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This work studies three multigrid variants for matrix-free finite-element computations on locally refined
meshes: geometric local smoothing, geometric global coarsening (both h-multigrid), and polynomial global
coarsening (a variant of p-multigrid). We have integrated the algorithms into the same framework—the open
source finite-element library deal.II—, which allows us to make fair comparisons regarding their imple-
mentation complexity, computational efficiency, and parallel scalability as well as to compare the measure-
ments with theoretically derived performance metrics. Serial simulations and parallel weak and strong scal-
ing on up to 147,456 CPU cores on 3,072 compute nodes are presented. The results obtained indicate that
global-coarsening algorithms show a better parallel behavior for comparable smoothers due to the better
load balance, particularly on the expensive fine levels. In the serial case, the costs of applying hanging-node
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constraints might be significant, leading to advantages of local smoothing, even though the number of solver
iterations needed is slightly higher. When using p- and h-multigrid in sequence (Ap-multigrid), the results
indicate that it makes sense to decrease the degree of the elements first from a performance point of view
due to the cheaper transfer.
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1 INTRODUCTION

Many solvers for finite-element methods (FEM) rely on efficient solution methods for second-
order partial differential equations (PDEs), e.g., for the Poisson equation:

—Au = f, (1)

where u is the solution variable and f is the source term. Poisson-like problems also frequently
occur as subproblems, e.g., in computational fluid dynamics [10, 30, 59] or in computational plasma
physics [80]. Efficient realizations often rely on adaptively refined meshes to resolve geometries
or features in the solution.

Multigrid methods are among the most competitive solvers for such problems [36]. The three
basic steps of a two-level algorithm are (1) presmoothing, in which the high-frequency error com-
ponents in the initial guess are removed with a smoother; (2) coarse-grid correction, in which a
related problem on a coarser grid is solved, requiring intergrid transfer operators and a coarse-grid
solver; and (3) postsmoothing, in which the high-frequency error components introduced during
interpolation are removed. Nesting two-level algorithms recursively gives a multigrid algorithm.
In library implementations, these steps are generally expressed as operators. The operations can
be generally chosen and/or configured by the user and strongly depend on the multigrid variant se-
lected. This publication discusses massively parallel multigrid variants for locally refined meshes,
including the efficient implementation of their operators, compares them with each other, and
gives recommendations regarding optimal configurations.

1.1  Multigrid Variants

Which multigrid approach to choose depends on the way the mesh is generated and on the un-
derlying finite-element space. If the mesh is generated by globally refining each cell of a coarse
grid recursively, then it is a natural choice to apply geometric multigrid (abbreviated here as h-
multigrid), which uses the levels of the resulting mesh hierarchy as multigrid levels. Alternatively,
in the context of high-order finite elements, it is possible to create levels by reducing the polyno-
mial order of the shape functions p of the elements, while keeping the mesh the same, as done by
polynomial multigrid (abbreviated as p-multigrid). For a very fine, unstructured mesh with low-
order elements, it is not as trivial to explicitly construct enough multigrid levels and one might
need to fall back to non-nested multilevel algorithms [1, 22, 23] or algebraic multigrid (AMG; see
the review by Stiiben [97]). These basic multigrid strategies can be nested in hybrid multigrid
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Fig. 1. Visual comparison of geometric multigrid methods for locally refined meshes. Top: (Geometric) local
smoothing. Bottom: (Geometric) global coarsening. Local smoothing only considers cells strictly on the same
refinement level. This typically introduces an internal boundary (at the refinement edge) when the cells do
not cover the whole computational domain. Only if they do (here for level 1 and 0, not for level 2), one can
switch to a coarse-grid solver. Instead, global coarsening considers the whole domain and typically intro-
duces hanging nodes on the multigrid levels. Global coarsening tends to involve work on more cells in total
compared to local-smoothing algorithms but often reduces the number of cells per multigrid level quicker
on the finer levels. The gray shading indicates active cells.

solvers [32, 71, 84, 85, 89, 93, 98] and, in doing so, one can exploit the advantages of all of them
regarding robustness. Most common are hp-multigrid, which combines h- and p-multigrid, and
AMG as black-box coarse-grid solver of geometric or polynomial multigrid solvers.

All the above-mentioned multigrid variants are applicable to locally refined meshes. However,
local refinement comes with additional options (local vs. global definition of the multigrid levels, re-
sulting in local(-smoothing) and global(-coarsening) versions of geometric/polynomial multigrid)
and with additional challenges, which are particularly connected with the presence of hanging-
node constraints, as indicated in Figure 1.

1.2 Related Work

Some authors of this study have been involved in previous contributions to the research field of
multigrid methods. Their implementations are used and extended in this work.

In References [27, 28, 64, 66], matrix-free and parallel implementations of geometric local-
smoothing algorithms from the deal.II finite-element library were investigated and compared
with AMG, demonstrating the benefits of using matrix-free implementations for both CPU and
GPU but also non-optimal scalability due to load imbalance for simple partitioning strategies.
Local-smoothing algorithms have been a core module of deal.II for many years; however, they
gained much maturity, flexibility, and performance due to the above-mentioned thorough stud-
ies. In Reference [66], their performance was compared to a state-of-the-art implementation of a
Poisson solver from the literature [36]: A speedup of 30% for quadratic elements and a speedup
of a factor of 8 for fourth-degree elements on comparable hardware underline the high node-level
performance of the code.

Independently of local smoothing, an efficient hybrid multigrid solver for discontinu-
ous Galerkin methods (DG) for globally refined meshes was developed and presented in
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Reference [32]. It is part of the deal.II-based incompressible Navier—Stokes solver ExaDG [10]
and relies on auxiliary-space approximation [5], i.e., on the transfer into a continuous space, as
well as on subsequent execution of p-multigrid, A-multigrid, and AMG. That solver was extended
to leverage locally refined meshes, using a geometric/polynomial global-coarsening algorithm af-
ter the transfer into the continuous space, to simulate the flow through a lung geometry [60]. Its
functionalities have been generalized and are the foundations of the new global-coarsening im-
plementation in deal.II [7, 9], targeting both h- and p-multigrid, in addition to the established
geometric local-smoothing implementation.

1.3 Our Contribution

In this publication, we consider three well-known multigrid algorithms for locally refined meshes
for continuous higher-order matrix-free FEM: geometric local smoothing, geometric global coars-
ening (both h-multigrid), and polynomial global coarsening (a variant of p-multigrid). We have im-
plemented them into the same framework, which allows us to compare their implementation com-
plexity and performance for a large variety of problem sizes. This has not been done in an extensive
way in the literature, often using only one of them [28, 99]. Furthermore, we rely on matrix-free op-
erator evaluation, which provides optimal, state-of-the-art implementations in terms of node-level
performance on modern hardware [66] and hence exercise the methods in a challenging context
in terms of communication costs and workload differences.

The algorithms presented in this publication have been integrated into the open source finite-
element library deal.II 8] and are part of its 9.4 release [9]. All experimental results have been
obtained with small benchmark programs leveraging on the infrastructure of deal.II. The pro-
grams are available on GitHub under https://github.com/peterrum/dealii-multigrid.

The results obtained in this publication for continuous FEM are transferable to the DG case,
where one does not have to consider hanging-node constraints but fluxes between differently re-
fined cells. In the case of auxiliary-space approximation [60], this difference only involves the
finest level and the rest of the multigrid algorithm could be as described in this publication.

The remainder of this work is organized as follows. In Section 2, we give a short overview of
multigrid variants applicable to locally refined meshes. Section 3 presents implementation details
of our solver, and Section 4 discusses relevant performance metrics. Sections 5 and 6 demonstrate
performance results for geometric multigrid and polynomial multigrid, and, in Section 7, the solver
is applied to a challenging Stokes problem. Finally, Section 8 summarizes our conclusions and
points to further research directions.

2 MULTIGRID METHODS FOR LOCALLY REFINED MESHES

Algorithm 1 presents the basic multigrid algorithm to solve an equation system of the form Ax = b
arising from the FEM discretization of (1) (A is the system matrix, b is the right-hand-side vector
containing the source term f and the boundary conditions, and x is the solution vector). In the
first step, data are transferred to the multigrid levels, after which a multigrid cycle (in this study,
a V-cycle with the steps presmoothing, computation of the residual, restriction, solution on the
coarser grid, prolongation, and postsmoothing) is performed. Then, the result is copied back from
the multigrid levels. The steps to copy data from and to the multigrid levels are not strictly needed
in all cases; however, these steps are required by local smoothing and can be used to switch from
double to single precision to reduce the costs of multigrid if it is used as a mixed-precision precon-
ditioner [64]. The multigrid algorithm is complemented with the algorithms of a smoother (e.g.,
Chebyshev smoother [2]) and of a coarse-grid solver once the recursion is terminated. Instead of
using multigrid as a solver, we choose to precondition a conjugate-gradient solver [45] with one
multigrid cycle per iteration as this is often more robust. These algorithms are not presented here.
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ALGORITHM 1: Multigrid V-cycle called recursively on each level [ to solve Ax = b. It
operates on vectors [, ..., b(M] and [x(®, ..., x(P)], which are filled/read on the finest level
L, and uses the level operators AD smoothers, intergrid operators, and coarse-grid solvers. In
the case of local smoothing, we distinguish between interior DoFs (not labeled specially) and

DoFs on the internal boundaries (xg)) as well as decompose the level operator AY) into Agl;,

A(Slé Ag)s and Agj),z (see the explanation in Section 2.1). For global coarsening, AD = A(sl,)s The
arrows in braces on the right indicate the type of communication at each step: (§) involves
vertical communication between levels; (&) involves horizontal communication on the same

level. Additional steps needed by local smoothing are highlighted in gray.
1 if [ =L then

2 ‘ O, ..., pD)] — b, /* copy to multigrid level(s) */
3 if [ = 0 then

1 ‘ x(0) CoarseGridSolver(A(O), b(o)) ; /* coarse-grid solver: A L A(Sog (/) */
5 else

6 xD Smoother(Ag;, 0, 0, b(l)) ; /* presmoothing with xg) =0 (&) */
7 ("(l), ",(;”) — (b(l) —Agl;x(l), —A(,?;x(”) ; /* compute residual (&) *x/
8 =D  p(=D Restrictor (r(l),rél)) ; /* restrict residual ({) */
9 VCycleLevel(l —1); /* recursion */
10 (x(l), xi”) x4 Prolongator (x<l_1)) ; /* prolongation ({) */
1 x) Smoother(Ag;, xD, x(E/), b(l)) ; /* postsmoothing with x}(:.l) #0 (&) */
12 ifl=Lthen‘

13 ‘ X [x(()f) ..... x(L)]; /* copy from multigrid level(s) */

The parallelization of multigrid, e.g., based on domain decomposition (see Figure 2), involves
the parallelization of each step of Algorithm 1. Here, two types of communication patterns arise:
(1) horizontal communication on the same multigrid level during smoothing and residual evaluation,
which involves point-to-point ghost-value data exchange between neighboring subdomains, and
(2) vertical communication between multigrid levels during intergrid transfer. In the best case, verti-
cal communication is also a point-to-point communication of some “lower-dimensional” (surface-
induced) share of a vector, but it can imply the transfer of essentially the full vector if the levels are
partitioned independently and/or the numbers of processes on the levels are reduced extremely
(e.g., to one). The communication pattern within the coarse-grid solver depends on the solver
chosen and often also involves vertical and horizontal communication. Global reductions are also
common on the coarse grid. We note that the outer (conjugate-gradient) solver also involves global
reductions to compute, e.g., the residual norm once per iteration, needed to determine termination.
However, these global reductions are generally negligible due to the dominating costs of multigrid.

The various multigrid algorithms for locally refined meshes differ in the construction of the
levels and the concrete details in the implementation of the multigrid steps. We consider two
types of geometric multigrid methods: geometric local smoothing in Section 2.1 and geometric
global coarsening in Section 2.2. Figure 1 gives a visual comparison of them and points out the
issues resulting from the local or global definition of the levels, which will be discussed extensively
in the following. Furthermore, we will detail polynomial global coarsening in Section 2.3. In the
case of these multigrid variants, the level operator A°) can be obtained either recursively via the
Galerkin operator A(®) := R(/) AN PU-€) with restriction matrix R() and prolongation matrix
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“active” mesh m,; level mg level 1 mg level 0
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(a) First-child policy in the context of (geometric) local smoothing.

