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Characterizing topological excitations of a long-range Heisenberg model with trapped ions

Stefan Birnkammer,1,2,* Annabelle Bohrdt,1,2 Fabian Grusdt,3,1,2 and Michael Knap 1,2

1Department of Physics, Technical University of Munich, 85748 Garching, Germany
2Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, München 80799, Germany

3Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München,
Theresienstraße 37, München D-80333, Germany

(Received 12 January 2021; revised 29 March 2022; accepted 17 May 2022; published 3 June 2022)

Realizing and characterizing interacting topological phases in synthetic quantum systems is a formidable
challenge. Here, we propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power-
law decaying interactions. Based on analytical and numerical arguments, we show that this model features a
quantum phase transition from a liquid to a valence bond solid that spontaneously breaks lattice translational
symmetry and is reminiscent of the Majumdar-Ghosh state. The different phases can be probed dynamically
by measuring the evolution of a fully dimerized state. We moreover introduce an interferometric protocol to
characterize the topological excitations and the bulk topological invariants of the interacting many-body system.
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Introduction. Recent progress in realizing synthetic quan-
tum systems has offered new opportunities for the experi-
mental characterization and control of topological quantum
phases. Topologically nontrivial band structures have been
created by periodic driving [1–5], interaction-induced chiral
propagation of excitations have been studied in the few-body
limit of quantum Hall states [6,7], symmetry protected topo-
logical (SPT) phases have been realized [8–11], and quantum
spin liquids have been explored with quantum devices [12,13].
While first steps have been taken in realizing interacting
topological phases, several challenges remain, in particu-
lar concerning the characterization and control of individual
topological excitations.

Here, we propose the realization of a dimerized va-
lence bond solid with topologically nontrivial excitations
in a Heisenberg model with power-law interactions using
trapped ions [14]. This phase arises due to frustration from
long-range interactions and is adiabatically connected to the
symmetry-broken Majumdar-Ghosh phase [15–17]. When
locally deforming this Hamiltonian to introduce bond alter-
nating couplings, it realizes a Haldane SPT phase [18]. Our
model therefore illustrates the interplay between spontaneous
symmetry breaking and toplogical order. To realize the long-
range Heisenberg model in a trapped-ion setting, we propose a
Floquet protocol that consists of periodic globally applied π/2
pulses around different axes of the Bloch sphere; see Figs. 1(a)
and 1(b). We determine the phase diagram and propose an
interferometric protocol to characterize the topological exci-
tations and the bulk topological invariants of our interacting
many-body system.

Model. We investigate a long-range spin-1/2 Heisenberg
chain with open boundaries

HLR(α) =
∑
i< j

J

|i − j|α
[
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j

]
, (1)
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where α is the power-law exponent of the long-range inter-
actions and J > 0 is their typical energy scale (for a spin-1
variant of the model see Ref. [19]). When considering only
nearest and next-to-nearest neighbor couplings, HLR(α) re-
duces to the Majumdar-Ghosh (MG) model [15,16], which
exhibits a phase transition from a liquid to a dimerized va-
lence bond solid that breaks the translational invariance of the
lattice [17].

The long-range Heisenberg model HLR reduces for α →
∞ to the conventional Heisenberg model with nearest-
neighbor couplings, whose ground state is a gapless spin
liquid with power-law decaying antiferromagnetic correla-
tions [20]. For the opposite limit of α → 0, each spin interacts
equally with all the others and the ground states correspond to
arbitrary singlet pairings (see Supplemental Material [21] and
Refs. [22–24] therein). For small but finite α, it is energeti-
cally favorable to form singlets on neighboring sites as in the
Majumdar-Ghosh state

|MG〉 =
L/2∏
i

(|↑〉2i|↓〉2i+1 − |↓〉2i|↑〉2i+1)/
√

2. (2)

As a consequence, the ground state breaks translational sym-
metry. Due to the different behavior of the ground states in
the two limits, at least one quantum phase transition occurs at
some critical αc.

To quantitatively determine the phase diagram, we per-
form density-matrix renormalization group (DMRG) simula-
tions [25,26] and compute the dimerization order parameter

di = �S2i · (�S2i+1 − �S2i−1) (3)

as a function of α and for different system sizes L; see
Fig. 1(c). The data for the thermodynamic limit was extrap-
olated from finite-size results by a scaling ansatz |α − αc|ν .
Expressions without spatial indices, indicate in the following
averages over the bulk. In our numerical studies, we represent
the Hamiltonian as a matrix product operator, in which we
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FIG. 1. Floquet protocol and phase diagram. (a) Interactions be-
tween ions in a linear Paul trap are of Ising type Hxx = J/|i − j|α Ŝxi Ŝxj
with discrete Z2 symmetry. (b) Periodically applying global π/2
pulses around different axes of the Bloch sphere creates interactions
along all three spin directions Hxx, Hyy, and Hzz. (c) The high-
frequency limit of such a protocol realizes a long-ranged Heisenberg
model HLR with continuous SU(2) symmetry. This model features a
quantum phase transition from a dimerized to a liquid phase. Inset:
A Binder cumulant analysis of the dimerization determines a critical
power-law exponent of αc ≈ 1.66.

