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Abstract—The potential degradation of the Global Positioning
System and other Global Navigation Satellite Systems under
several circumstances gives rise to the development of alternative
position navigation and timing (PNT) technologies aiming at
maintaining efficient and safe operations. In this paper, we
exploit the use of Reconfigurable Intelligent Surfaces (RIS) as
enablers for the design of an alternative PNT solution, with
improved accuracy and efficiency. The specific problem of RISs’
orchestration and configuration is treated via the adoption of
Game Theory and Reinforcement Learning (RL). Initially, a
Satisfaction Game is formulated and solved among the targets,
enabling them to autonomously determine the optimal number of
RISs that will contribute to their PNT service, while the specific
set of RISs to be used is determined by a novel RL algorithm. In
order to further maximize the received signal strength at each
target of the reflected signals from the specific set of RISs, the
phase shift optimization of the latter is performed. Based on the
above, an Iterative Least Squares (ILS) algorithm is adopted,
following the multilateration technique, in order for each target
to estimate its position and timing. The performance evaluation of
the proposed approach is achieved via modeling and simulation.

Index Terms—Positioning, Navigation, and Timing (PNT),
Satisfaction Games, Reconfigurable Intelligent Surfaces (RISs),
Reinforcement Learning (RL).

I. INTRODUCTION

Positioning, Navigation, and Timing (PNT) systems are
becoming more and more prevalent and ubiquitous in several
technology and infrastructure domains [[1], such as wireless
communications, public safety and emergency management,
energy distribution, transportation, banking and finance,
weather forecasting, agriculture, and military missions to name
a few [1]]. Besides, PNT systems constitute the vital structural
component of the most popular and recognizable service of
outdoor localization worldwide, i.e., the Global Navigation
Satellite System (GNSS), with the Global Positioning System
(GPS) being its most representative PNT provider. However,
the GPS service is not invulnerable and can be denied for
various reasons. The GPS signal is particularly susceptible
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to geographical and environmental changes (e.g., indoor
environments, urban canyons), as well as unintentional or man-
made interference to the satellite signals at the receiver (e.g.,
attenuation, jamming) [2]. As a consequence, the development
of alternative PNT systems with increased resilience to the
aforementioned vulnerabilities has been already identified as
one of the national planning objectives in the USA [J3].

In this paper, aligned with the latter vision, we scrutinize
the synergy between conventional PNT systems and the key
6G technology of Reconfigurable Intelligent Surfaces (RISs)
[4]], as a means of ameliorating the availability and accuracy of
the PNT services of mobile targets. The proper orchestration
and configuration of the RISs is achieved by exploiting the
theory of Satisfaction Games [5] and the Reinforcement
Learning (RL). Specifically, we introduce a Satisfaction Game-
based approach, according to which each target autonomously
determines the optimal number of RISs required to contribute
to its PNT service. Considering that each target’s energy
consumption increases as the number of signals reflected from
the RISs increase due to decoding, each target seeks to strike a
balance between its own energy availability and the received
signal’s shadowing probability. Then, a low-complexity RL-
based selection of the specific RISs that will be actually used
for each target’s PNT service provisioning follows, along with
the RISs’ phase shift optimization. The ultimate goal of this
process is to minimize the position and timing error for the
mobile targets.

A. Related Work

Extensive research efforts have been recently devoted on the
problem of designing alternative PNT systems to complement
or even substitute GPS operation in cases of GPS-denial [6].
In [7]], the authors adopt the strapdown inertial navigation
system to provide PNT services, while its operation is
improved by exploiting the information of the velocity attitude,
as well as combining the benefits from the position from the
doppler velocity log, the celestial navigation, and the GNSS
systems. In [8]], a Kalman filter-based approach is introduced,
combining the outputs of multiple GPS systems with an
Inertial Measurement Unit (IMU) to improve the PNT services
for the ground vehicles. Several multisensor localization and
navigation algorithms are presented in [9], by exploiting the
exchange of information among neighboring targets, in order
to provide PNT services in large-scale Internet of Things (IoT)
environments.
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Another area of research proposes the utilization of artificial
intelligence for the design of alternative PNT systems, by
especially placing the focus on the introduction of novel
RL techniques [[10]. A deep Recurrent Neural Network
(RNN) with Long Short-Term Memory (LSTM) is designed
in [11]] to estimate the target’s position, by combining the
target’s position measurements derived from the holographic
radar and the Radio Positioning System (RPS). A set of
gradient ascent and log-linear learning models is used in [|12]]
to enable the target to select the most beneficial signals
and autonomously perform its position and timing, while
minimizing the corresponding estimation error. A Support
Vector Regression (SVR) model is presented in [13] and
trained offline, by using the information of the targets’
density, the number of anchor nodes, their transmission range,
and the number of training iterations. The goal of this
machine learning-based approach is to minimize the average
localization error of the targets, at the cost of increased training
time of the model.

Nevertheless, the majority of the aforementioned alternative
PNT solutions are characterized by high infrastructure cost
and increased computing complexity. Towards addressing
these challenges, the key 6G technology of RISs [4] has
been recently proposed to be incorporated into existing low-
computational complexity PNT solutions [14]. RISs have
attracted increasing research and commercial popularity due
to their salient attributes, such as their low-cost and flexible
deployment on any static or mobile surface compared to
the traditional anchor nodes, the reconfigurability of their
reflected signals’ phase shifts in a software-defined manner,
and their passive operation [15]]. Concerning their utilization
for enhanced-performance PNT services, the problem of Line
of Sight (LoS) communication links absence is addressed
in [16], where a single RIS is used to construct a virtual LoS
path among the anchor nodes and the target. Subsequently,
the latter one is able to determine its position through
the multilateration technique. Similarly, in [17], a target
determines its position by exploiting the reflected signals from
the RISs, and its position and orientation error bounds are
studied and analyzed. In [18]], the authors optimize the RISs’
phase shifts, as a means of improving the received signal
strength at the target, and the latter one further determines
its position. The same problem is addressed in [19], where
the RISs’ phase shift optimization and target’s positioning are
addressed in a fully distributed manner.

B. Contributions and Outline

Apparently, the design of alternative PNT systems that
leverage the technology of RISs is still in its infancy, while
the major problem of the existing proposed solutions’ high
computational complexity remains notably unsolved. Also,
the critical technical issues of selecting an optimal number
and set of RISs to contribute to the targets PNT services,
while optimizing the RISs’ elements phase shifts to further
improve the PNT solution’s accuracy, have not been addressed
in the existing literature. Aiming to make a first step towards
filling this gap, we tackle the problem of RISs’ orchestration

and configuration within a PNT system via the adoption of
Game Theory and Reinforcement Learning (RL). The main
contributions of this work are summarized as follows.

1) A Satisfaction Game is formulated and solved among
the targets, enabling them to autonomously identify
and determine the optimal number of RISs that will
contribute to their PNT service. The Satisfaction Game’s
solution is an Efficient Satisfaction Equilibrium (ESE)
point, at which the targets satisfy their personal energy
and shadowing probability constraints, while being
charged with the lowest possible energy cost.

2) A novel RL algorithm is proposed to enable the
targets to autonomously select the specific set of RISs
that will contribute to their PNT service, given the
optimal number of RISs as already determined by the
Satisfaction Game and the corresponding ESE point. The
goal of the RL-based RIS selection is to minimize the
estimation error of each target’s PNT service, increasing
in this way the service’s accuracy.

3) The RISs’ phase shift optimization is performed with
the aim to maximize the received signal strength at
each target of the reflected signals from the specific
set of RISs that has been determined via the RL-
based RIS selection algorithm. Then, the targets are
allowed to accurately measure the pseudoranges, and
thus, estimate their position, timing, and navigation
(in case of moving targets). For the latter purpose,
the Iterative Least Squares (ILS) algorithm is adopted,
following the multilateration technique.

