and photon degrees of freedom in the strong-coupling limit;
this frame of reference then enabled us to construct an accu-
rate theoretical framework at any finite interaction strengths.
Below we summarize our key findings.

We first analyzed the single-emitter system [see Eq. (14)],
and elucidated the essential features in the nonperturbative
regimes on the basis of general arguments. In particular,
we demonstrated the emergence of a ladder of many-body
bound states and the (quasi-) BIC, the vacuum fluctuations
induced suppression of potential barrier, and the strong renor-
malization of the effective mass. We then analyzed these
nonperturbative features in a concrete model of cavity-array
waveguide. All of these results have relevance to ongoing
experiments in superconducting qubits interacting with mi-
crowave resonators or atoms coupled to photonic crystals. We
proposed that the BIC can experimentally be observed by
analyzing nonequilibrium dynamics induced by the quench
of a parameter in the waveguide QED Hamiltonian. This
protocol should be implemented in circuit QED systems
using currently available experimental techniques. The pa-
rameter regimes we studied are either directly relevant to
state-of-the-art experimental systems in, e.g., superconduct-
ing devices [51,79] and plasmonic crystals [36] or (at least)
expected to be accessible in the near future in view of rapid
developments in achieving stronger light-matter coupling
regimes [60,62]. To explore those nonperturbative regimes
in setups of atoms coupled to photonic crystals, one can
utilize Rydberg atoms [126–128] and/or the collective

√
N

enhancement of the light-matter coupling by assembling
a large number of weakly coupled components [129] as
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discussed in Sec. V C. We envision that the predicted tightly
localized bound states in the waveguides can be used as a
photon storage in quantum information applications.

We next extended the analysis to the multi-emitter case and
established a general framework for studying multi-emitter
QED systems without relying on uncontrolled approximations
or assumptions. Building on this formalism, we argued that
the ground-state physics can be understood from the perspec-
tive of the transverse-field Ising model (85) but with suitably
renormalized parameters. Finally, we analyzed the case of
gapless photonic dispersions and showed that a quantum
phase transition can in general occur if the renormalized mass
diverges in the thermodynamic limit, while transition is not
expected when the mass remains finite. There, we found that
in certain cases the diamagnetic term leads to the suppression
of the symmetry-broken phase, which is reminiscent of no-go
theorems for superradiant transition in cavity QED (see e.g.,
Refs. [130,131]). One surprising consequence of this analysis
is the appearance of a reenterant transition into the symmetry-
unbroken phase at sufficiently strong coupling, which was
absent in the simplified descriptions such as the spin-boson
model. These results are also confirmed by the FRG analysis
of the circuit QED system.

It is interesting to analyze the ground-state properties of
multidipole waveguide QED systems in further detail. In par-
ticular, the full understanding of a possible superradiant-type
transition in the present multidipole systems remains as an
intriguing open question. At a qualitative level, our analysis
appears to indicate that the tendency to superradiance (i.e.,
localized phase) will be the strongest at intermediate coupling
strengths. For instance, as far as the collective mode plays a
dominant role and relative motion can be neglected, we expect
that the analysis in Sec. VI can be extended to the multidipole
cases via replacing the effective mass meff by the collective
one Meff [cf. Eq. (80)]. If the bosonic dispersion is gapless
and Meff exhibits the infrared divergence, then the ground state
may exhibit the ordering akin to the superradiant phase, in a
close analogy with the delocalization-localization transition
for the single-dipole cases discussed in this paper. One of the
conceptual advantages in our approach in this respect is to
connect these seemingly unrelated phenomena.

Taking the limit of many emitters should provide alterna-
tive way to realize a quantum phase transition. In particular,
one may use the two-level effective model (85) to determine
the ground-state properties in such cases. This mapping to
the transverse-field Ising model suggests the possibilities of
inducing a transition between the disordered (i.e., delocalized)
phase and the ferromagnetic ordered (i.e., localized) phase
or realizing exotic phases such as the many-body localized
phase.