approximate the power-law coupling by a sum of exponen-
tials [26,27]. An analysis of the Binder cumulant 〈d4〉/〈d2〉2,
that is expected to be scale-independent at criticality [28,29],
indicates a quantum phase transition from a dimerized phase
to a liquid at αc ≈ 1.66 (inset). Precisely extracting the critical
point is a formidable challenge, as the transition is in the
Berezinskii-Kosterlitz-Thouless universality class [17,30,31].
We emphasize, however, that for the following discussions
the precise location of the phase transition is not crucial.

Floquet protocol. Collective vibrations of an ion crys-
tal mediate long-range Ising interactions Hxx = ∑

i< j J/|i −
j|αSxi Sxj [32,33]. Previous works suggested to use multiple
phonon branches [34] and quasiperiodic driving [35] to re-
alize Heisenberg type interactions, or have employed digital
simulation schemes [36]. Here, instead we suggest periodic
driving [37–40] to promote the discrete Z2 symmetry of
the Ising interactions to the continuous SU(2) symmetry of
the Heisenberg interactions. The protocol consists of π/2
pulses around different axes to encircle a surface of the Bloch
sphere Fig. 1(b); see Ref. [38] for a related protocol and
Refs. [41–43] for recent experimental realizations. The dura-
tion δ of the π/2 pulses can be chosen to be much shorter
than the waiting time �, leading to an effective period of
≈3�. This way the many-body state rotates periodically from

FIG. 2. Dynamical phase diagram. (a) Evolution of the dimer-
ization d under the Floquet dynamics for an initial |MG〉 state of
singlets. The evolution is governed by HLR(α) for α ∈ {0.2, 0.5, 1.5}
and a chain of 64 sites. Inset: We illustrate the relative deviation
σ ≡ |(d�J→0 − d�J )/d�J→0| of the Floquet protocol from the exact
evolution for different values of �J and α = 0.5. (b) Thermal phase
diagram for HLR(α) including the effective temperature T ∗ of our
system (solid line) and a schematic of the phase boundary between
the dimerized and the translational invariant phases (dashed dome)
for a system of 18 sites.

the x over y to z direction. These unitary transformations can
also be interpreted to act on the Hamiltonian instead of the
many-body state, leading to an effective time evolution with
alternating Hxx, Hyy, and Hzz Ising couplings. Provided the rate
�−1 is fast compared to the typical interaction strength J , a
high-frequency expansion [44] for the effective periodic drive
can be computed, which to leading order yields the SU(2)
invariant Hamiltonian Eq. (1).

Singlet evolution. As a direct application of our Floquet
protocol, we compute the time evolution of the long-range
Heisenberg model HLR(α) for an initial singlet state |MG〉 us-
ing the time-dependent variational principle for MPS [45–49].
For quenches to small α, we find that the dimerization remains
finite at long times, whereas it quickly decays to zero for
quenches to large α; see Fig. 2(a). To compare the discrete
Floquet evolution with the exact dynamics of HLR(α), we
introduce the relative deviation σ ≡ |(d�J→0 − d�J )/d�J→0|,
shown in the inset of Fig. 2(a) for α = 0.5. We find that
the Floquet protocol accurately describes the SU(2) invariant
Heisenberg evolution for �J = 0.1 (depending on α, larger
values of �J ≈ 1 can be safely reached [21]).

The energy density of the dimerized initial state is
〈MG|HLR(α)|MG〉/L = −0.375J independent of α, which
is larger than the ground-state energy density of HLR(α).
Hence, the quench deposits an extensive amount of energy
into the system. According to the eigenstate thermalization
hypothesis [50–52], which is expected to hold for generic

L241103-2



CHARACTERIZING TOPOLOGICAL EXCITATIONS OF A … PHYSICAL REVIEW B 105, L241103 (2022)

interacting systems as this, a subsystem should thermalize to
an effective temperature T ∗, that is consistent with the energy
density deposited in the system. The effective temperature
can then be evaluated self-consistently from the condi-
tion 〈MG|HLR(α)|MG〉 = tr[HLR(α)e−HLR(α)/T ∗

/Z] where Z
is the partition sum. We approximate the thermal expectation
value using the typicality approach [53] and evolve 50 random
initial states in imaginary time using exact diagonalization
on 18 spins (see Ref. [21] for system size dependence) to
extract effective temperature T ∗ as a function of α; Fig. 2(b).
From the dynamical phase diagram, we find that for α � 1
the effective temperature is low enough such that a finite
dimerization is supported in the steady state, whereas it decays
to zero for α � 1, consistent with our observations on the time
evolution in Fig. 2(a). Despite the one-dimensional character
of our system, a sharp finite-temperature phase transition can
arise in the thermodynamic limit because of the long-range
interactions [54].