The remainder of this paper is organized as follows. Section
introduces the system model and provides an overview
of the proposed framework. In Section the selection
of the optimal number of RISs by the targets is presented
following a Satisfaction Game-based approach, while in
Section [[V] the Reinforcement Learning-based selection of the
specific set of RISs by each target is described. Section
performs the RISs’ phase shift optimization, and Section
implements the Iterative Least Squares algorithm to determine
the targets’ position and timing. A detailed set of numerical
and comparative evaluation results is presented in Section [VII}
Finally, Section [VIII| concludes the paper.

II. OVERVIEW OF THE PROPOSED FRAMEWORK
A. System Model

We consider an area A, where a set of anchor nodes A =
{1,...,a,...,]A|]}, aset of RISs R = {1,...,r,...,|R|},
and a set of targets N = {l,...,n,...,|N|} reside. The
coordinates of the anchor nodes, the RISs, and the targets
are denoted as (Zq,¥a,2q),Va € A, (Xp,Yr,2),Vr € R,
and (Z,,, Yn, 2n), Vi € N, respectively. The anchor nodes and
RISs are static and their coordinates are known, while the
targets can be either mobile or static and their coordinates
are unknown. Each target measures the pseudorange d, ,, [m]
from each anchor node a € A based on the received signal
strength of the direct signal transmitted by the anchor node
a, in order to calculate its position and timing (details in
Section [VI). As a means of increasing the accuracy of its PNT
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Fig. 1: Overview of the RIS-assisted system consisting of
targets and anchor nodes.

service, each target leverages at the same time the reflected
signals from a set of properly selected RISs [20], [21]. For
this purpose, each target first selects the optimal number of
RISs |R,| (see Section and identifies the specific set
of RISs R, = {1,...,r,...,|Ry|} that will contribute to
its PNT service (see Section [IV). Specifically, each anchor
node transmits a beacon signal with constant transmission
power in order to support the targets’ PNT services. The target
receives the direct signals from the anchor nodes, as well as
the reflected signals from the selected RISs, while treating the
rest of the received signals as noise. Then, the measurement
of the pseudoranges d, , [m] from each selected RIS r € R,,
follows, as described in Section [VI] [22]]. An overview of the
considered RIS-assisted network consisting of the targets and
the anchor nodes is presented in Fig. [I]

As a result, each target receives beacon signals from |A]
anchor nodes and |R,,| selected RISs, each of them consisting
of B [bits] of information. The overall consumed energy
E,(|R,|) [J] by each target to decode the signals and measure
the corresponding pseudoranges d, , (from each anchor node
a € A) and d,.,, [m] (from each selected RIS r € R,,), is given
as follows [23],

En(|Rn]) = (|A]- B + Rl - B) - Ey, (1)

where Ej, [J/bit] is the target’s unit energy consumed for
receiving one bit of a beacon signal and calculating the
respective pseudorange.

The targets experience a shadowing effect due to the
physical obstacles in the surrounding environment, which can
contribute to non-Line of Sight (NLoS) communication paths
between the anchor nodes and the selected RISs with respect
to the target. Apparently, as the number of selected RISs by
each target increases, the probability of creating a constructive
beam of Line of Sight (LoS) communication between the
anchor nodes and the selected RISs also increases, mitigating
practically the experienced shadowing effect. Based on the
above observation, we define the shadowing probability for a
target n, Vn € N, as follows [24],

|A| + |R,|

PI(IRnl) =1 - :
Al + [R|

2

TABLE I: Summary of Key Notations

\ Notation \ Description
A,R,N Set of anchor nodes, RISs, and targets, respectively
(ZasYas za), Va € A Coordinates of anchor nodes
(zr, Yr, 2r),Vr € R Coordinates of RISs
(Tp, Yn,2n), VN € N Coordinates of targets
dq,n [m] Pseudorange among anchor node a and target n
Ry, Set of RISs selected by target n
E, Target’s n consumed energy
Bibits] Beacon signal’s amount of information
EL[I/bit] Unit energy for receiving one bit of beacon signal
dy n [m] Pseudorange among RIS r and target n
P Target’s n shadowing probability
enlJ] Target’s n energy constraint
pr Target’s n shadowing probability constraint
P, Target’s n position and timing
M Set of RIS elements
[N,| Number of targets selected RIS r
U, Target’s n utility
fn Target’s n satisfaction correspondence
sT Satisfaction Equilibrium
ite Iteration of the DRL algorithm
pite Target’s n selection probability of a strategy
A Leraning parameter of DRL algorithm
s~ Generalized Satisfaction Equilibrium
s Efficient Satisfaction Equilibrium
4 Target’s n clipping strategy
g(R,) Reward function
7 Iteration of RL-based RIS selection algorithm
Pn Target’s n selection probability of a set of RISs
M) Set of RIS’s  elements allocated to target n
W, Phase shift of RIS’s element m
ha,n Channel gain in the direct communication link
PLyn Path loss in the communication link
h Random variable capturing scattering effects
pLoS pNLoS Probabilities of LoS and NLoS communication
pLEoS ppNLe Path losses for the LoS and NLoS communication links
[ Elevation angle
fe [Hz] Carrier frequency
B Path loss exponent
c [m/s] Speed of light
h, - Channel gain in the communication link of a, 7
¢ Path loss at the reference distance 1 m
ba,r Signal’s angle of arrival
ds [m] Antenna separation
A [m] Wavelength of the carrier signal
h, , Channel gain in the communication link of r, n
br.n Signal’s angle of departure

Last, each target is characterized by a personal energy
constraint e,, [J] based on its device’s physical properties,
and a personal shadowing probability constraint pi in order to
be able to measure the corresponding pseudoranges. The key
notations used in this paper are summarized in Table I}

B. Operation of the Proposed Framework

In this section, an overview of the proposed alternative
PNT solution is provided, while describing the information
and control flow among the individual building components
of the overall framework. The operation of the proposed
framework is presented in Fig. [2] Initially, each target estimates
its position and timing P7=0 = (27=9 y7=0 >7=0 A¢7=0) by
measuring the pseudoranges from the anchor nodes only, given
that the target has still not selected the optimal number and set
of RISs that will contribute to its PNT service subsequently.
The anchor nodes perform an one-time broadcasting of their
beacon signals in order for the targets to determine an initial
estimation of their position and timing P7=°. The iterations
of the overall PNT solution are denoted as 7. Then, the
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service, each target leverages at the same time the reflected
signals from a set of properly selected RISs [20], [21]]. For
this purpose, each target first selects the optimal number of
RISs |R,| (see Section and identifies the specific set
of RISs R, = {1,...,r,...,|R,|} that will contribute to
its PNT service (see Section [IV). Specifically, each anchor
node transmits a beacon signal with constant transmission
power in order to support the targets’ PNT services. The target
receives the direct signals from the anchor nodes, as well as
the reflected signals from the selected RISs, while treating the
rest of the received signals as noise. Then, the measurement
of the pseudoranges d, , [m] from each selected RIS r € R,,
follows, as described in Section [VI] [22]]. An overview of the
considered RIS-assisted network consisting of the targets and
the anchor nodes is presented in Fig. [I]

As a result, each target receives beacon signals from |A]
anchor nodes and |R,,| selected RISs, each of them consisting
of B [bits] of information. The overall consumed energy
E,(|Ry,|) [J] by each target to decode the signals and measure
the corresponding pseudoranges d, , (from each anchor node
a € A) and d,,, [m] (from each selected RIS r € R,,), is given
as follows [23],

En(|Rn]) = (|A]- B + Rl - B) - Ey, (1)

where Ej, [J/bit] is the target’s unit energy consumed for
receiving one bit of a beacon signal and calculating the
respective pseudorange.

