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Abstract

We calculate the 8 spectrum in the decay of ®He using Quantum Monte Carlo methods with
nuclear interactions derived from chiral Effective Field Theory and consistent weak vector and
axial currents. We work at second order in the multipole expansion, retaining terms suppressed
by O(q?/m2), where q denotes low-energy scales such as the reaction’s Q-value or the electron
energy, and m, the pion mass. We go beyond the impulse approximation by including the effects
of two-body vector and axial currents. We estimate the theoretical error on the spectrum by using
four potential models in the Norfolk family of local two- and three-nucleon interactions, which have
different cut-off, fit two-nucleon data up to different energies and use different observables to deter-
mine the couplings in the three-body force. We find the theoretical uncertainty on the 5 spectrum,
normalized by the total rate, to be well below the permille level, and to receive contributions of
comparable size from first and second order corrections in the multipole expansion. We consider
corrections to the § decay spectrum induced by beyond-the-Standard Model charged-current in-
teractions in the Standard Model Effective Field Theory, with and without sterile neutrinos, and

discuss the sensitivity of the next generation of experiments to these interactions.
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Nuclear 8 decays have been instrumental in establishing the Standard Model (SM) as

the theory of the electroweak interactions [IH3]. In the era of the Large Hadron Collider,

S decays still provide very sensitive probes of physics beyond the Standard Model (BSM),

which are highly competitive and complementary to searches at the energy frontier [4H15].

Superallowed 07 — 07 transitions, combined with theoretical progress in the evaluation of

radiative corrections [161121], allow for the extraction of the V,4 element of the Cabibbo-
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Kobayashi-Maskawa (CKM) quark mixing matrix with uncertainity at the level 6V,4 ~
3-10~* [16H181[22], probing BSM scales up to 10 TeV. Improved measurements of the neutron
lifetime and 8 asymmetry [23H26] and the percent determination of the nucleon axial charge
ga from lattice QCD [10], 27H29] test right-handed charged currents at subpercent level.
Global analyses of superallowed transitions, neutron decay and mirror  decays limit the
strength of non-standard vector, axial, scalar and tensor charged-current interactions to be
less than a thousandth of the weak interactions [12 [15]. At the same time charged- and
neutral-current Drell-Yan production at the Large Hadron Collider is starting to directly
access scales of a few TeVs [30H33], and the good agreement between precise theoretical
predictions and Drell-Yan data allow for the exclusion of interactions at the effective scale
A =4—5TeV [5[10][11] [13] [14].

[ decay spectra provide sensitive probes of charged currents with different chiral structure
from the SM. The interference of BSM currents with the V-A SM interactions induces a
distinctive m./E.—where m, and E. are the electron’s mass and energy, respectively—
dependence in the 8 spectrum, the so called “Fierz interference term” [34], usually denoted
by b. The first direct neutron measurements constrain the Fierz interference term to be
—0.018 < b < 0.052 at the 90% confidence level [35] [36]. The Fierz interference term
induced by scalar currents is tested in Fermi transitions, with the most recent analysis of
superallowed (3 decays yielding b < 3.3 -107® ( 90% confidence level) [22]. Measurements
of spectra of purely Gamow-Teller transitions, such as the decay of He to Li, aim to push
the constraint on the Fierz interference term induced by tensor and pseudoscalar currents
to the level b < 1073 [37,[38], probing tensor currents at the 10 TeV mass scale. In addition,
modifications to the shape of the [ spectrum can reveal the existence of sterile neutrinos,

with minimal or non-minimal interactions [39H44].

With experimental sensitivity approaching the permille level, it is crucial to provide
comparably accurate theoretical predictions of the  spectrum in the SM, including small
corrections from the momentum dependence of nuclear matrix elements, electromagnetic
corrections, and isospin breaking effects. For light to medium mass nuclei, accurate calcu-
lations of low-energy nuclear observables are currently feasible using the microscopic or ab
initio description of nuclei. Within this approach nuclei and their properties emerge from
the underlying nucleonic dynamics and ensuing many-nucleon correlations and electroweak

currents. The first ab initio calculation of the °He — ®Li 3 decay spectrum was performed
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in Ref. [45], using the Variational Monte Carlo method with the Argonne v18 two-nucleon
potential, supplemented by the Urbana-IX three-nucleon interaction. Ref. [46][47] repeated
the calculation in the no-core shell model. In this paper, we compute both SM and BSM
nuclear matrix elements for the He — SLi decay using Quantum Monte Carlo (QMC)
methods [48| to solve for the structure and dynamics of the strongly-correlated many-body
problem for nuclei. QMC methods allow to retain the complexity of many-nucleon dy-
namics whose effects are essential to explain electroweak data in a wide range of energy
and momentum transfer [49469]. Here, we base our calculations on the Norfolk two- and
three-nucleon chiral effective field theory potentials and consistent electroweak currents [50}F
52, (561 (60} [611 163} (64 [70].

This paper is structured as follows: In Section [II} we introduce the multipole expansion
of the SM weak vector and axial currents and express the differential decay rate with re-
spect to the electron energy including terms up to second order in the multipole expansion.
Section reports on the QMC calculations of the multipoles entering the decay rate and
in Sectionwe discuss the uncertainties of the leading and subleading multipoles and the
ensuing theoretical uncertainty in the SM decay rate, which limits the sensitivity to beyond
the SM physics. We then discuss BSM signatures. In Section we introduce the effective
Lagrangians that mediate 5 decays in the presence of BSM interactions and discuss their
corrections to the § spectrum. In Section [VI| we examine the implications of controlling
the uncertainty on the spectrum at better than the permille level on non-standard charged-
current interactions. We conclude in Section [VII] The appendices contain some technical
details. In Appendix [A] we provide a list of standard and non-standard Lagrangians which
mediate § decays in the Standard Model EFT (SMEFT), while a sketch of the derivation of
the multipole expansion for these currents is carried out in Appendix Formal expressions
of the many-body chiral EFT current operators are given in Appendix The expression of
the fully differential unpolarized decay rate is given in Appendix@ Appendix is devoted

to higher-order electroweak and recoil corrections.

II. DIFFERENTIAL DECAY RATE IN THE STANDARD MODEL

B decays are sensitive to a variety of physics scales, namely, the O-value of the reaction—

typically a few MeVs—which determines the momentum of the outgoing electron and neu-



trino; the nuclear binding momentum v = /myB ~ m, where B is the binding energy,
which is the relevant scale in the nuclear matrix elements; and A, the scale at which chiral
EFT breaks down. We can take advantage of the scale separation Q < v < A, by organiz-
ing the nuclear matrix elements in a double expansion in @/ and y/A,, combining chiral
EFT with a multipole expansion of the weak matrix elements [71] [72]. After performing the
multipole expansion, the differential cross section in the SM can be expressed in terms of few
matrix elements of the axial and vector charge and current densities, which are generalized
to include scalar, pseudoscalar and tensor currents in the SMEFT.

In the SM, 3 decays are mediated by the exchange of a W boson between purely left-
handed quarks, electrons and neutrinos. At scales much smaller than the electroweak, and
focusing on the first generation of quarks, the effective Lagrangian can be expressed in terms

of the local four-fermion interaction

4G
/CSM = ——FvudéL’)/“I/LﬂL’yudL + h.C., (1)

V2
where Gr = (v2v?)™' = 1.166 x 107> GeV~2 is the Fermi constant extracted from muon
decay, v = 246 GeV is the Higgs vacuum expectation value, and V4 is the u-d element of the
Cabibbo-Kobayashi-Maskawa mixing matrix, V,, = 0.97373(31) [22] [73]. The Lagrangian
receives weak and electromagnetic corrections, which we will discuss in the following
sections.

At the nuclear level, Eq. leads to the weak Hamiltonian
Gr

o 3 - lept
H, = EVud d’x j, " (X) T4 (x), (2)
where
Pt = 2e7,0L. (3)

and J7_, denotes the hadronic realization of the quark current uy*(1—~;)d. The derivation
only assumes that such a realization exist, and we give its explicit representation in chiral
EFT in Appendix|[C] The weak Hamiltonian can be expanded in infinite sum of multipole
operators with definite total angular momentum J and parity 7. The transition *He(0) —°
Li(17) only receives contributions from operators with J™ = 17. The general expression for
the differential decay rate, derived, for example, in Ref. [72] and reported in Eq. , then

contains the multipoles C;, L, Fy, and M;. These are defined in terms of the coordinate



space charge and current densities in Eqs. (B15)—(B18|). In chiral EFT, a momentum space
representation is more convenient, and Cy, Ly, F;, and M; can be expressed in terms of the

axial charge, p(q; A), and the vector and axial currents, j(q; V) and j(q; A) [45]:

1

Cilg; A) = mm10|pL<qz;A>|6He,00>, (4)
L1(g: 4) = = (L. 0]z (g2 4) "He, 00), (5)
Fy(g; A) = é-ﬂ(‘“’h,lorz-ji(qch)\GHe,om, (6)
My(g; V) = ———(°Li, 10]3 - | (g5 V)| °He, 00) (7)

5

where the momentum carried by the current is q = p. + p., with p. and p, the electron and
antineutrino momenta, and ¢ = |q|. The subscript + denotes the charge-changing operators
pl = pl +i pL and ji =il +i jL, and the Cartesian and spherical components refer to the
isospin space [74]. In Egs. 7, the states are characterized by the quantum numbers J
and M, denoting the total angular momentum and the projection along the z axis of the

initial and final nuclear states.

At zero momentum, the electric and longitudinal multipoles are related by

1 3
L (A) = EEP (A) =4/ 194 RME, (8)

where the reduced matrix element denotes the standard Gamow-Teller matrix element

V2T 1 (I M|z - jo(A)JM)
RME = = —V3{(J:M|o, 77| ;M) ,
9a (J:M, 10].J; M) V3{J; Mo |JiM)

9)

where (J; M, 10]J; M) is a Clebsch-Gordan coefficient and, in our case, .JJ; = 0 and J; = 1. M,
encompasses the contribution from weak magnetism, while C; receives contributions from

the induced tensor and induced pseudoscalar form factors, d(¢?) and h(g®) in the notation

of Ref. [75].

The momentum ¢ = |q| is limited by the reaction’s Q-value, and, being Q < m,, the
matrix elements can be expanded in powers of ¢/m,. From the definitions in Eqs. (B15])-

(B18), it can be proven that L; and E; only have even powers of ¢, while C; and M; odd
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powers [72], so that Eqs. (4) — can be expanded as:

Cilg: 4) = % (01“’<A> - e+ o)) (10)
L) = -5 (10 - TP - 0 [ (1)
M) = =% (a0 w) - L a0 + 0 ) 12)
Bt A) = -5 () - S B0 + 0 [l ) (13

where, in order to have dimensionless coefficients, we introduced r, = 1/m,+ = 1.41382
fm. In the equations above, the C’fi), Lgi) , Mll), and E are simply the coefficients of the
expansion in ¢r,, and they will be determined by the interpolation procedure discussed in
Section Their operator definitions in the impulse approximation are given, for example,
in Ref. [75]. Since for the decay under consideration gr, < 0.03, we consider up to second
order terms in qr, to reach the uncertainty goal of 10~* in 3 decay spectra.

After summing over the lepton and nuclear spins, integrating over the neutrino energy
and the angle between the electron and neutrino momentum, the SM decay rate, differential
with respect to the electron energy, is given by

dr’ GLWHV2 1 ;L_g
de 273 g2

ar 1 o2 2 2330z 142 4
- 3’L( ) 1 +aZWoR (= — 2222 " He =
2Ji+19{ 1 [“‘ 0 (35 630WoR T0e T

= (1+ AR +6r(Z,¢)) e2(1 — &)’ Fy(Z,e)Lo(Z,2)S(Z,e)Rn(e)

2
+2Wors [ (1 — 2+ “e) Re(E M™) — (1 - &> Re(L{"C{V)

£
(WOTW)Q 22+¢ 1)2 3 Ng 0) 1 (2)*
| (3 —de(t—e) — 2= ) 10fP - £ (1-E2 - o) Re<L1 L )
3 10e(1 247N (o _ 1ge (EO E®
—10e(1 —€) + p - 1 Fhe\
A 2 E(O)E(2)
_?O‘TWQ —9) (% o) b (14)

where we introduced the scaled variables E, = Wye and m, = Wypie, with Wy = M; — My =
4.016 MeV in the case of the °He -°Li transition. M; and My denote the masses of the initial
and final state nucleus. Eq. is accurate up to corrections of O((Wyr,)?). In Eq. ,
we kept the effects of nuclear recoil at leading order in Wy/My. The other effect of nuclear

recoil is that the electron endpoint energy shifts from FE, = W, to E, = Wy — 2 Mf me.