Several further open questions also remain for future stud-
ies. First, it merits further study to figure out how losses
and decoherence for either emitters or photons can affect
the present results. They essentially broaden the absorption
spectra shown in Figs. 6(g)–6(i) and can affect the dynamics
as excitations acquire finite lifetimes. While the waveguide
coupling efficiency can be made close to the unit fidelity
in, e.g., microwave superconducting devices [9], those loss
effects are still ubiquitous in atoms coupled to photons in
optical domains [132]. These issues can be addressed by

combining the present nonperturbative QED formalism with
the standard framework of Markovian open systems [133].
Second, instead of the exact diagonalization performed here,
one can apply more efficient numerical methods, such as the
matrix-product-state calculations [45,47,52,85] or a hybrid
variational approach [134], to analyze the asymptotically de-
coupled QED Hamiltonian within the few-photon ansatz (31).
This should be particularly useful when one is interested in a
larger system with many emitters being coupled to common
multiple electromagnetic modes. Finally, while the emphasis
was placed on the waveguide QED in this paper, our theory
is equally applicable to cavity QED setups with multiple pho-
tonic modes (see e.g., Ref. [135]) whose inclusion is often
important depending on the cavity geometry and the coupling
strength. We also note that the present formalism can be
extended to higher-dimensional systems (see, e.g., the Supple-
mentary Materials of Ref. [65]). One intriguing direction is to
explore a possible extension of these formalisms to the case in
which matter degrees of freedom consist of indistinguishable
quantum particles.

Our study is also relevant to a variety of strongly coupled
light-matter systems recently realized by using both solid state
and quantum chemistry platforms. In particular, in the case
of localized N identical emitters, our results obtained for a
single-emitter system are expected to remain the same (except
for the

√
N enhancement) as far as the relative motion does

not play a significant role (see Sec. V C). In this respect,
the predicted vacuum-induced suppression of the potential
barrier in Sec. III C may lie at the heart of the enhanced
chemical reactivity observed in polaritonic chemistry [28–30].
More generally, our study reveals that the mass enhance-
ment is one of the universal features of strongly interacting
light-matter systems. This naturally associates with the higher
density of states, which could lead to enhancements of certain
many-body properties, including superconductivity or ferro-
magnetism [136–144].
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APPENDIX A: DIAGONALIZATION OF THE QUADRATIC
PHOTON HAMILTONIAN

Here we provide details about the diagonalization of the
quadratic photon Hamiltonian including the Â2 term in the
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Coulomb gauge. To this end, we introduce the conjugate pairs
of variables via

X̂k =
√

h̄

2ωk
(âk + â†

k ), (A1)

P̂k = i

√
h̄ωk

2
(â†

k − âk ), (A2)

and rewrite the quadratic part of ĤC in Eq. (1) as

q2Â2

2m
+

∑
k

h̄ωkâ
†
k âk

=
∑
k

P̂2
k

2
+ 1

2

∑
kk′

(
δkk′ω2

k + 2gkgk′
)
X̂kX̂k′ . (A3)

The last term in Eq. (A3) can readily be diagonalized by an
orthogonal transformation,

P̂k =
∑
n

Okn
ˆ̃Pn, X̂k =

∑
n

Okn
ˆ̃Xn, (A4)

where an orthogonal matrix O satisfies Eq. (7). The quadratic
photon Hamiltonian then becomes

1

2

∑
n

( ˆ̃P2
n + �2

n
ˆ̃X 2
n

) =
∑
n

h̄�nb̂
†
nb̂n, (A5)

where we introduce the annihilation operator after the orthog-
onal transformation by

b̂n =
√

�n

2h̄
ˆ̃Xn + i√

2h̄�n

ˆ̃Pn, (A6)

which gives Eq. (5). Using these squeezed photon operators
b̂n, the total Hamiltonian in the Coulomb gauge is now given
by Eq. (4).

