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AbstractÐThe potential degradation of the Global Positioning
System and other Global Navigation Satellite Systems under
several circumstances gives rise to the development of alternative
position navigation and timing (PNT) technologies aiming at
maintaining efficient and safe operations. In this paper, we
exploit the use of Reconfigurable Intelligent Surfaces (RIS) as
enablers for the design of an alternative PNT solution, with
improved accuracy and efficiency. The specific problem of RISs’
orchestration and configuration is treated via the adoption of
Game Theory and Reinforcement Learning (RL). Initially, a
Satisfaction Game is formulated and solved among the targets,
enabling them to autonomously determine the optimal number of
RISs that will contribute to their PNT service, while the specific
set of RISs to be used is determined by a novel RL algorithm. In
order to further maximize the received signal strength at each
target of the reflected signals from the specific set of RISs, the
phase shift optimization of the latter is performed. Based on the
above, an Iterative Least Squares (ILS) algorithm is adopted,
following the multilateration technique, in order for each target
to estimate its position and timing. The performance evaluation of
the proposed approach is achieved via modeling and simulation.

Index TermsÐPositioning, Navigation, and Timing (PNT),
Satisfaction Games, Reconfigurable Intelligent Surfaces (RISs),
Reinforcement Learning (RL).

I. INTRODUCTION

Positioning, Navigation, and Timing (PNT) systems are

becoming more and more prevalent and ubiquitous in several

technology and infrastructure domains [1], such as wireless

communications, public safety and emergency management,

energy distribution, transportation, banking and finance,

weather forecasting, agriculture, and military missions to name

a few [1]. Besides, PNT systems constitute the vital structural

component of the most popular and recognizable service of

outdoor localization worldwide, i.e., the Global Navigation

Satellite System (GNSS), with the Global Positioning System

(GPS) being its most representative PNT provider. However,

the GPS service is not invulnerable and can be denied for

various reasons. The GPS signal is particularly susceptible
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to geographical and environmental changes (e.g., indoor

environments, urban canyons), as well as unintentional or man-

made interference to the satellite signals at the receiver (e.g.,

attenuation, jamming) [2]. As a consequence, the development

of alternative PNT systems with increased resilience to the

aforementioned vulnerabilities has been already identified as

one of the national planning objectives in the USA [3].

In this paper, aligned with the latter vision, we scrutinize

the synergy between conventional PNT systems and the key

6G technology of Reconfigurable Intelligent Surfaces (RISs)

[4], as a means of ameliorating the availability and accuracy of

the PNT services of mobile targets. The proper orchestration

and configuration of the RISs is achieved by exploiting the

theory of Satisfaction Games [5] and the Reinforcement

Learning (RL). Specifically, we introduce a Satisfaction Game-

based approach, according to which each target autonomously

determines the optimal number of RISs required to contribute

to its PNT service. Considering that each target’s energy

consumption increases as the number of signals reflected from

the RISs increase due to decoding, each target seeks to strike a

balance between its own energy availability and the received

signal’s shadowing probability. Then, a low-complexity RL-

based selection of the specific RISs that will be actually used

for each target’s PNT service provisioning follows, along with

the RISs’ phase shift optimization. The ultimate goal of this

process is to minimize the position and timing error for the

mobile targets.

A. Related Work

Extensive research efforts have been recently devoted on the

problem of designing alternative PNT systems to complement

or even substitute GPS operation in cases of GPS-denial [6].

In [7], the authors adopt the strapdown inertial navigation

system to provide PNT services, while its operation is

improved by exploiting the information of the velocity attitude,

as well as combining the benefits from the position from the

doppler velocity log, the celestial navigation, and the GNSS

systems. In [8], a Kalman filter-based approach is introduced,

combining the outputs of multiple GPS systems with an

Inertial Measurement Unit (IMU) to improve the PNT services

for the ground vehicles. Several multisensor localization and

navigation algorithms are presented in [9], by exploiting the

exchange of information among neighboring targets, in order

to provide PNT services in large-scale Internet of Things (IoT)

environments.
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Another area of research proposes the utilization of artificial

intelligence for the design of alternative PNT systems, by

especially placing the focus on the introduction of novel

RL techniques [10]. A deep Recurrent Neural Network

(RNN) with Long Short-Term Memory (LSTM) is designed

in [11] to estimate the target’s position, by combining the

target’s position measurements derived from the holographic

radar and the Radio Positioning System (RPS). A set of

gradient ascent and log-linear learning models is used in [12]

to enable the target to select the most beneficial signals

and autonomously perform its position and timing, while

minimizing the corresponding estimation error. A Support

Vector Regression (SVR) model is presented in [13] and

trained offline, by using the information of the targets’

density, the number of anchor nodes, their transmission range,

and the number of training iterations. The goal of this

machine learning-based approach is to minimize the average

localization error of the targets, at the cost of increased training

time of the model.

Nevertheless, the majority of the aforementioned alternative

PNT solutions are characterized by high infrastructure cost

and increased computing complexity. Towards addressing

these challenges, the key 6G technology of RISs [4] has

been recently proposed to be incorporated into existing low-

computational complexity PNT solutions [14]. RISs have

attracted increasing research and commercial popularity due

to their salient attributes, such as their low-cost and flexible

deployment on any static or mobile surface compared to

the traditional anchor nodes, the reconfigurability of their

reflected signals’ phase shifts in a software-defined manner,

and their passive operation [15]. Concerning their utilization

for enhanced-performance PNT services, the problem of Line

of Sight (LoS) communication links absence is addressed

in [16], where a single RIS is used to construct a virtual LoS

path among the anchor nodes and the target. Subsequently,

the latter one is able to determine its position through

the multilateration technique. Similarly, in [17], a target

determines its position by exploiting the reflected signals from

the RISs, and its position and orientation error bounds are

studied and analyzed. In [18], the authors optimize the RISs’

phase shifts, as a means of improving the received signal

strength at the target, and the latter one further determines

its position. The same problem is addressed in [19], where

the RISs’ phase shift optimization and target’s positioning are

addressed in a fully distributed manner.

B. Contributions and Outline

Apparently, the design of alternative PNT systems that

leverage the technology of RISs is still in its infancy, while

the major problem of the existing proposed solutions’ high

computational complexity remains notably unsolved. Also,

the critical technical issues of selecting an optimal number

and set of RISs to contribute to the targets PNT services,

while optimizing the RISs’ elements phase shifts to further

improve the PNT solution’s accuracy, have not been addressed

in the existing literature. Aiming to make a first step towards

filling this gap, we tackle the problem of RISs’ orchestration

and configuration within a PNT system via the adoption of

Game Theory and Reinforcement Learning (RL). The main

contributions of this work are summarized as follows.

1) A Satisfaction Game is formulated and solved among

the targets, enabling them to autonomously identify

and determine the optimal number of RISs that will

contribute to their PNT service. The Satisfaction Game’s

solution is an Efficient Satisfaction Equilibrium (ESE)

point, at which the targets satisfy their personal energy

and shadowing probability constraints, while being

charged with the lowest possible energy cost.