In addition to the leading terms in the multipole expansion, Eq. includes electromag-
netic effects, which are not negligible at the precision we are working. The most important

contribution is from the Fermi function, given by Fy(Z,¢)

T+ - az
Fo(Z,€) = 4(2[pe| R)*™ Ume Yo =V1-(aZ)?, y= Tl (15)

where R = /5/3(r2), and (r?)) is the charge radius of SLi, \/(r%) = 2.5890(390) fm [76].
Z is the charge of the daughter nucleus and the electron velocity v. = |pe|/F.. Other large
corrections arise from the radiative corrections AY% and 6z(Z,¢), which contribute to the
half-life at the level of few percent. These and other higher order corrections, encoded in the
functions Lo(Z,¢), S(Z,¢) Ry(g) and in the explicit O(a) and O(a?) terms in Eq. , are
discussed in AppendiX In this work, we did not attempt a rederivation of electromagnetic
corrections in chiral EFT and instead followed closely the literature, as summarized in Ref.
[77]. To assess the importance of higher-order terms in the multipole expansion, we define
the leading contribution to the spectrum as

dly _ GEWgVa, HZ o 2 4T | (02
= T [ - B2 - e L] R(Z,9)Lo(Z,9)S(Z ) Rn(e), (16)

where we included in the definition of dI'y/de some radiative corrections, for which we just

use results in the literature.

III. THEORETICAL FRAMEWORK
A. Quantum Monte Carlo Methods

In this work, we employ Quantum Monte Carlo methods [48]—both the Variational
(VMC) and the Green’s function Monte Carlo (GFMC) methods—and the Norfolk chi-
ral effective field theory many-body interactions and electroweak currents [56]/60} (6163} [70]
to evaluate the required nuclear matrix elements. This computational scheme has been most
recently described in Refs. [67] [68] where some of the present authors evaluated Gamow-
Teller matrix elements entering § decays and electron captures in light nuclei as well as
muon capture rates in A = 3 and 6 nuclei. Here, we will not provide the details of the
computational method nor the interactions. We will instead limit ourselves to briefly sum-
marize the salient points of the calculation and defer the interested reader to Ref. [67] and

references therein for additional technicalities.



The Norfolk potentials consist of local two- and three-nucleon interactions formulated in
configuration space, and derived from a chiral effective field theory that retains, in addition
to nucleons and pions, A-isobars as explicit degrees of freedom [56] [61] [63] [70]. They are
denoted below as NV2+3, where the two-body interaction (NV2) is constructed up to N3LO
in the chiral expansion, and the three-body force (NV3) retains up to N2LO contributions
178].

In the QMC calculation, theoretical uncertainties arise from deficiencies in the nuclear
wave function, i.e. from how well the QMC wave function reproduces the actual ground
states for a given nuclear interaction, and from the nuclear interactions themselves. In
chiral EFT, the uncertainties in the nuclear interactions stem from the two- and three-
nucleon data used to determine the unknown low-energy constants (LECs) in the nuclear
potential and currents, from the residual dependence of observables on the cutoff used in
the calculation and from the truncation error arising from working at a finite order in the
chiral expansion. In order to assign a theoretical error to our estimates, we perform the
calculations using four models of Norfolk interactions. These models differ in the cutoff
utilized to regularize divergences, in the number of nucleon-nucleon scattering data used to
constrain the LECs entering the NV2 interaction, and in the fitting procedure implemented
to constrain the NV3 interaction. In particular, NV2+3 models belonging to class I (denoted
with NV2+3-1) are fitted up to 125 MeV and use ~2700 data points, while the NV2+3-11
models are fitted up to 200 MeV and use ~3700 data points. For each class, two different

sets of cutoff are implemented. Specifically, the coordinate space regulators are

B 1
32 R%,

1

o~ (r/Rs)?
(T/RL)%Q(T—RL)/RL +1 ’

CRS (T) ) CRL (T) =1- (17>

where Cp, regulates divergences at r ~ 0 in the pion exchange potential, while contact
interactions are regulated by Cg,. Models labeled with an ‘a’ use the combination (Rg,
R;)=(0.8, 1.2) fm (models NV2-ITa and NV2-IIa), while those labeled with a ‘b’ use (Rg,
R;)=(0.7, 1.0) fm (models NV2-Ib and NV2-IIb). The NV2 models are supplemented by
a three-body force at N2LO. At this order, there are two LECs characterizing the NV3’s
strength. They are determined by a simultaneous fit to either the trinucleon binding energy
and the triton beta decay reduced matrix element [63] or the trinucleon binding energy and
the nd scattering length [79]. Norfolk models based on the former procedure are denoted

with a “*’) that is NV2+3*.
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Nuclear wave functions are constructed in two steps. First, a trial variational Monte
Carlo (VMC) wave function Wz, which accounts for the effect of the nuclear interaction via
the inclusion of correlation operators, is generated by minimizing the energy expectation
value with respect to a number of variational parameters. The second step improves on
Ut by eliminating excited state contamination. This is accomplished in a Green’s function
Monte Carlo (GFMC) calculation which propagates the Schrodinger equation in imaginary
time 7. The propagated wave function ¥(7) = exp[—(H — Ey)7| Vr, for large values of
T, converges to the exact wave function with eigenvalue Ey. Ideally, the matrix elements
should be evaluated in between two propagated wave functions. In practice, we evaluate
mixed estimates in which only one wave function is propagated, while the remaining one is
replaced by Wr. The calculation of diagonal and off-diagonal matrix elements is discussed
at length in Refs. [58] and [80]. We will present both VMC and GFMC results. As discussed
in Section while the latter are more accurate and are in excellent agreement with the
experimental half-life, the two calculations of the spectral shape show minimal differences,
well below the 1073 level, justifying the use of the numerically cheaper VMC in future

studies.

B. Power counting and many-body electroweak currents

Accompanying the Norfolk many-body interactions are one- and two-body axial and
vector currents derived within the same chiral effective field theory formulation with pions,
nucleons and A’s [50} (51} (601 [61) (63 [64]. We use the axial and vector charges, p(A) and
p(V), and currents, j(A) and j(V), to evaluate the SM multipoles of Eqs. (4)-(7). The
current operators are arranged in powers of a second expansion parameter, namely m,/A,
or equivalently |p|/A,, where |p| ~ m, denotes a typical nuclear physics scales such as
the binding momentum, the inverse of the nuclear radius R4 = 1.2 AY/3 fm (with A being
the mass number), or the typical nucleons’ momenta inside nuclei. As a consequence, the
coefficients of the g-expansion in Egs. - , i.e., the multipoles C’fi), Lgi), Ml(i), and
Eii), have a second expansion in Q", where Q = m, /A, is the chiral expansion parameter.

We can then express any of the multipoles—here generically denoted with M®—as
MO =3 MO (18)
n=0
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where the superscripts ¢ and n indicate the orders of the multipole and chiral expansions,
respectively.

The scaling in Q™ of the chiral electroweak currents derived in Refs. [50] 511 [60} 611 [63], [64]
is reported in Table The aforementioned references adopt a different convention where the
counting is carried out in powers of )” with v = n—3. Without going too much into details,
the operators consist of one-body contributions obtained from the non-relativistic reduction
of the covariant axial and vector nucleonic four-vector currents. We denote with ‘1b(NR)’
and ‘1b(RC)’ leading order and first order terms in the non-relativistic expansion. Two-body
currents include contributions of one- and two-pion range (OPE and TPE) as well as short-
range currents encoded in contact-like operators (CT). OPE currents involving nucleons’
virtual excitations into a A are denoted with ‘OPE-A’ while those involving sub-leading
terms in the pion-nucleon chiral Lagrangian are denoted with ‘OPE(sub)’. In addition,
there are the so called pion-pole contributions where the external field couples with a pion
that is then absorbed by a nucleon. These operators are schematically represented in Fig.
while their formal expressions are listed for convenience in Appendix Details on the

derivation of the currents can be found in Refs. [50} (51} (601 [61] [63] [64].

For our discussion, it is sufficient to focus on the leading order terms of both the charge
and current operators. The F, and L; multipoles are proportional to matrix elements of
the axial current, which, at leading order in the chiral expansion is given by the usual

Gamow-Teller and pion-pole contributions (see Eq. (C6) in Appendix. This implies that
B and LY ~ 0(Q°) = 0(1) (19)

as can be inferred form Table In particular, E%O’O) and Lgo’o) are determined by the zero-
momentum Gamow-Teller matrix element in Eq. . As illustrated in Table [} two-body
axial currents first contribute to EfO’Q) and L§0’2) with the OPE-A term, while subleading
OPE diagrams and contact interactions to E§0’3) and L§°’3). With the interactions and
axial current that we use, F; and L, are accurate up to order n = 3 (v = 0) in the
chiral expansion. The EEZ’O) and ng,o) multipoles are also non-zero, and they are related to

the square radius of the Gamow-Teller matrix element, for which the relevant scale is the

system’s binding momentum. The one-body induced pseudoscalar form factor, which, as
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LO NLO N2L.O N3L.O N4LO

Operator
v=-3 v=-2 v=-1 vr=20 v=1
7 (4) 1b(NR) — 1b(RC) OPE(sub) X
OPE-A CT

multipole|{ Ly, £y }*O [{Ly, B}V |{Ly, B }02 {Ly, By} |{ Ly, By 30

p”(A) - 1b(RC) OPE - «
multipole sz‘,o) Cy’l) CY}?) C£i’3) C{i,ﬁl)
(V) - 1b(NR) OPE 1b(RC) | OPE(sub)
OPE-A TPE
CT
multipole Ml(i’o) Ml(i’l) Ml(in) Ml(zd) Ml(i,4)

TABLE I. Scaling in Q” = Q"3 up to v = 1 of the chiral axial current, j*(A), and charge, p”(A),
operators and of the vector current operator, j(V). The acronyms stand for 1b=one-body, OPE =
one-pion-exchange, TPE = two-pion exchange, NR = non-relativistic, RC = relativistic correction,
OPE-A = one-pion-exchange currents with an intermediate delta excitation, and sub=sub-leading.
“~” indicates that no contribution exists at that order, while “x” that contributions of that order
have not been included. We also indicate to which multipole operator, and at which order in the

chiral expansion, each term contributes. See text for explanation.

shown in Eq. , in momentum space scales as ¢>/m?, gives additional LO contributions
to Lg2). The momentum dependence of the nucleon axial form factor, on the other hand,
is suppressed and contributes at N?LO in the chiral expansion to both the E£2’2) and L§2’2)
multipoles. The expressions of the nucleon axial form factor used in the currents is given in
Appendix[C]

The C multipole is induced by the axial charge, which, as shown in Table [I| at lowest
order receives one-body contributions from the non-relativistic expansion of the axial form
factor, starting at O(1/my), and from the induced pseudoscalar form factor. As shown

in Appendix [C| the latter contribution is proportional to the electron endpoint energy Wy,

which, for power counting purposes, scales as Wy ~ O(myQ?). As a consequence,

cMA)~0,  and  CM(A) ~ OQY). (20)



a

Ib(NR) 1b(RC)

A A A

OPE OPE — A OPE(sub) TPE CT

FIG. 1. Schematic representations of the types of contributions entering the one- and two-body
electroweak currents from Refs. [50] [51] [60] [61] (63} [64] adopted in this work. Solid, dashed and
wavy lines represent nucleons, pions, and axial and vector external fields. The square and the dot
represent the relativistic corrections to the leading one-body operators and sub-leading terms in
the pion-nucleon Lagrangian, respectively, while the thick line represents a A intermediate state.
See Table and Appendixfor the operators’ scaling and formal expressions. Not shown in the

figure are the pion-pole and tadpole diagrams (see Refs. [50, 51} [60] (61} 63} [64] for details.)

We then expect C’{l’l)(A) to be suppressed with respect to the Lgi) and Efi) multipoles. The
two-body axial charge operator scale as Q? (see Table D and thus contributes to the 051,2)
multipole.

Finally, the magnetic multipole is induced at the one-body level by the weak magnetic
form factor, or equivalently by the one-body vector current at leading order—see Eq.
and Table[Il-and thus also in this case

MM Wy ~0, MPIV) ~0QY), (21)

even though the large isovector anomalous magnetic moment Ky = k, — K, ~ 3.7 enhances
the formally NLO contribution. Two-body currents start to contribute to Ml(l’z)(V) and are
found to provide a 6% to 8% contribution to the overall matrix element.

