
PHYSICAL REVIEW B 107, 094432 (2023)

Detecting quantum phase transitions in the quasistationary regime of Ising chains
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Recently, single-site observables have been shown to be useful for probing critical slowing down in sudden
quench dynamics [Dağ et al., Phys. Rev. B 107, L121113 (2023)]. Here, we demonstrate the potential of single-
site magnetization as a probe of quantum phase transitions in integrable and nonintegrable transverse-field Ising
chains (TFIC). We analytically prove the requirement of zero modes for the quasistationary regime to emerge at
a probe site near the edge, and show how this regime gives rise to a nonanalytic behavior in the dynamical order
profiles. Our t-DMRG calculations verify the results of the quench mean-field theory for near-integrable TFIC
both with finite-size and finite-time scaling analyses. We find that both finite-size and finite-time analyses suggest
a dynamical critical point for a strongly nonintegrable and locally connected TFIC. We finally demonstrate
the presence of a quasistationary regime in the power-law interacting TFIC, and extract local dynamical order
profiles for TFIC in the long-range Ising universality class with algebraic light cones.
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I. INTRODUCTION

Phase transitions of matter are among the most prevalent
physical processes in nature, during which certain proper-
ties of matter can change discontinuously [1,2]. The notions
of universality and scaling allow a unified description of
microscopically different systems by means of universality
classes, whereby the systems in the same class exhibit identi-
cal critical behavior independently of their microscopic details
[3–5]. Far from equilibrium, universality and scaling are
well understood in classical systems [6], unlike in quantum
many-body systems, despite the exploration of various analo-
gous concepts, e.g., dynamical quantum phase transitions and
criticality [7–36], and the experimental observation of out-
of-equilibrium critical behavior in various quantum synthetic
matter (QSM) setups [37–46].

With the advent of QSM experiments enjoying a high
level of precision and control [47], including single-site ad-
dressing techniques [48], the prospect of probing equilibrium
and dynamical quantum phase transitions following quan-
tum quenches has become realistic and appealing. Although
it may sound counterintuitive, extracting equilibrium criti-
cality through quench dynamics can be an experimentally
more viable and simpler scheme than the challenging proce-
dure of cooling a quantum many-body system to its ground
state. Instead, the system is initialized in an easily accessible
product state, and subsequently quenched through a control
parameter. This method has enabled the extraction of quantum
critical points and universal scaling laws in various models
[16–20,22,25,27,30,37,42,49].

*ceren.dag@cfa.harvard.edu

In this vein, some of us proposed in Ref. [50] to use
single-site observables close to an edge in open-boundary
and short-range quantum many-body models to probe criti-
cal slowing down near the quantum critical point (QCP) in
sudden quench dynamics. When boundaries are introduced to
a suddenly quenched 1D transverse-field Ising chain (TFIC)
an onset of a quasistationary (q.s.) regime appears [51], thus
interrupting an otherwise exponential decay to zero in time.
Specifically, Ref. [50] revealed a universal critically prether-
mal regime in the vicinity of the QCP as a manifestation of
critical slowing down in sudden quench dynamics. Universal-
ity of this regime was shown by means of exact analytical and
numerical calculations, where the latter is based on a Pfaf-
fian formalism as well as quench mean-field theory (qMFT).
Reference [50] also derived a universal scaling function of
the dynamical order parameter in the vicinity of the QCP
and showed that the long-lived prethermal regime makes the
scaling function nonlinear.

In this long paper, our theme is the detection of QCP in
integrable and nonintegrable TFIC through single-site observ-
ables near the edge of the chain r ! N/2, where N is the chain
size. We first determine the QCP in the integrable TFIC by
locating a nonanalyticity in the q.s. value of single-site observ-
ables. We find consistently for all sites sufficiently near the
edge that the location of this nonanalyticity coincides with the
equilibrium QCP. We also derive an analytical expression for
the edge magnetization in the integrable TFIC quenched from
a polarized state, which is used to characterize the critically
prethermal regime in Ref. [50].

We detail the aforementioned Pfaffian formalism behind
the exact results on single-site observables in open-boundary
TFICs, and how MFT is implemented in quench dynamics,
e.g., qMFT method. An analytical form of the latter was

2469-9950/2023/107(9)/094432(20) 094432-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0492-1651
https://orcid.org/0000-0003-0747-368X
https://orcid.org/0000-0002-8983-6327
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.094432&domain=pdf&date_stamp=2023-03-28
https://doi.org/10.1103/PhysRevB.107.L121113
https://doi.org/10.1103/PhysRevB.107.094432
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first employed in Ref. [20] for periodic TFIC. Since we lack
space translational symmetry in open-boundary chains, we
modify the qMFT method with the help of the cluster theorem
[13] to make it suitable for numerics. By benchmarking the
qMFT method against exact diagonalization (ED) and time-
dependent density matrix renormalization group (t-DMRG)
results, we show that the qMFT is reliable within times acces-
sible to t-DMRG. Then we use our qMFT method in TFIC
with weak interactions, and detect a nonanalyticity in the
dynamical order profile slightly shifted from the location of
the QCP. By following Ref. [20], we call this nonanalytic
point a dynamical critical point (DCP).

Furthermore, we perform extensive t-DMRG calculations
ranging from near-integrable to strongly nonintegrable and
locally connected TFIC, as well as long-range power-law in-
teracting TFIC. We provide finite-size and finite-time analyses
on the t-DMRG data for the near-integrable model up to sys-
tem sizes N = 120, showing that they support the qMFT result
on the location of the DCP. Remarkably, evidence of a DCP
in the thermodynamic limit, namely a crossing between the
order profiles at different system sizes remains in the t-DMRG
data for a strongly nonintegrable and locally connected TFIC,
albeit shifted significantly from its corresponding QCP. There-
fore we find a quench measurement of magnetization that
suggests a DCP for the strongly nonintegrable TFIC with fer-
romagnetic next nearest neighbor (n.n.n.) couplings !/J = 1,
where J is the fixed energy scaling set in the calculation. Pre-
viously, a dynamical order profile was generated in Ref. [30]
with out-of-time-order correlators at !/J = 0.5 with no clear
evidence of a crossing point between the order profiles at dif-
ferent system sizes. Reference [20] predicted a DCP, by using
two-point correlators, up to !/J = 0.3 for chains at N = 25,
and Ref. [27] has recently predicted a QCP with the same
correlator, but for antiferromagnetic n.n.n. couplings. Addi-
tionally, for this strongly nonintegrable TFIC, we observe that
the finite-time analysis of our t-DMRG data underestimates
the location of the DCP, thereby shifting it further away from
the QCP. This reveals a breakdown of the validity regime of
the finite-time analysis, and we elaborate on a possible reason
of this observation.

We show the presence of a q.s. regime in TFIC with
power-law decaying interactions, whose equilibrium critical-
ity properties belong either to short- or long-range Ising
universality class with, respectively, α ! 3 and α < 3, where
α is the power-law exponent of the interaction strength. We
reveal that single-site observables still reflect a difference in
the quench dynamics between the sites near the edges and in
the middle when the model is long-range interacting α < 3, up
until α = 2 where there is no longer an onset of a q.s. regime.
Upon closer study of the model with α = 2.5, which is long
range with algebraic light cones [52], we reveal that the local
order profiles at different r are consistent with each other and
suggest a crossover.

Because the q.s. regime is the basis of the criticality detec-
tion in our paper, we analytically show why the zero modes
are vital in the origin of this dynamical regime. Besides the
requirement of zero modes, the origin of the q.s. regime
can also be explained with translational symmetry breaking
and making an asymmetric measurement with respect to the
symmetry center of the chain, e.g., the middle of the chain.