2) A novel RL algorithm is proposed to enable the

targets to autonomously select the specific set of RISs

that will contribute to their PNT service, given the

optimal number of RISs as already determined by the

Satisfaction Game and the corresponding ESE point. The

goal of the RL-based RIS selection is to minimize the

estimation error of each target’s PNT service, increasing

in this way the service’s accuracy.

3) The RISs’ phase shift optimization is performed with

the aim to maximize the received signal strength at

each target of the reflected signals from the specific

set of RISs that has been determined via the RL-

based RIS selection algorithm. Then, the targets are

allowed to accurately measure the pseudoranges, and

thus, estimate their position, timing, and navigation

(in case of moving targets). For the latter purpose,

the Iterative Least Squares (ILS) algorithm is adopted,

following the multilateration technique.

The remainder of this paper is organized as follows. Section

II introduces the system model and provides an overview

of the proposed framework. In Section III, the selection

of the optimal number of RISs by the targets is presented

following a Satisfaction Game-based approach, while in

Section IV, the Reinforcement Learning-based selection of the

specific set of RISs by each target is described. Section V

performs the RISs’ phase shift optimization, and Section VI

implements the Iterative Least Squares algorithm to determine

the targets’ position and timing. A detailed set of numerical

and comparative evaluation results is presented in Section VII.

Finally, Section VIII concludes the paper.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

A. System Model

We consider an area A, where a set of anchor nodes A “
t1, . . . , a, . . . , |A|u, a set of RISs R “ t1, . . . , r, . . . , |R|u,

and a set of targets N “ t1, . . . , n, . . . , |N |u reside. The

coordinates of the anchor nodes, the RISs, and the targets

are denoted as pxa, ya, zaq,@a P A, pxr, yr, zrq,@r P R,

and pxn, yn, znq,@n P N , respectively. The anchor nodes and

RISs are static and their coordinates are known, while the

targets can be either mobile or static and their coordinates

are unknown. Each target measures the pseudorange da,n [m]

from each anchor node a P A based on the received signal

strength of the direct signal transmitted by the anchor node

a, in order to calculate its position and timing (details in

Section VI). As a means of increasing the accuracy of its PNT
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Fig. 1: Overview of the RIS-assisted system consisting of

targets and anchor nodes.

service, each target leverages at the same time the reflected

signals from a set of properly selected RISs [20], [21]. For

this purpose, each target first selects the optimal number of

RISs |Rn| (see Section III) and identifies the specific set

of RISs Rn “ t1, . . . , r, . . . , |Rn|u that will contribute to

its PNT service (see Section IV). Specifically, each anchor

node transmits a beacon signal with constant transmission

power in order to support the targets’ PNT services. The target

receives the direct signals from the anchor nodes, as well as

the reflected signals from the selected RISs, while treating the

rest of the received signals as noise. Then, the measurement

of the pseudoranges dr,n [m] from each selected RIS r P Rn

follows, as described in Section VI [22]. An overview of the

considered RIS-assisted network consisting of the targets and

the anchor nodes is presented in Fig. 1.

As a result, each target receives beacon signals from |A|
anchor nodes and |Rn| selected RISs, each of them consisting

of B [bits] of information. The overall consumed energy

Enp|Rn|q [J] by each target to decode the signals and measure

the corresponding pseudoranges da,n (from each anchor node

a P A) and dr,n [m] (from each selected RIS r P Rn), is given

as follows [23],

Enp|Rn|q “ p|A| ¨ B ` |Rn| ¨ Bq ¨ Eb, (1)

where Eb [J/bit] is the target’s unit energy consumed for

receiving one bit of a beacon signal and calculating the

respective pseudorange.

The targets experience a shadowing effect due to the

physical obstacles in the surrounding environment, which can

contribute to non-Line of Sight (NLoS) communication paths

between the anchor nodes and the selected RISs with respect

to the target. Apparently, as the number of selected RISs by

each target increases, the probability of creating a constructive

beam of Line of Sight (LoS) communication between the

anchor nodes and the selected RISs also increases, mitigating

practically the experienced shadowing effect. Based on the

above observation, we define the shadowing probability for a

target n,@n P N , as follows [24],

Pn
s p|Rn|q “ 1 ´

|A| ` |Rn|

|A| ` |R|
. (2)

TABLE I: Summary of Key Notations

Notation Description

A,R,N Set of anchor nodes, RISs, and targets, respectively

pxa, ya, zaq, @a P A Coordinates of anchor nodes

pxr, yr, zrq, @r P R Coordinates of RISs

pxn, yn, znq, @n P N Coordinates of targets

da,n [m] Pseudorange among anchor node a and target n

Rn Set of RISs selected by target n

En Target’s n consumed energy

B[bits] Beacon signal’s amount of information

Eb[J/bit] Unit energy for receiving one bit of beacon signal

dr,n [m] Pseudorange among RIS r and target n

Pn
s Target’s n shadowing probability

en[J] Target’s n energy constraint

pn
s Target’s n shadowing probability constraint

Pn Target’s n position and timing

M Set of RIS elements

|Nr| Number of targets selected RIS r

Un Target’s n utility

fn Target’s n satisfaction correspondence

s
` Satisfaction Equilibrium

ite Iteration of the DRL algorithm

P ite
n Target’s n selection probability of a strategy

λ Leraning parameter of DRL algorithm

s
´ Generalized Satisfaction Equilibrium

s
: Efficient Satisfaction Equilibrium

scn Target’s n clipping strategy

gpRnq Reward function

i Iteration of RL-based RIS selection algorithm

Pn Target’s n selection probability of a set of RISs

Mr
n Set of RIS’s r elements allocated to target n

ωm Phase shift of RIS’s element m

ha,n Channel gain in the direct communication link

PLa,n Path loss in the communication link

h̃ Random variable capturing scattering effects

PLoS , PNLoS Probabilities of LoS and NLoS communication

PLLoS ,PLNLoS Path losses for the LoS and NLoS communication links

θ Elevation angle

fc [Hz] Carrier frequency

δ Path loss exponent

c [m/s] Speed of light

ha,r Channel gain in the communication link of a, r

ζ Path loss at the reference distance 1 m

ϕa,r Signal’s angle of arrival

ds [m] Antenna separation

λ [m] Wavelength of the carrier signal

hr,n Channel gain in the communication link of r, n

ϕr,n Signal’s angle of departure

Last, each target is characterized by a personal energy

constraint en [J] based on its device’s physical properties,

and a personal shadowing probability constraint pns in order to

be able to measure the corresponding pseudoranges. The key

notations used in this paper are summarized in Table I.

B. Operation of the Proposed Framework

In this section, an overview of the proposed alternative

PNT solution is provided, while describing the information

and control flow among the individual building components

of the overall framework. The operation of the proposed

framework is presented in Fig. 2. Initially, each target estimates

its position and timing Pτ“0
n “ pxτ“0

n , yτ“0
n , zτ“0

n ,∆tτ“0
n q by

measuring the pseudoranges from the anchor nodes only, given

that the target has still not selected the optimal number and set

of RISs that will contribute to its PNT service subsequently.