E 5 0

(b) Repartitioning of each level in the context of (geometric) global coarsening.

Fig. 2. Visual comparison of two possible strategies for partitioning of the multigrid levels of the mesh shown
in Figure 1 for seven processes. Colors indicate the ranks of the subdomains. The active level is partitioned
uniformly along a space-filling curve, according to a sum of weights for each cell. If a color does not appear
(e.g., ranks 4-6 on level 2 in (a)), then it means that a process does not have any work on that level, leading
to load imbalance during smoothing. If subdomains with the same color do not overlap (e.g., ranks 1-5 on
level 0 and 1 in (b)), then this leads to more expensive intergrid transfer operators.

PY>9) constructed geometrically or by rediscretization. While rediscretization is not optimal in all
cases, it is sufficient for the present experiments, allowing us to benefit from the fact that level
operators are independent of each other as, for matrix-free computations, one wants to construct
neither A©)/AY) nor R /PT-¢) explicitly.

AMG can be used for the solution on locally refined meshes as well. Since the levels are con-
structed recursively via the Galerkin operator with the restriction and prolongation matrices con-
structed algebraically, no distinction regarding the local or global definition of the levels is possible.
Since we use AMG in the following only as a coarse-grid solver, we refer to the literature for more
details: Clevenger et al. [28] present a scaling comparison between AMG and a matrix-free version
of local smoothing for a Laplace problem with @, basis functions, showing a clear advantage of
matrix-free multigrid methods on modern computing systems.

2.1 Geometric Local Smoothing

Geometric local-smoothing algorithms [19, 24, 28, 51, 53, 54, 70, 77, 90, 96] use the refinement
hierarchy also for multigrid levels and perform smoothing refinement level by refinement level:
Cells of less refined parts of the mesh are skipped (see the top part of Figure 1) so that hanging-
node constraints do not need to be considered during smoothing. The authors of References [3, 20,
50, 77, 100, 102] investigate a version of local smoothing in which smoothing is also performed on
a halo of a single coarse cell, which includes hanging-node constraints. We will not consider this
form of local smoothing in the following.

The fact that domains on each level might not cover the whole computational domain results
in multiple issues. Data need to be transferred in lines 2 and 13 in Algorithm 1 to and from all
multigrid levels that are active, i.e., have cells that are not refined further. Moreover, internal in-
terfaces (also known as “refinement edges”) can appear with the need for special treatment. For
details, interested readers are referred to References [51, 64]. In the following, we summarize key
aspects relevant for our investigations.
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For the purpose of explanation, let us split the degrees of freedom (DoFs) associated with the

() 0)
S

cells on an arbitrary level [ into the interior ones x P

and the ones at the refinement edges x
leading to the following block structure in the associated matrix system A x®) = p(D:

5 -

For presmoothing on level I, homogeneous Dirichlet boundary conditions are applied at the refine-

ment edges (x}(;) = 0), allowing us to skip the coupling matrices. However, when switching to a
coarser or finer level, the coupling matrices need to be considered. The residual to be restricted
becomes the following:

() ) () () D\ L0 0 ) )
(’%»)=(”f»)—("ﬁf Aaf)(’%) o )+ (% )—(Afzf )xé”. @
rg by Aps Aggp Xg E Afs

%

Since bg) has already been transferred to the coarser level by line 2 in Algorithm 1, one only has to
restrict and add the result of term * to the coarser level. During postsmoothing, an inhomogeneous
Dirichlet boundary condition is applied with boundary values prescribed by the coarser level. This

can be achieved, e.g., by modifying the right-hand side (b(Sl) — bgl) - Ag;xg)).

A natural choice to partition the multigrid levels for local-smoothing algorithms is to partition
the active level and let cells on lower refinement levels inherit the rank of their children. A simple
variant of it is the “first-child policy” (see Figure 2(a) or Reference [28]): It recursively assigns the
parent cell the rank of its first child cell. Since in adaptive FEM codes the parents of locally owned
and ghost cells are generally already available on processes due to treelike data-structure storage
of adaptively refined meshes [15, 26], no additional data structures need to be constructed and
saved, but the storage of an additional flag (multigrid rank of the cell) is enough, leading to low
memory consumption. Furthermore, intergrid transfer operations are potentially cheap as data are
mainly transferred locally. A disadvantage—besides having to consider the edge constraints—is the
potential load imbalance on the levels, as discussed in Reference [28]. This load imbalance could
be alleviated by partitioning each level for itself. Such an alternative partitioning algorithm would
lead to similar problems as in the case of global-coarsening algorithms (discussed next) and, as a
result, the needed data structures would become more complex. This would counter the claimed
simplicity of the data structures of this method; hence, we will consider geometric local smoothing
only with “first-child policy” in this publication.

Furthermore, the fact that the transfer to and from the multigrid levels involves all active levels
prevents an early switch to a coarse-grid solver on levels finer than those that are indeed not
locally refined anymore, i.e., Ag; = AD_ However, the absence of hanging nodes allows the usage
of smoothers that have been developed for uniformly refined meshes, e.g., patch smoothers [11, 55],
which are superior for anisotropic meshes.

Since geometric local smoothing is the only local-smoothing approach we will consider here,
we will call it simply—as common in the literature—local smoothing in the following.

2.2 Geometric Global Coarsening

Geometric global-coarsening algorithms [20, 21] coarsen all cells simultaneously, translating to
meshes with hanging nodes also on coarser levels of the multigrid hierarchy (see the bottom part of
Figure 1). The computational complexity—i.e., the total number of cells to be processed—is slightly
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higher than in the case of local smoothing and might be non-optimal for some extreme examples
of meshes [19, 54].

The fact that all levels cover the whole computational domain has the advantage that no in-
ternal interfaces need to be considered and the transfer to/from the multigrid levels becomes a
simple copy operation to/from the finest level. However, hanging nodes have to be considered
during the application of the smoothers on the levels. While this typically does not require new
algorithms for basic smoothers as the infrastructure to support adaptive meshes can be simply
applied to coarser representations, the operator evaluation and the applicable smoothers might
become more expensive per cell by the need to resolve hanging-node constraints [81]. However,
global-coarsening approaches show—for comparable smoothers—a better convergence behavior,
which improves with the number of smoothing iterations [13, 14].

As the work on the levels generally increases compared to local smoothing, it is a valid option to
repartition each level separately (see Figure 2(b)). On the one hand, this implies a higher pressure
on the transfer operators, since they need to transfer data between independent meshes,! requiring
potentially complex internal data structures, which describe the connectivities, and involved setup
routines.? On the other hand, it opens the possibility to control the load balance between processes
and the minimal granularity of work per process (by removing processes on the coarse level in a
controlled way, allowing us to switch to subcommunicators [99]) as well as to apply a coarse-grid
solver on any level. For the same reason, the construction of full multigrid solvers (FMG), which
visit the finest level only a few times, is easier, since any level can be used as a starting point for
the recursion. Not selecting the actual coarsest grid but some more refined level allows us to relax
the unfavorable complexity of FMG in terms of O(L?) by reducing the time spent on the coarse
levels.

2.3 Polynomial Global Coarsening

Polynomial global-coarsening algorithms [12, 17, 18, 25, 29, 33, 35, 37, 38, 40, 41, 43, 44, 46, 48, 49,
52, 67, 72-76, 83, 85, 87, 88, 91, 94, 95, 99] are based on keeping the mesh size h constant on all
levels but reducing the polynomial degree p of shape functions, e.g., to p = 1. Hence, the multigrid
levels in this case have the same mesh but different polynomial orders. There are various strategies
to reduce the order of the polynomial degree [32, 42]: The most common is the bisection strategy,
which repeatedly halves the degree p(©) = |p\)/2]. This strategy reduces the number of DoFs in
the case of a globally refined mesh similarly to the geometric multigrid strategies and provides
a compromise between the number of V-cycles necessary to reduce the residual norm below a
desired threshold and the cost of a single V-cycle [32].

The statements made in Section 2.2 about geometric global coarsening are also valid for polyno-
mial global coarsening. However, the number of unknowns is reduced uniformly on each subdo-
main in contrast to geometric global coarsening, which obviates repartitioning of the level grids.
This leads to a transfer operation that mainly works on locally owned DoFs.

In the following, we call geometric global coarsening simply global coarsening and polynomial
global coarsening polynomial coarsening. As a reference, polynomial local smoothing arises, e.g.,
in the context of p- or hp-refinement, where only cells with the finest degree are smoothened [79].

n deal.II, one needs to create a sequence of grids for global coarsening (each with its own hierarchical description).
This is generally acceptable, since repartitioning of each level often leads to non-overlapping trees so that a single data
structure containing all geometric multigrid levels would have little benefit for reducing memory consumption.

2Sundar et al. [99] present a two-step setup routine: The original fine mesh is coarsened and the resulting “surrogate mesh”
is repartitioned. For space-filling-curve-based partitioning, this approach turns out to be highly efficient.
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3 IMPLEMENTATION DETAILS

In this section, we detail efficient implementations of the multigrid ingredients for locally refined
meshes used by Algorithm 1. We start with the handling of constraints. Then, we proceed with
the matrix-free evaluation of operator A, which is needed on the active and the multigrid levels,
as well as with smoothers and coarse-grid solvers. This section is concluded with an algorithmic
framework to efficiently realize all considered kinds of matrix-free transfer operators.

3.1 Handling Constraints

Constraints need to be considered—with slight differences—in the case of both local-smoothing
and global-coarsening algorithms. First, we impose Dirichlet boundary conditions in a strong form
and express them as constraints. Second, hanging-node constraints, which force the solution of
the refined side to match the polynomial expansion on the coarse side, need to be considered to
maintain H' regularity of the tentative solution [92]. In a general way, these constraints can be
expressed as x; = };c;jx; + b;, where x; is a constrained DoF, x; a constraining DoF, c;; the
coeflicient relating the DoFs, and b; a real value, which can be used to consider inhomogeneities.
We do not eliminate constraints but use a condensation approach [16, 101].

3.2 Matrix-free Operator Evaluation

Instead of assembling the sparse system matrix A and performing matrix-vector multiplications of
the form Ax, the matrix-free operator evaluation computes the underlying finite-element integrals
to represent A(x). This is motivated by the fact that many iterative solvers and smoothers do not
need the matrix A explicitly but only its action on a vector. On a high level, matrix-free operator
evaluation can be derived in two steps: (1) loop switching v = Ax = (3. (G 0CI)A.(Cc0G.))x =
Y e Gl oCl(A(Ce0Gex)) = Y. GF 0 CI(Acx,), ie., replacing the sequence “assembly-mat-vec”
by a loop over cells with the three steps “gathering—application of the element stiffness matrix-
scattering,” and (2) exploitation of the structure of the element stiffness matrix A.. In this formula,
the operator C, o G, represents the assembly of element-wise quantities into the global matrix and
vectors, respectively [92], including the constraints C, as discussed in Section 3.1. The element
stiffness matrix A, is constructed from three main ingredients in a finite element method, the shape
functions and derivatives of the tentative solution tabulated at quadrature points, geometric factors
and coeflicients of the underlying differential operator at quadrature points, and the multiplication
by the test functions and their derivatives as well as subsequent summation over quadrature points.
The final structure of a matrix-free operator evaluation in the context of continuous finite elements
in operator form is as follows:

v=A(x)= Y Gl 0Cl 08! 0Q, 08, 0C, 0 Gex. (3)
e A,

This structure is depicted in Figure 3. For each cell e, cell-relevant values are gathered with operator
G., constraints are applied with C,, and values, gradients, or Hessians associated to the vector x
are computed at the quadrature points with S,. These quantities are processed by a quadrature-
point operation @,; the result is integrated and summed into the result vector v by applying S'eT ,
CI,and G!. In this publication, we consider symmetric (self-adjoint) PDE operators with Se=S..