This differentiates the two chain edges as either near or
far from the perspective of quasiparticles in the integrable
models, or of the wavefronts in operator spreading in the
nonintegrable models. Hence, the locality of the underlying
model, e.g., the linear or sublinear light cones in the operator
spread, rather than the integrability seems to be a reason for
the presence of the q.s. regime. In fact, we explicitly show
instances of q.s. behavior appearing in strongly nonintegrable
many-body models and its direct application in probing QCP.
Consistently, the q.s. regime does not occur when the model
becomes long-range with logarithmic light cones [53]. Fur-
thermore, we find the presence of a q.s. regime even when the
hard edges are smoothed out. This implies that our theoretical
predictions could in principle be tested even in imperfect
conditions where hard boundaries might not be present, e.g.,
in trapped atomic and ionic gases.

Although we focus on the dynamics of single-site ob-
servables, since we aim to dynamically probe ferromagnetic
order in our paper, we emphasize that our method could be
easily adjusted to probe other quantum orders, e.g., antiferro-
magnetic order, by increasing the unit cell of the underlying
lattice. Our detection protocol for quantum phase transitions
in short-range TFIC should be applicable to other models
in the Ising universality class, e.g., XXZ chain, which also
suffers from not having a nonanalyticity in long-time sudden
quench dynamics under periodic boundary conditions [54], or
the Rydberg atom chain [55].

This paper consists of the following sections. In Sec. II,
we describe the locally-connected TFIC with open boundaries
and introduce its quasistationary regime. Then we focus on
the detection of QCP in the nearest-neighbor (n.n.) integrable
limit of TFIC where we also explain the formalism behind
our calculations, express the cluster theorem and prove the
requirement of zero modes to observe a q.s. regime in Sec. III.
Later in Sec. IV, we detail our qMFT method and its results,
and systematically discuss the t-DMRG results on our locally-
connected nonintegrable models. In Sec. V, we focus on the
quench dynamics of single-site observables, and local order
profiles in the power-law interacting TFIC. We conclude in
Sec. VI with an outlook.

II. THE QUASISTATIONARY REGIME IN THE
SHORT-RANGE TFIC

The TFIC with n.n.n. interaction strength ! reads

H = −J
N−1∑

r=1

σ z
r σ z

r+1 − !

N−2∑

r=1

σ z
r σ z

r+2 + h
N∑

r=1

σ x
r , (1)

where σ x,z
r are the Pauli spin matrices on site r, h is the

transverse-field strength and we fix the n.n. coupling strength
J = 1 as the energy scale. The TFIC is a paradigmatic model
of quantum phase transitions, hosting a critical point at hc = 1
when ! = 0, which separates a spontaneously broken sym-
metry (ferromagnetic) phase from a symmetry preserving
(paramagnetic) phase. When ! > 0, the low-energy proper-
ties remain the same, but the QCP shifts to favor order hc > 1.

We consider as initial state the ground state |ψ0〉 of H
at initial value hi of the transverse-field strength, and then
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FIG. 1. (a) The local magnetization Cr (t ) in the integrable TFIC
[Eq. (1)] with open-boundary (solid-blue) and periodic-boundary
(red-dotted and yellow-squares) conditions after a quench in the
transverse-field strength from hi = 0 to h = 0.8. See Secs. III A and
III B for the numerical methods used for the yellow-squares and
solid-blue curve. The red-dotted line is the analytical equation for the
periodic chain derived in Ref. [25]. (b) The local magnetization Cr (t )
in the open-boundary nonintegrable TFIC (! > 0) after a quench
in the transverse-field strength from hi = 0 and calculated with t-
DMRG.

we quench the latter to a value h. While in the case of
periodic-boundary conditions the single-site magnetization
Cr (t ) = 〈ψ0|σ z

r (t )|ψ0〉 decays exponentially to zero [13,25]
[see Fig. 1(a)], open-boundary conditions give rise to a
nonzero-valued equilibrium regime after an exponential decay
when hi < h " hc = 1. This is referred to as the q.s. regime
[51]. Figure 1(a) shows the q.s. regime of C3(t ) in the inte-
grable TFIC quenched from hi = 0 to h = 0.8 for system size
N = 1500. While one could argue that the origin of the q.s.
regime is because of the interference between quasiparticles
due to the asymmetric location of the probe site with respect
to the symmetry center of the chain that gives rise to reflec-
tion from the closest edge, we show in the next section the
necessity of zero modes to observe a q.s. regime.

We break integrability in Eq. (1) by taking ! > 0 in
Fig. 1(b) for different physical parameters (see legend). In all
cases, our t-DMRG calculations in open-boundary chains (see
Sec. IV C for the method) show the emergence of a q.s. regime
in relatively early times as opposed to periodic chains where
the local magnetization is expected to exponentially decay to
zero [25]. Whether this early time q.s. plateau has a finite life-
time and the system eventually thermalizes is an interesting
and important question. Because we focus on whether one
could utilize the value of the q.s. regime to probe QCP, an
answer to this question is beyond the scope of our paper.
We will characterize the q.s. regime that emerges in open-
boundary nonintegrable TFIC in Secs. IV and V, respectively
for short-range and long-range interacting models.

III. THE INTEGRABLE TFIC

In this section, we present our analytical and numerical
techniques on the integrable TFIC with ! = 0, which in-
cludes (A) the cluster theorem technique, (B) a proof on
the origin of the q.s. regime, (C) the derivation of a series
expression for the edge magnetization, and finally (D) the nu-
merically extracted single-site nonequilibrium phase diagrams
based on the cluster theorem technique.

A. Quench dynamics of single-site magnetization via
the cluster theorem

We start by mapping the integrable TFIC to a nonin-
teracting fermionic model in 1D via the Jordan–Wigner
transformation [5],

σ z
r = −

∏

s<r

(1 − 2c†
s cs)(cr + c†

r ),

σ x
r = 1 − 2c†

r cr,

σ y
r = −i

∏

s<r

(1 − 2c†
s cs)(cr − c†

r ), (2)

to obtain the noninteracting Hamiltonian

H =
∑

r=1

[−J (c†
r cr+1 + c†

r c†
r+1 + H.c.) − 2hc†

r cr )]. (3)

Expressing the local magnetization of a bulk spin 〈σ z
r (t )〉 in

this noninteracting picture brings a string of operators, and
hence is not tractable. Instead, one could utilize the Wick
theorem and Pfaffian formalism for two-point correlators to
encode the string of operators into an anti-symmetric matrix
[5,13]. This direction of solution requires rewriting a single-
site observable in terms of two-point correlators [25] and we
therefore invoke the cluster theorem [13],

〈
σ z

r (t )σ z
N−r+1(t )

〉
≈

〈
σ z

r (t )
〉〈
σ z

N−r+1(t )
〉
, (4)

where r ! N/2 is close to the left boundary. The cluster
theorem breaks down outside of the lightcone, and the corre-
sponding breakdown time tl can be understood in the context
of operator spread between two well separated sites r and
N − r + 1 that eventually get correlated with each other. This
time can be estimated based on the maximum quasiparticle
velocities vq, as tl = !x/(2vq) where !x = N − 2r + 1 is
the distance between two spins that are equidistant from the
symmetry center of an open-boundary chain in Eq. (4), which
is the middle of the chain. For such symmetrically placed
sites, the magnetization is the same, and one can thus write

〈
σ z

r (t )
〉
=

√〈
σ z

r (t )σ z
N−r+1(t )

〉
≡ Cr (t ). (5)

Therefore, we can extract the dynamical evolution of a spin
at site r from the equal-time two-point correlators of sites r
and N − r + 1. The latter can be written in terms of auxiliary
operators φ±

r = c†
r ± cr as

〈
σ z

r (t )σ z
N−r+1(t )

〉
=

〈

φ−
r (t )

( N−r∏

s=r+1

φ+
s (t )φ−

s (t )
)

φ+
N−r+1(t )

〉

.