APPENDIX B: NUMERICAL DIAGONALIZATION

We describe details about the method used in Sec. IV
to numerically diagonalize the QED Hamiltonian in the AD
frame. We begin with folding the electromagnetic modes of
the cavity array onto even and odd modes with respect to the
spatial parity. Since only the even modes,

âex=0 = âx=0, aex>0 = 1√
2

(âx + â−x ), (B1)

interact with the emitter, we neglect contributions from the
odd modes. The photon Hamiltonian in the real-space basis is
then written as

Ĥlight = − J√
2

(
â†e
x=0â

e
x=1 + H.c.

)

− J

2

(L−1)/2∑
x=1

(
â†e
x+1â

e
x + H.c.

) + h̄ωc

(L−1)/2∑
x=0

â†e
x âex

≡
(L−1)/2∑
p=0

h̄ωpâ
†
pâp, (B2)

where we use an orthogonal matrix M to obtain the diagonal-
ized form (B2) with

âex =
(L−1)/2∑
p=0

Mxpâp. (B3)

The vector field is expressed in this basis as

Âx=0 = A(âx=0 + â†
x=0) =

(L−1)/2∑
p=0

AM0p(âp + â†
p), (B4)

which results in the electromagnetic amplitudes [cf. Eq. (3)]

fp = AM0p. (B5)

We use the frequencies ωp and the amplitudes fp to di-
agonalize the photon Hamiltonian including the Â2 term as
explained in Appendix A. Then we perform the unitary trans-
formation (9) and arrive at the Hamiltonian in the AD frame

ĤU = P̂2

2meff
+Veff (Q̂) +

∑
l=1

: �̂l :

l!
V (l )(Q̂)

+
(L−1)/2∑
n=0

h̄�nb̂
†
nb̂n. (B6)

To numerically diagonalize this Hamiltonian efficiently, we
employ the few-photon ansatz (31) and express the matrix
elements of ĤU in terms of the basis

|ψα〉emitter ⊗ |n0n1 · · · n(L−1)/2〉photon (B7)

with level truncations,

α = 1, 2, . . . , αc,

(L−1)/2∑
j=0

n j � Nc. (B8)

We recall that |ψα〉 are single-particle eigenstates of the renor-
malized emitter Hamiltonian (22), and |n0n1 · · · n(L−1)/2〉 is a
many-body bosonic Fock state in terms of b̂n operators with
n j = 0, 1, . . . . The corresponding Hilbert-space dimension is

D = αc

Nc∑
i=1

[(L + 1)/2]i = αc{[(L + 1)/2]Nc+1 − 1}
(L + 1)/2 − 1

, (B9)

which grows polynomially with the system size L. Figure 10
demonstrates that the numerical results converge very effi-
ciently with Nc in a broad range of the light-matter coupling
strength. It typically suffices to set Nc = 2-4 and αc = O(10)
to achieve the accuracy with an error below ∼1%. When
only the low-energy spectrum is of interest, one can use the
Lanczos method to further reduce the computational cost.

APPENDIX C: DERIVATION OF THE MULTI-EMITTER
HAMILTONIAN IN THE ASYMPTOTICALLY

DECOUPLED FRAME

We here derive the asymptotically decoupled multi-emitter
Hamiltonian discussed in Sec. V. As we have done for the
single-emitter case, we first diagonalize the quadratic pho-
ton part of the Coulomb-gauge Hamiltonian including the Â2
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FIG. 10. Convergence of the excitation energies against the total photon-number cutoff Nc at different coupling strengths g. The results are
obtained by the exact diagonalization of the transformed Hamiltonian (B6) within the few-photon ansatz (31) with the total photon-number
cutoff Nc. Parameters are J = 0.2, v = 0.5, and d = 0.87.

term. To do so, we introduce the position-dependent multi-
emitter coupling strengths by

gck j = q fk j

√
ωk

mj h̄
cos(kx j ), (C1)

gsk j = q fk j

√
ωk

mj h̄
sin(kx j ), (C2)

and rewrite the quadratic part as (aside constant)