In the literature, specialized implementations for GPUs [4, 57, 64, 68, 69] and CPUs [4, 62, 63, 80,
82] for operations as expressed in Equation (3) have been presented. For tensor-product (quadri-
lateral and hexahedral) elements, a technique known as sum factorization [78, 86] is often applied,
which allows us to replace full interpolations from the local solution values to the quadrature
points by a sequence of one-dimensional (1D) steps. In the context of CPUs, it is an option to

ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 3. Publication date: March 2023.



3:10 P. Munch et al.

gather evaluation integration scatter
r A 1 r A 1 Qe r L 1 r A 1
: D
o
=} x x x .
5 CeoGe S, ST Gloctk
= —1—> [ ] [ ] — > |x % x| — [ ] e
5
al (81] x x x
3
) W rig s
S
=
o o6 Py s
= — — | ] [ —
-
8 [81] Fig. 5
2
g L T J [ T J
coarse (c) fine (f)

Fig. 3. Basic steps of a matrix-free operator evaluation according to Equation (3) and of a matrix-free poly-
nomial prolongation according to Equation (8) for a single cell e.

vectorize across elements [62, 63], i.e., perform (ST o Q 0 S), for multiple cells in different lanes
of the same instructions. This necessitates the data to be laid out in a struct-of-arrays fashion. The
reshuffling of the data from array-of-structs format to struct-of-arrays format and back can be
done, e.g., by G., while looping through all elements [62]. Note that our implementation performs
C. © Gex for a single SIMD batch of cells at a time to keep intermediate results in caches and
reduce global memory traffic. For the application of hanging-node constraints, we use the special-
purpose algorithm presented in Reference [69, 81], which is based on updating the DoF map G.
and applying in-place sum factorization for the interpolation during the application of edge and
face constraints. Even though this algorithm is highly optimized and comes with only a small over-
head for high-order finite elements (<20% per cell with hanging nodes), the additional steps are
not for free particularly for linear elements. This might lead to load imbalances in a parallel setting
when some processes have a disproportionately high number of cells with hanging nodes, see the
quantitative analysis in Reference [81].

Despite relying on matrix-free algorithms overall, some of the multigrid ingredients (e.g.,
smoother and coarse-grid solver) need an explicit representation of the linear operator in the form
of a matrix or a part of it (e.g., its diagonal). Based on the matrix-free algorithm (3) applied to the
local unit vector e;, the local matrix can be computed column by column:

Ac(i) =8I 0Q, 0 Se;. (4)

The resulting element matrix can be assembled as usual, including the resolution of the constraints.
Computing the diagonal is slightly more complex when attempting to immediately write into a
vector for the diagonal without complete matrix assembly. In our code, we choose to compute the
Jjth entry of the locally relevant diagonal contribution via

de(j) = D [CTA D] Celif) Vi€ {1 Ceyi # O}, (5)

A

i.e., we apply the local constraint matrix C, from the left to the ith column of the element matrix
(computed via Equation (4)) and apply C, again from the right. This approach needs as many basis
vector applications as there are shape functions per cell. The local result can be simply added to
the global diagonal via d = 3, G! d,. For cells without constrained DoFs, Equation (5) simplifies
to de (i) = Ae(i, 0)-
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3.3 Smoother

As the derivation of good matrix-free smoothers is an active research topic, we use Chebyshev
iterations around a point-Jacobi method for smoothing [2]. This setup needs an operator evaluation
and its diagonal representation according to Section 3.2. It is run on the levels defined by either
the global-coarsening or the local-smoothing multigrid algorithm. In the case of local smoothing,
refinement edges can be treated as homogeneous Dirichlet boundaries under the assumption that
the right-hand-side vector is suitably modified.

3.4 Coarse-grid Solver

The algorithms described in Section 3.2 allow us to set up traditional coarse-grid solvers, e.g., a
Jacobi solver, a Chebyshev solver, and direct solvers, but also AMG. In this publication, we mostly
apply AMG as a coarse-grid solver, since we use it either on very coarse meshes (in this case, it falls
back to a direct solver) or for problems discretized with linear elements, for which AMG solvers
are competitive [66].

3.5 Transfer Operator

The prolongation operator P>¢) prolongates the result x from a coarse space ¢ to a fine space f
(between either different geometric grids or different polynomial degrees),

x(f) = P(f’c)x(c)_
According to the literature [14, 99], this can be done in three steps:
X = W) o ph9 o ClOx(© ©

with C(©) setting the values of constrained DoFs on the coarse mesh, particularly resolving the
hanging-node constraints, p-e) performing the prolongation on the discontinuous space as if no
hanging nodes were present, and the weighting operator ‘W) zeroing out the DoFs constrained
on the fine mesh.

To derive a matrix-free implementation, one can express Equation (6) for nested meshes as loops
over all (coarse) cells (see also Figure 3):

) = Z Se(f) o We(f) o Péf’c) ) Céc) o géc)x“). (7)

e€{cells}

Here, Céc) o géc) gathers the cell-relevant coarse DoFs and applies the constraints just as in the case
of the matrix-free operator evaluation (3). The operator Pe(f ) embeds the coarse-space solution
into the fine space, whereas Se(f ) sums the result back to a global vector. Since multiple cells could
add to the same global entry of the vector x{) during the cell loop, the values to be added have
to be weighted with the inverse of the valence of the corresponding DoF. This is done by (We(f),
which also ignores constrained DoFs (zero valence) to be consistent with Equation (6). Figure 4
shows, as an example, the values of ‘W) for a simple mesh for a scalar Lagrange element of
degree 1 < p < 3.
We construct the element prolongation matrices as

(#0), = ) 607, v (), = 640,

where ¢(©) are the shape functions on the coarse cell and ¢\) on the fine cell. Instead of treating
each “fine cell” on its own, we group direct children of the coarse cells together and define the
fine shape functions on the appropriate subregions. As a consequence, the “finite element” on
the fine mesh depends both on the actual finite-element type (like on the polynomial degree and
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Fig. 4. Example for entries i of W) for a simple mesh configuration with Dirichlet boundary at the left
face for a scalar continuous Lagrange element of degree 1 < p < 3. In our implementation, constrained
DoFs do not contribute to the valence of constraining DoFs, which results in valences of one for DoFs inside
constraining (coarse) edges/faces. To reduce overhead by WO, our implementation utilizes that, for p > 2,
all DoFs of a geometric entity (vertex, edge, ...) have the same valence (stored per cell as 9 integers in 2D
and 27 in 3D).

refinement type o) element types — example 1: example 2:
global coarsening polynomial coarsening

without refinement

— — — B L} L
© | PE. || FEf
. —>—9 ¢
with refinement Q! Q! Q! Q?

local smoothing

Fig. 5. Left: Construction of the element prolongation Pg’c), based on the refinement-type (with/without
refinement) and element-types pair (coarse and fine FE). Right: Examples for prolongation with and without
refinement for equal-degree and different-degree finite elements (p(c) = p(f) =1vs. p(c) = l,p(f) = 2). Rele-
vant prolongation types for local smoothing, global coarsening, and polynomial coarsening are highlighted.
Note that, in the case of global coarsening, two types of prolongation (categories) are needed.

continuity) and on the refinement type, as indicated in Figure 5. For local smoothing, there is only
one refinement configuration, since all cells on a finer level are children of cells on the coarser level.
In the case of polynomial global coarsening, the mesh stays the same and only the polynomial
degree is uniformly changed for all cells. In the case of geometric global coarsening, cells on a
finer level are either identical to the cells or direct children of cells on the coarser level, but the
element and its polynomial degree stay the same. This necessitates two prolongation cases, an
identity matrix for non-refined cells and the coarse-to-fine embedding. We define the set of all
coarse—fine cell pairs connected via the same element prolongation matrix as category C.

Since Pe(f <) = Pg(’:)), ie., all cells of the same category C(e) have the same element prolonga-
tion matrix, and to be able to apply them for multiple elements in one go in a vectorization-over-
elements fashion [62] as in the case of matrix-free loops (3), we loop over the cells type by type so
that Equation (7) becomes

=3 3 s oW oplocld o glx. ®)
c ec{e|C(e)=c}
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We choose the restriction operator as the transpose of the prolongation operator,

T
RED = (PUNT using locally RS = (PT9) "

We conclude this subsection with discussing the appropriate data structures for transfer opera-
tors, beginning with the ones needed for both global geometric and polynomial coarsening. Since
global-coarsening algorithms smoothen on the complete computational domain, data structures
only need to be able to perform two-level transfers (8) independently between arbitrary fine (f)

and coarse (c) grids. Ce(c) o g‘ﬁc) is identical to C, o G, in the matrix-free loop (3) so that specialized

()

algorithms and data structures [81] can be applied and reused. S;’’ needs the indices of DoFs for

the given element e to be able to scatter the values, and We(f) stores the weights of DoFs (or of

geometric entities—see also Figure 4) for the given element e. Pg;’:)) (and R(Cf(f ))) need to be avail-
able for each category. We regard them as general operators and choose the most efficient way of
evaluation based on the element types: simple dense-matrix representation vs. some substructure
with sum factorization based on smaller 1D prolongation matrices. The category of each cell has
to be known for each cell.

Alongside these process-local data structures, one needs access to all constraining DoFs on the
coarse level required during Céc) ° gé"‘) and to the DoFs of all child cells on the fine level during

the process-local part of Se(f ), which is concluded by a data exchange. If external vectors do not
allow access to the required DoFs, then we copy data to/from internal temporal global vectors with
appropriate ghosting [62]. We choose the coarse-side identification of cells due to its implementa-
tion simplicity and structured data access at the price of more ghost transfer.® For setting up the
communication pattern, we use consensus-based sparse dynamic algorithms [6, 47].

For the sake of separation of concerns, one might create three classes to implement a global-
coarsening transfer operator as we have done in deal. II. The relation of these classes is shown in
Figure 6: The multigrid transfer class (MGTransferGlobalCoarsening) delegates the actual trans-
fer tasks to the right two-level implementation (MGTwoLevelTransfer), which performs commu-
nications needed as well as evaluates (8) for each category and cell by using category-specific
information from the third class (MGTransferSchemes).

The discussed data structures are applicable also to local smoothing. The fact that only a single
category is available in this case allows us to simplify many code paths. However, one needs data
structures that match DoF indices on the active level and on all multigrid levels that share a part
of the mesh with the active level in addition to the two-level data structures. For further details on
implementation aspects of transfer operators for local smoothing, see References [28, 64] and the
documentation of MGTransferMatrixFree class in deal . II.

4 PERFORMANCE METRICS

In Section 3, we have presented efficient implementations of the operators in Algorithm 1 for
local smoothing, global coarsening, and polynomial coarsening. Most of the discussion was inde-
pendent of the multigrid variant chosen, highlighting the similarities from the implementation

3Sundar et al. [99] showed that, by assigning all children of a cell to the same process, one can easily derive an algorithm
that allows us to perform the cell-local prolongation/restriction on the fine side, potentially reducing the amount of data
to be communicated during the transfer. Since we allow levels to be partitioned arbitrarily in our implementation, we
do not use this approach. Furthermore, one should note that the algorithm proposed there does not allow us to apply
the constraints Céc) during a single cell loop as in Equation (8) but needs a global preprocessing step as in Equation (6),
potentially requiring additional sweeps through the whole data with access to the slow main memory.
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<interface>>
MGTransferBase

prolongate_and_add(level, dst, src) = 0
restrict_and_add(level, dst, src) = 0

copy_to_mg(dst, src) = 0
copy._from_mg(dst, src) = 0
interpolate_to_mg(dst, src) = 0

MGTransferMatrixFree

not shown

Ldfloual dot

MGTwolLevelTransfer

MGTransferGlobalCoarsening

prolongate_and_add(level, dst, src)
restrict_and_add(level, dst, src)

copy_to_mg(dst, src)
copy_from_mg(dst, src)
interpolate_to_mg(dst, src)

category_ptrs
level_dof_indices_coarse (G)
constraints_coarse (C)
weights_fine (W)
level_dof_indices_fine (S)

ghosted_vector_coarse (G - optional)
ghosted_vector_fine (S - optional)

#C

P. Munch et al.

MGTransferScheme

prolongation_matrix
prolongation_matrix_1D

interpolation_matrix
interpolation_matrix_1D

prolongate_and_add(vec_fine, vec_coarse)

restrict_and_add(vec_coarse, vec_fine)
interpolate(vec_coarse, vec_fine)

Fig. 6. UML diagram of the global-coarsening transfer operator MGTransferGlobalCoarsening in deal.II.
It implements the base class MGTransferBase, which is also the base class of MGTransferMatrixFree (local
smoothing) and delegates its prolongation/restriction/interpolation tasks to the right MGTwoLevelTransfer
instance. Each of these instances is defined between two levels and loops over categories/cells to evaluate
Equation (8) by using the prolongation matrices from the correct MGTransferScheme object. Furthermore,
it is responsible for the communication, for which it has two optional internal vectors with appropriate
ghosting. MGTwoLevelTransfer objects can be initialized for geometric or polynomial global coarsening,
enabling support for (global) k-, p-, and hp-multigrid in MGTransferGlobalCoarsening.

point of view. The main differences arise naturally from the local or global definition of levels:
e.g., one might need to consider hanging-node constraints during matrix-free loops when doing
global coarsening or polynomial coarsening. Local smoothing, however, has the disadvantage of
performing additional steps: (1) global transfer to/from multigrid levels and (2) special treatment
of refinement edges. In the following sections, we quantify the influence of the costs of the poten-
tially more expensive operator evaluations and of the additional operator evaluations, related to
the choice of the multigrid level definition.