(6)

In fact, this is the expectation value of the so-called string
order parameter (SOP) [56]. It can be calculated by invoking
Wick’s theorem, which allows one to re-express the above
expectation value as a sum over products of elementary
contractions, which in turn is the Pfaffian of an appropri-
ately constructed antisymmetric matrix T (t ), i.e., (Cr (t ))2 =
Pf (T (t )) [5,13]. Although this is in general a complex num-
ber, it follows from Eq. (4) that for t < tl and the ordered
phase we actually have (Cr (t ))2 ∈ R+, so that we may
compute Cr (t ) = |Pf (T (t ))|1/2 = |

√
det(T (t ))|1/2. This is ad-

vantageous since it is numerically more efficient to calculate
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determinants as compared to Pfaffians. However, note that in
the disordered phase and close to QCP in the ordered phase,
Cr (t ) ∈ R. In these cases, we compute |Cr (t )| with the cluster
theorem method. To construct the matrix T (t ) we only need
to calculate all possible elementary two-point contractions
〈φp

a (t )φq
b (t )〉 where p, q = ± and r " a " b " N − r + 1.

Now we briefly review how to implement a sudden quench
in this picture by following Ref. [22].

Quenching from an initial Hamiltonian Hi with transverse
field hi, we first solve

Hi =
∑

k

E i
kα

†
k αk, (7)

where Ei
k are the single particle energies, αk and α†

k are
the new annihilation and creation operators, respectively, af-
ter diagonalization where the ground state |ψ0〉α satisfies
αk |ψ0〉α = 0. The solution, in a general form, follows as [57]

(
α
α†

)
=

(
Gi Fi
Fi Gi

)(
ci

c†
i

)
, (8)

where ci = (c1, c2, · · · , cN )T and similarly for the vector of
creation operators c†

i . The expressions for the Gi and Fi block
matrices will follow shortly. By solving the eigensystem of

[(Ai − Bi )(Ai + Bi )]
∣∣&i

k

〉
=

(
Ei

k

)2∣∣&i
k

〉
, (9)

we obtain the eigenenergies Ei
k and eigenvectors |&i

k〉. Note
that Ai and Bi are the nearest neighbor hopping and pairing
terms of the Hamiltonian, respectively. Then the Hamiltonian
could be written as

Hi =
(

Ai Bi

B†
i −Ai

)

, (10)

in the
(

ci

c†
i

)
basis. Next we use the eigensystem (Ei

k, |&i
k〉) to

obtain
∣∣' i

k

〉
= 1

Ei
k

[〈
&i

k

∣∣(Ai − Bi )
]T

. (11)

Let us emphasize that the expression above would not work
for zero edge modes where Ei

k = 0, and handling the case with
zero modes is crucial for us. This is because we are primarily
interested in the quenches from and to the ordered phase in an
open-boundary TFIC. In this case, we set |' i

k〉 = −|&i
k〉 [57]

and make sure that the resulting state is linearly independent
from the other modes. Finally we calculate the matrices Gi
and Fi in terms of |&i

k〉 and |' i
k〉. Defining matrices

&i =
[∣∣&i

1

〉 ∣∣&i
2

〉
· · ·

∣∣&i
N

〉]
,

'i =
[∣∣' i

1

〉 ∣∣' i
2

〉
· · ·

∣∣' i
N

〉]
,

the block matrices follow

Gi = 1
2

(
&T

i + 'T
i

)
, Fi = 1

2

(
&T

i − 'T
i

)
. (12)

Similarly for the final Hamiltonian Hf with transverse field h,
one could write

(
β

β†

)
=

(
G f Ff

Ff G f

)(
c f

c†
f

)

, (13)

together with corresponding & f and ' f , where c f and c†
f are

the vectors for annihilation and creation operators in Hf . We

calculate the transfer matrices with the help of these block
matrices,

T1 = G f GT
i + Ff F T

i , T2 = G f F T
i + Ff GT

i .

These transfer matrices are used to finally calculate the ma-
trix elements α〈ψ0|[φp

a φ
q
b ]β |ψ0〉α of the antisymmetric matrix

T (t ), where Greek subscripts denote in which basis we have
the states and the operators. Because we would like to make
use of αk|ψ0〉α = 0, we use the above transfer matrices to
write [φp

a φ
q
b ]β in the α basis as

[φ±
b ]β |ψ0〉α = [c†

b(t ) ± cb(t )]β |ψ0〉α,

=
[(

GT
f ± F T

f

)
(eiEt T1 ± e−iEt T2)α†]

b|ψ0〉α,

where E is a diagonal matrix with eigenenergies of the final
Hamiltonian as the entries, E = diag[E f

1 E f
2 · · · E f

N ]. Based on
this formulation, we construct matrices Mq(t ) explicitly,

M+(t ) = & f (e−iEt T1 + eiEt T2),

M−(t ) =
(
T T

1 eiEt − T T
2 e−iEt)'T

f , (14)

to utilize in the following contractions:

〈φ+
a (t )φ+

b (t )〉 = [M+(t )M+(t )†]ab,

〈φ−
a (t )φ−

b (t )〉 = −[M†
−(t )M−(t )]ab,

〈φ+
a (t )φ−

b (t )〉 = [M+(t )M−(t )]ab,

〈φ−
a (t )φ+

b (t )〉 = −[M†
−(t )M†

+(t )]ab. (15)

Now we can construct the antisymmetric matrix T (t ) at
time t with the matrix elements Tks(t ) = 〈φp

a (t )φq
b (t )〉, where

1 " k < s " 2!x, p = +(−) for k even(odd) and q = +(−)
for s even(odd). The relation between parameters a, b and
k, s reads a = r + )k/2* and b = r + )s/2*, because r " a "
b " N − r + 1. Having constructed T (t ), one can then extract
Cr (t ) = |

√
det T (t )|1/2, as discussed below Eq. (6). Let us

note that this quench formalism for noninteracting fermions
was recently employed in Refs. [22,25]. We use this method
to obtain the numerical results presented for the critically
prethermal regime in Ref. [50].

The breakdown time tl of the method is also the time
when finite-size effects kick in. Therefore, the method is by
construction immune to these finite-size effects, and the lo-
cal magnetization for different sizes collapses on each other,
Fig. 2. This is similar in spirit to the separation timescale of
single-site observables, which is the time when the quasipar-
ticles reach the end of the chain [25] and the finite-size effects
in this time interval are exponentially suppressed in system
size [58].

In the next section, we analytically show that (i) the system
needs to support zero modes to stabilize a q.s. regime, and
(ii) how bulk probe sites are susceptible to these zero modes,
which then gives rise to the detection of QCP at an arbitrary
site.

B. Requirement of zero modes to observe
a quasistationary regime

In order to show the requirement of zero modes to stabilize
a q.s. regime, we have to adopt an approach different than the
cluster theorem for studying the quench dynamics. This alter-
native approach, proposed by Ref. [59], defines the single-site
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FIG. 2. Single-site magnetization |Cr (t )| at r = 6 for different
system sizes (see legend) at h = 0.95. The magnetization is plotted
until corresponding tl , the breakdown time of the cluster theorem,
and in this region the data for different system sizes collapse on each
other. This suggests that we effectively simulate the thermodynamic
limit with a finite-size system at the expense of a breakdown time.

magnetization as

Cr (t ) = (−1)r−1
α〈ψ0|

(
r−1∏

k=1

φ+
k (t )φ−

k (t )

)

φ+
r (t )|ψ1〉α,

where |ψ1〉α = α†
N |ψ0〉α is the single-particle excited state.