∑
j

q2Â2
x j

2mj
+

∑
k

h̄ωkâ
†
k âk

=
∑
kk′

(
δkk′ + 2

∑
j

gsk jg
s
k′ j

ωkωk′

)
P̂kP̂k′

2

+
∑
kk′

(
δkk′ω2

k + 2
∑
j

gck jg
c
k′ j

)
X̂kX̂k′

2

−
∑
kk′

∑
j

gck jg
s
k′ j

ωk′
(X̂kP̂k′ + P̂k′ X̂k ), (C3)

where we recall that the conjugate operators X̂k and P̂k are
defined by Eqs. (A1) and (A2). Equation (C3) can then be
diagonalized by the symplectic transformation,(

X̂
P̂

)
= S

( ˆ̃X
ˆ̃P

)
≡

(
SXX SXP

SPX SPP

)( ˆ̃X
ˆ̃P

)
, (C4)

where the matrix S satisfies

SσST = σ (C5)

with σ = iσ y ⊗ IL and IL being the L × L identity matrix.
This leads to the diagonalized form

∑
j

q2Â2
x j

2mj
+

∑
k

h̄ωkâ
†
k âk = 1

2

∑
n

( ˆ̃P2
n + �2

n
ˆ̃X 2
n

)

=
∑
n

h̄�nb̂
†
nb̂n, (C6)

where we define the squeezed photon operators b̂n in the same
manner as in Eq. (A6).

In terms of these new photon operators, the Coulomb-
gauge Hamiltonian is expressed as

ĤC =
∑
j

[
P̂2
j

2mj
+V (Q̂ j )

]
−

∑
jn

P̂j (ζ
∗
n j b̂n + ζn j b̂

†
n)

+
∑
n

h̄�nb̂
†
nb̂n, (C7)

where we define

ζn j =
√

h̄

m j�n

∑
k

[
gck jS

XX
kn − gsk jS

PX
kn + i

(
gck jS

XP
kn − gsk jS

PP
kn

)]
.

(C8)

We now introduce the multi-emitter extension of the
asymptotically decoupling unitary transformation by

Û = exp

[
1

h̄

∑
jn

P̂j

(ζn j b̂†
n − ζ ∗

n j b̂n)

�n

]
≡ exp

(
− i

h̄

∑
j

P̂j�̂ j

)
,

(C9)

where we recall �̂ j = ∑
n i(ξn j b̂

†
n − ξ ∗

n j b̂n) with the displace-
ment parameters

ξn j = ζn j

�n
. (C10)

This transformation acts on the photon and emitter operators
as

Û †b̂nÛ = b̂n +
∑
j

ξn j P̂j

h̄
, (C11)

Û †Q̂ jÛ = Q̂ j + �̂ j, (C12)
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and transforms Eq. (C7) to the following form:

ĤU = Û †ĤCÛ =
∑
j

[
P̂2
j

2meff, j
+V (Q̂ j+ �̂ j )

]

−
∑
i> j

μi j P̂iP̂j +
∑
n

h̄�nb̂
†
nb̂n, (C13)

which gives Eq. (67). Here we introduce the effective mass
meff, j for each emitter and the emitter-emitter coupling μi j

as

meff, j ≡ mj

1 − ∑
n

2mj |ζn j |2
h̄�n

, (C14)

μi j ≡
∑
n

2ζ ∗
niζn j

h̄�n
. (C15)

The expressions (69) and (70) in Sec. V follow from the
relations (C6) and (C8).
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Lukin, Coupling a single trapped atom to a nanoscale optical
cavity, Science 340, 1202 (2013).

[14] M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S.
Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song,
S. Stobbe, and P. Lodahl, Near-Unity Coupling Efficiency of a
Quantum Emitter to a Photonic Crystal Waveguide, Phys. Rev.
Lett. 113, 093603 (2014).

[15] R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, Cavity
Quantum Electrodynamics on a Nanofiber Using a Composite
Photonic Crystal Cavity, Phys. Rev. Lett. 113, 143601 (2014).

[16] A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee,
M. Martin, A. McClung, K. Choi, D. E. Chang, O. Painter,
and J. Kimble, Atom-light interactions in photonic crystals,
Nat. Commun. 5, 3808 (2014).