The anchor nodes perform an one-time broadcasting of their

beacon signals in order for the targets to determine an initial

estimation of their position and timing Pτ“0
n . The iterations

of the overall PNT solution are denoted as τ . Then, the
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Fig. 1: Overview of the RIS-assisted system consisting of

targets and anchor nodes.

service, each target leverages at the same time the reflected

signals from a set of properly selected RISs [20], [21]. For

this purpose, each target first selects the optimal number of

RISs |Rn| (see Section III) and identifies the specific set

of RISs Rn “ t1, . . . , r, . . . , |Rn|u that will contribute to

its PNT service (see Section IV). Specifically, each anchor

node transmits a beacon signal with constant transmission

power in order to support the targets’ PNT services. The target

receives the direct signals from the anchor nodes, as well as

the reflected signals from the selected RISs, while treating the

rest of the received signals as noise. Then, the measurement

of the pseudoranges dr,n [m] from each selected RIS r P Rn

follows, as described in Section VI [22]. An overview of the

considered RIS-assisted network consisting of the targets and

the anchor nodes is presented in Fig. 1.

As a result, each target receives beacon signals from |A|
anchor nodes and |Rn| selected RISs, each of them consisting

of B [bits] of information. The overall consumed energy

Enp|Rn|q [J] by each target to decode the signals and measure

the corresponding pseudoranges da,n (from each anchor node

a P A) and dr,n [m] (from each selected RIS r P Rn), is given

as follows [23],

Enp|Rn|q “ p|A| ¨ B ` |Rn| ¨ Bq ¨ Eb, (1)

where Eb [J/bit] is the target’s unit energy consumed for

receiving one bit of a beacon signal and calculating the

respective pseudorange.

The targets experience a shadowing effect due to the

physical obstacles in the surrounding environment, which can

contribute to non-Line of Sight (NLoS) communication paths

between the anchor nodes and the selected RISs with respect

to the target. Apparently, as the number of selected RISs by

each target increases, the probability of creating a constructive

beam of Line of Sight (LoS) communication between the

anchor nodes and the selected RISs also increases, mitigating

practically the experienced shadowing effect. Based on the

above observation, we define the shadowing probability for a

target n,@n P N , as follows [24],

Pn
s p|Rn|q “ 1 ´

|A| ` |Rn|

|A| ` |R|
. (2)

TABLE I: Summary of Key Notations

Notation Description

A,R,N Set of anchor nodes, RISs, and targets, respectively

pxa, ya, zaq, @a P A Coordinates of anchor nodes

pxr, yr, zrq, @r P R Coordinates of RISs

pxn, yn, znq, @n P N Coordinates of targets

da,n [m] Pseudorange among anchor node a and target n

Rn Set of RISs selected by target n

En Target’s n consumed energy

B[bits] Beacon signal’s amount of information

Eb[J/bit] Unit energy for receiving one bit of beacon signal

dr,n [m] Pseudorange among RIS r and target n

Pn
s Target’s n shadowing probability

en[J] Target’s n energy constraint

pn
s Target’s n shadowing probability constraint

Pn Target’s n position and timing

M Set of RIS elements

|Nr| Number of targets selected RIS r

Un Target’s n utility

fn Target’s n satisfaction correspondence

s
` Satisfaction Equilibrium

ite Iteration of the DRL algorithm

P ite
n Target’s n selection probability of a strategy

λ Leraning parameter of DRL algorithm

s
´ Generalized Satisfaction Equilibrium

s
: Efficient Satisfaction Equilibrium

scn Target’s n clipping strategy

gpRnq Reward function

i Iteration of RL-based RIS selection algorithm

Pn Target’s n selection probability of a set of RISs

Mr
n Set of RIS’s r elements allocated to target n

ωm Phase shift of RIS’s element m

ha,n Channel gain in the direct communication link

PLa,n Path loss in the communication link

h̃ Random variable capturing scattering effects

PLoS , PNLoS Probabilities of LoS and NLoS communication

PLLoS ,PLNLoS Path losses for the LoS and NLoS communication links

θ Elevation angle

fc [Hz] Carrier frequency

δ Path loss exponent

c [m/s] Speed of light

ha,r Channel gain in the communication link of a, r

ζ Path loss at the reference distance 1 m

φa,r Signal’s angle of arrival

ds [m] Antenna separation

λ [m] Wavelength of the carrier signal

hr,n Channel gain in the communication link of r, n

φr,n Signal’s angle of departure

Last, each target is characterized by a personal energy

constraint en [J] based on its device’s physical properties,

and a personal shadowing probability constraint pns in order to

be able to measure the corresponding pseudoranges. The key

notations used in this paper are summarized in Table I.

B. Operation of the Proposed Framework

In this section, an overview of the proposed alternative

PNT solution is provided, while describing the information

and control flow among the individual building components

of the overall framework. The operation of the proposed

framework is presented in Fig. 2. Initially, each target estimates

its position and timing P
τ“0

n “ pxτ“0

n , yτ“0

n , zτ“0

n ,∆tτ“0

n q by

measuring the pseudoranges from the anchor nodes only, given

that the target has still not selected the optimal number and set

of RISs that will contribute to its PNT service subsequently.

The anchor nodes perform an one-time broadcasting of their

beacon signals in order for the targets to determine an initial

estimation of their position and timing P
τ“0

n . The iterations

of the overall PNT solution are denoted as τ . Then, the
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Fig. 2: Overview of the proposed alternative PNT solution’s

operation.

targets participate in a satisfaction game among them to

determine the optimal number of RISs that will be used to

improve the accuracy of their PNT services, while considering

their personal energy and shadowing probability constraints

(Section III). Following this step, a novel RL-based approach

is proposed following the principles of the gradient ascent

algorithms to enable each target to select the specific set of

RISs that will contribute to its PNT service (Section IV), given

the number of RISs as determined from the previous step

(Section III). Afterward, the RISs phase shift optimization

is performed to improve the signal strength of the signals

received by the targets (Section V). Then, each target sends

a control signal to its selected RISs’ controllers to optimally

control its selected RISs elements phase shifts, and the anchor

nodes perform another broadcasting in order for the targets

to receive the updated stronger received signals. Finally, the

Iterative Least Squares (ILS) algorithm is implemented to

determine the targets’ position and timing (Section VI). The

overall process is repeated iteratively, as presented in Fig. 2,

until the position and timing estimation error of the targets

is practically eliminated. It is noted that in the practical

implementation of the proposed model, only few iterations of

the overall process are needed given the intelligent exploitation

of the beacon signals stemming both from the anchor nodes

and the RISs.

III. OPTIMAL NUMBER OF RISS VIA GAMES IN

SATISFACTION FORM

In this section, the theory of Games in Satisfaction Form

is adopted to enable each target to autonomously identify

and select the optimal number of RISs that will contribute

to its PNT service. Each RIS consists of a set of RIS

elements M “ t1, . . . ,m, . . . , |M |u. The targets that select

the same RIS, equally share among each other the control

over its elements, by being allocated with t |M |
|Nr| u number of

RIS elements, where |Nr| denotes the number of targets that

selected the RIS r. The goal of each target is initially to

select the optimal number of RISs |Rn| that satisfies its energy

en and shadowing probability pns constraints, while at the

same time not over-exploiting the RISs elements. The latter

condition is desired, since the more targets share the same RIS,

the less number of elements each target is allocated, decreasing

in this way their capability to create a constructive beam

via controlling the phase shift of their allocated elements.