The targets experience a shadowing effect due to the
physical obstacles in the surrounding environment, which can
contribute to non-Line of Sight (NLoS) communication paths
between the anchor nodes and the selected RISs with respect
to the target. Apparently, as the number of selected RISs by
each target increases, the probability of creating a constructive
beam of Line of Sight (LoS) communication between the
anchor nodes and the selected RISs also increases, mitigating
practically the experienced shadowing effect. Based on the
above observation, we define the shadowing probability for a
target n,Vn € N, as follows [24],

|A| + |R,|

PI(IRnl) =1 - :
Al + [R|

2

TABLE I: Summary of Key Notations

\ Notation \ Description
A,R,N Set of anchor nodes, RISs, and targets, respectively
(ZasYas za), Va € A Coordinates of anchor nodes
(zr, Yr, 2r),Vr € R Coordinates of RISs
(Tp, Yn,2n), VN € N Coordinates of targets
dq,n [m] Pseudorange among anchor node a and target n
Ry, Set of RISs selected by target n
E, Target’s n consumed energy
Bibits] Beacon signal’s amount of information
EL[I/bit] Unit energy for receiving one bit of beacon signal
dy n [m] Pseudorange among RIS 7 and target n
P Target’s n shadowing probability
enlJ] Target’s n energy constraint
pr Target’s n shadowing probability constraint
P, Target’s n position and timing
M Set of RIS elements
[N,| Number of targets selected RIS r
U, Target’s n utility
fn Target’s n satisfaction correspondence
sT Satisfaction Equilibrium
ite Iteration of the DRL algorithm
pite Target’s n selection probability of a strategy
A Leraning parameter of DRL algorithm
s~ Generalized Satisfaction Equilibrium
s Efficient Satisfaction Equilibrium
4 Target’s n clipping strategy
g(R,) Reward function
7 Iteration of RL-based RIS selection algorithm
Pn Target’s n selection probability of a set of RISs
M, Set of RIS’s r elements allocated to target n
W, Phase shift of RIS’s element m
ha,n Channel gain in the direct communication link
PLyn Path loss in the communication link
h Random variable capturing scattering effects
pLoS pNLo Probabilities of LoS and NLoS communication
pLEoS ppNLo Path losses for the LoS and NLoS communication links
[ Elevation angle
fe [Hz] Carrier frequency
B Path loss exponent
c [m/s] Speed of light
h, Channel gain in the communication link of a, 7
¢ Path loss at the reference distance 1 m
ba,r Signal’s angle of arrival
ds [m] Antenna separation
A [m] Wavelength of the carrier signal
h, , Channel gain in the communication link of r, n
br.n Signal’s angle of departure

Last, each target is characterized by a personal energy
constraint e,, [J] based on its device’s physical properties,
and a personal shadowing probability constraint p} in order to
be able to measure the corresponding pseudoranges. The key
notations used in this paper are summarized in Table I}

B. Operation of the Proposed Framework

In this section, an overview of the proposed alternative
PNT solution is provided, while describing the information
and control flow among the individual building components
of the overall framework. The operation of the proposed
framework is presented in Fig. [2] Initially, each target estimates
its position and timing P7=0 = (27=Y y7=0 >7=0 A¢7=0) by
measuring the pseudoranges from the anchor nodes only, given
that the target has still not selected the optimal number and set
of RISs that will contribute to its PNT service subsequently.
The anchor nodes perform an one-time broadcasting of their
beacon signals in order for the targets to determine an initial
estimation of their position and timing P7=°. The iterations
of the overall PNT solution are denoted as 7. Then, the
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Fig. 2: Overview of the proposed alternative PNT solution’s
operation.

targets participate in a satisfaction game among them to
determine the optimal number of RISs that will be used to
improve the accuracy of their PNT services, while considering
their personal energy and shadowing probability constraints
(Section [[I). Following this step, a novel RL-based approach
is proposed following the principles of the gradient ascent
algorithms to enable each target to select the specific set of
RISs that will contribute to its PNT service (Section , given
the number of RISs as determined from the previous step
(Section [II). Afterward, the RISs phase shift optimization
is performed to improve the signal strength of the signals
received by the targets (Section [V)). Then, each target sends
a control signal to its selected RISs’ controllers to optimally
control its selected RISs elements phase shifts, and the anchor
nodes perform another broadcasting in order for the targets
to receive the updated stronger received signals. Finally, the
Iterative Least Squares (ILS) algorithm is implemented to
determine the targets’ position and timing (Section [VI). The
overall process is repeated iteratively, as presented in Fig.
until the position and timing estimation error of the targets
is practically eliminated. It is noted that in the practical
implementation of the proposed model, only few iterations of
the overall process are needed given the intelligent exploitation
of the beacon signals stemming both from the anchor nodes
and the RISs.

III. OPTIMAL NUMBER OF RISS VIA GAMES IN
SATISFACTION FORM

In this section, the theory of Games in Satisfaction Form
is adopted to enable each target to autonomously identify
and select the optimal number of RISs that will contribute
to its PNT service. Each RIS consists of a set of RIS
elements M = {1,...,m,...,|M|}. The targets that select
the same RIS, equally share among each other the control
over its elements, by being allocated with [%J number of
RIS elements, where |N,.| denotes the number of targets that
selected the RIS r. The goal of each target is initially to
select the optimal number of RISs |R,,| that satisfies its energy
en and shadowing probability p] constraints, while at the
same time not over-exploiting the RISs elements. The latter

condition is desired, since the more targets share the same RIS,
the less number of elements each target is allocated, decreasing
in this way their capability to create a constructive beam
via controlling the phase shift of their allocated elements.
Also, it is noted that the creation of few constructive beams
based on the anchor nodes’ reflected signals on the RISs
can substantially mitigate the interference experienced in the
overall system, as compared to the case of multi-path signals
due to scattering, diffraction, etc., in a non-RIS supported
wireless communication environment. Based on the above, we
define the target’s n satisfaction, i.e., utility, from selecting a
number of RISs |R,|, as follows,
en—Ey\(Ps =P R|-|N
(o) (2 )(VEL“RL')’

if B, <e, and P}’ <p7,
0, otherwise,

3)
where s,, is the strategy, i.e., the number of RISs | R,,| selected
by the target n, and s_,, = (51,...,5,-1,8n41,--,5|N]) i
the strategy vector of the rest of the targets. The physical
meaning of Eq. [3]is that a target n receives a positive utility if
its energy consumption and shadowing probability constraints
are simultaneously satisfied, while being at the same time
incentivized to not over-exploit the RISs elements.

Towards determining the optimal number of RISs selected
by each target, we introduce a non-cooperative satisfaction
game among the targets that is formally described as G =
[N, {sn}vnen, {Un}tvnens {fn}vnen], where N is the set of
targets, s,, is each target’s strategy, i.e., number of RISs, U, is
the target’s utility (Eq. , and f,(s—n) = {sn|Un(Sn,S—n) =
0} is the target’s satisfaction correspondence.

Definition 1. (Satisfaction Equilibrium (SE)): A strategy
vector st = (sf,...,s:,...,sﬁv‘) is a SE, if V¥/n € N,
ste fu(st).

Practically, at the SE point s*, all targets achieve a non-
negative utility, implying that they satisfy their personal
constraints, as these have incorporated in the definition of their
utility above.

Towards determining an SE point, we introduce the
Distributed Reinforcement Learning algorithm (DRL), as
presented in Algorithm 1. The DRL algorithm returns the
SE strategy vector s* = (s7,...,s5,.. '75|J5V\)’ if it exists.
Also, A € [0,1] is the learning parameter. The complexity of
the DRL algorithm is O(Ite), where Ite is the number of
iterations required for the algorithm to converge to the SE.
Detailed numerical results are presented in Fig. (4| and Fig.
in Section [VII} showing that the number of iterations Ite are
approximately 10 in order for the algorithm to converge.
Definition 2. (Clipping Strategy): A target has a clipping
strategy S, iff Vs_p, 5 € fn(s—n).