We can use the counting of currents and potentials to give a rough estimate of the
truncation error we expect for different multipoles. The coordinate space cut-off Rg can be
converted into a scale A, = 2/Rg, and, for the potentials used in this work A, ~ 500 — 550
MeV. For the multipoles Ly, E; and M, the first term that is missed in the calculation is
of order @* = 0.6%, taking A, = 500 MeV. This error is, as we will see, smaller than the
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0.000 NV2+3-la* | * vA:
= Wwarsie | —0-45] *
?:‘ —0.001 NV2+3-la <( Ik
o

(b)
0.1 0.2
q (fm~1)
(d)
0.1 0.2
q (fm~1)

FIG. 2. VMC multipoles for the NV2+3-Ta* (blue circles), NV2+3-Ila* (orange squares), NV2+-3-
ITb* (green triangles) and NV2+3-Ia (magenta stars) models. The curves of best fit for each case
are shown in the same color as the multipoles. Statistical errors from the Monte Carlo are included

on each point but are too small to be visible in the figure.

uncertainties arising from using different models. For Cf, the first missing term in the chiral
expansion is O(Q3) ~ 2%. These estimates are merely indicative. This type of estimation
has been the standard procedure in nuclear physics; however, for a more robust estimate, one
should develop Bayesian methods to quantify the uncertainties associated with parameters
entering the many-body calculations and truncation errors. Work along this line is being

vigorously pursued by the community [81}82], and is beyond the scope of this work.

IV. STANDARD MODEL RESULTS AND SPECTRUM

In order to determine the matrix elements entering the 3 spectrum in Eq. we
calculate Egs. — for six momenta between 0 and 0.25 fm~! (0 and ~50 MeV), and
we fit them to the functional forms in Eqgs. —. To have a realistic assessment of the

theoretical uncertainty, we performed the calculation with four sets of chiral potentials and
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Model Ia* Model IIa* Model IIb* Model Ia

1b 1b+2b 1b 1b+2b 1b 1b+2b 1b 1b+2b
Lgo) 1.3578(3)| 1.3607(4)|| 1.3662(2)| 1.3742(3)|| 1.3717(2)| 1.3777(1)|| 1.3641(3)| 1.3986(3)
E%O) 1.9255(4)| 1.9299(5)|| 1.9355(2)| 1.9471(3)|| 1.9470(3)| 1.9555(1)| 1.9333(4)| 1.9824(4)
Ml(l) —0.5487(1)|—0.5860(2) || —0.5510(1) | —0.5952(2) || —0.5550(1) |—0.60111(4) || —0.5521(1) | —0.5908(2)
Cfl) —0.0182(3)|—0.0269(3)||—0.0217(3)|—0.0311(3)||—0.0151(3)| —0.0257(3)||—0.0128(3)|—0.0218(3)
L§2) 23.87(5)| 23.93(6) 23.51(3)| 23.51(4) 23.94(3) 24.07(1) 23.64(5)| 24.12(5)
Egz) 17.86(7)| 17.99(8) 17.35(5)|  17.49(6) 18.07(5) 18.22(2) 17.45(7)|  17.80(7)

TABLE II. Expansion coefficients of the VMC multipole operators, including only one-body cur-
rents (1b) or one- and two-body currents (2b). The four columns denotes four different NV inter-

actions, as discussed in the text. The error denotes the fitting error.

currents, NV2-3-Ia*, NV2+3-ITa*, NV24-3-IIb*, and NV2-3-Ia, using both VMC and GFMC
methods.

Figure 2| shows the VMC multipoles and the associated curves of best fit for the NV2-
3-Ta*, NV2+3-IIa*, NV2+3-I1b*, and NV2-3-Ia models retaining one- and two-body vector
and axial current operators. The expansion coefficients obtained by fitting VMC multipoles
obtained with one-body and one- and two-body operators are listed in Table [II} where the
error denotes the fitting error. Two-body currents have a minor effect on the L; and FE;
multipoles, leading to a shift in L§°), E§0), LgZ), E%Z) of at most ~ 2%, in the case of model
Ia. As expected from power counting, two-body currents are more important for M; and Cf.
In both cases, two-body currents contribute at O(Q) compared to the LO. We see that Ml(l)
receives an ~ 8% correction, for all the models considered here. In VMC, the corrections to

C'fl) are about 30-40%.

A. Uncertainty Estimation

1. Variational Monte Carlo

The expansion coefficients for the NV2+-3-Ta*, NV2+3-11a*, NV24-3-1Ib*, and NV2+-3-Ia
models are presented in Table From Figure |2[ and Table it is clear that there will be

some degree of uncertainty due to the choice of model. To account for the model uncertainty,
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FIG. 3. Average VMC multipoles for the four NV2+43 models under study. Averages were obtained
for NV2+3 potentials with the same cutoff (blue circles), the same energy range of NN scattering
data used to fit the interaction (red squares), the same NN but different 3N force (pink triangles),
and for all models (black stars). The curves of best fit for each case are shown in the same color
as the average multipoles. Details on how the error bars are obtained in each case are provided in

the text.

four sets of average multipoles were obtained: An average between two models with the same
cutoff, same determination of the three-body force and fit to different range of NN scattering
data (NV243-Ia* and NV243-I1a*), an average between two models fit to the same range
of NN scattering data, same determination of the three-body force, and different cut-off
(NV2+43-ITa* and NV2+3-1Ib*), an average between two models with consistent NV2 and
cut-off but different NV3 interactions (NV2+3-Ia* and NV2+3-Ia), and an average of all
four models. These average multipoles were fit to the functional forms of Eqgs. -
with the two model calculations at each ¢ providing the upper and lower theoretical error
bar. The statistical uncertainty of these averaged fits provides the estimated uncertainty on
the expansion coefficients due to the energy range of the fit (eg), the choice of cutoff (e¢),

and the three-body force fitting procedure (esy).
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Model || ¢V | L | £ [EO| E® | MY

Ta* —0.027|1.361(23.93(6)|1.923|17.99(8)| —0.586
Ila* || —0.031|1.374|23.51(4)|1.947|17.49(6)|—0.595
IIb*  ||—0.026|1.378|24.07(1)|1.955|18.22(2)|—0.601
Ia —0.022|1.399/24.12(5)|1.982|17.80(7)| —0.591

Average||—0.026|1.378| 23.869 [1.954| 17.847 |—-0.593

ex(%) | 54 | 03| 32 |03]| 56 | 06
cc(%) | 69 |001| 03 |007| 08 | 03
esnv(%) || 72 | 08| 70 |08]| 139 | 03

€tot (%0) 11.8 | 0.8 7.8 0.9 15.0 0.7

TABLE III. Summary of the values of the expansion coefficients for the charge (C), longitudinal
(L1), electric (F7), and magnetic (M;) VMC multipoles for the NV2+3 models under study. The
percent error due to the cutoff e (%), energy range of the fit ex(%), the three-body force fit e3n (%),
and the total error e (%) are also presented. Details of how the average expansion coefficients are
obtained are provided in the text. The uncertainty on coefficients for individual models is fitting

error only. The error is < 0.001 unless otherwise noted.

For the fourth case described above, a similar procedure was followed; however, when
assigning the error for the multipoles at each value of g, the uncertainty was not taken
as simply the spread of the model calculations. Instead, we summed in quadrature the
uncertainties on each point from the other three average fits to combine the cutoff, energy
range, and three-body force uncertainties. The expansion coefficients obtained from this fit
are the “Average” results in Table and their statistical uncertainties are cited as €.

Figure shows the averaged multipoles and curves of best fit for these three cases.

As evidenced by the results in Table the coefficient EF) has the largest model uncer-
tainty at 15%. The next largest uncertainties are on the coefficients C’fl) at 11.8% and LgQ)
at 7.8%. The remaining uncertainties are < 1% for L', B and M{". The main driver
of the uncertainty in most of the coefficients is the choice of three-body force, though for

01(1) and Ml(l) the uncertainties from this source and the others are comparable. In fact, it

is the energy range of scattering data used to fit the interaction that provides the largest
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Model |Method| €V O | L® | EO | E® M

Ia* VMC —0.027 1.361 {[23.93(6)| 1.930 ||17.99(8)|| —0.586

(
GFMC || —0.047 || 1.308 ||23.98(6)| 1.856 [|19.71(9)| —0.559
Ila*  ||[VMC || —0.031 | 1.374 [23.51(4)| 1.947 |17.49(6)| —0.595

GFMC [|—0.045(2)1.341(7)| 25(1) [1.901(9)| 19(2) ||—0.573(4)

Ia VMC | —0.022 | 1.399 |[24.12(5)| 1.982 |[17.80(7)| —0.591
GFMC || —0.045 | 1.360 ||23.64(6)| 1.929 |[17.77(9)| —0.575

Average|[ VMC  ||—0.026(3)|| 1.38(1) || 24(2) || 1.95(2) || 18(3) |—0.593(4)
GFMC ||—0.046(2)|| 1.34(2) || 24(3) || 1.90(3) || 19(5) |—0.568(9)

TABLE IV. Expansion coefficients of the GFMC multipoles and comparison with the VMC, using

three different Norfolk models. The error denotes fitting error only

uncertainty on Ml(l).

Another way that one might obtain the average expansion parameters with an uncertainty
would be to instead use the results of Table The average value of the expansion coefficients
for the four models differ from the values obtained in our procedure by less than one percent.
Then, one could estimate the uncertainty due to the energy range used to fit VN interaction
from the difference between the NV2+3-Ia* and NV2+3-I1a* results, the uncertainty due
to the cutoff from the difference between the NV2+3-Ila* and NV2+43-1Ib* results, and
the uncertainty due to the three-body force from the difference between the NV2+3-Ia*
and NV24-3-Ia results. Following this procedure, the error on the leading order expansion
coefficients increase by factors of 1.5 to 1.8. The error on the dominant contributions would
be < 1.4% in this approach. For the coefficients LEQ) and Ef) , this scheme reduces the
uncertainty by a factors of 2.6 and 3.0, respectively. However, the approach that we took to

obtain the uncertainty is more reasonable as each matrix element should have its own model

uncertainty that then propagates to the expansion coefficients in the fitting procedure.
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2. Green’s Function Monte Carlo

In addition to a calculation of the multipoles using VMC, we also performed calculations
at the Green’s Function Monte Carlo level, to remove residual excited state contamination
in the nuclear wave functions. Following the procedure of Ref. [80], we perform a mixed
estimate extrapolation of the GFMC multipoles. We then fit the expansion coefficients
of Egs. - as was done for the VMC calculations. The results of these fits are
presented in Tablefor models Ia*, ITa*, and Ia. The GFMC evolution reduces the leading
coefficients, L§°) and Efo), by ~ 3-4%, which, as we will see, results in better agreement with
the experimental half-life. Propagating models Ia* and Ia changes the remaining expansion
coefficients at the level of a few percent while for model IIa* terms that were higher order
in gr, experienced a more significant percent change after the propagation. This can be
understood by looking at the system size as a function of 7 during the GFMC propagation.
To further understand this, we calculate the point proton radius in GFMC and we observe
that for model IIa*, the system size grows much more rapidly in 7 than models Ia and Ia*.
This behavior is due to the proximity of the model ITa* ®He(0; 1) (°Li(17;0)) ground state
energy in GFMC to the oo + 2n (a + d) breakup threshold. Because of terms going like
e~'Ti in the current operators, the monotonic increase of the system size will impact the
convergence of the Ila* matrix elements needed to determine the multipoles. To account for
this in the GFMC extrapolation with model IIa*, we adopt a procedure used for systems
near threshold and broad resonances [57]. We note that while the system sizes grow with 7,
the ground state energies of °Li and “He drop rapidly and stabilize near 7 ~ 0.1 MeV~*. This
indicates that spurious contamination has been removed from the wave functions at that
point. Under this assumption, we extract the values of the matrix elements by performing a
linear fit to the matrix element in the interval 7 = [0.1 MeV ™!, 0.3 MeV~!] and extrapolating
back to 0.1 MeV™!. We determine the systematic error of this procedure by averaging in
the intervals 7 = [0.08 MeV™*,0.3 MeV~!] and 7 = [0.12 MeV~!,0.3 MeV~!] to get a

conservative estimate.

For the GFMC extrapolations, we assigned errors to the average matrix element arising
from the energy range and three-body force following the same procedure as was done for
the VMC. We also include the systematic uncertainty from the model Ila* extrapolation by

summing it in quadrature with the energy range and three-body force uncertainties. For the
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GFMC average, the coefficients L§°), Efo), Cfl), and Ml(l) have uncertainties ranging from
~ 1.4% to ~ 5.2%. The coefficients L'* and E® have uncertainties of ~ 12% and ~ 26%,
respectively. In the expression for the rate, the large error coefficients appear suppressed by
powers of gr, and do not contribute as strongly as the coefficients with errors of order 1%.

Because of the small cutoff uncertainty, we estimate the impact of including model ITb*
by re-weighting the matrix elements in the average so that model IIa* is counted twice.
Averaging under this assumption provides coefficients and errors that are consistent with
the average results obtained when omitting model IIb*. Thus, we conclude that we can

safely neglect model IIb* in the GFMC average.