Measuring the Zak phase. Starting from the |MG〉 state,
a state close to the ground state of HLR(α) can be prepared
by adiabatically tuning α as long as the system remains in
the dimerized phase. We will now present a protocol to mea-
sure a topological order parameter of such a state. Following
Refs. [55,56], we introduce the SU(2) transformation

� : �Si · �S j �→ Ŝz
i Ŝ

z
j + 1

2 (eiϕ Ŝ+
i Ŝ

−
j + H.c.), (4)

where ϕ is a compact variable in the interval [0, 2π ]. The
SU(2) transformation is designed such that it affects only
couplings crossing the 
th bond between sites 
 and 
 + 1,
which separates our system into a left SL and a right SR part.
All interactions within one subsystem remain unchanged. As
a consequence we obtain for every choice of the bond 
 a
new family of Hamiltonians HLR(α; ϕ) parametrized by ϕ ∈
[0, 2π ].

A key for obtaining a quantized topological order parame-
ter is that the chosen parametrization retains the time-reversal
symmetry of HLR(α; ϕ) [55]. Tuning ϕ continuously through
the interval [0, 2π ], describes a closed loop C
 within the set
of Hamiltonians. This allows us to introduce the Zak phase

γ Zak

 =

∮
C


dϕ〈ψ (ϕ)|i∂ϕ|ψ (ϕ)〉, (5)

where |ψ (ϕ)〉 is the ground state of HLR(α; ϕ). The Zak
phase is well defined, provided the corresponding path C


is followed adiabatically, which can be ensured because
the dimerized phase is gapped; see the Supplemental Mate-
rial [21]. In order to gain some intuition about the Zak phase,
we first apply the SU(2) transformation to the fully dimerized
|MG〉 state. When the bond 
 lies within a singlet, the transfor-
mation gives (|↑ ↓〉 − eiϕ |↓ ↑〉)/

√
2. Evaluating Eq. (5) for

this particular case reveals a Zak phase of π [57,58], while it is
zero when the bond 
 lies between two singlets. For the |MG〉
state and thus also for the adiabatically connected ordered
ground states of HLR we consequently expect to find a Zak
phase alternating between values of 0 or π when traversing
the bond 
 through the system.

Before we numerically compute the Zak phase of the
dimerized state, we introduce a protocol to experimentally
measure it in a trapped ion setting. Let us first gain some
intuition: To realize a transformation similarly to (4), we can

use an effective (in general time-dependent) magnetic field
Beff
i (t ) acting on the spins of HLR(α), that is proportional

to a step function with the step being located at bond 
.
Using the Peierls substitution, the magnetic field can be
absorbed into Hamiltonian as HLR(α; ϕ(t )) = ∑

i< j J/|i −
j|α[Sz

i S
z
j + 1

2 (eiϕi j (t )S+
i S

−
j + H.c.)], where ϕi j (t ) ≡∫ t

0 dt
′[Beff

j (t ′) − Beff
i (t ′)]. A phase is only picked up, when

bond 
 is crossed as Beff
i is assumed to be constant except

across bond 
. The time t is chosen such that the phase ϕ

is adiabatically tuned from 0 to 2π . The Zak phase can be
measured using a Ramsey sequence to cancel dynamical
phases [59–61].

In order to implement this approach in a chain of ions, we
identify the leftmost ion as an ancilla qubit τ z that operates
on the same computational basis and has the same power-
law coupling to the other spins of the chain

∑
i J/|i|ατ zŜzi ≡∑

i B
eff
i Ŝzi . The protocol then consists of the following steps;

see Figs. 3(a) and 3(b) for an illustration: (i) After ground-
state preparation of the chain initialize the ancilla qubit in a
superposition state by applying a π/2 rotation. This leads to
an opposite sign in Beff for the two ancilla states and in turn
allows for a cancellation of the dynamical phase. (ii) Perform
global π/2 rotations on the system around different axes, as
discussed in Fig. 1(c), to realize the long-range Heisenberg
dynamics. During that time perform equally spaced π rota-
tions on the ancilla qubit to cancel the phase accumulation
from interaction with the remaining chain. (iii) After a Floquet
period, apply a π rotation only on the right part of the system
to create a kink in the effective field Beff

i at bond 
; see
Fig. 3(b). Accumulate phase on the ancilla and apply another
π rotation to restore the couplings within the system. Steps (ii)
and (iii) are then repeated until ϕ covers the whole interval
[0, 2π ]. (iv) Apply a π pulse to the left part of the system,
enabling an inverse rotation to compensate the effect of the
protocol on the wave function of the system. (v) Measure
the phase of the ancilla, which corresponds to the many-body
Zak phase at bond 
. For a more detailed description, see the
Supplemental Material [21]