The physical meaning and interpretation of Definition [2] is
that if a target n achieves a clipping strategy at an iteration ite
of the DRL algorithm, then, for any consequent iteration, the
target keeps the same strategy, i.e., selects the same number
of RISs. Thus, if there is another target n’ # m, such that
fnr(s—n) = & (i.e., the target is not satisfied), then, the target
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Algorithm 1 Distributed Reinforcement Learning (DRL)
algorithm

1: Input: A,R,N,e,,p?,Vne N

2: Output: s™

3. Imitialization: ite = 0, Convergence = 0, si¢=0, v¥n ¢

ite=0 _ _1
N, Pie=0 = fho.
4: while Convergence == 0 do
5 ite = ite + 1;
6: if sitetl = si'® then
7 Bach node n selects si®t! with probability
ite+1 ite+1 ite ( Jite 1
b o _(S;LPJF ) Pr(sn®) — Gresner - A
P (sy)-
8: end if )
9: if sitetl £ gite then
10: Each node n selects si®t! with probability
ite+1( gite+1 ite ( it 1 1
PTZ} o 4(8%% ) = Pie(sn®)+ (ite+1)+1 ')"(|R\71 -
By (s3°)).
11:  end if | o
12: if Uy, (siett s"¢*1) > 0 then
13: Convergence = 1
14:  end if

15: end while

n will play its clipping strategy s and the target n’ will not
achieve the satisfaction of its personal constraints. Thus, the
DRL algorithm will converge to a Generalized Satisfaction
Equilibrium (GSE) point.

Definition 3. (Generalized Satisfaction Equilibrium): A
strategy vector s~ is a GSE if there exist two sets of targets
Nsaty Nunsat With Ngot U Nynsat = N, such that Yn €
Nsat,sn € fn(S:n) and n' € Nunsat, fn’(S:n/) = .

It should be highlighted that the non-cooperative satisfaction
game G may have many GSE or many SE points that
satisfy the targets’ constraints. Thus, an GSE exists and
can be determined by the DRL algorithm, but it is not
necessarily unique, as several strategies s~ may satisfy the
targets belonging in the set of satisfied targets Ng4.. Out of
all the potential SE points, the one SE that results in the lowest
energy consumption E, (|R,,|) for the target, i.e., the Efficient
Satisfaction Equilibrium (ESE) point, presents greater energy
benefits for the target.

Definition 4. (Efficient Satisfaction Equilibrium (ESE)): A
strategy vector st is an ESE, if V¥n € N,st € fu(s',) and
E,(st) < En(s,),¥n € N, for any other possible strategy

S,

Practically, at the ESE point s, the targets achieve to not
only satisfy their personal energy and shadowing probability
constraints, but are also experiencing the lowest possible
energy cost. In the general case, the ESE is not unique, as
multiple strategies of number of RISs selection may provide
the same lowest possible energy cost to the target. Towards
determining the ESE of the formulated game, we utilize a
similar methodology to the DLR algorithm presented earlier
in this section, however, the strategy selection is performed
under two joint criteria, i.e., non-negative utility and minimum
energy consumption cost. The outcome of the algorithm

determines the ESE, i.e., the optimal number of RISs |R,,]|
that should be selected by each target in order to determine
its position and timing, while considering its personal energy
and shadowing probability constraints.

IV. REINFORCEMENT LEARNING-BASED RIS SELECTION

In this section, a novel Reinforcement Learning (RL)
algorithm is introduced to enable each target to autonomously
select the specific set of RISs that will contribute to its PNT
service, given the optimal number of RISs, as determined by
the ESE (Section [[I). The metric that is utilized at this point of
the proposed alternative PNT solution design is the Geometric
Dilution of Precision (GDOP), which captures the accuracy of
the PNT service. Particularly in this work, the GDOP value
quantifies the success of the geometric constellation of the
anchor nodes and the selected RISs in terms of accurately
determining the target’s position and timing. Low values of
GDOP correspond to low estimation error of the target’s
position and timing, and thus, the ultimate goal of each target
is to achieve a small GDOP value.

Based on the latter, we define each target’s n reward by
selecting a specific set of RISs R, at the i" iteration of the
proposed RL algorithm, as follows,

10
[Al+]Rn|

9(Fn) = GDoP(R)

“4)

It is noted that the value ﬁ is the best GDOP value

that is currently reported in the existing literature considering
the received signals from |A| + |R,| transmitters, i.e., the
anchor nodes and the selected RISs [25].

The proposed reward function is practically used to steer
each target’s n autonomous selection of the specific set of RISs
R,, via the implementation of a Linear Reward Inaction (LRI)
algorithm-based RL scheme [26]. In particular, each target
probabilistically selects a set of RISs R, at the " iteration of
the RL algorithm, and subsequently, updates the probabilities
of selecting this specific set at future iterations, by evaluating
the resulted value of reward g(RY). The probability of each
target selecting the same (Eq. [5a) or a different (Eq. [5b) set
of RISs R,, at each iteration ¢ of the RL algorithm is given
as follows,

Pr(R") = Pu(Rn) + Are - g(Ry) (1= Pu(Rn)), if By = R,
Sa

Pr(Ry) = Pu(Ry) — Are - g(R:,)Pa(Ry),if Ry, # R ((51:3
where Agp € [0,1] is the target’s learning rate. The proposed
RL algorithm converges slower to a set of selected RISs for
smaller values of the learning parameter A\ gy, with the benefit
of more accurate decision-making, given that it thoroughly
explores the available strategies. The devised RL algorithm is
repeated iteratively by each target until the probability to select
a specific set of RISs gets close to one. Also, it is highlighted
that the strategic RISs selection by the targets accounting for
the highest achieved GDOP, as captured in Eq. [] has the
potential of mitigating the interference in the overall system,
as the targets exploit the existing strongest received signals
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reflected on the RISs, without requesting higher transmission
power levels.

V. RISS PHASE SHIFT OPTIMIZATION

In this section, the RISs’ elements phase shift optimization
is performed towards maximizing the received signal strength
at each target of the reflected signals from the specific set
of RISs that has been determined to accommodate its PNT
service. As mentioned in Section [l and[[V] each target selects
the optimal number of RISs | R, | and identifies the specific set
of RISs R,, that will contribute to its PNT service. A single
RIS 7 can be selected by multiple targets, the number of which
is indicated by |N,.|. Each target n out of the |N,| has equal
control over the RIS’s r elements, by being allocated a number
of |[M]| = [%J elements, the set of which is indicated as
M. Hence, the goal of each target is to optimally control
the phase shift of the RIS elements that it has control over at
each RIS. Before formulating the corresponding optimization
problem, we analyze in detail the communication environment
among the anchor nodes, the RISs, and the targets. The rest
of the analysis is focused on one target and one of its selected
RISs 7, while targeting to optimize the phase shift of the
corresponding | M| allocated RIS elements. Similar analysis
can be derived for each target, each selected RIS, and each
group of | M| allocated RIS elements.