Also, it is noted that the creation of few constructive beams

based on the anchor nodes’ reflected signals on the RISs

can substantially mitigate the interference experienced in the

overall system, as compared to the case of multi-path signals

due to scattering, diffraction, etc., in a non-RIS supported

wireless communication environment. Based on the above, we

define the target’s n satisfaction, i.e., utility, from selecting a

number of RISs |Rn|, as follows,

Unpsn, s´nq “

$

’

’

&

’

’

%

p en´En

en
qp

pn
s ´Pn

s

pn
s

qp |R|¨|N |
ř

@nPN

|Rn| q,

if En ă en and Pn
s ă pns ,

0, otherwise,
(3)

where sn is the strategy, i.e., the number of RISs |Rn| selected

by the target n, and s´n “ ps1, . . . , sn´1, sn`1, . . . , s|N |q is

the strategy vector of the rest of the targets. The physical

meaning of Eq. 3 is that a target n receives a positive utility if

its energy consumption and shadowing probability constraints

are simultaneously satisfied, while being at the same time

incentivized to not over-exploit the RISs elements.

Towards determining the optimal number of RISs selected

by each target, we introduce a non-cooperative satisfaction

game among the targets that is formally described as G “
rN, tsnu@nPN , tUnu@nPN , tfnu@nPN s, where N is the set of

targets, sn is each target’s strategy, i.e., number of RISs, Un is

the target’s utility (Eq. 3), and fnps´nq “ tsn|Unpsn, s´nq ě
0u is the target’s satisfaction correspondence.

Definition 1. (Satisfaction Equilibrium (SE)): A strategy

vector s` “ ps`
1
, . . . , s`

n , . . . , s
`
|N |q is a SE, if @n P N ,

s`
n P fnps`

´nq.

Practically, at the SE point s`, all targets achieve a non-

negative utility, implying that they satisfy their personal

constraints, as these have incorporated in the definition of their

utility above.

Towards determining an SE point, we introduce the

Distributed Reinforcement Learning algorithm (DRL), as

presented in Algorithm 1. The DRL algorithm returns the

SE strategy vector s` “ ps`
1
, . . . , s`

n , . . . , s
`
|N |q, if it exists.

Also, λ P r0, 1s is the learning parameter. The complexity of

the DRL algorithm is OpIteq, where Ite is the number of

iterations required for the algorithm to converge to the SE.

Detailed numerical results are presented in Fig. 4 and Fig. 7

in Section VII, showing that the number of iterations Ite are

approximately 10 in order for the algorithm to converge.

Definition 2. (Clipping Strategy): A target has a clipping

strategy scn, iff @s´n, scn P fnps´nq.

The physical meaning and interpretation of Definition 2 is

that if a target n achieves a clipping strategy at an iteration ite

of the DRL algorithm, then, for any consequent iteration, the

target keeps the same strategy, i.e., selects the same number

of RISs. Thus, if there is another target n1 ‰ n, such that

fn1 ps´n1 q “ H (i.e., the target is not satisfied), then, the target
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Algorithm 1 Distributed Reinforcement Learning (DRL)

algorithm

1: Input: A,R,N, en, p
n
s ,@n P N

2: Output: s`

3: Initialization: ite “ 0, Convergence “ 0, site“0
n , @n P

N, P ite“0
n “ 1

|R| .

4: while Convergence ““ 0 do
5: ite “ ite ` 1;
6: if site`1

n “ siten then

7: Each node n selects site`1
n with probability

P ite`1
n psite`1

n q “ P ite
n psiten q ´ 1

pite`1q`1
¨ λ ¨

P ite
n psiten q.

8: end if
9: if site`1

n ‰ siten then

10: Each node n selects site`1
n with probability

P ite`1
n psite`1

n q “ P ite
n psiten q` 1

pite`1q`1
¨λ ¨ p 1

|R|´1
´

P ite
n psiten qq.

11: end if
12: if Unpsite`1

n , site`1

´n q ě 0 then

13: Convergence “ 1

14: end if
15: end while

n will play its clipping strategy scn and the target n1 will not

achieve the satisfaction of its personal constraints. Thus, the

DRL algorithm will converge to a Generalized Satisfaction

Equilibrium (GSE) point.

Definition 3. (Generalized Satisfaction Equilibrium): A

strategy vector s´ is a GSE if there exist two sets of targets

Nsat, Nunsat with Nsat Y Nunsat “ N , such that @n P
Nsat, sn P fnps´

´nq and n1 P Nunsat, fn1 ps´
´n1 q “ H.

It should be highlighted that the non-cooperative satisfaction

game G may have many GSE or many SE points that

satisfy the targets’ constraints. Thus, an GSE exists and

can be determined by the DRL algorithm, but it is not

necessarily unique, as several strategies s´ may satisfy the

targets belonging in the set of satisfied targets Nsat. Out of

all the potential SE points, the one SE that results in the lowest

energy consumption Enp|Rn|q for the target, i.e., the Efficient

Satisfaction Equilibrium (ESE) point, presents greater energy

benefits for the target.

Definition 4. (Efficient Satisfaction Equilibrium (ESE)): A

strategy vector s: is an ESE, if @n P N, s: P fnps:
´nq and

Enps:
nq ă Enps

1

nq,@n P N , for any other possible strategy

s
1

n.

Practically, at the ESE point s:, the targets achieve to not

only satisfy their personal energy and shadowing probability

constraints, but are also experiencing the lowest possible

energy cost. In the general case, the ESE is not unique, as

multiple strategies of number of RISs selection may provide

the same lowest possible energy cost to the target. Towards

determining the ESE of the formulated game, we utilize a

similar methodology to the DLR algorithm presented earlier

in this section, however, the strategy selection is performed

under two joint criteria, i.e., non-negative utility and minimum

energy consumption cost. The outcome of the algorithm

determines the ESE, i.e., the optimal number of RISs |Rn|
that should be selected by each target in order to determine

its position and timing, while considering its personal energy

and shadowing probability constraints.

IV. REINFORCEMENT LEARNING-BASED RIS SELECTION

In this section, a novel Reinforcement Learning (RL)

algorithm is introduced to enable each target to autonomously

select the specific set of RISs that will contribute to its PNT

service, given the optimal number of RISs, as determined by

the ESE (Section III). The metric that is utilized at this point of

the proposed alternative PNT solution design is the Geometric

Dilution of Precision (GDOP), which captures the accuracy of

the PNT service. Particularly in this work, the GDOP value

quantifies the success of the geometric constellation of the

anchor nodes and the selected RISs in terms of accurately

determining the target’s position and timing. Low values of

GDOP correspond to low estimation error of the target’s

position and timing, and thus, the ultimate goal of each target

is to achieve a small GDOP value.