The auxiliary operators, that are already defined in Sec. III A
can be written in the basis of the initial Hamiltonian in terms
of αk ,

φ+
l =

N∑

k=1

&i
k (l )(α†

k + αk ) ≡ φ2l−1, (16)

φ−
l =

N∑

k=1

' i
k (l )(α†

k − αk ) ≡ φ2l . (17)

The parenthesis in &i
k (l ) and ' i

k (l ) denote the lth element
of the corresponding vector. The new notation defined in
Eqs. (16) and (17) makes the following equations easier to
follow:

C1(t ) =
∑

n,k

[
P1,2n−1(t )&i

k (n) α〈ψ0| (α†
k + αk )α†

N |ψ0〉α

+ P1,2n(t )' i
k (n) α〈ψ0| (α†

k − αk )α†
N |ψ0〉α

]
,

=
∑

n

[
P1,2n−1(t )&i

N (n) − P1,2n(t )' i
N (n)

]
, (18)

where P1,2n−1 and P1,2n are the single-particle propagators of
the quench Hamiltonian [60],

P2l−1,2k−1(t ) =
∑

q

cos(Eqt )& f
q (l )& f

q (k),

P2l−1,2k (t ) = −
∑

q

sin(Eqt )& f
q (l )' f

q (k),

P2l,2k−1(t ) =
∑

q

sin(Eqt )& f
q (k)' f

q (l ),

P2l,2k (t ) =
∑

q

cos(Eqt )' f
q (l )' f

q (k).

FIG. 3. (a) Equation (22) plotted with respect to h (blue squares),
which coincides with the function 1 − h2 (solid-yellow). (b) Abso-
lute values of the first (red-solid) and the third term contributions
(yellow-dotted) in Eq. (28) for N = 1500 spins at h = 0.95. Their
summation (without the absolute values) gives the entire time evo-
lution for the second spin whose absolute value is plotted with blue
dashed-dotted.

To be concrete, let us choose the initial state as the ground
state of the Hamiltonian with hi = 0. This results in

&i
k (n) =

{
1, if n = k + 1
0, if n += k + 1,

(19)

' i
k (n) =

{
−1, if n = k
0, if n += k.

(20)

When Eqs. (19) and (20) are substituted into Eq. (18), one
obtains

C1(t ) = P1,1(t ) + P1,2N (t ),

=
∑

q

(
cos(Eqt )& f

q (1)& f
q (1) − sin(Eqt )& f

q (1)' f
q (N )

)
.

(21)

In the infinite time limit, t → ∞, Eq = 0 is the only nonzero
contribution. Defining the q.s. value C1(t → ∞) ≡ Cqs

1 (h),
we obtain

Cqs
1 (h) =

∑

Eq=0

& f
q (1)& f

q (1) = 1 − h2. (22)

This means that the q.s. regime in the edge magnetization is
solely due to the presence of edge modes in the Kitaev chain,
Eq. (3). We plot Eq. (22) for system size N = 500 in Fig. 3(a),
where we show that it coincides perfectly with 1 − h2 (solid-
yellow).

Next, we aim to understand the role of zero modes in the
q.s. regime of a bulk spin, e.g., the second site r = 2,

C2(t ) = − α〈ψ0| φ+
1 (t )φ−

1 (t )φ+
2 (t )|ψ1〉α

=

∣∣∣∣∣∣∣∣∣

0 −P (1,2)(t ) −P (1,3)(t ) −P (1)(t )
P (1,2)(t ) 0 −P (2,3)(t ) −P (2)(t )
P (1,3)(t ) P (2,3)(t ) 0 −P (3)(t )
P (1)(t ) P (2)(t ) P (3)(t ) 0

∣∣∣∣∣∣∣∣∣

1/2

,

(23)

where we have used Wick’s theorem, similar to Sec. III A.
The definitions of this antisymmetric matrix’s elements
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read

P (2r−1)(t ) ≡ α〈ψ0|φ+
r (t )α†

N |ψ0〉α, (24)

P (2r)(t ) ≡ α〈ψ0|φ−
r (t )α†

N |ψ0〉α, (25)

P (2r−1,2r′−1)(t ) ≡ α〈ψ0|φ+
r (t )φ+

r′ (t )|ψ0〉α,

P (2r−1,2r′ )(t ) ≡ α〈ψ0|φ+
r (t )φ−

r′ (t )|ψ0〉α,

P (2r,2r′−1)(t ) ≡ α〈ψ0|φ−
r (t )φ+

r′ (t )|ψ0〉α,

P (2r,2r′ )(t ) ≡ α〈ψ0|φ−
r (t )φ−

r′ (t )|ψ0〉α. (26)

The two-point correlators, Eq. (26) can be calculated with
Eq. (15). We know the form of Eq. (24) from the expression
for edge magnetization, Eq. (21). Hence, Eqs. (24) and (25)
follow similarly,

P (2r−1)(t ) = P2r−1,1(t ) + P2r−1,2N (t ),

P (2r)(t ) = P2r,1(t ) + P2r,2N (t ). (27)

Then, it is straightforward to show

C2(t ) = P (1)(t )P (2,3)(t ) − P (2)(t )P (1,3)(t )

+ P (3)(t )P (1,2)(t ). (28)

In the infinite time limit, C2(t → ∞) brings energy conditions
of Eα ± Eβ ± Eγ = 0 where all energies are nonnegative.
Then, so long as (i) the single particle eigenstates are not
all product states and (ii) the single particle spectrum is non-
degenerate, all of which is satisfied when h += 0, the energy
condition holds only when Eα = Eβ = Eγ = 0. Therefore, to
observe nonzero magnetization in the long time limit, even at
bulk probe sites, the spectrum has to support zero modes. An
important difference in the infinite time limit at r = 2 from the
edge magnetization in Eq. (22) is that there is a nonzero con-
tribution coming from the second site in the fermionic chain in
addition to the edge. While the contribution of the middle term
in Eq. (28) is always zero because '

f
q|Eq=0(1) = 0 in P (2)(t ),

the contribution of the first term decreases as the transverse
field increases as opposed to increasing contribution from the
third term. Close to the QCP, these two contributions become
equal, which is depicted in Fig. 3(b). These observations
suggest that the zero mode spreads across the chain as we
approach the QCP, as expected. Importantly, one can observe
the prethermal and q.s. regimes in both terms, shedding light
on (i) why an arbitrary bulk spin is still a good probe site to
detect QCP; and (ii) why a universal collapse is possible in the
prethermal regime of different probe sites [50].

Let us note that one could straightforwardly generalize
this alternative numerical method to calculate the local mag-
netization at all sites. Figure 1(a) shows the application of
this method to calculate the local magnetization at site r = 3
for N = 1500 spins. To mathematically show the origin of
zero modes for probe sites r > 2, one has to add one more
condition to the condition list above, which is the requirement
of nondegenerate energy gaps [61].

Finally, we discuss the coherence times of the local mag-
netization at a bulk site C3(t ) [Fig. 4(a)], with respect to time
for different interaction strengths !. Then we map the q.s.