Let w, € [0,27],Ym € M, denote the phase shift
of RIS’s r elements, and Q@ = diag(e/*,...,e M),
Q e CIMalxIMil be the corresponding diagonal reflection
matrix [27]. We denote as hg, = ﬁ - h, the channel
gain experienced in the direct communication link between
the anchor node a and the target n, with h representing
a random variable quantifying the random scattering effects
and following a zero-mean unit-variance Complex Gaussian
distribution. PL,,, = PL(d,,) is the overall path loss
of the corresponding communication link, with dg, [m]
denoting the Euclidean distance among the anchor node and
the target. Especially, the path loss PL,, is derived as
PL(dgy) = PLoS . PLEOS + (1 — PLoS)PLNLOS | where
PLoS and PNLoS are the probabilities of LoS and NLoS
communication, respectively, and PL%*® and PLNL°S are
the path losses for the LoS and NLoS communication link,
respectively. The formulas from which the latter are derived
are as follows. We define PX°%(z,,d,,) = m,
where 6 = 18gin~! (=) [rad] denotes the elevation
angle, z, [m] is the targét’s altitude, and o,y € R7*
are positive constants depending on the carrier frequency
fe [Hz] and the communication environment, e. % U urban,

7 fe

rural. Also, we define PL*°%(d,.,) pLoS (2xfeda.n )

and PLNLOS(da’n) _ nNLoS(‘lﬂ'dea.n)&’ Wlth nLoS nNLoS

denoting the excessive path loss coefficients, n’V 0% > pkoS >

1, ¢ [m/s] is the speed of light, and J is the path loss exponent.
Focusing on the communication link between an anchor

node a and a RIS r, the channel gain is derived as h,, =
#M . |:17 e_jQTﬂ-dsdhz,T’ e e_j%(lM:;‘_l)ds(bam]T, ha,r c

CIMIx1 | with PLyy = (- dg, denoting the path loss of the
communication link among the anchor node a and the RIS r,

¢ [dB] is the path loss at the reference distance of 1 [m], dg
[m] is the distance between the anchor node and the RIS, and
k is the path loss exponent. Also, ¢, , denotes the signal’s
angle of arrival, ds [m] is the antenna separation, and A\ [m]
is the wavelength of the carrier signal.

Concerning the communication link between the RIS r and
the target n, the corresponding channel gain is derived as

_ 1 LoS 1 1. NLoS |MP|x1
b, = PLr,n( 1+;4h + 1+uh ) € CHP,

where hyL;?lS = [1,e77 2z Fdstrn e JT(IMQ\*l)dscbr,n]T
is the LoS component, with ¢, , denoting the signal’s
angle of departure, and hX°% is the NLoS component,
represented by a random variable following a zero-mean
unit-variance Complex Gaussian distribution. y is the Rician
factor, and PL,, = PL(d,,) is the overall path loss of
the communication link, with d,., [m] denoting the distance
among the RIS r and the target n.

For each selected RIS, the goal of the target is to maximize
the received signal strength, by optimizing the phase shifts of
the RIS’s elements that are allocated to the target. Based on the
previous analysis and the modeling of the wireless channels’
conditions within the considered communication environment,
the overall channel gain between a target n and an anchor node
ais G = |hapn +hfnﬂha,r|2, while considering at the same
time the reflection of the anchor node’s transmitted signal from
the RIS to the target. Thus, towards determining the optimal
phase shift of the allocated RIS elements to a target, each target
should solve the following optimization problem for each of
its selected RISs:

|A]

max > ham + b, Qb | (6a)
a=1

t, 0 <w, <2m,Yme M), (6b)

where w is the vector of the RIS’s phase shifts w,,, Vm e M.
We rewrite the above optimization problem as follows:

|A]

maxz |han +hM v|? (7a)

MT
oY ol = L¥m e M, (7b)

m=1
where v = [v1,..., U, ..., Vnr|] € CIMalXL gy = edom,
and ﬁf)r = h! diag(h,,) € CIM:l. The optimization
problem — (7b) is non-convex, thus, in the following
analysis, we introduce a heuristic approach in order to

determine the optimal phase shift of the | M| RIS’s elements
allocated to the target n.

We start our analysis with one anchor node and a
target, and we generalize for multiple anchor nodes. In
the case of one anchor node (e.g., a = 1), the direct
and the reflected signal from the RIS should be aligned to
maximize the received signal strength. Thus, it should hold
true that Zhy, = —Zhy, + /v < /v = Lhi, +
Llﬂlly,., and the corresponding optimal phase shifts of the
RIS’s elements can be derived w* = Zv. Generalizing
our analysis for multiple anchor nodes, we denote as
Vo = [Va1,---, Va,mr|] € CIM7I>1 the reflection
coefficient vector for each anchor node, where v, = ¢?<ha.mn .

Va,ms -«
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of1(Xy) of1(Xy) of1(X%) of1(X%)
oo oo oo AT F1(XE)
gk : : : : (9) RESF= : (10
OflAl4 1R (XE)  flalrirn (XE)  Ofialsira (XE)  0fialpir, (XE) Xk
: +a§n = +aZn 2 +a§n 2 Bfm i (Xn)
¢/4har g € A. However, it is evident that a single value Algorithm 2 Iterative Least Squares (ILS) Algorithm

v that maximizes the channel gain for all the anchor nodes
simultaneously cannot be determined. Thus, we introduce a

weight w, € [0,1] to each reflection coefficient vector v,
1A |A|
with v = >} w, - v,, such that ) w, = 1, and we rewrite

a=1 =
the optimization problem - @1} as follows:

|A]
~H 9
e agl [an + 1y, R | (8a)
sit,, 0<w, <1,Va€e A, (8b)
|A]
Z we = 1, (8¢c)
a=1
with w = [wy,...,Wa, ..., w)4(] and Q = diag(e’4YV). The

latter optimization problem can be solved based on standard
optimization tools, and derive the optimal reflection coefficient
vector v*. By backward induction, the target’s allocated RIS
elements’ optimal phase shift vector w™* can then be derived.
Each target solves the optimization problem (8a)-(8c) for
each selected RIS r € R,, and sends a control signal to the
corresponding RIS controller in order to optimally control the
phase shifts of the |M| elements.

VI. POSITIONING, NAVIGATION, AND TIMING
ESTIMATION

In this section, we introduce a low-complexity Iterative
Least Squares (ILS) algorithm to estimate the targets’ position
and timing, given the derivation of the optimal number of
RISs (Section , the selection of the specific set of RISs
by each target (Section [[V), as well as the RISs’ element
phase shift optimization (Section [V). Each target measures
the pseudoranges from each anchor node d(’jm =Xk -X,|-
At - ¢, and each selected RIS df . = 1,,(X, — X,) +
1.(Xk — X,) — Atk . ¢, taking respective into account the
direct and the reflected signals from the RISs. We denote as k
the iteration of the ILS algorithm, X = (zF y* 2F) X, =
(Ta, Yas 2a)s Xy = (T, Yr, 2,) the coordinates of the target
n, the anchor node a, and the RIS r, respectively. Also, Atﬁ
denotes the clock offset among the target n and the anchor
nodes, assuming that the clocks of all the anchor nodes are
synchronized. The main steps of the proposed ILS algorithm
are summarized in Algorithm 2. The complexity of the ILS
algorithm is O(NN-K'), where K is the number of iterations that
the algorithm needs in order to converge. It is highlighted that
in a practical implementation, the ILS algorithm is executed
by each target, thus, the complexity is O(K), experienced by
each target.

Based on the above analysis, the ILS algorithm determines
the targets’ position and timing while exploiting the input

1: Input: % dF  Vae A rel,. . . |R,l
2: Output: P,,Vne N

3. Inmitialization: &k = 0, Convergence = 0,P¥=0 ¥n e N.

4. while Convergence == 0 do

5: k=k+1,

6: forn=1toN do

7 The equations of the pseudoranges are set equal to

zero, and the corresponding functions f;,Vj € A u
{1,...,|Ry|} are derived.

8: The Jacobian matrix J* and the Residual matrix
RES* are calculated, as presented in Eq. E] and Eq.
respectively.

9: The least squares problem is solved and the
position and timing estimation error is calculated as
(A, Ay, Azl A(ALR) = (57 k)= gk

n

RES*.
10: The position and timing estimate is updated, as
follows: PFHL = (2F + Azk ok + Ayl 2k +

Azk Ath + A(AR)).
11:  end for
12: if [PE —PF+l x 0,¥n e N then
13: Convergence = 1

14:  end if
15: end while

of the Satisfaction Game, i.e., optimal number of selected
RISs, the RL-based RIS selection approach, i.e., selection of
a specific set of RISs, and the RISs phase shift optimization
that maximizes the signal strength of the received signals. The
goal of the ILS algorithm is to eliminate the estimation error.