B. Experimental comparison and remaining spectral uncertainty

We can first of all check the Lgo) and Efo) multipoles by comparing our calculation with
experimental half-life 7y, = 807.2540.16+0.11 ms [83]84]. Using the VMC matrix elements
in Table[IIT] we obtain

1
Tipsloye = = = 3 (1175 £ 17) ms = (762 + 11 £ 2) ms (22)
r V.94

where we have used V,,; = 0.97370£0.00031 and g4 = 1.2754+0.0013. The first error is due
to the nuclear matrix elements, while the second to g4. The error from V,, is negligible. Eq.
deviates by about 5% from the observed value. While small, the discrepancy between
the VMC calculation and the experiment is not covered by the uncertainty range in Eq.
, indicating that the errors due to either the chiral EFT truncation or the Monte Carlo
method are underestimated. For this reason, we evolved the VMC wave functions in the
GFMC. Using the GFMC matrix elements, we obtain

12| gpue = T (1246 £ 37) ms = (808 & 24 & 2) ms, (23)
vudgA

which has a 3% error and is in perfect agreement with the observed half-life. The half-life
is dominated by L§°’, Efo) and by the Fermi function. The next most important correction
comes from inner and outer radiative corrections, A% and dr(Z, ), which together shorten
the half-life by about 4%. For A}, we use the dispersive evaluation of Refs. [16] [17] [85],
AY, = 2.467(22) - 1072, Higher multipoles impact the half-life at the 0.1% level.
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FIG. 4. Deviation of the 5He 3 spectrum from the expression truncated at leading order in the
multipole expansion, given in Eq. , and percentage error on the ratio. The blue curves use
GFMC matrix elements in Table while the red line the VMC averages in Table In the top

panel, the width of the curves denotes the theoretical error.

Moving on to the differential decay rate, using the VMC multipoles given in Table m,

we find

dr dl 2 2

| <1—25+&> (—1.16i0.01)+< —&> (3.6+0.4)-1072| - 1072
de |yme de € €

4 —Te

- [ (1 - “;(2 - 5)) (0.96 + 0.08) + (3 — 10e(1 — &) + 12 ) (0.32 + 0.06)] 1073

+(4.lil.1)-10_4(1—5)}, (24)

where the terms in the first line appear at NLO in the multipole expansion, and are propor-
tional to Ml(l) and Cfl), respectively. The terms in the second line appear at N2LO, the first
proportional to LgQ) and the second to a combination of \Ml(l)lg and EfO)Efz). Finally, the

term in the third line is an electromagnetic correction proportional to subleading multipoles.
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Using the GFMC matrix elements in Table the differential rate is

dl dl . .
“ = C0)y g (1—2:-;+&) (—1.15io.oz)+( —&) (6.6+0.7)-1072| - 1072
de |gpye de 3 3

e 04— Te -3
~[(1-E2=9) ) (099£0.12) + (8- 10e(1 — ) + u2=—= ) (0.35£0.10) | - 10
+(4.04£1.8)-107* (1 —¢) } (25)

From Egs. and we see that the dominant correction is, as expected [75] [86], given
by the magnetic multipole M, which contributes to the spectrum at the percent level. The
uncertainty on the ratio Ml(l) / Lgo), which dominates the error budget, is about 2%, and,
in our calculation, it receives the main contribution from changing the energy range of the
fits to NN scattering data. The next contributions come from LgQ), E}Q) and C’{l), which
affect the energy distribution at the 1073-10~* level. ng), CF) and Efz) have uncertainties
of about 10%, 12% and 20%, respectively, so that these terms contribute to the theory error
at the 107 level.

In Figure[4 we show the deviation of the 8 spectrum from the leading term in the multipole
expansion, dI'y/de, defined in Eq. , using both VMC and GFMC matrix elements. We
see that, while GFMC and VMC differ by 6% on the total rate, the differences largely cancel
in the ratio, and the corrections to the spectral shape are very similar in both cases. The
bottom panel of Fig. |4| shows the error on the ratio. This is somewhat larger in GFMC,
but well below 1073. Fig. [5|shows the contributions of the leading O(Qr,) correction,
arising from Mj, and of the second order terms O((Qr,)?) (including the formally O(Qr;)
but numerically small contribution from C{l)), to the differential rate (left) and to the
uncertainty (right). We see that, while M; dominates the correction to the spectrum, the
second order terms contribute at the 1073 level and the first and second order terms give

contributions of similar size to the uncertainty.

1. Validation of M,

We can further validate the calculation in several ways. The magnetic multipole M; can

be cross-checked against data. Using the conserved vector current hypothesis, Ml(l) can be
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expressed in terms of the transition T'(°Li(0") —% Li(17)~)

. 3m7r FM1

- 4T OéE,?

where the uncertainty is determined by the width, Iy = 8.19(17) eV [76] [87]. Using the

‘M{” — 0.582(6) (26)

average VMC value listed in Table our result agrees within 1% with the experimental
value, while individual models are consistent within 3% when including two body currents.
The GFMC average is a bit lower, but still only 2% away from Eq. , and compatible
within ~ lo. Our results also agree with the ab initio calculation of Ref. [46], which,
including only the one-body piece of the current, finds |M1(1)] = 0.565.

Eq. is valid up to isospin breaking corrections. To check the level of isospin breaking
that we can expect in Ml(l), we computed both the ®He(0%;1) —% Li(1%;0) transition and
the electromagnetic transition °Li(0*;1) —% Li(1%;0) with NV2+43-IIb wave functions in
the impulse approximation, that is retaining only one-body current operators at LO in the
chiral expansion. Using VMC wave functions, the electromagnetic transition had a value
0.553 and the weak transition a value of 0.554. Agreement between the two M; calculations
is thus achieved at the ~ 0.1% level. Propagating this calculation in GFMC, we find, in
the electromagnetic case, |M1(1)|EM = 0.532 and, for the weak transition, |M1(1)| = 0.538,
showing a 0.9% difference. This analysis is performed with one nuclear interaction model
and thus does not account for any model uncertainty.

The change in the level of agreement between VMC and GFMC can be understood as
due to how the wave functions are generated in each method. For the VMC case, the varia-
tional parameters in the °He(0"; 1) and °Li(0"; 1) wave functions are minimized separately.
Because of explicit isospin symmetry breaking terms in the potential, the parameters of the
two wave functions differ; however, ispospin symmetry breaking correlations are not turned
on in the VMC wave functions. When the trial states are acted on with the imaginary
time propagator, isospin breaking correlations are introduced. This, in turn, increases the
disagreement for the electromagnetic and weak M, transitions. Because the systems differ
by changing the isospin of one nucleon, the effect of this symmetry breaking is small and at
the level of the experimental uncertainty in Eq. . Since isospin breaking corrections are
smaller than the experimental error, we can use M{" extracted from SLi(0*: 1) =5 Li(1%;0)
to further reduce the error on M; to the 1% level. Controlling isospin-breaking effects will

become more important with improved measurements of the °Li(0") —% Li(1%)~ transition,
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FIG. 5. Corrections to the 5 spectrum (left) and contributions to the error on the ratio between
dl'/de and dTy/de (right) at next-to-leading order (O(Qr,)) and next-to-next-to leading order

(O(Q?r2)) in the multipole expansion. The figure uses GFMC matrix elements.

VMC GFMC ||Calaprice [86]| Glick-Magid et al. [46]
recoil || 0.020(3) ||—0.001(3)| —0.0144 —0.006
pseudo|| —0.040 || —0.038 —0.039
2 body|| —0.006 | —0.007
total ||—0.026(3)|[—0.046(3)| —0.0144 —0.045

TABLE V. VMC and GFMC one-body and two-body averages for Cfl) compared with Ref. [86]
and Ref. [46]. Notice that to obtain o

pseudo

we rescale the results of Ref. [46] by Wy/(Wy + AE,),

as we are not including Coulomb corrections to C4.

as those suggested in Ref. [8§].

2. Validation of Cy

The axial charge correction Cfl), unlike the weak magnetism correction, is not constrained

by an experimental datum. As such, its evaluation is critical for current experimental efforts
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aiming for the sub-0.1% level. The prefactor to 01(1) from Eq. is 2Woyr, =~ 0.05 and
with C’fl) ~ 1—2% a relative ~ 10 — 20% precision is needed for a theory uncertainty to be
smaller than one part in 10*. As can be seen in Eq. , at lowest order in chiral EFT, the
axial charge receives a O(1/my) recoil contribution from the coupling of the axial current to
the nucleon, and a contribution from the induced pseudoscalar form factor, proportional to
the energy of the electron and neutrino F, + F, = W,. Naively, these would translate in an
O(my/my) and O(Wy/m,) correction to Cy, respectively. The matrix element of the recoil
component, however, vanishes for transitions between the dominant S state components of
the wave function [86], making this component particularly sensitive to other wave function
admixtures and two-body currents. In our calculation, indeed, C; is dominated by the
induced pseudoscalar contribution, which, being proportional to L§°), is fairly stable. We

can separate Cfl) in three pieces

1 1 1 1
Cl( ) = C11§tec)oil + O}()se)zudo + C’é—)body7 (27)
where Cr(;c)oil and Céigudo are given by the matrix element of p_2 . (q, A) and p;sgeudo(q7 A) in

Eq. , while Cél_)body by the matrix element of p~'(q, A) in Eq. . Results for each
component, after averaging over different models as discussed in Section are given in
Table [V]

The calculation of C'ISC)OH in the decay of ®He, together with other triplet decays in the
mass A = 8,12, 20 systems, received a significant amount of attention over 40 years ago but
ultimately remained unresolved |86} |89H91]. Until recently, the only theoretical determina-
tion of the axial charge contribution to “He was performed by Calaprice [86] in Holstein’s
formalism. A direct comparison can be made by observing [92]

leelc)oﬂ _ 3(2J; + 1) d(0)
47 2r. M

where d(q?) is the so-called induced tensor form factor. Using wave functions tuned to

(28)

reproduce the experimental energy levels, Calaprice obtained d(0) = 2.4 [86], which can be
converted into Cr(ic)oﬂ = —0.0144. This value is in the same ballpark of the VMC calculation,
which however has an opposite sign. After GFMC evolution, the recoil contribution is
reduced and qualitatively agrees with the result of Ref. [46].

To further track down the origin of the discrepancy, we notice that one can write

3
Claton = =\ T g (Mop + Moy (29)

T2r.my
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where M, and M,,, are one-body matrix elements defined in Ref. [75]. Calaprice assumed
the first matrix element to be dominant and neglected M,,,. To check the assumption, we
calculated M, in model NV2+3-Ia*. In the VMC, the °He and °Li wave functions are
expressed in terms of the action of correlation operators on single particle wave functions
with an « core and two nucleons whose wave functions are p-wave solutions of an effective a-
N potential [45]193]. The two nucleons can be coupled in different LS channels, with strength
determined by the parameter Srg. In the NV2+4-3-Ia* model, By and S, parameterizing the
1Sy and ® Py components of the ®He wave function, are given by 8y = 0.931 and ;1 = —0.364.
In the case of °Li, the 3S;, !P, and 3D, components are given by £y = 0.967, 819 = 0.182
and o1 = 0.176, respectively. These agree fairly well with Ref. [86], which found a smaller

D wave component, f5; = —0.03. In this model, we obtain

C(l)

recoil

= 0.013 30
oL ’ ( )

with statistical uncertainties < 0.001. We observe a small, approximately linear dependence
on 1, which would shift the value to 0.012 for $5; = —0.03. To better mimic the shell model
calculation of Ref. [86], we turned off the “one-pion-exchange-like” correlation operators in
the VMC wave functions in a similar fashion as to what was done in Ref. [62], observing a
10% increase of the matrix element, from 0.013 to 0.014. While the magnitude of the matrix
element agrees very well with Ref. [86], we were not able to resolve the disagreement on
the sign. Note the correlation and D wave analyses above have been done only at the VMC
level.

In GFMC the value of M, is further decreased to

C(l)

recoil
o

= 0.009. 31
) (1)

The above values have small statistical uncertainties but are not accounting for any possible
model dependencies. We conclude that: a) the magnitude of M, agrees well with shell
model calculations, but is reduced by nuclear correlations and by the GEFMC evolution, b)

the contribution of M,,, is non-negligible in the case of °He, varying from

C(l)

recoil

= 0.007 (32)
14

in VMC to

= —0.012 (33)
TP



Finally, as anticipated in Refs. [86,[89H91], we find a substantial contributions from two-body
currents for all three models.