FIG. 4. Exact diagonalization results for the coherence time of
C3(t ) at a system size of N = 14. Subfigure (a) depicts certain
nonintegrable models at h = 0.5 (see legend), whereas (b) gives a
two-dimensional color plot of the long-time value of the q.s. regime
with respect to external field h and the interaction strength !.

values at a field strength h and the interaction strength ! in
Fig. 4(b). The behavior is monotonous everywhere between
0 < h < 1 and 0 < ! < 2. An important evidence of strong
zero modes [62] is the presence of resonances due to the
competition between n.n. and n.n.n. terms in Eq. (1), which
would result in a nonmonotonous trend of the steady state
value with respect to !. The absence of such behavior seen
in Fig. 4, despite our analytical proof earlier on the necessity
of zero modes to stabilize a q.s. regime, is likely a result of the
quench protocol. This is because, in a typical setup where the
effects of strong zero modes are demonstrated, e.g., infinitely
long or finite but long coherence times, the entire many-body
spectrum is relevant due to infinite-temperature initial state
[32,33,62]. Although a quench from a polarized state to an
arbitrary h in the ordered phase still generates excitations to
higher energy levels, Fig. 4 clearly demonstrates that only
a part of the many-body spectrum is actually relevant in the
observation of the q.s. regime.

C. Derivation of the series expression for the edge magnetization

In order to write the edge magnetization, Eq. (21), in terms
of the physical parameters, e.g., transverse field h, one has to
analytically express &

f
q and '

f
q . In this section, we will follow

an alternative route to derive an analytical expression for C1(t )
in the thermodynamic limit. First we rewrite the Hamiltonian
of Eq. (3) at ! = 0 in terms of auxiliary operators φ±

r ,

H =
∑

r

(−Jφ−
r φ+

r+1 + hφ+
r φ−

r ). (29)

Then we use the Baker-Campbell-Hausdorff formula

esABe−sA = B + s[A, B] + s2

2!
[A, [A, B]] + . . . , (30)

to calculate φ+
1 (t ) = eiHtφ+

1 e−iHt . The following commuta-
tors are obtained:

[H,φ+
1 ] = −2hφ−

1 ,

[H,φ+
r ] = −2(Jφ−

r−1 + hφ−
r ), r > 1

[H,φ−
r ] = −2(hφ+

r + Jφ−
r+1), r ! 1
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FIG. 5. The local magnetizations of the integrable TFIC (a) at
QCP h = 1 and (b) in the disordered phase h = 1.2 for different
probe sites (see legend). All data decay as a power law in long time
with t−3/2.

and used to calculate the terms of Eq. (30),

[H, [H,φ+
1 ]] = +4(h2φ+

1 + Jhφ+
2 ),

[H, [H, [H,φ+
1 ]]] = −8[(h3 + J2h)φ−

1 + Jh2φ−
2 ],

[H, [H, [H, [H,φ+
1 ]]]] = +16[(h4 + J2h2)φ+

1

+ (hJ3 + 2h3J )φ+
2 + J2h2φ+

3 ],

. . . (31)

Since we calculate C1(t ) = α〈ψ0|φ+
1 (t )|ψ1〉α quenched from

a polarized state, the initial state dictates 〈φ+
1 〉 = 1, 〈φ−

N 〉 =
−1 and the remaining expectation values are zero. Hence,
Eqs. (31) read

〈[H, [H,φ+
1 ]]〉α = +22h2,

〈[H, [H, [H,φ+
1 ]]]〉α = 0

〈[H, [H, [H, [H,φ+
1 ]]]]〉α = +24(h4 + J2h2)

〈[H, [H, [H, [H, [H,φ+
1 ]]]]]〉α = 0

〈[H, [H, [H, [H, [H, [H,φ+
1 ]]]]]]〉α = +26(h6 + 3h4J2

+ h2J4)

. . .

resulting in the following series solution:

C1(t ) = 1 +
∑

m=1

(−1)m

(2m)!
(2t )2mNm(h2), (32)

where Nm(x) are called the Narayana polynomials

Nm(h) =
m∑

n=1

Nmnhn, Nmn = 1
m

(
m

n − 1

)(
m
n

)
.

Let us note that one obtains exactly the same series solution
in the calculation of two-time correlators of the edge spin at
infinite-temperature [32].

At the critical point h = 1, the series solution Eq. (32) can
be written in a closed form,

C1(t, h = 1) = J1(4t )
2t

, (33)

where J1(4t ) is the Bessel function of the first kind. The long-
time asymptotics of J1(4t )/2t is ∝ t−3/2, which is exactly
what we observe in the numerical calculations, Fig. 5(a), not

FIG. 6. The universal part of the rescaled critical response, f0,0,
is plotted with respect to the rescaled time hnt . The blue-solid and
red-dotted lines show f0,0 for the ordered and disordered phases,
respectively. Dashed lines are added to guide the eye.

only for the edge magnetization but also for local magnetiza-
tion at different probe sites.

Since the Narayana polynomials satisfy the property
Nm(x−1) = x−m−1Nm(x), C1(t, h) satisfies

C1(t, h) = 1 − h2 + h2C1(ht, h−1), (34)

indicating that the edge magnetization behaves in one phase
(transverse-field strength h) as it would in the complementary
phase (transverse-field strength h−1) but with a scaled time ht .

In Ref. [50], some of us proposed a general form for the
critical response function δCr (t, hn) ≡ Cr (t, hn) − Cr (t, hn =
0) where hn ≡ (hc − h)/hc,

δCr (t, hn) = Cqs
r (|hn|) f!,hi (hnt ), (35)

which holds near hn = 0 when t 0 1, and the function
f0,0(hnt ) has been derived based on the edge magnetization
in Eq. (32),

f0,0(hnt ) = 1
2

+ (hnt )
2 1F2

[{
1
2

}
;
{

3
2
, 2

}
; −(hnt )2

]
(36)

where 1F2({a1}; {b1, b2}; z) is a generalized hypergeometric
function. Even though Ref. [50] focuses on dynamics when
quenching to the ferromagnetic phase, i.e., h < 1 (hn > 0), the
function f0,0(hnt ) given by Eq. (36) is a good approximation
of δCr (t, hn) in both phases near QCP, |hn| → 0. This suggests
that there is a corresponding prethermal dynamical regime
in the disordered phase too, where dynamics critically slow
down. In Fig. 6, we plot f0,0(hnt ) as a function of hnt . Since
the second term on the right hand side of Eq. (36) is an
odd function in hnt , f0,0(hnt ) is symmetric about the line 1

2
in Fig. 6 both for hn > 0 and hn < 0. We observe δC1(t =
0, h) = hn/2 in both phases when t 0 1 and hnt ! 1 hold,
hence the prethermal dynamics starts at value hn/2 in both
phases. δC1(∞, h < 1) = 1 − h2, while δC1(∞, h > 1) = 0,
indicating that the edge magnetization reaches a q.s. value
1 − h2 in the ordered phase and 0 in the disordered phase as
t → ∞. Therefore, the critical response shows a nonanalyt-
icity at the QCP in the long time limit. We will harness this
nonanalyticity in the next sections in the detection of the QCP
with single-site magnetizations.
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CEREN B. DAĞ et al. PHYSICAL REVIEW B 107, 094432 (2023)

FIG. 7. Nonequilibrium phase diagram for ! = 0 (a) for different sites r = 1, 3, 6, 9, 12 at N = 1440 (see legend). Solid-black line is
the analytic result for edge magnetization in the thermodynamic limit. (b) The same plot with (a) in semi-logarithmic scale, exhibiting a
kink behavior at the QCP, which is nonanalytic in the thermodynamic limit. The small but finite values at the QCP and in the disordered
phase are due to inevitable finite-time cutoff. These values are expected to vanish when tl → ∞, see Fig. 5. (c) For different system sizes,
N = 500, 1000, 1500, 2000, at site r = 6. Cr (hc ) scales with the system size as 1/N for all sites r = 3, 6, 9, 12 (see Appendix A).