VII. NUMERICAL RESULTS

In this section, a detailed simulation-based evaluation of
the proposed framework is performed in order to demonstrate
its pure operation and performance, as well as to highlight
its benefits and drawbacks. Specifically, the pure operation
and performance of the proposed alternative PNT solution is
presented in Section while its benefits are highlighted
in Section through a comparative evaluation. The
benefits of the proposed satisfaction game-theoretic approach
in terms of selecting the number of RISs that contribute to
the targets PNT service are quantified in Section The
performance of the proposed alternative PNT solution under
the mobility scenario of the targets is illustrated in Section
while a detailed comparative evaluation to the state of
the art is provided in Section

Throughout our evaluation, we adopted a system topology
consisting of 4 anchor nodes, 10 RISs and 5 targets. In
particular the key parameters that have been used in the
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Fig. 3: Pure performance and operation of the proposed alternative PNT solution.

experiments are: |A| = 4, |[R| = 10, |[N| = 5, B = 32 bits,
E, = 0417, e = [107.48,110.93,115.68,128.58,138.41] J,
ps = [0.48,0.52,0.62,0.64,0.65], |M| = 300, A = 0.01,
a = 11.95, v = 0.14, f. = 2 x 10° Hz, n*°% = 3,
nNLoS =23, ¢ =3x108 m/s, § = 2, d, = 5, ;1 = 2.8, unless
otherwise explicitly stated. For presentation purposes, it has
been considered that the higher the target’s ID is, the greater
its energy consumption and shadowing probability constraints
are. In this way, the effect of the stringency of the targets’
constraints over the proposed framework’s performance can be
scrutinized and revealed. A detailed Monte Carlo analysis has
been performed for all the presented experiments considering
10,000 realizations of the RISs phase shift optimization
problem. The evaluation of the proposed framework was
performed in a Dell Tower Desktop with Intel i7 11700k
3.6GHz processor, 32GB available RAM.

A. Pure Operation & Performance

In this section, the pure performance and the operation of
the proposed alternative PNT solution is demonstrated. Fig.
presents the utility (Eq. [3), the shadowing probability (Eq. [2),
and the energy consumption (Eq. [I) of one indicative target
(target’s ID 3) as a function of the number of selected RISs.
Fig. shows all the targets’ utility as a function of the
number of selected RISs. Fig.[3c|illustrates the targets” average
channel gain, GDOP, and position and timing estimation error
as a function of the iterations 7 of the overall framework, as
presented in Fig. [2|

The obtained results verify that the novel concept of
satisfaction games enables the targets to achieve a feasible
solution in terms of selecting the optimal number of RISs that
satisfies their energy consumption and shadowing probability
constraints (Fig. [3a), by securing a positive utility value (Fig.
[3al3b). Also, it is observed that the greater the targets’ energy
consumption and shadowing probability constraints are, the
higher the achieved utility of the targets is, even when selecting
a relatively small number of RISs to contribute to their PNT
service. Furthermore, the proposed alternative PNT solution
converges to low average estimation error and GDOP values
for the targets, while simultaneously achieving high average
channel gain (Fig. 3c), and converging practically in less than
10 iterations of the overall framework, which corresponds to
less than 4 seconds.

B. Benefits of the Proposed Alternative PNT Solution

In this section, the benefits of the proposed alternative PNT
solution are demonstrated through a detailed comparative

evaluation. Specifically, four different scenarios are
compared: (i) Proposed Approach, (ii) No PS: Our proposed
solution without performing the RISs elements phase shift
optimization, (iii) No PS & No RL: the RISs are randomly
selected by the targets and no phase shift optimization is
performed on their elements, and (iv) No RIS: the PNT
service is exclusively supported by the anchor nodes’ signals.
Fig. faH4c] show the target’s average channel gain, GDOP,
and position and timing estimation error as a function of the
frameworks’ iterations 7, considering the four comparative
alternative PNT solutions. The results reveal that as the
alternative PNT solution becomes less intelligent i.e., no RISs’
elements phase shift optimization (No PS scenario), random
selection of RISs by the targets (No PS & No RL scenario),
or not even using the RISs to support the PNT service (No
PS & No RL scenario), the targets’ average channel gain
substantially decreases (Fig. fa), while the targets’ average
GDOP and position and timing estimation error converge to
significantly high values (Fig. @bHdc). Thus, we conclude
that the multifaceted intelligence that is introduced by our
proposed alternative PNT solution, combining the benefits of
the satisfaction games, the reinforcement learning, and the RIS
technology, results in a highly accurate PNT service.

C. Intelligent Selection of the Number of RISs

In this section, we further corroborate on the benefits of
the proposed alternative PNT solution, especially from the
perspective of employing the theory of satisfaction games that
enables the targets to select the optimal number of RISs that
will contribute to their PNT service. Towards this direction, we
provide a comparison between four alternative approaches for
selecting the optimal number of RISs for each target, (i) Our
Method; (ii) 50% of RISs: each target selects 50% of the total
number of RISs available in the system, (iii) Average number
of RISs: each target selects % number of RISs, (iv) All RISs:
each target uses all the available RISs in order to determine its
position and timing. It is noted that the RISs’ elements phase
shift optimization presented in Section [V] is performed at all
the comparative scenarios for fairness purposes, while in the
second and third scenarios, the specific set of RISs that finally
supports a target’s PNT service is selected randomly.

Fig. [5al5b] present the targets’ shadowing probability and
energy consumption as a function of the target’s ID for all four
comparative scenarios, respectively. It is justified that only our
proposed framework that follows the principles of satisfaction
games can jointly respect shadowing probability (Fig. 5a) and
the energy (Fig. [5b) consumption constraints. On the other
hand, when the targets exploit all the RISs to determine their
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PNT, i.e., All RISs scenario, their shadowing probability is
very low (Fig. [5a), given that there is higher probability
of establishing LoS communication links. Nevertheless, the
experienced energy consumption is extremely high (Fig. [5b),
as the number of received signals at the target by both
the anchor nodes and by reflection from the RISs increase,
yielding at higher decoding overhead and thus, consumed
energy. Also, the scenarios of selecting 50% or the average
number of RISs existing in the system present similar trend,
and there is no guarantee that the targets’ energy consumption
and shadowing probability constraints will be satisfied.

D. Targets Mobility and PNT

In this section, we are emulating a realistic mobility use case
of the targets considering two different scenarios. In the first
use case scenario, the target is in a favorable position (Fig.
with respect to the obstacles in the surrounding environment,
thus, experiencing a very limited shadowing effect. The exact
opposite holds true in the second use case scenario (Fig. [6b)
where the target is blocked by several obstacles during its
navigation. The results demonstrate that the mobile target’s

positioning and navigation is successful and accurate for a
practical and real-life implementation scenario. Also, it is
observed that higher estimation error is experienced by the
target, when it is blocked by surrounding obstacles (Fig. [6b).
However, the intelligent exploitation of the RISs’ reflected
signals contribute to partially overcoming the topological
defects and obstacles, and thus result in a highly accurate PNT
service in both scenarios.

E. Comparative Evaluation

In this section, we provide a comparative evaluation of our
proposed framework to the main existing approaches in the
literature that provide alternative PNT solutions by exploiting
the capabilities of the RIS technology. Six comparative
scenarios have been considered: (i) Propo‘se‘,d Approach, (ii)

N

| R

“St—] RIS, (iii)
Scenario II: the targets randomly select [%1 RISs, (iv)

IN|

2 |Ral

n=1

|N]

Scenario I: the targets randomly select [

Scenario III and IV: the targets select | ] and [‘—ﬁl]
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Fig. 7: Comparative evaluation.

RISs, respectively, based on the proposed reinforcement
learning-based RIS selection mechanism (Section [IV), and
(v) Scenario V: the targets select [%1 RISs based on the
best channel gain conditions contributed by the selected RISs,
ie., maxrhfnﬂha,r [21]. It is noted that in all of the
aforementioned comparative scenarios, the RISs phase shift
optimization is performed.