Our primary goal is to minimize the time to solution. It consists of setup costs and the actual
solve time, which is the product of the number of iterations and the time per iteration. We will
disregard the setup costs, since they normally amortize in time-dependent simulations, where one
does not remesh every time step, and ways to optimize the setup of global-coarsening algorithms
are known in the literature [99]. The time of the solution process strongly depends on the choice of
the smoother, which influences the number of iterations and, as a result, also the time to solution.
Since different iteration numbers might distort the view on the performance of the actual multigrid
algorithm, we will also consider the value of the time per iteration as an important indicator of the
computational performance of multigrid algorithms particularly to quantify the additional costs
in an iteration.

To get a first estimate of the benefits of an algorithm compared to another, one can derive
following metrics purely from geometrical information:

e The serial workload can be estimated as the sum of the number of cells on all levels W, =
2.1 Cy, with C; being the number of cells on level I. This metric is based on the assumption
that all cells have the same costs, which is not necessarily true in the context of hanging
nodes [81].

o The parallel workload can be estimated as the sum of the maximum number of cells owned
by any process p on each level: W, = 3}, max, Cf , i.e., the critical path of the cells. In the
ideal case, one would expect that Cf = (/P with P being the number of processes and
therefore W, = W;/P. However, due to potential load imbalances, the work might not be well
distributed on the levels, i.e., max, (C‘lO ) > Cs/P. Since one can theoretically only proceed
to the next level once all processes have finished processing a level, load imbalances will
result in some processes waiting at imaginary barriers. We say “imaginary barriers” as level
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operators only involve point-to-point communication between neighboring processes in the
grid for our implementation. Nevertheless, this simplified point of view is acceptable, since
multigrid algorithms are multiplicative Schwarz methods between levels, inherently leading
to a sequential execution of the levels. We define parallel workload efficiency as Ws/(W,, - P),
as has been also done in Reference [28].

o We define horizontal communication efficiency as 50% of the number of ghost cells accumu-
lated over all ranks and divided by the total number of cells. The division by two is necessary
to take into account that only one neighbor is updating the ghost values. As such, this ratio
can be seen as a proxy of how much information needs to be communicated when comput-
ing residuals and updating ghost values. As this number counts cells, it is independent of the
polynomial degree of the element chosen. The element degree used determines the absolute
amount of communication necessary. Note that, in reality, only degrees of freedom located
at the interface have to be exchanged such that the fraction of the solution that needs to be
communicated is less than the fraction of those cells.

o Vertical communication efficiency is the share of fine cells that have the same owning pro-
cess as their corresponding coarse cell (parent). This quantity gives an indication on the
efficiency of the transfer operator and on how much data has to be exchanged. A small num-
ber indicates that most of the data has to be completely permuted, involving a large volume
of communication. This metric has been considered in Reference [28] as well.

o Increasing the number of (multigrid) levels leads to additional synchronization points and
communication steps and, as a result, might lead to increased latency. The absolute value of
the minimum time per V-cycle can be roughly approximated by

V-Cycle _ vmult _ vmult
AtLatency =L((k-1)+ \1/_/ + \1/_/ + \1,_/ + \k’/ )Atlaltency = 2L(k + 1)Atlatency 9)
Spre residual R P Spost

as the product of tl‘;‘g::llsy
to the ghost values in the source vector and one step to send integral contributions in the
destination vector back to the owner) and the sum of all communication steps accumulated
over presmoothing, residuum evaluation, restriction, prolongation, and postsmoothing on all
levels. In this approximation, we assume that the coarse-grid solver does not perform any
communication and has negligible latency. Furthermore, the smoother is assumed to have
the same communication cost as one matrix-vector product in each of the k iterations, which
is the case for simple Chebyshev iterations around point-Jacobi preconditioners [58, 65].

(the latency of an operator evaluation consisting of one update

» &«

The metrics “parallel workload efficiency,” “horizontal communication efficiency,” and “vertical
communication efficiency,” as well as “latency” (at the scaling limit) all influence the experimentally
measurable “parallel (strong-scaling) efficiency” of a multigrid solver.

Furthermore, memory consumption of the grid class is a secondary metric.* A common argument
supporting the usage of local-smoothing algorithms is that no space is needed for potentially dif-
ferently partitioned meshes and complex data structures providing the connectivity between them,
since the multigrid algorithm can simply reuse the already existing mesh hierarchy also for the
multigrid levels [28].

*We use the memory-consumption output provided by deal.II. No particular efforts have been put in reducing the mem-
ory consumption of the triangulations in the case of global coarsening.
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Fig. 7. Cross section at the center of the geometries of the octant (top) and the shell (bottom) simulation.
Additionally, the number of cells, the share of cells with hanging-node constraints, and the number of DoFs
(for a scalar Lagrange element with p = 1 and p = 4) are given for each refinement case.

Examples

In the experimental Sections 5 and 6, we consider two types of static 3D meshes, as has been also
done in Reference [28]. They are obtained by refining a coarse mesh consisting of a single cell
defined by [-1, 1]* according to one of the following two solution criteria:

e octant: refine all mesh cells in the first octant [-1,0]? L times and
e shell: after L — 3 uniform refinements, perform three local refinement steps with all cells
whose center ¢ is |¢| < 0.55, 0.3 < |¢| < 0.43, and 0.335 < |c| < 0.39.

These two meshes are relevant in practice, since similar meshes occur in simulations of flows with
far fields and of multi-phase flows with bubbles [59] or any kind of interfaces. All the refinement
procedures are completed by a closure after each step, ensuring one-irregularity in the sense that
two leaf cells may only differ by one level if they share a vertex. Figure 7 shows the considered
meshes and provides numbers regarding the cell count for 3 < L < 13. All meshes are partitioned
along space-filling curves [15, 26] with the option to assign cells weights.

Tables 1 and 2 give—as examples—evaluated numbers for geometrical metrics of the two con-
sidered meshes for a single process and for 192 processes with cells constrained by hanging nodes
weighted with the factor of 2 for partitioning, compared to the rest of the cells. For a single
process, only workload and memory consumption are shown. In the tables, bold indicates the
most beneficial behavior among the listed variants.

Starting with the octant case, one can see that the serial workload in the case of local smoothing
and global coarsening is similar, with local smoothing having consistently less work. The work-
load of each level is depicted in Figure 8. The behavior of the memory consumption is similar to
the one of the workload: Global coarsening has a slightly higher memory consumption, since it
explicitly needs to store the coarser meshes as well; however, the second finest mesh has already
approximately one eighth of the size of the coarsest triangulation so that the overhead is small.
In the parallel case, the memory consumption differences are higher: This is related to the fact
that—in the case of global coarsening—overlapping ghosted forests of trees need to be saved. In
contrast, the workload in the parallel case is much lower in the case of global coarsening: While
global coarsening is able to reach efficiencies higher than 90%, the efficiency is only approximately
50-60% in the case of local smoothing. The high value in the global-coarsening case was to be ex-
pected, since we repartition each level during construction. The low value in the case of local
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Table 1. Geometrical Multigrid Statistics for the octant Test Case for Different Numbers of Refinements

‘ 1 process ‘ 192 processes
‘ local smoothing ‘ global coarsening ‘ local smoothing ‘ global coarsening
wl mem wl mem wl wl-eff v-eff h-eff mem wl wl-eff v-eff h-eff mem

1.4e+2 6.6e+4 | l.4e+2 8.7e+4 1.8e+1 3% 89% 60% 1.3e+6 | 2.5e+1 3% 17% 1.0e+5 2.7e+6
8.0e+2 3.3e+5 | 8.4e+2 4.2e+5 2.2e+1 18% 85% 56% 1.2e+7 | 3.3e+1 13% 4%  1.0e+5 1.5e+7
5.4e+3 2.0e+6 | 5.6e+3  2.5e+6 7.2e+1  38% 88% 58% 5.3e+7 | 6.7e+1 43% 1% 59% 6.8e+7
4.0e+4 1.4e+7 | 4.0e+4  1.7e+7 4.0e+2 51% 96% 65% 1.3e+8 | 2.8e+2 76% 6% 66% 2.0e+8
3.1e+5 1.1e+8 | 3.1e+5 1.3e+8 27e+3  58% 99% 75% 4.2e+8 | 1.7e+3 92% 13% 75% 6.2e+8
2.4e+6 8.6e+8 | 2.4e+6  9.9e+8 2.0e+4  62% 99% 84% 1.8e+9 | 1.3e+4 96% 23% 84% 2.4e+9
1.9e+7 6.8e+9 | 1.9e+7  7.8e+9 1.6e+5 64% 99% 91% 1.0e+10 | 1.0e+5 98%  38% 91%  1.3e+10

wl: Serial/Parallel Workload; wl-eff: Parallel Workload Efficiency; v-eff: Vertical Communication Efficiency; h-eff:
Horizontal Communication Efficiency; mem: Memory Consumption in Bytes. Figures 8 (serial) and 9 (parallel) give a
detailed breakdown of the workload of each multigrid level for L = 8.

oY) RS IR-NIT TSROy o

Table 2. Geometrical Multigrid Statistics for the shell Test Case for Different Numbers of Refinements

‘ 1 process 192 processes
local smoothing | global coarsening local smoothing global coarsening
L wl mem wl mem wl wl-eff v-eff h-eff mem wl wl-eff v-eff h-eff mem
5 | 1.4e+3 6.0e+5 | 1.8e+3  9.5e+5 | 3.le+1 22% 80% 55% 3.2e+7 | 4.5e+1 21% 2%  56% 4.7e+7
6 | 7.8e+3 3.2e+6 | 9.2e+3 4.4e+6 l.6e+2 26% 89% 59% 7.7e+7 | 1.0e+2 47% 12%  59% 1.3e+8
7 | 4.2e+4 1.7e+7 | 4.9e+4 2.2e+7 7.6e+2  28% 96% 66% 1.5e+8 | 4.3e+2 58% 36% 65%  3.0e+8
8 | 3.1e+5 1.2e+8 | 3.4e+5 14e+8 |4.7e+3 34% 99% 76% 4.4e+8 | 23e+3 75% 78% 75% 7.7e+8
9 | 2.5e+6 8.9e+8 | 2.5e+6 1.1e+9 3.5e+4  36% 99% 85% 1.8e+9 | 1.5e+4 86% 93% 84%  2.7e+9
10 — - — — 2.7e+5 38% 99% 91% 1.0e+10 | 1.1e+5 92% 97% 91% 1.3e+10

The label “-” indicates that the simulation ran out of memory.
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Fig. 8. Workload of each multigrid level of an octant simulation with a single process for L = 8.

smoothing can be seen in Figure 9, where the minimum, maximum, and average workload are
shown for each level. The workload on the finest level is optimally distributed between processes
with cells; however, there are some processes without any cells, i.e., any work, on that level. On
the second level, most processes can reduce the number of cells nearly optimally by a factor of
8, but processes idle on the finest level start to participate in the smoothing process with a much
higher number of cells, similarly to what other processes process on the finest level. This pattern
of discrepancy between the minimum and the maximum number of cells on the lower levels con-
tinues and, as a consequence, the maximum workload per level is higher, increasing the overall
parallel workload. Figure 9 might also give the impression of a load imbalance in the case of global
coarsening, since the minimum workload on the finest level is the half of the maximum value.
This is related to the way we partition—penalizing cells that have hanging nodes with a weight of
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Fig. 9. Workload of each multigrid level of an octant simulation with 192 processes for L = 8.