Based on the latter, we define each target’s n reward by

selecting a specific set of RISs Rn at the ith iteration of the

proposed RL algorithm, as follows,

gpRnq “

b

10

|A|`|Rn|

GDOP pRnq
. (4)

It is noted that the value
b

10

|A|`|Rn| is the best GDOP value

that is currently reported in the existing literature considering

the received signals from |A| ` |Rn| transmitters, i.e., the

anchor nodes and the selected RISs [25].

The proposed reward function is practically used to steer

each target’s n autonomous selection of the specific set of RISs

Rn, via the implementation of a Linear Reward Inaction (LRI)

algorithm-based RL scheme [26]. In particular, each target

probabilistically selects a set of RISs Ri
n at the ith iteration of

the RL algorithm, and subsequently, updates the probabilities

of selecting this specific set at future iterations, by evaluating

the resulted value of reward gpRi
nq. The probability of each

target selecting the same (Eq. 5a) or a different (Eq. 5b) set

of RISs Rn at each iteration i of the RL algorithm is given

as follows,

PnpRi`1

n q “ PnpRi

nq ` λRL ¨ gpRi

nqp1 ´ PnpRi

nqq, if R
i

n “ R
i`1

n ,
(5a)

PnpRi`1

n q “ PnpRi

nq ´λRL ¨ gpRi

nqPnpRi

nq, if R
i

n ‰ R
i`1

n , (5b)

where λRL P r0, 1s is the target’s learning rate. The proposed

RL algorithm converges slower to a set of selected RISs for

smaller values of the learning parameter λRL, with the benefit

of more accurate decision-making, given that it thoroughly

explores the available strategies. The devised RL algorithm is

repeated iteratively by each target until the probability to select

a specific set of RISs gets close to one. Also, it is highlighted

that the strategic RISs selection by the targets accounting for

the highest achieved GDOP, as captured in Eq. 4, has the

potential of mitigating the interference in the overall system,

as the targets exploit the existing strongest received signals
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reflected on the RISs, without requesting higher transmission

power levels.

V. RISS PHASE SHIFT OPTIMIZATION

In this section, the RISs’ elements phase shift optimization

is performed towards maximizing the received signal strength

at each target of the reflected signals from the specific set

of RISs that has been determined to accommodate its PNT

service. As mentioned in Section III and IV, each target selects

the optimal number of RISs |Rn| and identifies the specific set

of RISs Rn that will contribute to its PNT service. A single

RIS r can be selected by multiple targets, the number of which

is indicated by |Nr|. Each target n out of the |Nr| has equal

control over the RIS’s r elements, by being allocated a number

of |Mr
n| “ t |M |

|Nr| u elements, the set of which is indicated as

Mr
n. Hence, the goal of each target is to optimally control

the phase shift of the RIS elements that it has control over at

each RIS. Before formulating the corresponding optimization

problem, we analyze in detail the communication environment

among the anchor nodes, the RISs, and the targets. The rest

of the analysis is focused on one target and one of its selected

RISs r, while targeting to optimize the phase shift of the

corresponding |Mr
n| allocated RIS elements. Similar analysis

can be derived for each target, each selected RIS, and each

group of |Mr
n| allocated RIS elements.

Let ωm P r0, 2πs,@m P Mr
n denote the phase shift

of RIS’s r elements, and Ω “ diagpejω1 , . . . , ejω|Mr
n| q,

Ω P C
|Mr

n|ˆ|Mr
n| be the corresponding diagonal reflection

matrix [27]. We denote as ha,n “
b

1

PLa,n
¨ h̃, the channel

gain experienced in the direct communication link between

the anchor node a and the target n, with h̃ representing

a random variable quantifying the random scattering effects

and following a zero-mean unit-variance Complex Gaussian

distribution. PLa,n “ PLpda,nq is the overall path loss

of the corresponding communication link, with da,n [m]

denoting the Euclidean distance among the anchor node and

the target. Especially, the path loss PLa,n is derived as

PLpda,nq “ PLoS ¨ PLLoS ` p1 ´ PLoSqPLNLoS , where

PLoS and PNLoS are the probabilities of LoS and NLoS

communication, respectively, and PLLoS and PLNLoS are

the path losses for the LoS and NLoS communication link,

respectively. The formulas from which the latter are derived

are as follows. We define PLoSpzn, da,nq “ 1

1`αe´γpθ´αq ,

where θ “ 180

π
sin´1 p zn

da,n
q [rad] denotes the elevation

angle, zn [m] is the target’s altitude, and α, γ P R
`

are positive constants depending on the carrier frequency

fc [Hz] and the communication environment, e.g., urban,

rural. Also, we define PLLoSpda,nq “ ηLoSp
4πfcda,n

c
qδ

and PLNLoSpda,nq “ ηNLoSp
4πfcda,n

c
qδ , with ηLoS , ηNLoS

denoting the excessive path loss coefficients, ηNLoS ą ηLoS ą
1, c [m/s] is the speed of light, and δ is the path loss exponent.

Focusing on the communication link between an anchor

node a and a RIS r, the channel gain is derived as ha,r “
b

1

PLa,r
¨ r1, e´j 2π

λ
dsϕa,r , . . . , e´j 2π

λ
p|Mr

n|´1qdsϕa,r sT , ha,r P

C
|Mr

n|ˆ1, with PLa,r “ ζ ¨ dκa,r denoting the path loss of the

communication link among the anchor node a and the RIS r,

ζ [dB] is the path loss at the reference distance of 1 [m], da,r
[m] is the distance between the anchor node and the RIS, and

κ is the path loss exponent. Also, ϕa,r denotes the signal’s

angle of arrival, ds [m] is the antenna separation, and λ [m]

is the wavelength of the carrier signal.

Concerning the communication link between the RIS r and

the target n, the corresponding channel gain is derived as

hr,n “
b

1

PLr,n
p
b

µ
1`µ

hLoS
r,n `

b

1

1`µ
hNLoS
r,n q P C

|Mn
r |ˆ1,

where hLoS
r,n “ r1, e´j 2π

λ
dsϕr,n , . . . , e´j 2π

λ
p|Mr

n|´1qdsϕr,nsT

is the LoS component, with ϕr,n denoting the signal’s

angle of departure, and hNLoS
r,n is the NLoS component,

represented by a random variable following a zero-mean

unit-variance Complex Gaussian distribution. µ is the Rician

factor, and PLr,n “ PLpdr,nq is the overall path loss of

the communication link, with dr,n [m] denoting the distance

among the RIS r and the target n.

For each selected RIS, the goal of the target is to maximize

the received signal strength, by optimizing the phase shifts of

the RIS’s elements that are allocated to the target. Based on the

previous analysis and the modeling of the wireless channels’

conditions within the considered communication environment,

the overall channel gain between a target n and an anchor node

a is Gn “ |ha,n `hH
r,nΩha,r|2, while considering at the same

time the reflection of the anchor node’s transmitted signal from

the RIS to the target. Thus, towards determining the optimal

phase shift of the allocated RIS elements to a target, each target

should solve the following optimization problem for each of

its selected RISs:

max
ω

|A|
ÿ

a“1

|ha,n ` hH
r,nΩha,r|2 (6a)

s.t., 0 ď ωm ă 2π,@m P Mr
n, (6b)

where ω is the vector of the RIS’s phase shifts ωm,@m P Mr
n.