Fig. demonstrate the targets’ average channel gain,
the GDOP, and the position and timing estimation error as
a function of the frameworks’ iterations 7 for all the six
comparative scenarios. The results reveal that our proposed
alternative PNT solution achieves the most accurate PNT
service with the lowest estimation error (Fig. [7c), while
simultaneously achieving the lowest GDOP (Fig. and the
highest channel gain (Fig. for the targets. On the other
hand, the importance of adopting the reinforcement learning
approach in order to enable the targets to select the specific
set of RISs that contribute to their PNT service is highlighted
by comparing scenarios I and II, to scenarios III, IV, and V.
Also, the selection of the RISs based on the best channel
gain conditions contributed by the selected RISs outperforms
the random-based RISs selection in terms of targets’ average
channel gain (Fig. [7d), GDOP (Fig. [7b), and estimation error
(Fig. [7c). Scenarios I and II achieve overall better results
in terms of providing an accurate PNT service compared to
Scenarios III and IV.

VIII. CONCLUSIONS

In this paper, a novel alternative PNT solution is introduced
that capitalizes on the key enabling technology of 6G net-
works, i.e., the RISs, while adopting and applying the theory
satisfaction games and the reinforcement learning for their
proper configuration and orchestration. Initially, a satisfaction
game among the targets, which have unknown coordinates,
is formulated to determine the number of selected RISs that
will contribute to their PNT service, while guaranteeing their
energy consumption and shadowing probability constraints.
Then, a reinforcement learning-based approach enables the
targets to select the specific set of RISs in order to
minimize the position and timing estimation error, given the
optimal number of RISs as determined at the previous stage.
Afterwards, the RISs’ elements phase shift optimization is
performed to maximize the received signal strength of the
signals transmitted by the anchor nodes, reflected from the
selected RISs, and received by the targets. Finally, an Iterative
Least Square (ILS) algorithm is used to accurately determine
the targets’ position and timing, capitalizing on the previous

findings. A detailed set of numerical results are presented
in order to show the pure operation and performance of
the proposed framework, as well as its benefits compared
to other prospective alternative PNT solutions. The main
benefits of the proposed alternative PNT solution compared
to the state-of-the-art can be summarized as follows: (i)
improve the GDOP and the targets’ estimation error by jointly
exploiting the RIS technology and the intelligent selection
of RISs, (ii) introduce a distributed PNT solution, where
each target autonomously senses its environment, selects the
RISs, and optimizes their phase shifts, and (iii) implement
a low-computational complexity PNT solution that respects
the targets’ personal characteristics, in terms of energy and
shadowing constraints.

Part of our current and future work is to extend the proposed
alternative PNT solution in featureless terrains, aiming at
minimizing the number of anchor nodes, the deployment
of which is particularly costly and challenging under these
circumstances.

REFERENCES
[1]1 F. S. Prol, R. M. Ferre, Z. Saleem, P. Vilisuo, C. Pinell, E. S. Lohan,
M. Elsanhoury, M. Elmusrati, S. Islam, K. Celikbilek, K. Selvan,
J. Yliaho, K. Rutledge, A. Ojala, L. Ferranti, J. Praks, M. Z. H. Bhuiyan,
S. Kaasalainen, and H. Kuusniemi, “Position, navigation, and timing
(pnt) through low earth orbit (leo) satellites: A survey on current status,
challenges, and opportunities,” IEEE Access, vol. 10, pp. 83971-84 002,
2022.
E. Falletti, D. Margaria, G. Marucco, B. Motella, M. Nicola, and
M. Pini, “Synchronization of critical infrastructures dependent upon
gnss: Current vulnerabilities and protection provided by new signals,”
IEEE Systems Journal, vol. 13, no. 3, pp. 2118-2129, 2019.
“National research and development plan for positioning, navigation, and
timing resilience,” |https://www.whitehouse.gov/wp-content/uploads/
2021/08/Position_Navigation_Timing_RD_Plan- August-2021.pdf]
NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, 2021.
X. Cao, B. Yang, C. Huang, C. Yuen, M. D. Renzo, D. Niyato,
and Z. Han, “Reconfigurable intelligent surface-assisted aerial-terrestrial
communications via multi-task learning,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 10, pp. 3035-3050, 2021.
S. Papavassiliou, E. E. Tsiropoulou, P. Promponas, and P. Vamvakas,
“A paradigm shift toward satisfaction, realism and efficiency in wireless
networks resource sharing,” IEEE Network, vol. 35, no. 1, pp. 348-355,
2021.
S. Han, Z. Gong, W. Meng, C. Li, and X. Gu, “Future alternative
positioning, navigation, and timing techniques: A survey,” IEEE Wireless
Communications, vol. 23, no. 6, pp. 154-160, 2016.
H. Xiong, R. Bian, Y. Li, Z. Du, and Z. Mai, “Fault-tolerant
gnss/sins/dvl/cns integrated navigation and positioning mechanism based
on adaptive information sharing factors,” IEEE Systems Journal, vol. 14,
no. 3, pp. 3744-3754, 2020.
D. DeVon, T. Holzer, and S. Sarkani, “Innovation-based fusion of
multiple satellite positioning systems for minimizing uncertainty,” /EEE
Systems Journal, vol. 13, no. 1, pp. 928-939, 2019.

[2]

[3]

[4]

[5]

[6]

[7]

[8]


https://www.whitehouse.gov/wp-content/uploads/2021/08/Position_Navigation_Timing_RD_Plan-August-2021.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/08/Position_Navigation_Timing_RD_Plan-August-2021.pdf

IEEE SYSTEMS JOURNAL

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti,
“Efficient multisensor localization for the internet of things: Exploring a
new class of scalable localization algorithms,” IEEE Signal Processing
Magazine, vol. 35, no. 5, pp. 153-167, 2018.

W. Xue, R. Ying, X. Chu, R. Miao, J. Qian, and P. Liu, “Robust
navigation under incomplete localization using reinforcement learning,”
in 2020 IEEE/ION Position, Location and Navigation Symposium
(PLANS). IEEE, 2020, pp. 1618-1624.

B.-J. Jeon, I. Petrunin, and A. Tsourdos, “Recurrent neural network
based sensor fusion algorithm for alternative position, navigation and
timing,” in 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC). IEEE, 2021, pp. 1-7.

M. S. Hossain, N. Irtija, E. E. Tsiropoulou, J. Plusquellic,
and S. Papavassiliou, “Reconfigurable intelligent surfaces enabling
positioning, navigation, and timing services,” in ICC 2022-IEEE
International Conference on Communications. 1EEE, 2022, pp. 4625—
4630.

A. Singh, V. Kotiyal, S. Sharma, J. Nagar, and C.-C. Lee, “A
machine learning approach to predict the average localization error
with applications to wireless sensor networks,” IEEE Access, vol. 8,
pp. 208 253-208 263, 2020.

Z. Lalama, S. Boulfekhar, and F. Semechedine, ‘Localization
optimization in wsns using meta-heuristics optimization algorithms: A
survey,” Wireless Personal Comm., vol. 122, no. 2, pp. 1197-1220, 2022.
C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface
assisted multiuser miso systems exploiting deep reinforcement learning,”
IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp.
1839-1850, 2020.

S. Huang, B. Wang, Y. Zhao, and M. Luan, “Near-field rss-based
localization algorithms using reconfigurable intelligent surface,” IEEE
Sensors Journal, vol. 22, no. 4, pp. 3493-3505, 2022.

A. Elzanaty, A. Guerra, F. Guidi, and M.-S. Alouini, “Reconfigurable
intelligent surfaces for localization: Position and orientation error
bounds,” IEEE Transactions on Signal Processing, vol. 69, pp. 5386—
5402, 2021.