2—and to the fact that a lot of cells with hanging nodes are clustered locally. The actual resulting
load imbalance is small, as shown in Figure 12. The difference between local smoothing and global
coarsening in the parallel workload comes at a price. While the vertical communication efficiency
is—by construction—high in the local-smoothing case, this is not true in the case of global coars-
ening: Twenty percent or less is not uncommon, requiring the permutation of data during transfer.
The horizontal communication costs are similar in the case of local smoothing and global coarsen-
ing. Assuming that (1) pre- and postsmoothing are the most time-consuming steps, (2) the parallel
workload is the relevant metric, and (3) the transfer between levels is not dominant in this case, the
values indicate that global coarsening might be twice as fast as local smoothing. However, if the
transfer is the bottleneck, then the picture might look differently so that a conclusive statement
only based on geometrical metrics is not possible in this case.

The observations for the octant case are also made, in a more pronounced form, in the shell
case. Here, the vertical communication is more favorable in the case of global coarsening, and the
workload efficiency is significantly worse in the local-smoothing case so that one can expect a
noticeable speedup when using global coarsening.

In summary, one can state the following: In the serial case, global coarsening has to process at
least as many cells as local smoothing so that one can expect that the latter has—with the assump-
tion that the number of iterations is the same—an advantage regarding throughput, particularly
since no hanging-node constraints have to be applied. With an increasing number of processes,
the workload might not be well distributed in the case of local smoothing, leading to a drop in
parallel efficiency. In contrast, this is—by construction—not an issue in the global-coarsening case,
since the work is explicitly redistributed between the levels. The price is that one might need to
send around a lot of data during restriction and prolongation. The number of levels in the case
of local smoothing and global coarsening is the same, leading to potentially same scaling limits
O(L). However, with appropriate partitioning of the levels, one could decrease the number of par-
ticipating processes on the coarser levels and switch to a coarse-grid solver at an earlier stage in
the global-coarsening case, leading to a better scaling limit due to lower latency. In the following,
we show experimentally that the above statements can be verified and take a more detailed look
at the influence of the mutually contradicting requirements “good workload balance” and “cheap
transfer” on the parallel efficiency.

Making definite general conclusions is difficult as they depend on the number of processes as
well as on the type of the coarse mesh and of the refinement. While the two meshes considered
here are prototypical for many problems we have encountered in practice, it is clear that the state-
ments made in this publication cannot hold in all cases, since it is easy to construct examples
that favor one multigrid variant over the other. However, the two meshes clearly demonstrate the
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dominating aspects at various problem sizes; the actual crossover point, however, might be
problem- and hardware-specific.

5 PERFORMANCE ANALYSIS: H-MULTIGRID

In the following, we solve a 3D Poisson problem with homogeneous Dirichlet boundary condi-
tions and a constant right-hand side to compare the performance of local-smoothing and global-
coarsening algorithms for the octant and shell test cases, as introduced in Section 4. The results
for a more complex setup with non-homogeneous Dirichlet boundary conditions are shown in
Table 7 in Appendix A.

We will use a continuous Lagrange finite element, whose shape functions are defined as the
tensor products of 1D shape functions with degree p. For quadrature, we consider the consistent
Gauss-Legendre quadrature rule with (p + 1)® points.

We start with investigating the serial performance, proceed with parallel execution with mod-
erate numbers of processes, and, finally, analyze the parallel behavior on the large scale (150k
processes). We conclude this section with investigation of an alternative partitioning scheme for
global coarsening.

To obtain the best performance, the experiments are configured in the following way:

e Cells with hanging-node constraints are weighted by the factor of 2.

e The conjugate-gradient solver is run until a reduction of the l-norm of the unpreconditioned
residual by 10% is obtained. We choose a rather coarse tolerance, since this is a common value
for the solution of time-dependent problems, such as the Navier-Stokes equations, where
good initial guesses can be obtained by projection and extrapolation without the need to
converge multigrid to many digits. Similarly, coarse tolerances also indicate the costs of
solving in a full-multigrid scenario with the finest level only correcting against the next
coarser one.

e The conjugate-gradient solver is preconditioned by a single V-cycle of either a local-
smoothing or a global-coarsening multigrid algorithm.

e To increase the throughput, all operations in the multigrid V-cycle are run with single-
precision floating-point numbers, while the conjugate-gradient solver is run in double pre-
cision [64].

e We use a Chebyshev/point-Jacobi smoother of degree 3 on all levels.

e As coarse-grid solver, we use two V-cycles of AMG (double-precision, ML [34] with param-
eters shown in Appendix C).

The results of performance studies leading to the decision on the configuration described above
are presented in Tables 8-12. All experiments have been conducted on the SuperMUC-NG super-
computer. Its compute nodes have two sockets (each with 24 cores of Intel Xeon Skylake) and the
AVX-512 ISA extension so that 8 doubles or 16 floats can be processed per instruction. A detailed
specification of the hardware is given in Table 3. The parallel network is organized into islands
of 792 compute nodes each. The maximum network bandwidth per node within an island is 100
GBit/s = 12.5GB/s° via a fat-tree network topology. Islands are connected via a pruned-tree net-
work architecture (pruning factor 1:4). We have run all experiments six times and report the best
timings of the last five runs. We note that executions on SuperMUC-NG are relatively noisy even
for small-scale simulations with hundreds of processes, which results in performance degeneration
by up to 50%. Our investigations revealed that this has only a minor effect on the execution times
of the multigrid variants in comparison. Nevertheless, to rule out any source of inconsistency in

Shttps://doku.lrz.de/display/PUBLIC/SuperMUC-NG, retrieved on February 26, 2022.
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Table 3. Specification of the Hardware System Used for Evaluation

Intel Skylake Xeon Platinum 8174

cores 2% 24

frequency base (max AVX-512 frequency) 2.7 GHz

SIMD width 512 bit

arithmetic peak (dgemm performance) 4147 GFLOP/s (3318 GFLOP/s)

memory interface DDR4-2666, 12 channels

STREAM memory bandwidth 205 GB/s

empirical machine balance 14.3 FLOP/Byte

L1-/1.2-/L3-/MEM size 32kB (per core)/1IMB (per core)/66MB (shared)/96GB(shared)
compiler + compiler flags g++, version 9.1.0, -03 -funroll-loops -march=skylake-avx512

Memory bandwidth is according to the STREAM triad benchmark (optimized variant without read for ownership
transfer involving two reads and one write), and GFLOP/s are based on the theoretical maximum at the AVX-512
frequency. The dgemm performance is measured for m = n = k = 12,000 with Intel MKL 18.0.2. We measured a
frequency of 2.5 GHz with AVX-512 dense code for the current experiments. The empirical machine balance is
computed as the ratio of measured dgemm performance and STREAM bandwidth from RAM memory.

| CG (2.91s) B CG (2.925)

O MG (10.1s) O MG (10.15)

W CGoMG (0.93s) W CGoMG (0.32s)
(a) Local smoothing (per it.: 13.94s). (b) Global coarsening (per it.: 13.34s).

Fig. 10. Time per iteration spent for conjugate-gradient solver (CG), multigrid preconditioner (MG), as well
as transfer between solver and preconditioner (CG&MG) in a serial shell simulation with k =4 and L = 9.

the results, we report timings for all multigrid variants from the same job execution in each table
and figure. Apart from these machine-caused outliers, the statistical distribution is within a few
percentages of the minimum and not explicitly reported in the following figures.

For local smoothing and global coarsening, we use different implementations of the transfer
operator from deal . II (see Section 3.5). To demonstrate that they are equivalent and results shown
in the following are indeed related to the definition of multigrid levels and the resulting different
algorithms, Table 13 presents a performance comparison of these implementations for uniformly
refined meshes of a cube, for which both algorithms are equivalent.

For global coarsening, we have also investigated the possibility to decrease the number of par-
ticipating processes and to switch to the coarse-grid solver earlier. For our test problems, we could
not see any obvious benefits for the time to solution so that we do not use these features of global
coarsening in this publication but defer their investigation to future work.

5.1 Serial Runs: Overview

Figure 10 gives an overview of the time shares during the solution process in a serial shell simula-
tion for local smoothing and global coarsening. Without going into details of the actual numbers,
one can see that most of the time is spent in the multigrid preconditioner in the case of both
local smoothing and global coarsening (72%/76%). It is followed by the other operations in the
outer conjugate-gradient solver (21%/22%). The least time is spent for transferring data between
preconditioner and solver (7%/2%). The higher time of the transfer in the local-smoothing case is
not surprising, since the transfer involves all multigrid levels sharing cells with the active level.
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Table 4. Number of Iterations and Time to Solution for Local Smoothing (LS) and Global Coarsening
(GC) with 1 Process and 192 Processes for the octant Simulation Case

{ 1 process [ 192 processes (4 nodes)
\ p=1 \ p=4 \ p=1 \ p=4
LS GC LS GC LS GC LS GC

L | #i t[s] #i t[s] #1 t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s]
3 4 5.0e-4 4 6.0e-4 4 3.8e-3 4 4.3e-3 4 1.2e-3 4 1.0e-3 4 2.5e-3 4 2.5e-3
4 4 1.8e-3 4 2.5e-3 4 1.8e-2 4 2.0e-2 4 2.6e-3 4 1.7e-3 4 4.3e-3 4 4.1e-3
5 4 8.6e-3 4 1.2e-2 4 1.1e-1 3 8.7e-2 4 5.3e-3 4 2.6e-3 4 6.9e-3 3 5.0e-3
6 4 5.1e-2 4 6.5e-2 4 8.8e-1 3 6.5e-1 4 5.6e-3 4 4.1e-3 4 1.7e-2 3 1.0e-2
7 4 3.6e-1 3 3.2e-1 4 6.9e+0 3 5.0e+0 4 1.3e-2 3 5.7e-3 4 8.4e-2 3 5.0e-2
8 4 2.8e+0 3 2.3e+0 4 5.3e+1 3 3.8e+1 4 3.9e-2 3 2.1e-2 4 7.2e-1 3 4.3e-1
9 4 2.2e+1 3 1.8e+1 — — — — 4 2.3e-1 3 1.3e-1 — — — —

Figures 11 (serial) and 12 (parallel) give a detailed breakdown of the times of one V-cycle for the case shaded in
gray, L =8 and p = 4.

Table 5. Number of Iterations and Time to Solution for Local Smoothing (LS) and Global Coarsening
(GC) with 1 Process and 192 Processes for the shell Simulation Case

{ 1 process { 192 processes (4 nodes)
\ p=1 \ p=4 \ p=1 \ p=4
LS GC LS GC LS GC LS GC

L | #i t[s] #1 t[s] #1 t[s] #i t[s] #i t[s] #i t[s] #1 t[s] #i t[s]
5 5 3.6e-3 4 7.1e-3 4 3.1e-2 4 4.5e-2 5 6.6e-3 4 3.1e-3 4 6.4e-3 4 6.3e-3
6 5 1.5e-2 4 2.8e-2 4 1.9e-1 4 2.2e-1 5 6.8e-3 4 4.1e3 4 1.0e-2 4 9.2e-3
7 5 7.3e-2 4 1.3e-1 4 1.0e+0 4 1.2e+0 5 9.2e-3 4 5.6e-3 4 23e2 4 1.8e-2
8 5 5.1e-1 4 7.3e-1 4 7.8e+0 4 7.9e+0 5 1.7e-2 4 1.2e-2 4 1.1e-1 4 6.9e-2
9 5 3.7e+0 4 4.3e+0 4 5.8e+1 4 5.6e+1 5 6.3e-2 4 3.5e-2 4 8.5e-1 4 5.2e-1
10 - - — — — — — — 5 3.9e-1 4 1.9e-1 | — — - —

Since the overwhelming share of solution time is taken by the multigrid preconditioner, all detailed
analysis in the remainder of this work concentrates on the multigrid V-cycle.