The induced pseudoscalar contribution, captured by the h(g?) function in Holstein’s for-
malism, was not considered in Ref. [86]. In agreement with Ref. [46], we find this contri-
bution to dominate 01(1)' We however stress that the induced pseudoscalar contribution to

(2)

C’F) is partially cancelled by the one to L;”, so that the single-nucleon induced pseudoscalar

form factor gives corrections to the spectrum that are proportional to m?, as expected.

V. CHARGED CURRENTS IN THE SM EFFECTIVE FIELD THEORY

With the theoretical accuracy of the SM spectrum well below 0.1%, we can then study the
sensitivity to physics beyond the SM. If BSM physics arises at a scale A > v, its correction to
[ decays can be described in the framework of the Standard Model Effective Field Theory
194, 95|, an effective field theory that complements the SM with the most general set of
gauge-invariant effective operators, expressed in terms of SM fields and organized according
to their canonical dimension. SMEFT contains a single dimension-five operator [96], which,
when the Higgs gets its vacuum expectation value, gives rise to a Majorana mass term for
the three left-handed neutrinos. At dimension-six, the SMEFT contains several classes of
operators, which, at low-energy, induce new axial, vector, scalar, pseudoscalar and tensor
semileptonic interactions between quarks, charged leptons and left-handed neutrino fields
[94,95]. Since the mechanism behind the origin of neutrino masses is unknown, for generality
we extend the SMEFT with a multiplet of n sterile neutrino fields vg (VSMEFT) [5] 97,
08]. The sterile neutrino is a singlet under the SM group. At dimension-three, vg has a
Majorana mass term, while at dimension-four it interacts with active neutrinos via Yukawa
interactions. If one considers only these renormalizable interactions, after diagonalizing the
neutrino mass matrix, the neutrino sector is characterized by 3 4+ n mass eigenstates with
masses my, ... Mayn, and a (34 n) x (3+n) unitary mixing matrix U, which generalizes the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. For simplicity, we will consider
n = 1, so that one has to consider the parameters my and U,4, with a € {e,pu, 7}, in
addition to the SM. The inclusion of multiple light neutrino states is straightforward. From
oscillation experiments and from the upper limit from the KATRIN experiment [99] [100],

mi23 S 0.8 eV, so that they can be neglected in our analysis. We will consider m, as a

~J

28



free parameter, and mostly focus on the region in which my is smaller than the Q-value, so
that v, can be produced in the decay. In addition to renormalizable interactions, vr can
have lepton-number-conserving non-standard interactions with SM fields at dimension-six
15 1971 [98], which, as we will see, induce new axial, vector, scalar, pseudoscalar and tensor

charged-current interactions involving sterile neutrinos.

After integrating out heavy gauge and quark fields and rotating to the neutrino mass
basis, the most general low-energy Lagrangian for 8 decays is given in Refs. [5|[101}[102]. If
the masses of all active and sterile neutrino states are much smaller than the nuclear scale
or the electron mass, we can neglect sterile neutrino operators, whose interference with the
SM is suppressed by powers of the neutrino masses. In this case, only scalar, pseudoscalar
and tensor interactions can give rise to a Fierz interference term, and, making connections

with the notation of Ref. [5], we can write the relevant interactions as

4G

1
E(G) = \/§ ud{ééRVL (Egad + €pﬂ’y5d) -+ ETéRO"LWI/L ﬂRO',uz/dL} + h.c.. (34)

If the masses of sterile neutrinos are non-negligible compared to the electron mass, there
are additional interference terms. Using again the conventions of Ref. [5], we write the

Lagrangian for v, as

. 4G 1
£ = —T;VudUe4{€L% V4 ((1 +er)urydr + er UR”Y”CZR) + 5€rY (estd + eptiysd)

4G . L
+eptigo"dy, €goy, V4} - T;Vud{éz«z’mm (ELﬂL’Y“dL + 6RUR7udR)

1
+§éLl/4 (gsﬂd + gp’L_L")/g)d) + gTﬂLO'leR éLUuu 1/4} -+ h.c.. (35)

The conversion between the €, the low-energy EFT (LEFT) couplings defined in Ref. [102]
and ¥SMEFT is discussed in Appendix The terms in the first bracket of Eq. are
induced by SMEFT operators involving active neutrinos and are proportional to the mixing
U.s. Since U, is small, we can usually neglect terms proportional to U, X €. The terms
in the second bracket, on the other hand, are induced by ¥YSMEFT operators with sterile

neutrinos.
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A. Beyond the SM corrections to the § spectrum

The multipole expansion can be generalized to non-standard currents induced by SMEFT
operators (see also Ref. [103]). At dimension-six in the ¥*SMEFT, for both scalar/tensor
and vector/axial operators, the leptonic and hadronic currents have at most spin one. The
derivation of the multipole expansion therefore proceeds essentially as in the SM. The ad-
ditional vector and axial operators in Eq. generate exactly the same multipoles as in
Egs. - . For scalar and pseudoscalar currents, only the C ;o multipole is present,
while for tensor currents only the electric, magnetic and longitudinal multipoles.

Restricting again to the case of J; = 0, Jf = 1, we can easily adapt the formulas in
Egs. f to the case of non-standard currents and define

?

Co(a. P) = = (Li. 0], (g2) He. 00) (36)
Li(q,T) = Vi_W@Li,lom-j*ﬂ(qz)rﬁﬂe,om (37)
By(a.T) = <= ("L, 10fz- . (45| He. 00) (38)
My(g, T') = ———(Li, 10[3 - /., (¢%)"He, 00). (39)

3

We now used

—~

pp(q) = / Pxe > Tp(x), Q) = / e 1) (40)

The pseudoscalar density Jp and tensor currents Jr and JT(/) are defined in Eq. , and
the subscript + again refers to the isospin components. The multipoles C4(q, P), Li(q,T),
Ei(q,T) and Mi(q,T") have a ¢ expansion completely analogous to Egs. —. All
corrections to the ®He decay spectrum arising at dimension-six in the #SMEFT can be
expressed in terms on Eqs. - and - .

The same power counting considerations in Section apply to multipoles induced by
SMEFT charged-current operators. For purely GT transitions, tensor interactions are the
most important, as they induce both E™(T) and L™ (T) of order 1. From Eq. (C16),
M1(1,0) (T") = 0, and thus we will neglect this contribution. Pseudoscalar interactions induce
the multipole C|(q, P), which starts at O(qr,). This suppression is partially overcome by

pion pole dominance of the pseudoscalar form factor, which implies

Ci'(P) =0 (). (41)

X
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We thus include this contribution in the analysis. In the case of multipoles induced by
non-SM currents, we only consider contributions at LO in both the multipole and chiral

expansions, implying, in particular, that we only consider one-body currents, as given in

Appendix To this order, from Eqgs. f, f, and f, we can see that

Oy — L gy 297 ;1 0) ]
L0(T) = ZsB(T) = =L 1P(4) + O (). (12)
CP(P) =~ 2 L0(4) 4 0 (), (43)

™

where g7 is the isovector tensor charge, gr = 0.989+0.033 [104], and B = m?2/(m,, +mgq) ~
2.8 GeV. B and gr are scale dependent and given at the MS scale 1 = 2 GeV. Eq.
confirms the relative enhancement of the pseudoscalar contribution.

We first consider the case in which active and sterile neutrinos have masses much smaller
than the electron mass. In this particular case, non-standard axial and vector interactions
simply shift the overall normalization of Eq. . If BSM interactions induce not only
V — A but also V + A right-handed currents, the only effect on the spectrum will be a shift
in the relative coefficient between the (Lgo))2 and EEO)Ml(l) terms in Eq. , as the second
originates from the interference of the axial and vector currents. Since this effect arises at
recoil order, it will not provide strong constraints on new physics.

Tensor and scalar currents interfere with the standard model via terms proportional to
the electron mass. Tensor interactions give rise to a term at O(q’). The pseudoscalar
contribution is formally O(q), but it is enhanced because of the pion-pole dominance of the
pseudoscalar form factor. The differential cross section with respect to the electron energy

is given by

dFT N dFO 4me 1

; {R (BT ED () + LT L0 (4))

de  de 3E, L§0)(A)‘
—%’(1 — &)Wors Re (of”(P)Lg@*(A)) } (44)

where dI'y/de is the SM decay rate at LO in the multipole expansion, defined in Eq.
[105]. Eq. shows the characteristic m./E, behavior. Using Eq. , Eq. becomes

r r 2
dT_d 0%{_89T6T W } (45)

=T _=0 Zen(l —
de de E. ga +3EP( 6>mu—|—md
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The tensor contributions agrees with the result of Ref. [34], while the enhancement of the
pseudoscalar contribution was noted, for example, in Ref. [106]. Eq. is only valid at
LO in chiral EFT.

Next, we consider the case of sterile neutrinos with non-negligible mass. Here we work
at LO in the multipole expansion and consider m,, < Q, so that v, can be produced.

Considering vector and axial currents, we obtain

dF,, dF() m,2/4 2 m12/4 MeMuyy o0y /o ~
d_;:d_5{< I B2 _1) (1+€L—€R)|Ue4| + 1_E_3E6EV4U64(6L_6R> )

(46)

where £, = Wy(1 —¢). If we turn off all dimension-six operators, €, g = 0 and €, g = 0, Eq.
is only proportional to the mixing U.. In this case the presence of sterile neutrinos
has two effects, one on the normalization and one energy dependent. In the presence of
non-standard interactions of a sterile neutrino with a right-handed electron, €, — €, we also

get new Fierz-like terms. For tensor interactions

dl’, dl’ 4
o _ 20 sRe

de de 3’[,50)(14)’

Me m?/ my, mlz/ ~ T
X {F ( 1- E24 - 1) 6T|Ue4|2+?4\/ 1- E24€T 64}7 (47)

so that a fourth massive neutrino would affect the standard Fierz interference term, and,

EO(MED (A) + LO(T) L (A)

more importantly, generate a new interference term, proportional to the neutrino mass.

Similarly, the pseudoscalar interactions of sterile and active neutrinos give

dU,,p  dly 2

2
de de 3 ‘Lgo)(A)

me m?/ ml/ mg ~ *
X {F( 1—E—24—1> Gp‘Ue4‘2+ E4 1-— E24€P 64}. (48)

v v

(1 — £)Wyry Re (cf”(P)LgO)*(A))

VI. SENSITIVITY TO BSM SIGNATURES

We now consider the impact of non-standard charged-current interactions on the energy
spectrum. In Fig. @ we assume all neutrinos to be massless and we set the tensor and

pseudoscalar interaction to ez = 1073 and ep = 5- 1073, corresponding to new physics scales
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FIG. 6. Deviation of the 5He 3 spectrum from the expression truncated at leading order in the
multipole expansion, given in Eq. . The blue curve denotes the SM results, while the red and
green lines include the contributions of a tensor and pseudoscalar current, respectively. The width

of the bands denotes the theoretical error.

A ~ 8 and 4 TeV, respectively. Interactions of these size lead to ~ 1073 corrections, which
should be resolved in the next generation of experiments. For both pseudoscalar and tensor
interactions, the uncertainty band includes uncertainties on the one-body parameters, gr
and B, and the nuclear uncertainties on the multipoles, but does not include the truncation
to the one-body level, and it is thus slightly underestimated. High-invariant mass Drell-
Yan production at the LHC currently probes ey at a very similar level [11][14], while a
global analysis of 3 decays found ez € [—0.8,1.2] - 1073, at the 1o level [12]. Pseudoscalar
interactions are very well constrained by the ratio BR(m — ev)/BR(m — pv), which yields
—1.4-107" < ep < 5.5-107* [6]. Such values are not in reach of upcoming °He experiments.

We next consider the case of a massive sterile neutrino, which mixes with the electron
neutrino with strength U4, and has non-standard axial, vector, scalar and tensor interac-
tions. Since the corrections scale in general as m,, /Wy, °He decays can probe m,, in the
MeV range. Currently the best limit on the a sterile neutrino with mass m,, = 1 MeV come

from the 3 spectra of 2°F and **Pr, and, in the assumption that the neutrino interacts with
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the SM only via mixing, these constrain a mixing angle Uy ~ 2 - 1073 [40H43] [107] [108].
From this we see that we can always neglect terms in Eqs. , and (48) that are
proportional to non-standard interactions of active neutrinos, €y, g pr, since they are doubly
suppressed by |Ug|? and v?/A2.

In the left panel of Fig. [7| we show the corrections to the spectrum in the case sterile
neutrinos interact with SM particles only via Yukawa interactions. In this case, the spectrum
would show a characteristic “kink” at ¢ = 1 — m,, /W, due to the emission of a massive
neutrino. With mixing |Ux|? = 1073, the spectrum receives permille level corrections.