M. Luan, B. Wang, Y. Zhao, Z. Feng, and F. Hu, “Phase design and near-
field target localization for ris-assisted regional localization system,”
IEEE Trans. on Vehicular Tech., vol. 71, no. 2, pp. 1766-1777, 2022.
H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song,
“Metalocalization: Reconfigurable intelligent surface aided multi-
user wireless indoor localization,” IEEE Transactions on Wireless
Communications, vol. 20, no. 12, pp. 7743-7757, 2021.

Y. Fang, S. Atapattu, H. Inaltekin, and J. Evans, “Optimum
reconfigurable intelligent surface selection for wireless networks,” IEEE
Transactions on Communications, vol. 70, no. 9, pp. 6241-6258, 2022.
N. Mensi and D. B. Rawat, “Reconfigurable intelligent surface selection
for wireless vehicular communications,” IEEE Wireless Communications
Letters, vol. 11, no. 8, pp. 1743-1747, 2022.

M. S. Siraj, A. B. Rahman, M. Diamanti, E. E. Tsiropoulou,
S. Papavassiliou, and J. Plusquellic, “Orchestration of reconfigurable
intelligent surfaces for positioning, navigation, and timing,” in MILCOM
2022 - 2022 IEEE Military Communications Conference (MILCOM),
2022, pp. 148-153.

W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on Wireless Communications, vol. 1, no. 4,
pp. 660-670, 2002.

A. Ghasemi and E. S. Sousa, “Spectrum sensing in cognitive
radio networks: requirements, challenges and design trade-offs,” IEEE
Communications Magazine, vol. 46, no. 4, pp. 32-39, 2008.

M. Zhang and J. Zhang, “A fast satellite selection algorithm: Beyond
four satellites,” IEEE Journal of Selected Topics in Signal Processing,
vol. 3, no. 5, pp. 740-747, 2009.

G. Fragkos, E. E. Tsiropoulou, and S. Papavassiliou, “Artificial
intelligence enabled distributed edge computing for internet of things
applications,” in 2020 16th international conference on distributed
computing in sensor systems (DCOSS). 1EEE, 2020, pp. 450-457.

C. Huang, Z. Yang, G. C. Alexandropoulos, K. Xiong, L. Wei,
C. Yuen, Z. Zhang, and M. Debbah, “Multi-hop ris-empowered
terahertz communications: A drl-based hybrid beamforming design,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 6,
pp. 1663-1677, 2021.

Md Sadman Siraj is a Ph.D. student and a
research assistant in the Department of Electrical
and Computer Engineering at the University of
New Mexico. He received his Bachelor’s degree
in Electrical and Electronic Engineering from the
University of Dhaka in 2020. His research interests
lie in the areas of Alternative Positioning, Navigation
and Timing (APNT) services and novel localization
techniques, resource management, orchestration
and optimization, game theory, and reinforcement
learning.

Aisha B Rahman is a Ph.D. student and a
research assistant in the Department of Electrical
and Computer Engineering at the University of New
Mexico. She received her Bachelor’s and Master’s
degree in Electrical and Electronic Engineering from
the University of Chittagong in 2019 and 2021
respectively. Her research interests lie in the areas
of wireless networking, resource management and
optimization, game theory, Alternative Positioning,
Navigation and Timing (APNT) services, and
reinforcement learning.

Maria Diamanti is a Ph.D. student and a research
assistant in the School of Electrical and Computer
Engineering at the National Technical University of
Athens. She received her Diploma in Electrical and
Computer Engineering from the Aristotle University
of Thessaloniki in 2018. Her research interests lie
in the areas of 5G/6G wireless networks, resource
management and optimization, game theory, contract
theory, and reinforcement learning.

Eirini Eleni Tsiropoulou is currently an Assistant
Professor at the Department of Electrical and
Computer Engineering, University of New Mexico.
Her main research interests lie in the area of
wireless heterogeneous networks, with emphasis
on network modeling and optimization. She was
selected by the IEEE Communication Society -
N2Women - as one of the top ten Rising Stars of
2017 in the communications and networking field.
She received the NSF CRII Award in 2019 and the
Early Career Award by the IEEE Communications

Society Internet Technical Committee in 2019.

Symeon Papavassiliou is a Professor in the School
of Electrical and Computer Engineering (ECE) at
National Technical University of Athens. From 1995
to 1999, he was a senior technical staff member
at AT&T Laboratories, New Jersey. In August
1999 he joined the ECE Department at the New
Jersey Institute of Technology, USA, where he
was an Associate Professor until 2004. He has
an established record of publications in his field
of expertise, with more than 400 technical journal
and conference published papers. His main research

interests lie in the areas of modeling, optimization and performance evaluation
of distributed complex systems and social networks.



IEEE SYSTEMS JOURNAL

g
o

Proposed Approach Proposed Approach
No PS 6 - NoPS

No PS & No RL No PS & No RL

No RIS No RIS

Targets' Average Estimation Erroi

c ——
& (a) —— proposed Approach o ®)
g e Nobs & o
c 15 06 — -
£ —e- NoPS&NoRL . ©
Sa No RIS g | e
25 1.0 g
© g R _ . <>t 4
S B h
S oS 1 2
T oosie— 7 R )
g e :
S 00
1 2 3 4 5 6 7 8 9 10 1 2 3 4

Framework's Iterations T

Framework's Iterations T

6 7 8 9 1 2 3 4 5 6 7 8 9

Framework's Iterations T

10

Fig. 4: Benefits of the proposed alternative PNT solution — A Comparative Evaluation.

1.25/ (a) EEE Proposed Approach
IR 50% of RISs

1.00 /% AvgRISs
I AllRISs

e
o
=)

Target's Shadowing Probability
=) <)
N N
[V, (%]

o
=)
S

]
|
,//
]

(b) Proposed Approach
50% of RISs
Avg RISs

All RISs

w
(=]
o

N
(=]
o

[y
(=]
o

Target's Energy Consumption

o

Target's ID

@ real position
predicted position

of RISs — Benefits of satisfaction games.

@ real position
predicted position

Fig. 6: Mobility scenario and accuracy of the proposed alternative PNT solution.

PNT, i.e., All RISs scenario, their shadowing probability is
very low (Fig. 5a), given that there is higher probability
of establishing LoS communication links. Nevertheless, the
experienced energy consumption is extremely high (Fig. 5b),
as the number of received signals at the target by both
the anchor nodes and by reflection from the RISs increase,
yielding at higher decoding overhead and thus, consumed
energy. Also, the scenarios of selecting 50% or the average
number of RISs existing in the system present similar trend,
and there is no guarantee that the targets’ energy consumption
and shadowing probability constraints will be satisfied.

D. Targets Mobility and PNT

In this section, we are emulating a realistic mobility use case
of the targets considering two different scenarios. In the first
use case scenario, the target is in a favorable position (Fig. 6a)
with respect to the obstacles in the surrounding environment,
thus, experiencing a very limited shadowing effect. The exact
opposite holds true in the second use case scenario (Fig. 6b)
where the target is blocked by several obstacles during its
navigation. The results demonstrate that the mobile target’s

positioning and navigation is successful and accurate for a
practical and real-life implementation scenario. Also, it is
observed that higher estimation error is experienced by the
target, when it is blocked by surrounding obstacles (Fig. 6b).
However, the intelligent exploitation of the RISs’ reflected
signals contribute to partially overcoming the topological
defects and obstacles, and thus result in a highly accurate PNT
service in both scenarios.

E. Comparative Evaluation

In this section, we provide a comparative evaluation of our
proposed framework to the main existing approaches in the
literature that provide alternative PNT solutions by exploiting
the capabilities of the RIS technology. Six comparative
scenarios have been considered: (i) Propo‘s?d Approach, (ii)

N

2 |Rnl
Scenario I: the targets randomly select [%] RISs, (iii)
Scenario II: the targets randomly select [%1 RISs, (iv)

IN|
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Scenario III and IV: the targets select [\TI] and [‘—ﬁl]
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