We now numerically evaluate the Zak phase Eq. (5). Using
DMRG we compute the ground state for 20 discretized steps
along C
 for a system of 32 sites and α = 0.2, see Fig. 3(d),
which confirms that the Zak phase is alternating between 0
and π , a characteristics of a dimerized state. We also confirm
the adiabaticity of the computation by calculating the prod-
uct of projectors into the ground state P (ϕ) = |ψ (ϕ)〉〈ψ (ϕ)|
during each step of the protocol, which attains large values
between 0.75 to 1.

In the proposed experimental protocol, the effective mag-
netic field has the required jump at bond 
 to introduce the
local SU(2) transformation, but also varies slowly across the
other bonds. By numerically simulating the protocol of Fig. 3,
we find that the phase accumulated on the ancilla has the
characteristic bond alternating pattern for dimerized states;
see the Supplemental Material [21] for details, where we also
analyze the number of required operations.

Topological excitations. In order to characterize the topo-
logical excitations of the dimerized phase, we now consider a
chain with an odd number of sites. In this case, singlets cannot
fully cover the chain, and hence an unpaired spin-1/2 (spinon)
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FIG. 3. Measuring many-body Zak phases with interferometry.
(a) Single Floquet period and (b) complete pulse sequence for ex-
tracting the Zak phase; see main text for details. (c) The effective
field Beff acting on the system during the step (iii) of the protocol has
a sign change at the bond where we measure γ Zak


 . (d) Performing
measurements for different 
 yields alternating Zak phases of 0 or π .
Data are evaluated for a system of 32 sites and α = 0.2.

excitation is always present. Due to prominent examples such
as the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [62], we
are used to the existence of spin-1/2 states in interacting
topological phases. These degenerate modes provide a clear
signature for topological order and are typically localized at
the edges of the system. In contrast to the usual edge modes,
a measurement of the magnetization for HLR indicates that the
excitation is delocalized over the entire lattice; see Fig. 4(a).
In order to obtain an analytical understanding, we introduce a
variational state that describes a delocalized spinon with wave
vector q separating two |MG〉 states with singlets on even and
odd bonds, respectively [21]. The spinon hence represents a
defect in the topological order; see inset of Fig. 4(a). Varia-
tionally optimizing the ground-state energy with our ansatz
yields q = πL

2(L+1) , which is consistent with the oscillatory
magnetization pattern in Fig. 4(a).

We also characterize the Zak phase for this state. For odd
numbers of sites, the dimerized ground state of the system is

FIG. 4. Topological excitations. (a) Local magnetization for a
spinon in a lattice of 33 sites and α = 0.2. We compare the DMRG
result with a variational ansatz delocalizing a single spinon. (b) This
bulk excitation swaps the Zak phase of even and odd bonds as the
bond 
 traverses the system.

twofold degenerate due to the SU(2) symmetry of our model
and hence we cannot construct an adiabatic path C
. To lift the
degeneracy, we apply a weak local magnetic field in the center
of the system, which introduces a small gap. This magnetic
field breaks time-reversal symmetry. From the arguments of
Hatsugai [55,56] it then follows that the Zak phase is not quan-
tized in general. As a consequence, we expect a monotonous
change in the Zak phase as we traverse the system which can
be interpreted as a mobile domain wall separating two dis-
tinct topological phases. This is consistent with our results in
Fig. 4(b), which also show that the Zak phase of even and odd
bonds differ by π as advocated by the domain wall picture.

Outlook. The Heisenberg model with long-range antiferro-
magnetic interactions exhibits a phase transition from a liquid
to a dimerized valence bond solid that spontaneously breaks
the lattice translational invariance. We propose Floquet proto-
cols for trapped ions to realize this model and to characterize
the nature of the delocalized topological excitations as well as
the bulk topological invariants.

For future studies, it would be interesting to introduce
an easy-axis anisotropy by adjusting the Floquet periods be-
tween the π/2 pulses to realize a deconfined quantum critical
point between a dimerized and a Néel ordered phase in our
one-dimensional model [63,64] or to explicitly break the
translational symmetry by introducing bond-alternating cou-
plings to realize a Haldane symmetry protected topological
(SPT) phase with localized edge states [18]. A future chal-
lenge is to create interacting higher dimensional topologically
ordered many-body states with synthetic quantum matter that
are characterized by a topological entanglement entropy and
fractional excitations [65]. With our protocols, interactions in
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two dimensional triangular lattices of trapped ions [66] could
be promoted from Z2 to SU(2) symmetry, with the prospect
of realizing exotic frustrated mangetic states or even quantum
spin liquids.
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