One should note that spending 72%/76% of the solution time within the multigrid precondi-
tioner is already low, particularly taking into account that the outer conjugate-gradient solver
also performs its operator evaluations (1 matrix-vector multiplication per iteration) in an efficient
matrix-free fashion. The low costs are related to the usage of single-precision floating-point num-
bers and to the low number of pre-/postsmoothing steps, which results in a total of six to seven
matrix-vector multiplications per level and iteration.

5.2 Serial Run

Tables 4 and 5 show the number of iterations and the time to solution for the octant, and the shell
test cases run serially with local smoothing and global coarsening as well as with the polynomial
degreesp =1and p = 4.

It is well visible that local smoothing has to perform at least as many iterations as global coars-
ening, with the difference in iterations limited to 1 in the examples considered. This difference
is due to the additional smoothening applied to certain cells in the course of global coarsening.
Note that global coarsening also benefits from the simple setup of a smooth solution with artificial
refinement, see Table 7 for a somewhat more realistic test case. This comes with a higher serial
workload for global coarsening, which is also visible in the times of a single V-cycle (not shown).
Nevertheless, the lower number of iterations leads to a smaller time to solution in the case of
global coarsening in some instances. Generally, the global-coarsening V-cycle is relatively more
expensive in the case of the shell simulation with linear elements: This is not surprising due to
the higher number of cells with hanging-node constraints (see also Figure 7) in the shell case and
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Fig. 11. Profile of one V-cycle of an octant simulation with a single process for L = 8 and p = 4.

the higher overhead of linear elements for application of hanging-node constraints, as analyzed in
Reference [81].

Figure 11 shows the distribution of times spent on each multigrid level and in each multigrid
stage for the octant case with L = 8 and p = 4. While the overall runtimes are similar for local
smoothing and global coarsening, distinct (and expected) differences are visible for the individual
ingredients: The restriction and prolongation steps take about the same time in both cases.
The presmoothing, residual, and postsmoothing steps are slightly more expensive in the global-
coarsening case, which is related to the observation that the evaluation of the level operator A’
(2/1/3 times) is the dominating factor. For local smoothing, the computation of Ag;xg) is realized
as a side product of the application of AY), and hence limiting its impact on the residual step. The
only visible additional cost of local smoothing is A(Sl;;.xg) for the modification of the right-hand-
side vector for postsmoothing to incorporate inhomogenous Dirichlet boundary conditions (edge
step). However, its evaluation is less expensive than the application of A, since only DoFs in
proximity to the interface are updated.

5.3 Moderately Parallel Runs

We report our findings of simulations with 192 processes on four compute nodes. Tables 4 and 5
confirm the significance of a good workload balance for the time to solution, as indicated by Ta-
bles 1 and 2. The number of processes does not influence the number of iterations due to the cho-
sen smoother. Speedups—compared to local smoothing—are reached: up to 2.3/1.7 for the octant
(p = 1/p = 4) and up to 2.1/1.6 for the shell case if the different iteration numbers are con-
sidered. Normalized per solver iteration, the advantage of global coarsening in these four cases
is 2.0, 1.3, 1.7, and 1.6, respectively. Figure 12 illustrates this behavior by showing the distribu-
tion of the minimum/maximum/average times spent on each multigrid level and each multigrid
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Fig. 12. Profile of one V-cycle of an octant simulation with 192 processes for L = 8 and p = 4.

stage for the octant case with L = 8. In the case of global coarsening, it is well visible that the
load is equally distributed and the time spent on the levels is significantly reduced level by level
for the higher levels. For the finest ones, local smoothing shows a completely different picture.
On the finest level, there are processes with hardly any work, but nevertheless the average work
is close to the maximum value, indicating that the load is well balanced among the processes
with work. However, on the second finest level, a significant workload imbalance—by a factor of
2.8—is visible also among the processes with work. This leads to the situation that the maximum
time spent on the second finest level is just slightly less than the one on the finest level, contra-
dicting our expectation of a geometric series and leading to the observed increase in the total
runtime.

5.4 Large-scale Parallel Run

Figures 13 and 14 show results of scaling experiments starting with 1 compute node (48 processes)
up to 3,072 nodes (147,456 processes). Besides the times of a single V-cycle, we plot the normalized
throughput (DoFs per process and time per iteration) against the time per iteration. The plot can
be read in the following way: Far from the scaling limit (right top corner of the plot), simulations
take longer but are more efficient (parallel efficiency of one); at the scaling limit (left bottom corner
of the plots), simulations reach shorter times at the cost of lower efficiencies. Here, a horizontal
behavior from the right to the left corresponds to ideal strong scaling. If different lines coincide,
then we observe ideal weak scaling. Based on this plot, one can judge the resource utilization and
parallel efficiency of a simulation if a certain time to solution should be obtained.

The throughput for the polynomial degree p = 4 is higher by a factor of 3 than for p = 1. This is
expected and related to the used matrix-free algorithms and their node-level performance, which
improves with the polynomial order [66]. Just as in the moderately parallel case (see Section 5.3),
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Fig. 13. Strong-scaling comparison of local smoothing (LS) and global coarsening (GC) for octant forp = 1
and p = 4. The label “3.6ms” indicates the theoretical scaling limit for L = 9.

we can observe better timings in the case of global coarsening for a large range of configurations
(maximum speedup: octant 1.9/1.4 for p = 1/p = 4, shell: 2.4/2.4). The number of iterations of
local smoothing is 4 for both cases and all refinement numbers. For global coarsening, it is 4 for
the sphere case and decreases from 4 to 2 with increasing number of refinements in the case of
quadrant so that the actual speedups reported above are even higher. The high speedup numbers
of global coarsening in the shell simulation case are particularly related to its high workload and
vertical efficiency, as shown in Table 5.

The normalized plots give additional insights. Apart from the obvious observation that the min-
imal time to solution increases with increasing number of refinements (left bottom corner of the
plots in Figures 13 and 14) and global coarsening starts with higher throughputs, one can also see
that the decrease in parallel efficiency is more moderate in the case of global coarsening. For the
example of the octant case with p = 1/L = 10, one can increase the number of processes by a
factor of 16 and still obtain a throughput per process that is higher than the one in the case of
single-node computations of local smoothing, which normally shows a kink in efficiency at early
stages (particularly visible in the shell case, which matches the findings made in Reference [28]).
A further observation is that the lines for global coarsening overlap far from the scaling limit, i.e.,
the throughput is independent of the number of processes and the number of refinements. This
is not the case for local smoothing, where the throughput deteriorates with the number of levels,
indicating load-balance problems. The simulations with p = 4 show similar trends, but the lines
are not as smooth, possibly due to the decreased granularity for higher orders.
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Fig. 14. Strong-scaling comparison of local smoothing (LS) and global coarsening (GC) for shell forp =1
and p = 4. The label “3.6ms” indicates the theoretical scaling limit for L = 9.

With Equation (9), one can approximate a latency Atz;tce " CC;E = 3.6 ms for L = 9 and Ati’:t“elrltcy =
50 ps. This value is visualized with vertical lines in the diagrams. One can see that the approxima-
tion indeed matches well for p = 1, indicating that the solvers are limited by the latency in these
ranges. Due to the similarity between the numbers of communication steps in the case of local
smoothing and global coarsening, the minimal times reached are similar. For p = 4, the discrep-
ancy between the approximated limit and the measurements is higher; the minimal times reached
by global coarsening are smaller, indicating that the latency limit has not been reached yet and
load imbalances still have a noticeable effect. For less refinements, e.g., L = 7, better correspon-
dence can be observed. Apart from these observations, we emphasize that, in practice, one would
run at higher efficiencies (left-top corner in the normalized plot), for which both p = 1 and p = 4
are dominated by load-imbalance effects.

5.5 First-child Policy as Alternative Partitioning Strategy for Global Coarsening

Section 5.3 indicates that local smoothing with first-child policy might suffer from deteriorated
reduction rates of the maximum number of cells on each level; in particular, there might be pro-
cesses without any cells, i.e., any work, increasing the critical path, although the vertical efficiency
is optimal. In this section, we consider the first-child policy as an alternative for partitioning of
the levels for global coarsening.

Figure 15 presents the timings of large-scale octant simulations for (1) local smoothing, (2)
global coarsening with default partitioning, and (3) global coarsening with first-child policy for
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Fig. 15. Left: Maximum number of cells per level (L = 11; 256 nodes). Right: Strong scaling of global coarsen-
ing with first-child policy (fcp) in comparison to local smoothing (LS) and geometric global coarsening (GC)
with default policy for octant.

p = 1/p = 4. The timings of the latter show similar trends as global coarsening with default
partitioning and are lower than the ones of local smoothing. To explain this counterintuitive ob-
servation, Figure 15 provides the maximum number of cells on each multigrid level of the three
approaches for L = 11 on 256 nodes. Since global coarsening with first-child policy does not per-
form any repartitioning, better reduction trends as in the local-smoothing case on all levels cannot
be expected; however, one can observe that, for the local section of the refinement tree, the num-
ber of cells on the finest levels is reduced nearly as well as in the case of the default partitioner,
i.e., the parallel workload and the parallel efficiency are not much worse; nonetheless, with higher
vertical efficiency. This is not possible for the lower levels, but the behavior of the finest levels
dominates the overall trends, since they take the largest time of the computation. One should note
that local smoothing has access to the same cells but simply skips them during smoothing of a
given level, missing the opportunity to reduce the problem size locally. In our experiments, it is
not clear whether an optimal reduction of cells is crucial for all configurations: For p = 1, global
coarsening with default partitioning is faster for most configurations (up to 20%) and, for p = 4,
global coarsening with first-child policy is faster (up to 10%). We could trace this difference back
to the different costs of the transfer, where, for p = 4, a reduced data transfer (both within the
compute node and across the network) and, for p = 1, a better load balance is beneficial.

In the shell case (Figure 16), we observe that both global-coarsening partitioning strategies
result in very similar reduction rates, which can be traced back to the fact that both strategies
lead to comparable partitionings of the levels (see also Table 5, which shows a very high verti-
cal efficiency of the default partitioning) and—as a consequence—to very similar solution times
(£10%). Local smoothing only reduces the maximum number of cells per level optimally once all
locally refined cells have been processed and the levels that had been constructed via global refine-
ment have been reached. This case stresses the issue of load imbalances related to reduction rates
significantly differing between processes.

6 PERFORMANCE ANALYSIS: P-MULTIGRID

In this section, we consider p-multigrid. The settings are as described in Section 5. The degrees on
the levels are obtained by a bisection strategy. On the coarsest level (p = 1, fine mesh with hanging
nodes), we run a single V-cycle of either a local-smoothing or a global-coarsening geometric multi-
grid solver in an hp context. In Appendix B, we present a comparison with state-of-the-art AMG
solvers [31, 34] as coarse-grid solvers of p-multigrid on 16 nodes. The results show better timings
in favor of geometric multigrid, which also turned out to be more robust with a single V-cycle.
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Fig. 16. Left: Maximum number of cells per level (L = 12; 256 nodes). Right: Strong scaling of global coarsen-
ing with first-child policy (fcp) in comparison to local smoothing (LS) and geometric global coarsening (GC)
with default policy for shell.
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Fig. 17. Strong scaling of p-multigrid for octant for p = 4. p-multigrid switches to a global-coarsening coarse-
grid solver immediately once linear elements have been reached. Left: Comparison with local smoothing (LS)
and geometric global coarsening (GC) for p = 4. Right: Comparison with geometric global coarsening (GC)
for p = 1 (coarse-grid problem of p-multigrid).

Figure 17 presents a strong-scaling comparison of the p-multigrid version of the global-
coarsening algorithm with local-smoothing and global-coarsening variants of h-multigrid for the
octant case for p = 4.° As we use a bisection strategy in the context of p-multigrid, the overall
(hp-)multigrid algorithm has two additional levels compared to pure h-multigrid, given the same
fine mesh, but with additional levels for p = 1 and p = 2. In our experiments, we observe that p-
multigrid needs at least as many iterations as the pure (global-coarsening) h-multigrid algorithm
(with small differences of at most 1). Since this might be related to the chosen problem and might
be different on unstructured meshes as well as for problems with high-contrast coefficients and
boundary layers, we consider “time per iteration” in the following.