D. Detection of QCP

To probe the q.s. regime, we study the the time-averaged
single-site magnetization,

|Cr (t )| = 1
(tl − t∗)

∫ tl

t∗
dt |Cr (t, h)| ≡ C̄r (h), (37)

where t∗ is the ultraviolet (short-time, short-distance) cutoff
and tl is the (long-time, long-distance) infrared cutoff [25].
For the numerical results presented in this section, tl is the
evolution time at which the cluster theorem, Sec. III A, breaks
down, and hence as explained in the previous section tl =
!x/(2vq). This means that the infrared cutoff tl is parametric
in the transverse field tl (h), because in the integrable TFIC
vq = 2h for h " hc and vq = 2hc for h > hc [13].

For quenches sufficiently far away from the vicinity of the
QCP, |Cr (t )| matches the q.s. value, as then there is no prether-
mal regime [50]. Each single-site observable in the TFIC equi-
librates around a different value in the q.s. regime. This can be
seen in Fig. 7(a) that depicts |Cr (t )| for r = 1, 3, 6, 9, 12, all
of which have a different functional form of h. The analytic
expression for the value of the q.s. regime at r = 1, Cqs

1 (h) =
1 − h2 (Sec. III C) matches the corresponding numerical result
in Fig. 7(a). Figure 7(b) shows the same plot in logarithmic
scale that exhibits a kink in C̄r (hc) regardless of the value
of r.

Whether there is a nonanalytic behavior at the QCP for all r
could be answered through a finite-size analysis. In Fig. 7(c),
we observe that the dynamical order of C̄6(h) is persistent
for h < hc as system size increases from N = 500 to 2000,
i.e., its value stays the same with increasing system size (see
Appendix A for other r). Although the local order profiles
for each r away from the QCP are different, Fig. 7(a), they
all approach to the QCP linearly in hn in the thermodynamic
limit [50]. For h ! hc the dynamic order vanishes for all r
in Fig. 7(c), i.e., it has a decreasing trend with increasing
system size. In fact, we can prove that the local magnetization
should vanish in the thermodynamic limit, based on the simple
observation of t−3/2 decay of local magnetization for all r both
at the QCP, Fig. 5(a) and in the disordered phase, Fig. 5(b),

Cr (h ! hc) = 8hc√
t∗

1
N

+ O(N−3/2). (38)

The derivation of Eq. (38) and the accompanying numerics
of the scaling 1/N at the QCP can be found in Appendix A.
Therefore, the nonanalyticity at hc—the hallmark of a phase
transition—is captured by all single-site observables r !
N/2. Consequently, we have demonstrated a DPT for different
sites r ! N/2 that reflects the underlying QPT.

IV. THE NONINTEGRABLE TFIC WITH NEXT-NEAREST
NEIGHBOR COUPLING

In this section, we first lay out the qMFT formalism that has
also been applied to obtain the results of weak perturbations in
Ref. [50]. Subsequently, we present the t-DMRG calculations
of both weakly and strongly interacting TFIC.

A. Quench mean-field theory (qMFT) analysis

In order to incorporate the qMFT formalism to our quench
dynamics that is described in Sec. III A, we need to express the
n.n.n. term in the TFIC Hamiltonian in the fermionic picture.
This expression reads

n.n.n. = !
∑

r

(c†
r − cr )(1 − 2c†

r+1cr+1)(cr+2 + c†
r+2),

= !
∑

r

φ−
r φ+

r+1φ
−
r+1φ

+
r+2, (39)

where ! > 0 and φ±
r stand for the auxiliary fermions.

In Hartree–Fock expansion, we assume |!| ! |J|, and
write Eq. (39) as

= !
∑

r

[〈φ−
r φ+

r+1〉t→∞φ−
r+1φ

+
r+2 + φ−

r φ+
r+1〈φ−

r+1φ
+
r+2〉t→∞

− φ−
r 〈φ+

r+1φ
−
r+1〉t→∞φ+

r+2 − 〈φ−
r φ+

r+2〉t→∞φ+
r+1φ

−
r+1].

(40)

Here the 〈·〉t→∞ means that we calculate the free fermion
problem and obtain the correlators with respect to the state
in the q.s. regime when t → ∞, instead of the ground state,
which would be used to calculate the equilibrium QCP. An
analytical qMFT formalism was first introduced in Ref. [20]
to calculate a dynamical order parameter, based on two-point
correlators in a periodic chain, by utilizing the momentum
space representation where the infinite time limit can indeed
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FIG. 8. qMFT single-site magnetization of the near-integrable
model with ! = 0.1 (a) for h " 1.143, an interval of h that is rep-
resentative of a dynamically-ordered phase and (b) for 1.146 " h "
1.5, an interval of h that is representative of a dynamically-disordered
phase at a system size of N = 1440 at r = 6. The recurrence attempts
observed here imply the breakdown of the cluster theorem. qMFT
single-site magnetization of the near-integrable model for probe sites
r = 1, 3, 6, 9, 12 (c) at DCP hdc = 1.1437, (d) in the disordered
phase sharing the same legend.

be taken. In our numerics for an open-boundary chain, we
treat the largest time point allowed by the cluster theorem,
tl = !x/(2vq), as the asymptotically infinite time limit. Note
that for an open-boundary chain one needs to carefully take
the edges of the chain into account when calculating Eq. (40).
Using the above expansion, we obtain an effective mean field
Hamiltonian, which has slightly stronger n.n. coupling com-
pared to the free problem, as well as new n.n.n. couplings.
Further, the effective chemical potential slightly decreases,
which is reasonable when we think about how the critical
point shifts to favor order, e.g., for ! = 0.1, hc = 1.1631 ±
0.0037 (see Appendix C).

When applying the cluster theorem to the qMFT of the
near-integrable TFIC, one needs to estimate the lightcone
(correlation) velocity vq of the model. While for the integrable
TFIC this velocity is analytically known, this is not true
when we introduce nonintegrability to the model. Here we
approximate a quasiparticle velocity based on the analytical
prediction of the integrable TFIC: vq = 2h for h " hc and
vq = 2hc for h > hc [13]. Since this is only an approximation,
we sometimes exceed the time when the cluster theorem really
breaks down. This means that the distant sites of the chain
had already become correlated with one another. This time
can be observed with a recurrence attempt in the results, e.g.,
Fig. 8(a), which is also a sign of finite-size effects.

Figures 8(a) and 8(b) show single-site magnetization of the
near-integrable model with ! = 0.1 at probe site r = 6 and
for different h across the QCP, hc. One could easily notice
the qualitative difference between single-site magnetizations
in different phases: While there is a q.s. regime present in
Fig. 8(a) for h sufficiently away from the QCP signaling a
dynamically-ordered phase, the magnetization decays as a

FIG. 9. qMFT nonequilibrium phase diagram of the near-
integrable TFIC with ! = 0.1 (a) for different sites r = 1, 3, 6, 9, 12
in descending order at N = 1440 exhibiting a kink at the DCP and
solid-black line is a fit function for the edge magnetization; (b) for
different system sizes N = 96, 480, 960, 1440 at site r = 6.

power law in Fig. 8(b) for h ! hc indicating a dynamically-
disordered phase.

B. Detection of QCP in the near integrable TFIC through
qMFT analysis

Now we study the single-site magnetization of the near
integrable TFIC where ! = 0.1 in Eq. (1) treated with qMFT
and when the system is quenched. This model has a QCP
at hc = 1.1631 ± 0.0037, which is calculated with DMRG
(Appendix C).