We rewrite the above optimization problem as follows:

max
v

|A|
ÿ

a“1

|ha,n ` ĥ
H

a,rv|2 (7a)

s.t.,

Mr
n

ÿ

m“1

|vm| “ 1,@m P Mr
n, (7b)

where v “ rv1, . . . , vm, . . . , v|Mr
n|s P C

|Mr
n|ˆ1, vm “ ejωm ,

and ĥ
H

a,r “ hH
r,n diagpha,rq P C

1ˆ|Mr
n|. The optimization

problem (7a) ± (7b) is non-convex, thus, in the following

analysis, we introduce a heuristic approach in order to

determine the optimal phase shift of the |Mr
n| RIS’s elements

allocated to the target n.

We start our analysis with one anchor node and a

target, and we generalize for multiple anchor nodes. In

the case of one anchor node (e.g., a “ 1), the direct

and the reflected signal from the RIS should be aligned to

maximize the received signal strength. Thus, it should hold

true that =h1,n “ ´=ĥ1,r ` =v ðñ =v “ =h1,n `
=ĥ1,r, and the corresponding optimal phase shifts of the

RIS’s elements can be derived ω
˚ “ =v. Generalizing

our analysis for multiple anchor nodes, we denote as

va “ rva,1, . . . , va,m, . . . , va,|Mr
n|s P C

|Mr
n|ˆ1 the reflection

coefficient vector for each anchor node, where va “ ej=ha,n ¨



IEEE SYSTEMS JOURNAL 7

Jk “

»

—

—

—

–

Bf1pXk
nq

Bxn

Bf1pXk
nq

Byn

Bf1pXk
nq

Bzn

Bf1pXk
nq

B∆tkn
...

...
...

...
Bf|A|`|Rn|pXk

nq

Bxn

Bf|A|`|Rn|pXk
nq

Byn

Bf|A|`|Rn|pXk
nq

Bzn

Bf|A|`|Rn|pXk
nq

B∆tkn

fi

ffi

ffi

ffi

fl

(9) RESk “

»

—

–

f1pXk
nq

...

f|A|`|Rn|pX
k
nq

fi

ffi

fl
(10)

ej=ĥa,r , @a P A. However, it is evident that a single value

v that maximizes the channel gain for all the anchor nodes

simultaneously cannot be determined. Thus, we introduce a

weight wa P r0, 1s to each reflection coefficient vector va,

with v “
|A|
ř

a“1

wa ¨ va, such that
|A|
ř

a“1

wa “ 1, and we rewrite

the optimization problem (7a) ± (7b) as follows:

max
w

|A|
ÿ

a“1

|ha,n ` ĥ
H

r,nΩha,r|2 (8a)

s.t., 0 ď wa ă 1,@a P A, (8b)
|A|
ÿ

a“1

wa “ 1, (8c)

with w “ rw1, . . . , wa, . . . , w|A|s and Ω “ diagpej=vq. The

latter optimization problem can be solved based on standard

optimization tools, and derive the optimal reflection coefficient

vector v˚. By backward induction, the target’s allocated RIS

elements’ optimal phase shift vector ω˚ can then be derived.

Each target solves the optimization problem (8a)-(8c) for

each selected RIS r P Rn and sends a control signal to the

corresponding RIS controller in order to optimally control the

phase shifts of the |Mr
n| elements.

VI. POSITIONING, NAVIGATION, AND TIMING

ESTIMATION

In this section, we introduce a low-complexity Iterative

Least Squares (ILS) algorithm to estimate the targets’ position

and timing, given the derivation of the optimal number of

RISs (Section III), the selection of the specific set of RISs

by each target (Section IV), as well as the RISs’ element

phase shift optimization (Section V). Each target measures

the pseudoranges from each anchor node dka,n “ |Xk
n ´Xa|´

∆tkn ¨ c, and each selected RIS dka,r,n “ 1a,rpXr ´ Xaq `
1rpXk

n ´ Xrq ´ ∆tkn ¨ c, taking respective into account the

direct and the reflected signals from the RISs. We denote as k

the iteration of the ILS algorithm, Xk
n “ pxk

n, y
k
n, z

k
nq,Xa “

pxa, ya, zaq, Xr “ pxr, yr, zrq the coordinates of the target

n, the anchor node a, and the RIS r, respectively. Also, ∆tkn
denotes the clock offset among the target n and the anchor

nodes, assuming that the clocks of all the anchor nodes are

synchronized. The main steps of the proposed ILS algorithm

are summarized in Algorithm 2. The complexity of the ILS

algorithm is OpN ¨Kq, where K is the number of iterations that

the algorithm needs in order to converge. It is highlighted that

in a practical implementation, the ILS algorithm is executed

by each target, thus, the complexity is OpKq, experienced by

each target.

Based on the above analysis, the ILS algorithm determines

the targets’ position and timing while exploiting the input

Algorithm 2 Iterative Least Squares (ILS) Algorithm

1: Input: dka,n, d
k
a,r,n,@a P A, r P 1, . . . |Rn|

2: Output: Pn,@n P N

3: Initialization: k “ 0, Convergence “ 0,Pk“0
n ,@n P N .

4: while Convergence ““ 0 do
5: k “ k ` 1;
6: for n “ 1 to N do

7: The equations of the pseudoranges are set equal to

zero, and the corresponding functions fj ,@j P A Y
t1, . . . , |Rn|u are derived.

8: The Jacobian matrix Jk and the Residual matrix

RESk are calculated, as presented in Eq. 9 and Eq.

10, respectively.

9: The least squares problem is solved and the

position and timing estimation error is calculated as

p∆xk
n,∆ykn,∆zkn,∆p∆tknqq “ pJkT ¨ Jkq´1 ¨ JkT ¨

RESk.

10: The position and timing estimate is updated, as

follows: Pk`1
n “ pxk

n ` ∆xk
n, y

k
n ` ∆ykn, z

k
n `

∆zkn,∆tkn ` ∆p∆tknqq.

11: end for

12: if |Pk
n ´ Pk`1

n | « 0,@n P N then
13: Convergence “ 1

14: end if
15: end while

of the Satisfaction Game, i.e., optimal number of selected

RISs, the RL-based RIS selection approach, i.e., selection of

a specific set of RISs, and the RISs phase shift optimization

that maximizes the signal strength of the received signals. The

goal of the ILS algorithm is to eliminate the estimation error.