[17] P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single
photons and single quantum dots with photonic nanostruc-
tures, Rev. Mod. Phys. 87, 347 (2015).

[18] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[19] A. Schmid, Diffusion and Localization in a Dissipative Quan-
tum System, Phys. Rev. Lett. 51, 1506 (1983).

[20] F. Guinea, V. Hakim, and A. Muramatsu, Diffusion and Lo-
calization of a Particle in a Periodic Potential Coupled to a
Dissipative Environment, Phys. Rev. Lett. 54, 263 (1985).

[21] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 2012).

[22] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W.
Ebbesen, Modifying chemical landscapes by coupling to vac-
uum fields, Angew. Chem. Int. Ed. 51, 1592 (2012).

[23] J. Galego, F. J. Garcia-Vidal, and J. Feist, Cavity-Induced
Modifications of Molecular Structure in the Strong-Coupling
Regime, Phys. Rev. X 5, 041022 (2015).

[24] T. W. Ebbesen, Hybrid light–matter states in a molecular
and material science perspective, Acc. Chem. Res. 49, 2403
(2016).

[25] F. Herrera and F. C. Spano, Cavity-Controlled Chemistry in
Molecular Ensembles, Phys. Rev. Lett. 116, 238301 (2016).

[26] J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, Atoms
and molecules in cavities, from weak to strong coupling in
quantum-electrodynamics (QED) chemistry, Proc. Natl. Acad.
Sci. USA 114, 3026 (2017).

[27] J. Feist, J. Galego, and F. J. Garcia-Vidal, Polaritonic chem-
istry with organic molecules, ACS Photon. 5, 205 (2018).

[28] H. Hiura and A. Shalabney, Vacuum-field catalysis: Ac-
celerated reactions by vibrational ultra strong coupling,
ChemRxiv, Cambridge Open Engage, Cambridge, 2021, doi:
10.26434/chemrxiv.7234721.v5.

023194-22

https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1038/nphys1154
https://doi.org/10.1126/science.1181918
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.108.263601
https://doi.org/10.1126/science.1244324
https://doi.org/10.1038/ncomms6186
https://doi.org/10.1038/s41586-019-1196-1
https://doi.org/10.1038/s41586-020-2529-9
https://doi.org/10.1088/2058-9565/aab1ba
https://doi.org/10.1103/PhysRevLett.110.243603
https://doi.org/10.1126/science.1237125
https://doi.org/10.1103/PhysRevLett.113.093603
https://doi.org/10.1103/PhysRevLett.113.143601
https://doi.org/10.1038/ncomms4808
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevLett.51.1506
https://doi.org/10.1103/PhysRevLett.54.263
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1103/PhysRevX.5.041022
https://doi.org/10.1021/acs.accounts.6b00295
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1021/acsphotonics.7b00680
https://doi.org/10.26434/chemrxiv.7234721.v5


NONPERTURBATIVE WAVEGUIDE QUANTUM … PHYSICAL REVIEW RESEARCH 4, 023194 (2022)

[29] H. Hiura and A. Shalabney, A reaction kinetic model for
vacuum-field catalysis based on vibrational light-matter cou-
pling, https://doi.org/10.26434/chemrxiv.9275777.v1.

[30] A. Thomas, L. Lethuillier-Karl, K. Nagarajan, R. M. A.
Vergauwe, J. George, T. Chervy, A. Shalabney, E. Devaux, C.
Genet, J. Moran, and T. W. Ebbesen, Tilting a ground-state
reactivity landscape by vibrational strong coupling, Science
363, 615 (2019).

[31] T. S. Haugland, C. Schaefer, E. Ronca, A. Rubio, and H. Koch,
Intermolecular interactions in optical cavities: An ab initio
QED study, J. Chem. Phys. 154, 094113 (2021).

[32] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon
subwavelength optics, Nature (London) 424, 824 (2003).

[33] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M.
Echenique, Theory of surface plasmons and surface-plasmon
polaritons, Rep. Prog. Phys. 70, 1 (2007).
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