Non-standard interactions of sterile neutrinos cause corrections to the spectrum of order
U4 €7, which could thus be relevant for €; ~ U,y ~ 3 - 1072, corresponding to new physics
scales of 1 TeV. Sterile neutrinos with an axial coupling to quarks induce corrections pro-
portional to m.m,,/(E.E,), which are however fairly small. More promising is the case
of sterile neutrinos with non-standard tensor interactions, ér, showed in the right panel of
Figure These interactions arise, for example, in leptoquark models [102]. In this case, an
interference term of the form m,, /F, is induced, which has a very different shape compared
to tensor interactions of active neutrinos. This is particularly interesting, since the analysis
of Ref. [12| found some preference for a tensor interaction involving sterile neutrinos in /3

decay data.

VII. CONCLUSIONS

We performed an ab initio calculation of the electron energy spectrum in the 8 decay of
SHe. We used potentials derived from chiral EFT, with consistent weak vector and axial cur-
rents, and adopted Quantum Monte Carlo methods to solve the many-body nuclear problem.
We included terms up to second order in the multipole expansion [72|, and state-of-the-art
electromagnetic corrections, following the treatment of Ref. [77]. In particular, we included
two-body currents, for the first time in an ab initio calculation of the spectrum. To estimate
the theoretical error on the spectrum, we evaluated the matrix elements Ly, F;, M; and C}
with four potential models in the Norfolk family of local two- and three-nucleon interactions,
derived in chiral EFT with explicit As and including terms up to N3LO in the chiral expan-
sion. The four interactions have different cut-off, they fit nucleon-nucleon scattering data up

to different energies, and use different observables to determine the low-energy constants in
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FIG. 7. Corrections to the 5 spectrum from sterile neutrinos with minimal (left) and tensor (right)

interactions, €r.

the three-body force, and thus they provide a good estimate of the systematic errors in the
calculation. We find the ®He half-life to be in good agreement with experiment. The theo-
retical uncertainty of about 3% is dominated by the determination of the three-body force.
We find the error on the spectral shape to be well below the permille level, and to receive
contributions of approximately the same size from Ml(l), Cfl), L]@ and E£2). In the case of
Ml(l), which encodes the contribution of weak magnetism, our results agree within theoret-
ical error with the extraction from the electromagnetic transition °Li(0*, 1) —° Li(1",0)~,
which is exact in the isospin limit. We checked that isospin-breaking terms in the nuclear
potential induce a 1% difference between M; and its electromagnetic analog, of the same

size as the experimental error.

(', is determined by the matrix element of the axial charge density. We find this ma-
trix element to be dominated by the induced pseudoscalar form factor, in agreement with
Ref. [46]. Finally, we find that Ef) and LgQ), which contribute at N2LO in the multipole
expansion, give permille level corrections to the spectrum, and thus need to be included for
an accuracy goal of few parts in 1074, In GFMC, Ef) and LgQ) have relatively large uncer-
tainties, 26% and 12%, respectively. Also in this case, the dominant systematic uncertainty

arises from the determination of the three-body force and the linear extrapolation of model
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ITa*.

Two-body currents play a particularly important role for M; and Cy, which receive a 8%
and ~ 20 — 30% correction respectively. The effects on F; and L; are smaller.

Combining the uncertainties on different matrix elements, we reach a total error on the
differential decay rate, normalized by the rate at leading order in the multipole expansion, of
at most 4 - 107*. We discussed the consequences of such accuracy on non-standard charged-
current interactions involving active and sterile neutrinos, showing that the next generation
of experiments will be sensitive to tensor interactions and, to a lesser extent, to pseudoscalar
interactions of active neutrinos. Future experiments will also constrain sterile neutrinos with

mass in the ~ 1 MeV region, with both minimal and non-minimal interactions.

ACKNOWLEDGMENTS

We acknowledge stimulating conversations with A. Garcia, D. Gazit, A. Glick-Magid, M.
Hoferichter, J. Menéndez and R. Schiavilla. A. B., S. G. and E. M. are supported by the
US Department of Energy through the Office of Nuclear Physics under contracts DE-AC52-
06NA25396, and the LDRD program at Los Alamos National Laboratory. Los Alamos Na-
tional Laboratory is operated by Triad National Security, LLC, for the National Nuclear Se-
curity Administration of U.S. Department of Energy (Contract No. 89233218 CNA000001).
The work of S.G. has also been supported by the DOE Early Career research Program. L. H.
is supported through the U.S. Department of Energy, Low Energy Physics grant DE-FG02-
ER41042 and NSF grant PHY-1914133. This work is also supported by the U.S. Department
of Energy under contract DE-SC0021027 (G. K. and S. P.), a 2021 Early Career Award num-
ber DE-SC0022002 (M. P.), and the FRIB Theory Alliance award DE-SC0013617 (S. P. and
M. P.), and the U.S. DOE NNSA Stewardship Science Graduate Fellowship under Coop-
erative Agreement DE-NA0003960 (G. K.). V. C. is supported by the U.S. Department of
Energy under contract DE-FG02-00ER4113.

The many-body calculations were performed on the parallel computers of the Laboratory
Computing Resource Center, Argonne National Laboratory, and the computers of the Ar-
gonne Leadership Computing Facility via the INCITE grant “Ab-initio nuclear structure and
nuclear reactions”, the 2019/2020 ALCC grant “Low Energy Neutrino-Nucleus interactions”
for the project NNInteractions, the 2020/2021 ALCC grant “Chiral Nuclear Interactions

36



from Nuclei to Nucleonic Matter” for the project ChiralNuc, and by the 2021/2022 ALCC
grant “Quantum Monte Carlo Calculations of Nuclei up to 0O and Neutron Matter” for the
project QMCNuc. This research also used resources provided by the Los Alamos National
Laboratory Institutional Computing Program, which is supported by the U.S. Department of
Energy National Nuclear Security Administration under Contract No. 89233218 CNA000001.

37



Appendix A: Effective Lagrangians for charged-current processes
1. Charged currents in SMEFT and vYSMEFT

The SMEFT Lagrangian includes all operators that are invariant under the SM SU(3).. x
SU(2), x U(1)y gauge group and are built out of SM fields, the left-handed quark and
lepton doublets, Q = (ug,dr)” and L = (v, er)?, the right-handed SU(2) singlets u, d and

e, and the scalar doublet

v 0
H=—U(x

v

(A1)

where h(z) is the Higgs field, and U(x) is a SU(2) matrix encoding the Goldstone modes.
We will also use H = 1o H*.
At dimension-five, the only operator that can be constructed is the LNV Weinberg oper-
ator [96]
LY spr = ememn(LE CO CL,) HH, (A2)

where C' is the charge conjugation matrix. After electroweak symmetry breaking, Eq.
induces a Majorana mass term for active neutrinos. The full, non-redundant, dimension-
six Lagrangian is given in Ref. [95]. For 8 decays, the most important terms are quark
and lepton bilinears, which modify the couplings of the W boson to left-handed quarks
and leptons and induce new right-handed couplings of the W to quarks, and semileptonic

four-fermion operators.
= - = =
['é?\)/IEFT = 05161):3(HT2 D ZLH)(LTIVuL) + OS)Q:’)(HTZ D LH)(QTI’Y”Q)
+Clinad(H Dy H) (" d) + Cly (1" 7 L) (@' Q) +
OO (LieVdo?) - 9 (LieYe, (OF c©) ([ A OF h
LedQ( 6)( Q )+ LeQul( G)E]k(Q U’) + LeQuS( OMVe)Ejk(Q o U) +h.c.|.
(A3)

All dimension-six operators are lepton-number-conserving (LNC). LNV operators arise at
dimension-seven and were constructed in Ref. [I09]. Their contribution to low-energy
charged-current operators were considered in Ref. [102].

In addition to the SM fields, we introduce a multiplet of sterile neutrinos vg, which is

a singlet under the SM group. At dimension-three, this allows to write down a Majorana
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mass term and a Yukawa interaction, so that the renormalizable yYSMEFT Lagrangian is
1 _ .
Losvert = Lsm + ﬁRi’y”auVR — 55% Mgrvr + LHY,vg +h.c.|, (A4)

where Mg is a symmetric n xn complex matrix, and Y, is a 3 xn matrix of Yukawa couplings.

The next interactions relevant to § decay appear at dimension-six,

£l(/68)MEFT = L(SGI\%EFT + nge(DR’Yue)(ﬁuDuH) + C(Ei)l,e(cify“u)(ﬂgyue)

+ O (Qu)(FRL) + Cou(Live)e; (Qd)) + Cp, (Lid)eiy (Qjvg) + huc. (A5)

The first operator induces a coupling of the W boson to v and a right-handed electron.

C(G)

‘uve 18 @ purely right-handed semileptonic charged-current interaction, while the operators

on the second line are scalar and tensor interactions of a right-handed neutrino with quarks
and left-handed electrons. Finally, there are LNV operators at dimension-7 (98|, which we

do not consider here.

2. Charged currents in LEFT

After electroweak symmetry breaking and integrating out the W boson, the operators in
Eq. (A3) and (A5) match onto a LNC /8 decay Lagrangian in a low-energy, SU(3) X Uen(1)
invariant theory (LEFT). In the flavor basis, this is given by

4Gr | _ _ L ~ _ _ _
E(ﬁ) — _T;{ L”Y“dL [eyyuc&% vr + eRfyucgfﬁ VR} + UR’Y“CZR [eL fyuci% VL + €ér ’yucgff){ VR

+7deR |:éR C(S?%VL + ey, Egi%VR} + ’aRdL [éR Cgi)l/L + ér, E(S?J)VR}

+urotdy, éRJWC(TG) vy + arodg éLJWE(Tﬁ) VR} +h.c.. (A6)

Here we follow the conventions of Ref. [102] and denote with unbarred and barred lower
case coefficients, such as ci% and E&fﬁ, lepton-number-conserving operators that, in the flavor
basis, involve active and sterile neutrinos, and thus receive matching contributions from

dimension-six SMEFT and vSMEFT operators, respectively. In the neutrino mass basis,
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and assuming one additional light state, v4, the Lagrangian becomes

4

4G
£ = —7; Z {ﬂLV”dL (éR% [C\(IGIER] oi Vi €L [C\(?L)L} ei Vi)

i=1
T 0(6) L= 0(6) )

+URY AR (ERVu |Cyrr| Vit erVu |Cyre| Vi

taurdr (éL [ngl{} Vit er [Cglﬁ%)L} %‘) +urdr, <5L [Céi)a] V+er [CéﬁL)L] .Vi)

+uro*dp L0 [0%6})&{}

€l

) l/i + l_LRO"quL éRU,uV |:Or([‘?Li| ) l/z'} + h.c.. (A?)

Neglecting lepton-number-violating (LNV) operators, which only arise at dimension-seven
in the vYSMEFT, C\(,GL)L, C’VRL, C’éi)L, C 6)L and C’QL receive contributions from vector axial,

scalar, pseudoscalar and tensor interactions with left-handed neutrinos,

6], = 48], v ], = [4] v

csin), = 2], o I

o) =[] ves (A8)
with ¢ = 1,...,4 and « denotes a charged lepton flavor index, o € {e, u, 7}. In practice,

we will assume SMEFT operators to be diagonal in lepton flavor, and restrict our attention

to the ee components. We will thus drop the flavor subscripts on the ¢® coefficients. The

operators C’\(,ﬁﬁR, C’\(,GIQLR, C’éGL)R C’é%BR and C’%%R involve sterile neutrinos

] [(6) ] * (6) _(6) .
CVLR 1 = _CVL Usi, [CVRR] i = [CVR} e Usi
6) ] [ (6 " 6 (6 "
OéL)R_ i l (SL) U Si [Céng] i = [Cépﬂ o5 Ugi
[ ~6) ] [_(6)] *
_C"E“F){R_ o = _C(T)_ o5 Usi, (A9)

where S in the subscript of the PMNS matrix denote the sterile flavor state. In this case,
we will absorb the factor of Ug; in the coefficient of the effective operators.
In the body of the paper, we adopt the € notation defined in Ref. [5]. For interactions

involving active neutrinos, the relation between the e couplings and the couplings in Eqgs.

(A6) and (A7) is given by

Vud (]- + EL) - C§/61)47 Vud €ER = Cg/'}z{a
Vid €s = céﬁﬁ + céi), Vid€p = cg?{ — C(S(i), Vd €T = c(Tﬁ), (A10)
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while, in the case of sterile neutrinos, we have

Vaér = [e] Us, Vaern = &3] Us (A11)
vwgszzkgy+é@]scgy V@ép::ng—cg}SL@M Mmapz[é?}st@4

The matching between SMEFT, vSMEFT and Eq. (A6]) was carried out in Ref. [102],

and here we report the results. For non-standard interactions involving active neutrinos,

one finds
] Ly = Vaag —* [, - CiiL] L [Ci5hs00)
- 2
6 U™ (6
[Cglf){_ of = 301{3@ Oaf;
- . 2 -
©] _ Y @}*
c =——1C ,
SR 4 9 [TLedQ]
_ . 2
6 v 6 *
C(SL)_ of = _E _Cée)Qu1:| B )
[ O] :_ffcw }* (A12)
_T_aﬁ 2 L LeQu3 504.