Local order profiles follow similarly to the case of in-
tegrable TFIC (! = 0) except for a shift in the QCP to
favor order, hc > 1, as expected [Fig. 9(a)]. We focus on
C̄6(h) in Fig. 9(b) where we find a kink at hdc = 1.1437 ±
0.0001 < hc whose magnetization decreases with increasing
system size C̄r (hc) ∝ N−1. N−1 scaling follows from the fact
that the single-site magnetization at hdc decays as ∝ t−3/2

[see Fig. 8(c) and Appendix C]. The magnetization in the
disordered phase decays in the same way in Fig. 8(d). Consis-
tently, this behavior is translated to the local order profiles as
C̄r (h ! hdc) ∝ N−1 suggesting C̄r (h ! hdc) = 0 in the ther-
modynamic limit. On the contrary, for h < hdc, the dynamical
order is persistent, i.e., C̄r (h < hdc) value stays the same with
increasing system size.

The q.s. value of the edge magnetization, which our nu-
merical results access for quenches far away from the vicinity
of the transition, can be fitted well with a functional form
that is reminiscent of that of the integrable TFIC, Cqs

1 (h) =
α(hν

dc − hν ) for h " hdc and zero otherwise. Furthermore,
because a critically prethermal regime with self-similar dy-
namics is found also for the same model in [50], all local order
profiles in the ordered phase approach to the QCP linearly
in hn in the thermodynamic limit. Therefore, we observe a
nonanalytic behavior for the near-integrable TFIC when it is
treated with qMFT. Subsequently, we call the location of this
nonanalyticity as a DCP.

Furthermore, we apply energy gap analysis to the effec-
tive qMFT Hamiltonian with n.n.n. terms in Eq. (39) and
find the ground-state gap of this effective Hamiltonian closes
at hqmft

c = 1.1438 ± 0.0011 (see Appendix C). Let us note
that hqmft

c ∼ hdc < hc, suggesting that the DCP of the near-
integrable model traces back to the QCP of the effective qMFT
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Hamiltonian. Therefore, we conclude that the small shift in
hdc from hc likely originates from the qMFT method.

It is important to note that although the qMFT treatment
gives rise to a q.s. regime for long intervals of time for
quenches away from the DCP [Fig. 8(a)], this is not conclusive
evidence for infinitely long-lived nonthermal behavior in a
nonintegrable model. Indeed, MFT is not expected to ade-
quately capture thermalization as it may neglect fluctuations
that are essential for the latter. However, as we will detail
in the next subsection, t-DMRG confirms the presence of a
transition in the thermodynamic limit. Since the relaxation
time of the system observables critically diverges as we ap-
proach the QCP [50], it is likely that an infrared cutoff at tl
might not accurately capture the q.s. state in the infinite-time
limit near QCP. This could explain why our observed DCP
at hdc = 1.1437 ± 0.0001 for ! = 0.1 is slightly smaller than
the DCP found in Ref. [20], which is 1.15.

After determining the DCP, we obtain α = 0.81 and ν =
1.81 for the fit function of the edge magnetization. This fit
function is plotted in Fig. 9(a) as a black-solid line.

C. t-DMRG calculations

We utilize the ITensor environment [63] to construct matrix
product states (MPS) and Trotter decomposition for the time
evolution of the MPS. We set a maximum bond dimension χm
for the resulting compressed MPS, and set the initial trunca-
tion error cutoff for the compression of the MPS as ε ≈ 10−8.
The truncation error cutoff is adaptive: As the maximum bond
dimension is reached for the resulting MPS, the error cutoff
increases systematically up until a hard error threshold of
ε ≈ 10−5 to be able to access longer times. Setting a maxi-
mum allowed bond dimension thus introduces an error, which
grows with time. Consequently, we are confined to early times
for which the above interval of the error thresholds is satisfied.

We study two nonintegrable models with t-DMRG: (i)
Weakly interacting near-integrable model, ! = 0.1, whose
qMFT results are presented in the previous subsection and
compared to the results obtained from the exact numerics
in this subsection. (ii) A strongly nonintegrable model, ! =
1 where qMFT is inadequate, and we therefore employ t-
DMRG only. The latter is numerically exact, but within a
given fidelity threshold the accessible evolution times are
limited and naturally shorter than those achievable for the
(near-)integrable model.

Figures 10(a) and 10(b) show the finite-size and finite-time
scaling analysis, respectively for the weakly interacting TFIC
at r = 3. In the rest of this subsection, we use infrared cut-
offs either parametric in the system size tl (N ) (in finite-size
analysis) or set to a fixed time tl (in finite-time analysis).

In Fig. 10(a), we observe a dynamical order profile and a
crossing point for system sizes between N = 48 and N = 96.
The crossing point is found to be in the interval of hdc/J ∈
(1.05, 1.1) where the dynamical order builds up for h/J "
1.05 as the system size increases and it vanishes for h/J !
1.1. We use t∗ = 10 and tl = N/2 as ultraviolet and infrared
cutoffs in these figures; however, the phase diagram is robust
to changes in the temporal cutoffs, as we tested with values
in the intervals t∗ ∈ [8, 12] and tl ∈ [N/3, N/2]. In Fig. 10(b),
we employ a form of finite-time scaling analysis [20] where

FIG. 10. Order profiles calculated with t-DMRG for near-
integrable TFIC with ! = 0.1J , (a) for different system sizes N =
48, 72, 96 at site r = 3 when a (infrared) temporal cutoff of tl =
N/2 is applied. The order profile is tested against different infrared
and ultraviolet temporal cutoffs and shown to be robust (see text).
(b) Finite-time scaling analysis at a system size of N = 96 for dif-
ferent infrared cutoffs, shown in the legend, with a fixed ultraviolet
cutoff of t∗ = 0. The upward and downward arrows highlight h
points where the order grows or diminishes, respectively with in-
creasing (a) system size and (b) simulation time.

we see a crossing point between order profiles with differ-
ent infrared cutoffs at a fixed ultraviolet cutoff t∗ = 0. The
crossing point resides in the interval of hdc/J ∈ (1.05, 1.1)
agreeing with the finite-size analysis. For h/J " 1.05 and
h/J ! 1.1, the dynamical order grows or diminishes with
longer simulation times, respectively. Given that the system
sizes are constrained in t-DMRG compared to qMFT analysis,
we observe a smaller DCP than what we have found with
qMFT analysis. We repeat the same calculation for r = 6,
however, with slightly larger system sizes. Figures 11(a) and
11(b) demonstrate the finite-size and finite-time scaling anal-
ysis, respectively for this parameter set. In both cases, we
find the crossing interval to be hdc/J ∈ (1.1, 1.15). Finally,
we zoom in on the nonequilibrium phase diagram of the
qMFT analysis in Fig. 11(c) to demonstrate that the crossing
is present in this method too, however, for small system sizes,
e.g., N = 96 shown with black arrows around h/J ≈ 1.14. On
the contrary, all system sizes N ! 480 collapse on the qMFT-
predicted DCP suggesting that these finite but large system
sizes effectively simulate the thermodynamic limit. Therefore,
we conclude that the t-DMRG method of the simulated sys-
tem sizes N " 120 supports the presence of a DCP, verifying
the results of the qMFT method presented previously.