VII. NUMERICAL RESULTS

In this section, a detailed simulation-based evaluation of

the proposed framework is performed in order to demonstrate

its pure operation and performance, as well as to highlight

its benefits and drawbacks. Specifically, the pure operation

and performance of the proposed alternative PNT solution is

presented in Section VII-A, while its benefits are highlighted

in Section VII-B through a comparative evaluation. The

benefits of the proposed satisfaction game-theoretic approach

in terms of selecting the number of RISs that contribute to

the targets PNT service are quantified in Section VII-C. The

performance of the proposed alternative PNT solution under

the mobility scenario of the targets is illustrated in Section

VII-D, while a detailed comparative evaluation to the state of

the art is provided in Section VII-E.

Throughout our evaluation, we adopted a system topology

consisting of 4 anchor nodes, 10 RISs and 5 targets. In

particular the key parameters that have been used in the



IEEE SYSTEMS JOURNAL 8

� � � 	 
 � � 
 � � ��
�)"��&�$�����'

���

���

��


���

��
&�

�(
�'�

	�
�(

 ! 
(+

���

���

��


���

��
&�

�(
�'�

	�
��

��
$*

 #
��

�&
$�

��
 ! 

(+

shi

��


�

���

���

���

�
�

��
&�

�(
�'�

	�
�#

�&
�+

��
$#

')
"

%(
 $

#

ei

����������&��(�	

� � � 	 
 � � 
 � � ��
�#��� �������!

����

����

����

��
�

����

����

��
 �

�"
!��

�"
���

"$

���
������ ��"��
������� ��"��
������ ��"��
������� ��"��
������ ��"�	
������� ��"�	
������ ��"�

������� ��"�

������ ��"��
������� ��"��

� � 	 
 � � 
 � � ��
�%�"�)$% �&��'�%�'�$#&�τ

���

���

���

���

��
%�
�'
&��
�(

�%
��

��
��

�#
#�

!��
��
#�

��
��
��

�

����

����

����

��
�

����

����

����

��
%�
�'
&��
�(

�%
��

��
��

��

�

�

�

	




��
%�
�'
&��
�(

�%
��

��
�&
'�"

�'
�$
#�
�%
%$
%

���

Fig. 3: Pure performance and operation of the proposed alternative PNT solution.

experiments are: |A| “ 4, |R| “ 10, |N | “ 5, B “ 32 bits,

Eb “ 0.4 J, e “ r107.48, 110.93, 115.68, 128.58, 138.41s J,

ps “ r0.48, 0.52, 0.62, 0.64, 0.65s, |M | “ 300, λ “ 0.01,

α “ 11.95, γ “ 0.14, fc “ 2 ˆ 109 Hz, ηLoS “ 3,

ηNLoS “ 23, c “ 3ˆ108 m/s, δ “ 2, ds “ λ
2

, µ “ 2.8, unless

otherwise explicitly stated. For presentation purposes, it has

been considered that the higher the target’s ID is, the greater

its energy consumption and shadowing probability constraints

are. In this way, the effect of the stringency of the targets’

constraints over the proposed framework’s performance can be

scrutinized and revealed. A detailed Monte Carlo analysis has

been performed for all the presented experiments considering

10, 000 realizations of the RISs phase shift optimization

problem. The evaluation of the proposed framework was

performed in a Dell Tower Desktop with Intel i7 11700k

3.6GHz processor, 32GB available RAM.

A. Pure Operation & Performance

In this section, the pure performance and the operation of

the proposed alternative PNT solution is demonstrated. Fig. 3a

presents the utility (Eq. 3), the shadowing probability (Eq. 2),

and the energy consumption (Eq. 1) of one indicative target

(target’s ID 3) as a function of the number of selected RISs.

Fig. 3b shows all the targets’ utility as a function of the

number of selected RISs. Fig. 3c illustrates the targets’ average

channel gain, GDOP, and position and timing estimation error

as a function of the iterations τ of the overall framework, as

presented in Fig. 2.

The obtained results verify that the novel concept of

satisfaction games enables the targets to achieve a feasible

solution in terms of selecting the optimal number of RISs that

satisfies their energy consumption and shadowing probability

constraints (Fig. 3a), by securing a positive utility value (Fig.

3a,3b). Also, it is observed that the greater the targets’ energy

consumption and shadowing probability constraints are, the

higher the achieved utility of the targets is, even when selecting

a relatively small number of RISs to contribute to their PNT

service. Furthermore, the proposed alternative PNT solution

converges to low average estimation error and GDOP values

for the targets, while simultaneously achieving high average

channel gain (Fig. 3c), and converging practically in less than

10 iterations of the overall framework, which corresponds to

less than 4 seconds.

B. Benefits of the Proposed Alternative PNT Solution

In this section, the benefits of the proposed alternative PNT

solution are demonstrated through a detailed comparative

evaluation. Specifically, four different scenarios are

compared: (i) Proposed Approach, (ii) No PS: Our proposed

solution without performing the RISs elements phase shift

optimization, (iii) No PS & No RL: the RISs are randomly

selected by the targets and no phase shift optimization is

performed on their elements, and (iv) No RIS: the PNT

service is exclusively supported by the anchor nodes’ signals.

Fig. 4a±4c show the target’s average channel gain, GDOP,

and position and timing estimation error as a function of the

frameworks’ iterations τ , considering the four comparative

alternative PNT solutions. The results reveal that as the

alternative PNT solution becomes less intelligent i.e., no RISs’

elements phase shift optimization (No PS scenario), random

selection of RISs by the targets (No PS & No RL scenario),

or not even using the RISs to support the PNT service (No

PS & No RL scenario), the targets’ average channel gain

substantially decreases (Fig. 4a), while the targets’ average

GDOP and position and timing estimation error converge to

significantly high values (Fig. 4b±4c). Thus, we conclude

that the multifaceted intelligence that is introduced by our

proposed alternative PNT solution, combining the benefits of

the satisfaction games, the reinforcement learning, and the RIS

technology, results in a highly accurate PNT service.

C. Intelligent Selection of the Number of RISs

In this section, we further corroborate on the benefits of

the proposed alternative PNT solution, especially from the

perspective of employing the theory of satisfaction games that

enables the targets to select the optimal number of RISs that

will contribute to their PNT service. Towards this direction, we

provide a comparison between four alternative approaches for

selecting the optimal number of RISs for each target, (i) Our

Method; (ii) 50% of RISs: each target selects 50% of the total

number of RISs available in the system, (iii) Average number

of RISs: each target selects
|R|
|N | number of RISs, (iv) All RISs:

each target uses all the available RISs in order to determine its

position and timing. It is noted that the RISs’ elements phase

shift optimization presented in Section V is performed at all

the comparative scenarios for fairness purposes, while in the

second and third scenarios, the specific set of RISs that finally

supports a target’s PNT service is selected randomly.

Fig. 5a-5b present the targets’ shadowing probability and

energy consumption as a function of the target’s ID for all four

comparative scenarios, respectively. It is justified that only our

proposed framework that follows the principles of satisfaction

games can jointly respect shadowing probability (Fig. 5a) and

the energy (Fig. 5b) consumption constraints. On the other

hand, when the targets exploit all the RISs to determine their
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Fig. 6: Mobility scenario and accuracy of the proposed alternative PNT solution.