One can see that one cycle of p-multigrid is 10-15% faster than h-multigrid for moderate num-
bers of processes. The reason for this is that the smoother application on the finest level is equally
expensive; however, the transfer between the two finest levels is cheaper: Due to the same parti-
tioning of these levels, the data are mainly transferred between cells that are locally owned on both

%The raw data for L = 9 is provided in Appendix B.
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the coarse and the fine level. At the scaling limit (not shown), p-multigrid falls behind A-multigrid
regarding performance. This is related to the increased latency due to a higher number of levels.

For the sake of completeness, Figure 17 includes the times spent in the geometric global-
coarsening part, i.e., the timings for the V-cycle for p = 1 for L = 8/L = 9 as the coarse-grid
problem of the p-multigrid solver. Due to the ~64x smaller size, its share is negligible for a wide
range of nodes, but it becomes noticeable at the scaling limit.

7 APPLICATION: VARIABLE-VISCOSITY STOKES FLOW

We conclude this publication by presenting preliminary results of a practical application from
geosciences by integrating the global-coarsening framework into the mantle convection code
ASPECT [39, 61] and comparing it against the existing local-smoothing implementation [27].

We consider the variable-viscosity Stokes problem

=V (2ne(u)) +Vp=f
V-u=0

with a Q2-Q1 Taylor-Hood discretization of velocity i, pressure p, and a given viscosity n(x) > 0,
the symmetric gradient £(u) = 1/2Vu + 1/2(Vu)’, and forcing f. The resulting linear system

(5 %)) =00

is solved with a Krylov method (in our tests using IDR(2), see Reference [27]) preconditioned using
a block preconditioner,
pl= (A BT) B

0o =S

where the Schur complement S = BA™'BT is approximated using a mass matrix weighted by the
viscosity. The inverses of the diagonal blocks of A and the Schur complement approximation S
are each approximated by applying a single V-cycle of geometric multigrid using a Chebyshev
smoother of degree 4 and implemented in a matrix-free fashion. Each IDR(2) iteration consists of
three matrix-vector products and three preconditioner applications. Operator and preconditioner
are set up to act on the complement of the nullspace containing the constant pressures. For a
detailed description of the preconditioner see Reference [27].

We consider a 3D spherical shell benchmark problem called “nsinker_spherical_shell” that is
part of ASPECT. A set of seven heavy sinkers is placed in a spherical shell with inner radius 0.54,
outer radius 1.0, and no-flow boundary conditions. The flow is driven by the density difference of
the sinkers (f = 10) and the gravity of magnitude 1 as follows, where c; are the centers of the n
sinkers’:

n

D(x) = 1_[ [1 — exp (—5 max [0, le; — x| — %]2)] s

i=1

n(x) = (x)Nmin + (1 — D(x))Nmax,

f(x) =(0,0,p(2(x) - 1)),
with § = 200, = 0.1, Pmin = 0.1, and nmax = 10. The viscosity is evaluated at the quadrature
points of each cell on the finest level, averaged using harmonic averaging on each cell, and then

interpolated to the coarser multigrid levels using the multigrid transfer operators (see also the
function interpolate_to_mg() in Figure 6) for use in the multigrid preconditioner.

"Their locations are given in https://github.com/peterrum/dealii-multigrid/mantle-convection.
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Fig. 18. Visualization of Stokes flow in a spherical shell: Adaptively refined mesh with two global and four
additional local refinements (left); solution shown together with the high-viscosity sinkers in red and velocity
vector field in purple (right).

Table 6. Performance for the Stokes-Flow Problem with 7,168 Processes with Number of Iterations (#it),
Time of a Single Multigrid V-cycle of the Velocity Block, Total Solution Time, and Efficiency Metrics

local smoothing global coarsening
L | #DoFs [1e6] | wl-eff v-eff h-eff #it solve[s] V-cycle[s] | wl-eff v-eff h-eff #it solve[s] V-cycle [s]

5 10.0 95% 93% 60% 24 111 0.011 77% 67% 61% 25 0.50 0.002
6 20.7 52% 96% 62% 25 1.54 0.006 77% 4% 63% 25 1.47 0.004
7 43.2 35% 97% 66% 27 3.20 0.010 86% 1% 66% 25 1.55 0.006
8 88.0 27% 98% 69% 27 4.94 0.021 91% 1% 69% 27 3.22 0.015
9 178.0 22% 99% 73% 28 9.81 0.046 95% 3% 73% 24 3.60 0.019
10 355.0 20% 100%  77% 29 15.36 0.104 97% 1% 76% 26 7.84 0.035
11 715.7 21% 100%  80% 27 26.38 0.217 99% 2% 80% 25 11.97 0.068
12 1441.4 20% 100%  83% 27 49.37 0.447 99% 2% 83% 26 21.77 0.140
13 2896.7 19% 100%  86% 27 107.24 0.980 100% 4% 86% 25 35.49 0.262
14 5861.9 21% 100%  89% 25 181.42 1.821 100% 5% 88% 30 78.46 0.518

The initial mesh (consisting of 96 coarse cells, 4 initial refinement steps, and a high-order man-
ifold description) is refined adaptively using a gradient jump error estimator (see Reference [56])
of the velocity field roughly doubling the number of unknowns in each step, see Figure 18.

In the following, we compare local smoothing and global coarsening regarding number of it-
erations, time to solution, and time for a single V-cycle of the A block in Table 6. Computations
are done on TACC Frontera® on 7,168 processes (128 nodes with 56 cores each). While iteration
numbers are very similar, the simulation with global coarsening is about twice as fast in total. Each
V-cycle is up to four times faster, which is not surprising, since the mesh has—for a high number
of refinements—a workload efficiency of approximately 20%. The results suggest that the findings
regarding iteration numbers and performance obtained in Section 5 for a simple Poisson problem
are also applicable for this non-trivial vector-valued problem.

8 SUMMARY AND OUTLOOK

We have compared geometric local-smoothing and geometric global-coarsening multigrid imple-
mentations for locally refined meshes. They are based on optimal node-level performance through
matrix-free operator evaluation and have been integrated into the same finite-element library
(deal.II) to enable a fair comparison regarding implementation complexity and performance.

8Using deal Il v9.4.0 with 64bit indices, Intel 19.1.0.20200306 with -O3 and -march=native.
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From the implementation point of view, the two multigrid versions are—except for some subtle
differences—similar, requiring special treatment of either refinement edges or hanging-node con-
straints during the application of the smoother and the transfer operator. For the latter, one can
usually rely on existing infrastructure for the application of constraints [62, 81]. During transfer,
global coarsening needs to transfer between cells that might be refined or not. To be able to vector-
ize the cell-local transfer, we categorize cells within the transfer operator and process categories
in one go. In the case of local smoothing, it is possible but not common to repartition the multigrid
levels; instead, one uses local strategies for partitioning. For global coarsening, we investigated two
partitioning strategies: one that optimally balances workload during smoothing via repartitioning
each level and one that minimizes the data to be communicated during the transfer phase.

In a large number of experiments, we have made the observation that, for serial simulations,
geometric local smoothing is faster than geometric global coarsening (if the number of iterations
is the same), since the total number of cells to perform smoothing on is smaller and the need for
evaluating hanging-node constraints on each level might be noticeable. For parallel simulations,
an equally distributed reduction of cells is beneficial. If this is not given, then load imbalance
is introduced and the critical path of cells, i.e., the time to solution, is increased. In the case of
local smoothing, there might be a non-negligible number of processes without cells, naturally in-
troducing load imbalance already on the finest—computationally most expensive—levels. Global
coarsening with repartitioning alleviates this problem and reaches optimal parallel workload. It
comes, however, with the disadvantage of expensive transfer steps due to permutation of the data.
We made the observation that global coarsening with non-optimal partitions for smoothing but
with local transfer allows us—for the examples considered—to reduce the number of cells on the
finest levels surprisingly well, introducing only a small load imbalance. We could not make a def-
inite statement on the choice of partitioning strategies for global coarsening, since it very much
depends on whether the transfer or the load imbalance is the bottleneck for the given problem.
Regardless of the type of partitioning of the levels, we have shown that global coarsening outper-
forms local smoothing by up a factor of 2.4 in terms of time to solution for both moderately large
and large-scale simulations.

We have also considered polynomial global coarsening (p-multigrid). Its implementation is con-
ceptually analogous to the one of geometric global coarsening with similar involved algorithms.
Far from the scaling limit, p-multigrid shows better timings per iteration, which can be explained
by the cheaper intergrid transfer. At the scaling limit, the introduction of additional multigrid
levels (when combining h and p multigrid) is noticeable and leads to slower times due to latency.
Generally, when p- and h-multigrid are used in sequence (hp-multigrid), reducing the degree p first
makes sense from a performance point of view due to cheaper transfer as long as the number of
iterations does not increase.

Global-coarsening algorithms also give the possibility to easily remove ranks from MPI commu-
nicators, allowing us to increase the granularity of the problem on each level. Once the problem
size can no longer be reduced by a sufficient factor, one can switch to the coarse-grid solver even on
alevel with hanging nodes. Furthermore, h and p global coarsening could be done in one go: While
this might lead to an overly aggressive coarsening with a consequential deterioration of the con-
vergence rate, the reduced number of levels could result in an improved strong-scaling behavior
due to a reduced latency in some cases. The investigation of these topics is deferred to future work.

In this publication, we focused on geometrically refined meshes consisting only of hexahedral
shaped cells, where all cells have the same polynomial degree p. However, the presented algorithms
also work for p- and hp-adaptive problems, where the polynomial degree varies for each cell, as
well as for simplex and mixed meshes as the implementation in deal . II [7] shows. Moreover, they
are—as demonstrated in Reference [60]—applicable for auxiliary-space approximation for DG, too.
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APPENDICES
A APPENDIX TO SECTION 5

Table 7. Number of Iterations and Time to Solution for Local Smoothing (LS) and
Global Coarsening (GC) for the octant Simulation case with 768 Processes (16 Nodes)

with Given Analytical Solution: u(x) = ( 12 )3 exp(—||X — %oll/a?) with
o ys

%o = (-=0.5,-0.5,-0.5)T and a = 0.1

p=1 p=4
LS GC LS GC
L #1 t[s] #1 t[s] #1 t[s] #1 t[s]
3 4 1.4e-3 4 1.0e-3 4 2.9e-3 4 2.9e-3
4 4 2.8e-3 4 1.7e-3 4 4.7e-3 4 4.2e-3
5 4 4.0e-3 4 2.7e-3 4 6.9¢-3 4 6.5e-3
6 4 5.7e-3 4 4.2e-3 4 1.2e-2 4 1.0e-2
7 4 8.2e-3 4 6.1e-3 4 2.8e-2 4 2.4e-2
8 5 2.2e-2 4 1.2e-2 5 2.8e-1 4 1.7e-1
9 5 8.8e-2 4 5.2e-2 5 2.5e+0 4 1.6e+0
10 5 6.1e-1 4 3.8e-1 — — — —

Right-hand-side function f(¥) and inhomogeneous Dirichlet boundary conditions have been
selected appropriately.

Table 8. Number of Iterations and Time to Solution for Local Smoothing, Global Coarsening, and AMG
(ML [34]) for the Octant Simulation Case with 768 Processes (16 Nodes)

p=1 p=4
local smoothing global coarsening local smoothing global coarsening
F=3 [ k=6 | k=3 | k=6 | MOCMD ——3 k=6 k=3 k=6
L | #i t[s] |#i t[s] |#i t[s] |# t[s] |# t[s] |#i t[s] |#i t[s] |#i t[s] |#i t[s]
3 14 13e3|3 14e3| 4 10e3 |2 70e4|1 6.0e3 |4 26e3 |3 253 |4 253 |2 19e3
4 | 4 28e3|3 29-3|4 17e3| 2 13e3| 1 25e-2 |4 43e3 |3 46e3 | 4 40e3 |2 3.0e3
514 43e3 |3 46e-3| 4 26e3 |2 23e3|5 423 |4 6.1e3 |3 6.6e3 |3 493 |2 5.1e3
6 | 4 58e3|3 64e-3| 4 43e-3| 2 34e3 |8 15e-2 |4 993 |3 1le2 |3 723 |2 71le3
714 82-3|3 93e3|3 45e3 |2 49-3 |6 122 |4 27e2 |3 30e2 |3 18e2 |2 17e2
8 |4 17e2|3 2le2|3 91e3| 2 10e2| 6 30e2 |4 23e1 |3 26e1 |3 1del |2 14e-1
9 14 71e2| 3 86e-2|3 38e-2|2 43e-2 |7 2le-1 |4 20e+0| 3 23e+0| 3 1.2e+0| 2 1.3e+0
10| 4 50e-1|3 6.1e-1| 2 19e-1| 2 30e-1| 7 1l6e+0 | — — - - — - — —

For local smoothing and global coarsening, results are shown for Chebyshev smoothing degrees of k = 3 and k = 6.