Here a and § denote charge lepton flavor indices, «, 8 € {e,pu, 7}, while we are always
assuming the quark flavor indices to be u and d. The matching coefficients of LNC sterile

neutrino operators are

) :fpwr
VL_ oS 2 Hve Sa )
_ 2
_(6 v 6) 1%
], =~ [l -
6] v T 6) v? T 6)
_CSR_ oS = B} [CLqu} ws 4 [CLdQu:| s’
)] _U_2 ) -
_CSL_ ws 9 QurL|g
6] V2 [ () A
_CT J s = T |:CLdQu] s’ (A13)

where S denotes a sterile flavor index. Ref. [102] also reports the contribution of LNV

SMEFT and vSMEFT operators to Eq. (A7).

3. Charged currents in the Chiral Lagrangian

The quark-level SM and SMEFT Lagrangians lead to interactions between pions and

nucleons, which can be organized in chiral perturbation theory [TT0}112] and are the building
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blocks for the derivation of the one- and two-body nuclear currents used in this paper. Axial
and pseudoscalar interactions induce couplings to a single pion,

_ 6 6
Vit ery [C\(/IEL - C\(/P){L] o Vi)

€1

ngzgan;{auw—(eR%Lyng..c@gR]

visr (o [0~ %] wiben [0 g4¢g}+”w (AL)

where ... denotes terms with multiple pions and affect the nuclear currents beyond leading
order. Axial and pseudoscalar interactions induce terms with an odd number of pions,
while scalar and vector terms with an even number of pions. F, = 92 MeV is the pion
decay constant, while B = m2/(m, + mg) ~ 2.8 GeV, at the renormalizations scale p = 2
GeV. The strong coupling of the pion to pseudoscalar operators implies that this interaction
dominates the nucleon pseudoscalar density. In the heavy-baryon formalism, the nucleon

Lagrangian at leading order is

ke [+ €8] )

el

Ly = —TNT { (éR%L [C\/LR + CVRR}
Vit ervu [O\(JGL)L \(/6P){L] o Vi)

—2g45" (éR% [CVLR CVRR] g

+9s (éL [CSLR + OSRR] V+e€Rr [CSI?L + Cé%} _’/i>

€1

g1, (1000 [ O]+ nna [CL] ) }N, (19

where N denotes a non-relativistic nucleon field, with velocity v* = (1,0) and spin S* =
(1,0/2), in the nucleon rest frame. In the absence of non-standard currents, the axial charge

can be extracted from neutron decay. In this work, we adopt for the value of the axial charge
73]
94 _ 12754 + 0.0013. (A16)
gv
This value is slightly larger and with roughly half the uncertainty of the one in the 2018
version of the PDG, ga|,q = 1.2723(23) [113], which is used in the code. In obtaining the
half-life and [ spectrum, we rescale the leading multipoles E; and L;, given in Tables
and by ga/ galg- For the subleading multipoles, C; in particular, the difference is well
within the theoretical error. In the future, one can envision using lattice QCD extraction of

the axial charge [10] [27] 28] [104] [114] [115], which is approaching percent level accuracy.
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The scalar and tensor isovector charges have been computed in lattice QCD [10,[28] [104]
114]. We will use for the scalar and tensor isovector charges the averages of the lattice results

with Ny =2+ 1+ 1 flavors of dynamical quarks, given in Ref. [28| [104]
gs = 1.024010,  gr — 0.989 + 0.033. (A17)

Egs. (A14) and (A15) are sufficient for the construction of one-body currents at LO. The
construction of vector and axial currents to subleading orders is reviewed in Refs. [51] |60,
116} [117]. For the BSM scalar, pseudoscalar and tensor currents, it is sufficient to work at

LO.

Appendix B: Multipole expansion for SM and BSM currents

The derivation of the multipole expansion for SM currents is reviewed in Ref. [72]. The

starting point is the weak Hamiltonian

Gr e
Hw - Evud dng,ul pt(x>‘7\l;—A(X)

G e le
= V[ @ (3700 - Tvoax) — S5 IT4()) (B1)
where
jllfpt = 281Y,VL. (B2)

Here J{}_ 4 denotes the hadronic realization of the quark current wy*(1 — ~5)d, and the
derivation only assumes that such a realization exist. The first few orders of the explicit
representation of Ji/_, in chiral EFT will be given in Appendix |C| Introducing the scalar

and vector under rotations
by = 2(ev|eLyovL|0), and £ = 2(er|e,yvL|0), (B3)

we can write the matrix element

N GF Vud
V2

where |i) and |f) denote the initial and final nuclear states. We recall here that the leptonic

(fev|Hy|i) =

Px (e (Tvn) i —lo (T0_4) fi) , (B4)

tensor can be written as
o — e—i(pe+pu)'xgu’ (B5)
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with
=141 = v5)v,, (B6)
with @, and v, spinors of the electron and electronic antineutrino respectively. The matrix

element becomes

(Fep| i) = _Gf‘/‘_zfud / dxe—ia (é (Tva) i —lo (T0_4) ﬁ> , (B7)
we can define now
(j‘l/tA)fl. (—q) = /dX e*iq.x (j#,A) fi (X) (BS)

We define (jéf_A)fi (—q) = (j‘ﬁ_A);i (q) and, for ease of notation, we write

= (f1 TH () [d) (BY)

that leads to the following matrix element for the interaction Hamiltonian

GF Vud
\/_

Similarly to what has been done in Ref. [72] we can decompose the space part of the leptonic

(fev|Hyli) =

0, h" (B10)

tensor ¢* in terms of spherical coordinates
A=+1
where the e, are defined as [45] (72|
. L. . . .
€q4+1 = :Fﬁ(eql + qu) s €40 = €43 (B12)
where €,3 = q, €2 = 2 X q/|z X q| and €,1 = €, X €,3. The matrix element can now be

expressed as

V2 =

We can expand Eq. (B4) in a sum of terms with well defined total angular momentum.

For the SM current one finds [72]

(fep|H,|i) = f Vi f|{ > V2r2T + 1)(=i) Y O IMa(g) + €5 (q)]

J>1 A==%1

(feD|Hyli) = GrVua (Zohg — (58l by — Y 0l - ha> (B13)

‘|‘Z v 471' 2J -+ 1 £3£J0 ) — goCJo(q)) }‘Z>, (B14>

J>0
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The multipole operators, defined in Ref. [72], are

Connla) = [ P s(an) V() (TE(a) + T3(w) (B15)
Lonla) = & [ @0 Vian)Y o)) (Tv(a) + Tala). (B16)
Enla) = [ @217 % ialan) V(@) (Tv(e) + Tale)). (B17)
Mosela) = - [ Eslis(@nP (@) (Tv(@) + Talo), (B18)

in terms of spherical Bessel function j;, spherical harmonics Y, and vector spherical har-
monics Y75, () (see Ref. [72] for the relevant definitions). The matrix elements Ly, Ey, M,
and C that enter the decay rate in Eqs. and are the reduced matrix elements of
the operators —. The matrix elements between a generic multipole T, between

initial and final nuclear states can be written as

1

J,M TT J,L,MZ = —M —1 JiiMi—
<f f‘ JM| > Oé( ) ( ) m

(Jg, My; Ji, — M| J, —M)Ts(q)
(B19)

with a = 1 for the multipole operator C and @ = —1 for the multipole operators £, £ and
M. We denote with T;(q) the reduced matrix element associated with the generic multipole
operator T;y,. We are now in the position to obtain Eqs. reported in the main text.
We recall that for the problem of interest J; = 0 and Jy = 1 therefore, using selection rules

and the identities of Ref. [45] we arrive at

B = —4mmo<q>%ol (@) (B20)
égo b, = —4mY1,o(d)%L1(q) (B21)
6l 1y = —V2miD}Y] \(~6,~0,6) (AMi(q) + Ex(q)) (B22)

where in the last passage we recall the following definition

4
DY, (0. ~0.6) = | T¥;0.0) (523)

We can now see that taking g along z, Egs. (B20)-(B21) lead to Egs. —. Finally
taking in Eq. (B22) q along % we obtain a linear system of two equation for two different

values of A, whose solution leads to Egs. @ and .
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We can generalize Eq. (B14)) to non-standard currents induced by (v)SMEFT operators.

The most general Hamiltonian including dimension-six operator in the SMEFT has the form

H6' — _ ( ]}S?ptj leptjp + 2( lept)z(]j ( lept) 7{]

lept Ty +Jlept T4 (](l)ept) jv ((l)ept> j£>’

where the leptonic currents are
jis?pt =2 (CéigL + Cé?L) erv +2 <C:§(12R + Cé?R) eLv
jgpt =2 (CSRL C&?L) erv +2 (Cé%% CSI?R) eLv

(Pt

() = (cl + ) e +2 (i + ) e

6 6 6) \ -
(prt> =2 (C\(/LL - C\(/P){L> ey +2 (C\(/L)R - C\(/I-){R> ery"v

= 4CTLLéRcr’“’V + 4CTRRéLcr’“’1/,

and the hadronic currents the nucleon-level realization of
ud = Js, uysd — Jp, uctd — Jr°, uytd — Jy, uy'vysd — —TJa.
Introducing the leptonic matrix elements
ls = (ev]jg™0), = (en|jp™0),  (bo)v,a = (ew|(j"2)"|0)

which are scalar under rotations, and the vectors

(B24)

(B30)

(B31)

1 17 -1e 7 / e [ e
br = =5 (en|(jr™)710),  £p = 2(en|(jr™)°10)  by,a = (er|(jy*h)]0), (B32)

2

the matrix element of the Hamiltonian becomes

<f6D|H6|i> \/—
ey (T)gi+ e (To)gi+ b - (Tv) s+ 4 (Ta)y)

where

(T)5 = IR (T ) = (F1TH).

d*x <_£S(j5)fz‘ —Lp(Tp)si — (lo)v (*7\9),% —(fo)a (jAo)fi

(B33)

(B34)

Since at dimension-six in the ¥YSMEFT the leptonic and hadronic currents have at most

spin one [118], for both scalar/tensor and vector/axial operators, the derivation of the mul-

tipole expansion therefore proceeds as in the SM. Additional vector and axial operators
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generate exactly the same multipoles as in the SM. For scalar and pseudoscalar currents,
only the Cjo multipole is present. Tensor currents generate electric, magnetic and longitu-

dinal multipoles, but not C;. One thus finds

<f|H6|z'>=—7f|{ > V22T + 1)(=i) Y MM (q) + €7 \(q)]

-3 \/WM(%’)" > [A/i/l;;(Q) +E7 ()]
+Z VAT (2J + 1)(=i z;;% (a) + 5" LT3(a))
=2 VARRTE D) (EsCia) + i) }|z'>7 (B35)
with
(€@ Ch (@)} = [ P ds(an)Vine(2){Tsla). To(a)), (36)
and
£30@) = [ o Vlistan) V(@) (), (B37)
e = [ El¥ % irla () TV (a), (B38)
M@ = [ dalislan) Pl @) T(a) (B39)

Similar results were obtained in Ref. [103].

For the calculation of the “He(0") —° Li(1") transition, only mulitpoles with J =1 and
positive parity are needed. This leaves Cio(q, A), L10(q, A), E1x(q, A) and M;,(q, V) for the
SM currents and BSM axial and vector currents. For BSM scalar and tensor currents, the
only non-vanishing multipoles are C{)(q), £1,(q), £L(q) and MT{. The steps to express the
matrix elements of the operators in Eqgs. — in terms of momentum-space currents

are analogous to those discussed for the SM.