PNT, i.e., All RISs scenario, their shadowing probability is

very low (Fig. 5a), given that there is higher probability

of establishing LoS communication links. Nevertheless, the

experienced energy consumption is extremely high (Fig. 5b),

as the number of received signals at the target by both

the anchor nodes and by reflection from the RISs increase,

yielding at higher decoding overhead and thus, consumed

energy. Also, the scenarios of selecting 50% or the average

number of RISs existing in the system present similar trend,

and there is no guarantee that the targets’ energy consumption

and shadowing probability constraints will be satisfied.

D. Targets Mobility and PNT

In this section, we are emulating a realistic mobility use case

of the targets considering two different scenarios. In the first

use case scenario, the target is in a favorable position (Fig. 6a)

with respect to the obstacles in the surrounding environment,

thus, experiencing a very limited shadowing effect. The exact

opposite holds true in the second use case scenario (Fig. 6b)

where the target is blocked by several obstacles during its

navigation. The results demonstrate that the mobile target’s

positioning and navigation is successful and accurate for a

practical and real-life implementation scenario. Also, it is

observed that higher estimation error is experienced by the

target, when it is blocked by surrounding obstacles (Fig. 6b).

However, the intelligent exploitation of the RISs’ reflected

signals contribute to partially overcoming the topological

defects and obstacles, and thus result in a highly accurate PNT

service in both scenarios.

E. Comparative Evaluation

In this section, we provide a comparative evaluation of our

proposed framework to the main existing approaches in the

literature that provide alternative PNT solutions by exploiting

the capabilities of the RIS technology. Six comparative

scenarios have been considered: (i) Proposed Approach, (ii)

Scenario I: the targets randomly select r

|N|
ř

n“1

|Rn|

|N | s RISs, (iii)

Scenario II: the targets randomly select r |R|
|N | s RISs, (iv)

Scenario III and IV: the targets select r

|N|
ř

n“1

|Rn|

|N | s and r |R|
N

s
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Fig. 7: Comparative evaluation.

RISs, respectively, based on the proposed reinforcement

learning-based RIS selection mechanism (Section IV), and

(v) Scenario V: the targets select r |R|
|N | s RISs based on the

best channel gain conditions contributed by the selected RISs,

i.e., maxrhH
r,nΩha,r [21]. It is noted that in all of the

aforementioned comparative scenarios, the RISs phase shift

optimization is performed.

Fig. 7a-7c demonstrate the targets’ average channel gain,

the GDOP, and the position and timing estimation error as

a function of the frameworks’ iterations τ for all the six

comparative scenarios. The results reveal that our proposed

alternative PNT solution achieves the most accurate PNT

service with the lowest estimation error (Fig. 7c), while

simultaneously achieving the lowest GDOP (Fig. 7b) and the

highest channel gain (Fig. 7a) for the targets. On the other

hand, the importance of adopting the reinforcement learning

approach in order to enable the targets to select the specific

set of RISs that contribute to their PNT service is highlighted

by comparing scenarios I and II, to scenarios III, IV, and V.

Also, the selection of the RISs based on the best channel

gain conditions contributed by the selected RISs outperforms

the random-based RISs selection in terms of targets’ average

channel gain (Fig. 7a), GDOP (Fig. 7b), and estimation error

(Fig. 7c). Scenarios I and II achieve overall better results

in terms of providing an accurate PNT service compared to

Scenarios III and IV.

VIII. CONCLUSIONS

In this paper, a novel alternative PNT solution is introduced

that capitalizes on the key enabling technology of 6G net-

works, i.e., the RISs, while adopting and applying the theory

satisfaction games and the reinforcement learning for their

proper configuration and orchestration. Initially, a satisfaction

game among the targets, which have unknown coordinates,

is formulated to determine the number of selected RISs that

will contribute to their PNT service, while guaranteeing their

energy consumption and shadowing probability constraints.

Then, a reinforcement learning-based approach enables the

targets to select the specific set of RISs in order to

minimize the position and timing estimation error, given the

optimal number of RISs as determined at the previous stage.

Afterwards, the RISs’ elements phase shift optimization is

performed to maximize the received signal strength of the

signals transmitted by the anchor nodes, reflected from the

selected RISs, and received by the targets. Finally, an Iterative

Least Square (ILS) algorithm is used to accurately determine

the targets’ position and timing, capitalizing on the previous

findings. A detailed set of numerical results are presented

in order to show the pure operation and performance of

the proposed framework, as well as its benefits compared

to other prospective alternative PNT solutions. The main

benefits of the proposed alternative PNT solution compared

to the state-of-the-art can be summarized as follows: (i)

improve the GDOP and the targets’ estimation error by jointly

exploiting the RIS technology and the intelligent selection

of RISs, (ii) introduce a distributed PNT solution, where

each target autonomously senses its environment, selects the

RISs, and optimizes their phase shifts, and (iii) implement

a low-computational complexity PNT solution that respects

the targets’ personal characteristics, in terms of energy and

shadowing constraints.

Part of our current and future work is to extend the proposed

alternative PNT solution in featureless terrains, aiming at

minimizing the number of anchor nodes, the deployment

of which is particularly costly and challenging under these

circumstances.
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Fig. 6: Mobility scenario and accuracy of the proposed alternative PNT solution.

PNT, i.e., All RISs scenario, their shadowing probability is

very low (Fig. 5a), given that there is higher probability

of establishing LoS communication links. Nevertheless, the

experienced energy consumption is extremely high (Fig. 5b),

as the number of received signals at the target by both

the anchor nodes and by reflection from the RISs increase,

yielding at higher decoding overhead and thus, consumed

energy. Also, the scenarios of selecting 50% or the average

number of RISs existing in the system present similar trend,

and there is no guarantee that the targets’ energy consumption

and shadowing probability constraints will be satisfied.

D. Targets Mobility and PNT

In this section, we are emulating a realistic mobility use case

of the targets considering two different scenarios. In the first

use case scenario, the target is in a favorable position (Fig. 6a)

with respect to the obstacles in the surrounding environment,

thus, experiencing a very limited shadowing effect. The exact

opposite holds true in the second use case scenario (Fig. 6b)

where the target is blocked by several obstacles during its

navigation. The results demonstrate that the mobile target’s

positioning and navigation is successful and accurate for a

practical and real-life implementation scenario. Also, it is

observed that higher estimation error is experienced by the

target, when it is blocked by surrounding obstacles (Fig. 6b).

However, the intelligent exploitation of the RISs’ reflected

signals contribute to partially overcoming the topological

defects and obstacles, and thus result in a highly accurate PNT

service in both scenarios.

E. Comparative Evaluation

In this section, we provide a comparative evaluation of our

proposed framework to the main existing approaches in the

literature that provide alternative PNT solutions by exploiting

the capabilities of the RIS technology. Six comparative

scenarios have been considered: (i) Proposed Approach, (ii)

Scenario I: the targets randomly select r

|N|
ř

n“1

|Rn|

|N | s RISs, (iii)

Scenario II: the targets randomly select r |R|
|N | s RISs, (iv)

Scenario III and IV: the targets select r

|N|
ř

n“1

|Rn|

|N | s and r |R|
N

s
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