Table 9. Number of Iterations and Time to Solution for Local Smoothing (LS) and Global Coarsening
(GC) for the Octant Simulation Case with 768 Processes (16 Nodes)

double float
p=1 p=4 p=1 p=4
LS GC LS GC LS GC LS GC
L | #i t[s] #1 t[s] #1 t[s] #i t[s] #1 t[s] #1 t[s] #i t[s] #1 t[s]
3 4 1.3e-3 4 9.0e-4 4 2.6e-3 4 2.7e-3 4 1.3e-3 4 1.0e-3 4 2.4e-3 4 2.4e-3
4 4 28e-3 4 1.6e-3 4 4.5e-3 4 4.1e-3 4 27e3 4 1.7e-3 4 4.1e-3 4 4.1e-3
5 4 4.0e-3 4 2.6e-3 4 6.6e-3 3 5.1e-3 4 4.0e-3 4 2.6e-3 4 6.1e-3 3 4.8e-3
6 4 7.8e-3 4 4.0e-3 4 1.1e-2 3 9.6e-3 4 6.0e-3 4 4.1e-3 4 1.1e-2 3 7.3e-3
7 4 8.9e-3 3 4.9e-3 4 3.8e-2 3 2.7e-2 4 8.3e-3 3 4.8e-3 4 2.7e-2 3 1.8e-2
8 4 2.1e-2 3 1.0e-2 4 4.0e-1 3 2.4e-1 4 1.7e-2 3 9.2e-3 4 2.3e-1 3 1.4e-1
9 4 99e-2 3 5.1e-2 4 3.2e+0 3 1.9e+0 4 71e-2 3 3.9e-2 4 2.0e+0 3 1.2e+0
10 4 7.7e-1 2 2.8e-1 — — — — 4 5.0e-1 2 1.9e-1 — — — —

All operations in the outer CG solver are run with double-precision floating-point numbers and in the multigrid
V-cycle with the following multigrid number types: single- or double-precision floating-point numbers.
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Table 10. Number of Iterations for Local Smoothing (LS) and Global Coarsening (GC)
for the octant Simulation with 768 Processes (16 Nodes) and for Different Global
Relative Solver Tolerances

10°% 10°° 10°° 10710

p=1 p=4 p=1 p=4 p=1 p=4 p=1 p=4
L|[LS GC|LS GC|LS GC|LS GC|LS GC|LS GC|LS GC |LS GC
3| 4 4 4 4 6 5 6 6 7 6 8 7 9 8 | 10 9
4 | 4 4 4 4 6 6 6 5 8 7 8 7 |10 9 |10 9
5 | 4 4 4 3 6 5 6 5 8 7 8 7 |10 8 |10 8
6 | 4 4 4 3 6 5 6 5 8 7 8 6 |10 8 |10 8
7| 4 3 4 3 6 5 6 4 8 6 8 6 |10 8 |10 8
8 | 4 3 4 3 6 4 6 4 8 6 8 6 9 8 |10 7
9 | 4 3 4 3 6 4 6 4 8 6 8 6 9 7 |10 7
10 | 4 2 | — — |6 4 | — — |8 6 | — — |9 7 | - -

Table 11. Time to Solution for Global Coarsening for the Octant Simulation with
768 Processes (16 Nodes) and Different Cell Weights for Cells Near Hanging
Nodes Compared to Regular Cells

p=1 p=4

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
1.1e-3 1.0e-3 1.0e-3 1.0e-3 1.0e-3 2.7e-3  2.6e-3  2.6e-3 2.5e-3 2.5e-3
1.8e-3 1.8e-3 1.8e-3 1.7e-3 17e-3 | 39e-3 3.9e-3 39e-3 39e-3 39e-3
2.5e-3  2.7e-3 27e-3 26e-3 28e-3 | 44e-3 4.7e-3 4.6e-3 45e-3 4.6e-3
4.0e-:3  4.1e-3 4.1e-3 4.2e-3 4.1e-3 73e-3 7.1e-3 7.0e-3 7.1e-3  7.0e-3
4.8e-3 4.8e-3 4.7e-3 4.4e-3 5.4e-3 1.8e-2 1.7e-2 1.6e-2 1.7e-2 1.8e-2
1l.1e-2  1.0e-2 9.1e-3 8.5e-3 8.2e-3 | 1l.le-1 1.0e-1 1.0e-1 1.0e-1  1.0e-1
53e-2 44e-2 3.8e-2 35e-2 35e2 | 90e1 821 79e-1 78e1 7.9e-1
2.3e-1 1.9e-1 1.7e-1 1.5e-1 1.5e-1 - - - - -

~
somqmm»ms

Table 12. Time to Solution for Global Coarsening for the Octant Simulation with
24,576 Processes (512 Nodes) and Different Cell Weights for Cells Near Hanging
Nodes Compared to Regular Cells

p=1 p=4

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
l4e-3  13e-3 14e-3 1.6e-3 14e-3 | 3.1e-3 3.0e-3 3.0e-3 29e-3 29e-3
2.1e-3  2.2e-3 21e-3 2.0e-3 2le-3 | 43e-3 44e-3 43e-3 43e3 43e3
2.9e-3  29e-3  29e-3 29e-3 29e-3 | 4.6e-3 5.0e-3 46e-3 5le3 4.7e3
45e-3  4.1e-3 4.1e3 4.2e3 4.l1e3 | 7.0e-3 7.0e3 7.1e3 69e3 6.6e-3
59e-3 4.8e-3 5.7e-3 5.1e-3 5.6e-3 | 1l.le-2 1.le-2 1l.1e-2 1l.le-2 1.0e-2
7.6e-3  9.0e-3 7.9e-3 9.2e-3 89e-3 | l5e-2 1.5e-2 1.6e-2 15e-2 1lde-2
12e-2 1l.le-2 1.le-2 1.le-2 10e-2 | 49e-2 4.2e-2 43e-2 4.2e-2 42e-2
1.8e-2  15e-2 14e-2 13e-2 13e-2 | 3.7e-1 34e-1 34e-1 34e-1 3de-l1
7.6e-2  6.8e-2 57e-2 54e-2  53e-2 - - - - -

~
—
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Table 13. Number of Iterations and Time to Solution for
Local Smoothing (LS) and Global Coarsening (GC) for a
Uniformly Refined Mesh of a Cube (without Hanging
Nodes) with 768 Processes (16 Nodes)

p=1 p=4
LS GC LS GC
L | #i t[s] #1 t[s] #i t[s] #1 t[s]
3 4 1.80e-3 4 1.80e-3 4 2.90e-3 4 3.20e-3
4 4 2.50e-3 4 2.40e-3 4 3.90e-3 4 4.00e-3
5 4 3.30e-3 4 3.20e-3 4 5.90e-3 4 6.40e-3
6 4 4.60e-3 4 5.40e-3 4 1.61e-2 4 1.6%e-2
7 4 9.00e-3 4 9.00e-3 4 1.29e-1 4 1.29e-1
8 4 4.18e-2 4 4.21e-2 4 1.11e+0 4 1.10e+0
9 4 3.00e-1 4 2.98e-1 - - - -
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B APPENDIX TO SECTION 6

Table 14. Number of Iterations and Time to Solution for Local Smoothing (LS), Global Coarsening
(GC), and AMG (ML [34] and BoomerAMG [31]) as Coarse-grid Solver of p-multigrid for the octant
Simulation with 768 Processes (16 Nodes) for p = 4

IS Ge AMG (ML) AMG (BoomerAMG)
#v=1 #0=2 #0=3 #v=4 #v=1

L | #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s]

3 4 2.60e-3 4 2.20e-3 4 1.70e-3 4 2.00e-3 4 2.20e-3 4 2.50e-3 4 1.70e-3
4 4 5.10e-3 4 3.90e-3 4 5.40e-3 4 8.30e-3 4 1.11e-2 4 1.3%e-2 4 4.90e-3
5 4 7.60e-3 4 6.10e-3 4 1.17e-2 4 1.95e-2 4 2.74e-2 4 3.52e-2 4 1.17e-2
6 4 1.11e-2 4 9.20e-3 5 2.37e-2 4 3.24e-2 4 4.45e-2 4 5.96e-2 5 3.60e-2
7 4 2.35e-2 4 2.11e-2 6 4.70e-2 5 5.47e-2 4 5.59%-2 4 6.72e-2 6 1.04e-1
8 4 1.81e-1 4 1.72e-1 7 3.26e-1 5 2.65e-1 4 2.37e-1 4 2.63e-1 7 4.76e-1
9 4 1.53e+0 4 1.51e+0 9 3.54e+0 7 2.97e+0 6 2.75e+0 5 2.46e+0 8 3.83e+0

For AMG, different numbers of V-cycles #v are investigated. AMG parameters used are shown in Appendix C.

Table 15. Number of Iterations and Time of a Single Iteration for h-multigrid (Local
Smoothing (LS), Global Coarsening (GC)), and p-multigrid (Local Smoothing or
Global Coarsening as Coarse-grid Solver) for L =9 and p = 4

h-mg p-mg
LS GC LS GC
#nodes #i t[s] #i t[s] #i t[s] #i t[s]
8 4 6.30e-1 3 4.95e-1 4 4.75e-1 4 4.66e-1
16 4 4.99-1 3 4.03e-1 4 3.83e-1 4 3.77e-1
32 4 2.40e-1 3 2.03e-1 4 1.87e-1 4 1.84e-1
64 4 1.3%-1 3 1.05e-1 4 9.57e-2 4 9.25e-2
128 4 5.97e-2 3 4.90e-2 4 4.4%e-2 4 4.37e-2
256 4 3.17e-2 3 2.57e-2 4 2.35e-2 4 2.05e-2
512 4 1.54e-2 3 1.37e-2 4 1.38e-2 4 1.24e-2
C AMG PARAMETERS
Teuchos :: ParameterList parameter_list;
ML_Epetra::SetDefaults("SA", parameter_list);
parameter_list.set("smoother: type", "ILU");
parameter_list.set("coarse: type", coarse_type);
parameter_list.set("initialize random seed", true);
parameter_list.set("smoother: sweeps", 1);
parameter_list.set("cycle applications", 2);
parameter_list.set("prec type", "MGV");
parameter_list.set("smoother: Chebyshev alpha", 10.);
parameter_list.set("smoother: ifpack overlap", 0);
parameter_list.set("aggregation: threshold", 1le-4);
parameter_list.set("coarse: max size", 2000);
Listing 1. ML [34] (Trilinos 12.12.1).
PCHYPRESetType (pc, "boomeramg");
set_option_value("-pc_hypre boomeramg agg nl", "2");
set_option_value("-pc_hypre_boomeramg _max_row_sum"', "0.9");
set_option_value("-pc_hypre boomeramg strong threshold", "0.5");
set_option_value("-pc_hypre boomeramg relax type up", "SOR/Jacobi");
set_option_value("-pc_hypre boomeramg_relax_type _down", "SOR/Jacobi");
set_option_value("-pc_hypre boomeramg relax _type coarse", "Gaussian-elimination");
set_option_value("-pc_hypre_boomeramg grid _sweeps_coarse", "1");
set_option_value("-pc_hypre boomeramg_tol", "0.0");
set_option_value("-pc_hypre boomeramg max iter", "2"));

Listing 2. BoomerAMG [31] (PETSc 3.14.5).
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