Appendix C: Charged currents in chiral EFT

We report in this Appendix, for completeness, the well-known lowest-order expressions
of the SM vector and axial currents [51, [60} [116] (117} [119]. We also report the currents

induced by SMEFT operators. We preliminary define for nucleons of incoming momentum
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p; and outgoing momentum p; the center of mass and relative momenta K; and k; in the
following way

_ Dt P

Ki )
2

ki =p;—pi. (C1)

and similarly q = p; + p2. We can express the charge operator up to the order of interest

as in the following
psald) = > pl(q), (C2)
ve{-2,—1}
and similarly for the current we have
al@) = > ifa). (C3)
ve{-3,0}
where v is the chiral order defined as in Ref. [61]. The leading order ¥ = —2 and next-to-

leading order v = —1 axial charge read as

_ -2 —2
P (a, A) = plih(a A) + pl(a, A)

ga 1 ¢’ 3
== Ta <m—N0'1'K1 - q2+—m3ral 'Q> (2m)°6(ky —q) +1 2, (C4)
_1 . gA o -k
Pl )(q,A)ZZrﬁ(ﬁXTz)a—w% +12, (C5)

where the first term on the second line of Eq. (C4), suppressed by 1/my, contributes
(-2)

recoil

to p (q, A), while the second term, proportional to the electron-neutrino energy qo is
induced by the induced pseuoscalar form factor. Similarly the leading order v = —3 and

next-to-leading order v = 0 contributions to the axial current read

.(—3) . g9a q 3
J5,a (q) = —?7'17(1 Ul—m(jl-q (271') (S(kl—q)—l—l (—>2, (CG)
©) _ (0 q 0) . g9a q o3 - ko
J5a = J5,a(OI) - mq “Jsat 12m (11 X 1), m (K - ki + Ks - ko) 2
+1 42, (C7)

where we have defined for convenience

2

=(0) 9ga 1 cg+ 1 1
.]5,a(q) = 2_f2{26372’ak2 + (Tl X T2)a %Kl - am o1 X q+ <C4 + R O X k2

O'g'kg

2
)

X

+1452. (C8)

48



In the code, we replace g4 with the dipole parameterization of the axial form factor

1
A ) = A 2 C
g9a(lal®) = g T g2/ (C9)

with Ay = 1.05 GeV. c3, ¢4 and ¢g are NLO low-energy constants.
Neglecting isospin-breaking effects, the charged vector current is an isospin rotation of
the isovector component of the electromagnetic current. The leading term is induced by the

isovector magnetic moment and by a recoil correction |51

.1
iD= 712 T (2K1 i1+ ky)on q) (C10)

with ky ~ 3.7. The NLO contributions originate from the exchange of a pion between
nucleon lines, with the vector current coupling either to the pion in flight, or to the nucleon.
This contribution gives

-k ki —k
(o 2+1 2

2
0 = 94 (7 -0
Ja F7Z< X T2, b2 2w? w?

For currents induced by SMEFT and ¥*SMEFT operators, we just retain one-body con-
tributions. Recalling that at the quark level,

a a a

a — a — 7- va — I/T
Js =44, Jp = 0154 Jr = qo 5 (C12)

where ¢ denotes a quark doublet ¢ = (u,d)”, the scalar and pseudoscalar densities and the

tensor currents are then given by

T = g5t 2m)5(ki —q) + 1 e 2, (C13)
- gAB Tl,a
\71;;1) = Tn2—+q270' q(27r)35(k1 — C[) +1 <« 2, (014)
j“( 3) _ ngijk%alf(Qw)fié(kl Q) +1o2 (C15)
j —2qu 5 (2m)°0(ky —q) + 1 <> 2, (C16)

and the currents defined in Section |B|are given by, for example, J% = j%]x + ij%{y where
x and y are isospin indices. The values of the scalar and tensor charges are given in Eq.

(A17). The exact value of g/ is unknown, but should be a number of order 1.
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Appendix D: Fully differential unpolarized decay rate

In the main text we gave the expression for the decay rate, differential in the electron
energy. We give here more differential expressions, which can be used, for example, to extract
corrections to the §-v correlation a. We start from the expression given in Ref. [45][72] for the
specific case of ®He. The starting point is the usual Fermi’s golden rule for the unpolarized

differential decay rate

1 o °pe d°p,
dr = (2m)0(E: = By = B, = B) 55— >N 1M 2n) @) (D1)

M; My sesy

with Py = —p. — p,,. Using the multipole expansion of the matrix element of the SM weak
Hamiltonian, Eq. (B14)), one gets

47
dl' = 27T5(MZ - Ef - Ee - EV)G%'Vu%im

(v ) CIC + (1= ve v, 2v, v, @) L)

1>0 1>0
—24- (Ve +v,) Y Re[CUQ) LI ()] + (1= Ve - @v, - @) Y [IMi(q)*+]Ei(q) ]

1>0 1>1
. . ’p. d’p,

—-2q - (Ve —v,) ; Re [M,(q)E, (q)]} 2n) 2n)? (D2)

with @ = pe + Py, 4 = q/|d| , Ve = Pe//P2 +m? and v, = p,/E,. We notice that for the

transition considered |J; — J;| = £1,0 and m;wy = 1, which allow to simplify the expressions

to

47
dl' = 276(M; — E; — E. — E,)G2V? ———
7T( 2 f e )GF‘/;Ld2JZ+1

(1+ve - v,)|Ci(g; AP+ (1 = ve v, +2ve-qv, - Q)| Li(q; A)]?
=24 - (Ve + v, )Re [Ci(q; A) Ly (q; A)] + (1 — ve - @v, - Q) [|[Mi(q; V)P+|Ei(g; A) ]

d*p. d*p,

_261 ’ (Ve - Vu)Re [MI(CL V)E;(Q7 A)] (27'(')3 (271_)3 :

(D3)
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Retaining terms up to order ¢*> we have

Ar 1
V2
w419

(3= ve - V)L (AR =24 (v + v,) are Re [ O (A) L (4)]

dl' = 276(E; — E; — E, — E.)G%

24+ (ve = v,) qrs Re [ MV (V) EP(A)] + (14 v - v (ar 0 (A)

Har(1 v av, @) 00 = She (B ()EP ()]

(qrz)?
5

d*p. d*p,
(2m)3 (2m)3

(10 v, +2v, - ave - )Re (L0 (AL (4) } (D4)

where we used the expansion in Egs. —. Integrating over the neutrino phase space
and the electron angular variables, we obtain Eq. .

With the definitions in Egs. .— , the coeflicients of the momentum expansion of
the multipole operators are real. Dropping the labels A and V' and using E =2 L1 , We

can write

4 1
drzzwa(Ei—Ef—Ey—Ee)GQVudQJHgl (A

2

(1) 2 (a

2Wors M
LU Y ORI ANE ) G
3 O =) 70
2

(Wor,)? 4 p22+¢\ (c 1 w2 L?
AT0TT) b - 2] — ) = e bt S I B N O et
T3 3el=e) =T 3 O 5 c2-9) L0

10 24— 72\ MP
+(1——5(1—5)+& 8) L
70

1

2 —
(Wro)? cO\? @ 7@
+ % (1—p2) — —gﬁ — (T—de(l =) — ) —;

LgO) Lgﬂ)
2 —
(Wors)? ( ) 1 \peP) SRR
+ (Ve vy,)" — e(l1—e)f 2 - , (D5)
3 3 E2 L&O) Lgﬂ)
where we introduced the scaled variables € and . like in Section |[Ijand we defined
2
~ M& EY
M® =L 0 V2 — |- (D6)
Lj 5 L;
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From Eq. (D5)), we can read the corrections to the f-v angular correlation a, and to the
subleading correlations C(,q) [4], proportional to (v, - v,)?. From these expressions, we find

that the §-v correlation coefficient, averaged over energy, is

(a) = —é —2.3(4)-107* - 1.2(2) - 1073, (D7)
where we used GFMC matrix elements, and we did not include radiative corrections. The
second term is the correction linear in M 1(1) and Cfl). The term proportional to M 1(1) averages
to almost zero, leaving behind a small contribution from 01(1). The last term appears at
second order in the multipole expansion. Both corrections are still below the experimental
sensitivity [120].

For tensor and pseudoscalar currents, we find that the interference with the SM is given,

at lowest order in the multipole expansion, by

47 4m, d®p, d°p
dl' = 276(E; — E; — E, — E.)G2V? S et -
mo( f )GV 1 E, @n) @n)

erRe (B1 (0, DB (0. A) + L0, I 0, ) — %0 R (Cya. PIL (6, 4) (D9

which, using the expansion in Eqs. — becomes

, 4m  4m. d&’p, dPp.
YT +19E, (2m)3 (2m)3

dl' = 2m§(E; — Ef — E, — E.)G%

[ET (B @EP @A) + L)L) - T Wors <<1 —e)teve: vy) (P)Ly (A)} ,
(D)

so that tensor interactions only induce a Fierz interference term, while pseudoscalar inter-
actons also affect a. The expressions for the decay rates in the presence of sterile neutrinos

can be found in a similar way.

Appendix E: Higher-order electroweak and kinematic recoil corrections
1. Coulomb and radiative corrections

The multipole expansion of the weak Hamiltonian described at the start of this work does
not explicitly take into account electromagnetic interactions. The treatment of such effects

in nuclear § decay has historically been divided into three parts: (i) Coulomb corrections
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via the outgoing  particle in the field of the final atomic state; (i¢) infrared-divergent
contributions from various virtual and real emission photon processes up to some O(a™Z™)
(m > n) not already contained in (¢); (i77) the remainder of electroweak radiative corrections,
which are independent of the process kinematics. The latter two are typically described as
outer and inner radiative corrections, respectively, and are the topic of a significant body of
literature [121}[122] and will only be plugged into the final result. The Coulomb corrections,
on the other hand, are of interest and to first order can be understood as the elastic response
of the yW box diagrams. Higher-order (i.e. O{[aZ]"}) behaviour can then be absorbed
by substituting the electron plane wave by a solution of the Dirac equation in the static,

spherical potential of the atomic final state, ¢.(r, p.), and writing the Hamiltonian as

My; = / &r 8.(r, pe)r(1 — +°)o(py)

X /(;178)362'3~r%[<f(pf + P — )|V + Ai(p:)) + (f(pp)|V, + Auli(p; — pe + 8))].

(E1)

The multipole expansion then proceeds analogously, and the most immediate modification
is the introduction of the Fermi function (Eq. ), i.e. the j = 1/2 large components of
the electron wave function for a point charge. The small and 7 > 1/2 components show up
as small modifications in the radial integrals folded together with the nuclear current and
introduce additional small terms to the differential decay rate. These are well-known in the
literature and can be found in several places [123, [124]. Additional correction terms are
well-known for moving past a point-charge model of the nucleus and introducing additional
subdominant electromagnetic corrections such as screening by atomic electrons and atomic
exchange processes. We use the results of Ref. [77] by translating our results into the

Behrens-Biihring formalism [92] [125]

LY =CV3'FQ);,  E) =CV6'F{) (E2a)
R R
Ci = _CT_AFl(?()); M = —CT—VFffﬁ (E2b)
5 1L (R\* 4 VIAF©
L= Cﬁ — (5 Fiop —2V?2 Fio1) (E2c)
5 2 (R\® 4,0 VIAF©)
Ef=C 3\ (57 Fio1 + V27 Fy) (E2d)
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where R is the nuclear radius of the uniformly charged sphere, i.e. R = \/5/3(r?)ex, and
C = /2J; + 1/4xn. This results in the following additional terms

35 200W,R 70e 7

reN2 (EOE? 20 4
s o) (=242 B
+<R)( > )\ T3 A0 (E3)

where the fractional prefactors were calculated assuming a uniformly charged sphere as

described in Ref. [77].

6 233 aZ 3.2 12
CCoulomb(Z7 5) = OZZW()R [|L?|2 (— S @ _'ue )

Putting everything together, the inclusion of electroweak corrections modifies the 3 spec-

trum by

T o (1+ AR(1+ 5w Fo(Z ) Lol Z, 2)S(Z,2)Co(e) + Cooon(Z,5)] (B4

where A}, is the inner radiative corrections to vector transitions (the difference induced
by axial transitions is small and absorbed into an experimentally determined g4 value),
dr(e) are outer radiative corrections to O(a3Z?). Further, FyLg is the Fermi function for a
uniformly charged sphere, S describes the shielding of the nuclear charge by atomic electrons
and Ceooulomn(Z, €) are modifications due to higher-order Coulomb corrections folded with

the nuclear current discussed above.

2. Kinematic recoil corrections

In App. We defined the multipole expansion of the weak Hamiltonian as introduced by
Donnelly and Walecka [72]. This expansion, however, is not Lorentz covariant but implicitly
performed in the Breit (brick wall) system, i.e. where p; = —py. In the approximation of
an infinitely massive nucleus the Breit and lab frames agree. For a consistent description,
however, results must be Lorentz boosted back into the lab frame, leading to additional
O(q/M) results. This is discussed in more detail in Ref. [92] and will not be repeated here.

The kinematic recoil corrections originating from the phase space integral can also be

easily written as a multiplicative factor

(E5)

dFO(‘M’Z(l—l—SEe_WO_Spe"vV)

M
where the final term gives a finite contribution in the neutrino angular integral when com-

bined with the -v correlation.
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Combining both leads to well-known expressions for the total kinematic recoil corrections

[77, [126]

2W; 10E. 2m?
0 e (E6)

Bx w1l =33 300 ~ 3B

where we kept only terms to first order in ¢/M, thereby neglecting terms of O(107°) at

most.
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