Next, we consider the strongly nonintegrable TFIC with
! = 1, whose QCP lies at hc ≈ 2.46 [25]. Figures 12(a) and
12(b) show the local order profiles for r = 3 and r = 6, re-
spectively. As the system becomes strongly interacting, the
maximum system size and the evolution times become more
limited. In this set of calculations, we study N = 42 and
N = 48 with maximum evolution times of t ≈ 20. Hence, we
apply an infrared cutoff of tl = N/3 and set an ultraviolet
(UV) cutoff t∗ = 0 to increase the temporal range of data
to average over. Both figures exhibit a crossing point similar
to that of the discussion in the previous paragraph, in the
interval of hdc/J ∈ (2.3, 2.35) < hc where for h/J < 2.3 the
dynamical order increase with increasing system size, and
for h/J > 2.35 decreases. Therefore, we conclude that (i) the
crossing point seems to be independent of the measurement
site, and (ii) the presence of a crossing point in t-DMRG data
hints at the presence of a DCP in the thermodynamic limit.
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FIG. 11. Order profiles calculated with t-DMRG for weakly nonintegrable TFIC with ! = 0.1J , (a) for different system sizes N =
72, 96, 120 at site r = 6 when a (infrared) temporal cutoff of tl = N/2 is applied. The order profile is tested against different infrared and
ultraviolet temporal cutoffs and shown to be robust (see text). (b) Finite-time scaling analysis at a system size of N = 120 for different infrared
cutoffs, shown in the legend, with a fixed ultraviolet cutoff of t∗ = 0. The upward and downward arrows highlight the h/J points where the
order grows or diminishes, respectively, with increasing (a) system size and (b) simulation time. (c) Zoom over the phase diagram based on the
qMFT result with arrows demonstrating how the phase diagram of the smallest system size N = 96 crosses through those of the larger system
sizes before the found DCP hdc ≈ 1.1437 with the qMFT analysis.

We note that more data with larger system sizes and longer
simulation times are required to test the robustness of these
results, determine a more precise location for the DCP, and
further look for a critically prethermal regime and dynamical
scaling in this strongly nonintegrable model. Nevertheless,
single-site observables close to an edge seem to be a probe
of criticality generally in short-range models, not limited to
noninteracting or weakly-interacting systems.

Finally, we apply the finite-time scaling analysis on the
strongly nonintegrable TFIC with ! = 1 shown in Figs. 13(a)
and 13(b) for r = 3 and r = 6, respectively. Although there
is a well-defined finite-time crossing point for this set of
parameters, the crossing suggests hdc/J ≈ 2.2 for r = 3 and
hdc/J ∈ (2.25, 2.3) for r = 6 all of which is less than the
result determined by the finite-size analysis. To check whether
the results depend on the maximum bond dimension, we set
χm = 200 for r = 3, repeat the calculation and observe that
the crossing point does not change. Although more data is
necessary for conclusive results, we note that the mismatch
between finite-size and finite-time analyses as well as the dis-
crepancy between different sites in finite-time analysis might
point to a change in the light cone structure, e.g., from linear
to power-law, as the transverse field increases and approaches
the equilibrium QPT in finite-size systems.

FIG. 12. Order profiles calculated with t-DMRG for strongly
nonintegrable TFIC with ! = 1 for different system sizes N =
42, 48 at sites (a) r = 3 and (b) r = 6 when an infrared temporal cut-
off of tl = N/3 and ultraviolet temporal cutoff of t∗ = 0 are applied.

V. THE QUASISTATIONARY REGIME IN LONG-RANGE
INTERACTING NONINTEGRABLE TFIC

The q.s. regime also emerges in the long-range hard-
boundary TFIC with power-law decaying interactions, as was
previously noted in Ref. [64] in the context of prethermal-
ization. The Hamiltonian for the one-dimensional long-range
TFIC reads

H = −
∑

r,r′

J (r, r′)σ z
r σ z

r′ + h
∑

r

σ x
r , (41)

where J (r, r′) = J/|r − r′|α with J = 1. In the limit where
α = 0, the model becomes integrable with all-to-all interac-
tions, e.g., LMG model; whereas in the limit of α → ∞ the
model reduces to short-range n.n. TFIC. For α ! 3, the model
belongs to the short-range Ising universality class [65,66], and
it has algebraic light cones for α > 2 that approach linear
cones as α → ∞ [52]. In this section, we provide numerical
evidence on the presence of a q.s. regime in TFIC with various
α, and determine when the q.s. regime breaks down. Further-
more, we calculate the local order profiles at α = 2.5, which
is a long-range model with algebraic light cones.

All data presented in this section is obtained from the
time-dependent DMRG method [67–71] with Krylov time
evolution [72]. We find convergence for a time-step of !t =

FIG. 13. Order profiles calculated with t-DMRG for strongly
nonintegrable TFIC with ! = 1 based on finite-time analysis at
system size N = 48 for (a) site r = 3 and (b) site r = 6. The infrared
cutoffs are shown in the legends and the ultraviolet cutoff is t∗ = 0.
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CEREN B. DAĞ et al. PHYSICAL REVIEW B 107, 094432 (2023)

FIG. 14. Single-site magnetization for r = N/2 (spin in the mid-
dle of the chain), r = 6 (spin close to the boundary) and the total
magnetization, when (a) α = 4, (b) α = 3, (c) α = 2.5, and (d) α = 2
at transverse field h = 0.5h̃c.

0.01 and a fidelity threshold between 10−8 and 10−6 for our
most stringent calculations. Power-law profiles are approxi-
mated as a sum of five exponentials fitted over the length of the
chain, as is optimal for a matrix product operator formulation
[73].

Figure 14(a) shows the edge magnetization of single-site
observables near the edge, and in the middle of the chain, as
well as the total magnetization evolving under Hamiltonian
Eq. (41) with α = 4 and h = 0.5h̃c quenched from a polar-
ized state. The unit notation h̃c will be explained shortly. We
observe that the single-site observable close to the boundary
(red) develops a q.s. regime whereas the observable in the
middle of the chain (blue) exhibits decay. This behavior, con-
sistently, is similar to what we have observed in the n.n. TFIC
model, c.f. Sec. IV. Although the decay of total magnetization
seems to be slowing down, the data is not conclusive to de-
termine its long-time behavior. We notice the oscillatory q.s.
regime for α ! 4 in Fig. 14 for the single-site observable near
the edge, which was also observed for nonintegrable n.n.n.
TFIC [25]. Although the oscillations grow as we decrease
α, one could still observe the onset of a q.s. regime in the
observable near the edge of the chain for α = 3, compared
to the observable in the middle of the chain [Fig. 14(b)].
The difference in the single-site magnetization of spins near
the edge and in the middle of the chain decreases as we
keep decreasing α. Figure 14(c), for α = 2.5, demonstrates
for the first time an onset of a q.s. regime for a spin in the
middle of the chain. However, the onset of the q.s. regime is
delayed in the middle of the chain compared to near the edge,
and this observation points to the locality of the underlying
Hamiltonian that is still preserved to an extent. In contrast,
there is no boundary effect observed at α = 2 [Fig. 14(d)],
where we do not see any qualitative difference in the time
evolution of the magnetizations. This is physically intuitive,
because the model possesses algebraic light cones for α > 2
instead of a logarithmic cone, pointing to the importance of
the locality in the formation of a q.s. regime. As discussed
previously, the origin of the q.s. regime could be traced back

FIG. 15. (a) Single-site magnetization at r = 6 for α = 2, 4,

and different system sizes N = 32, 64 at transverse field h = 0.5h̃c.
(b) Total magnetization

∑N
1 σ z

r /N , quenched from a polarized state
to h/h̃c = 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, from top to bottom.
The dashed line-style indicates curves, which cross the time axis. The
last magnetization that does not cross the time axis is h/h̃c = 1.06,
meaning that the DCP should lie in the interval of (1.06, 1.07)h̃c.

to the asymmetric motion of quasiparticles in opposite direc-
tions, and the reflection from the nearest boundary. When the
model is no longer integrable, even though quasiparticles do
not exist one could still refer to correlation speeds measured
through linear or sublinear light cones. In conclusion, the
presence of a q.s. regime does not depend on the integra-
bility, but rather depends on the locality of the underlying
Hamiltonian. In this sense, this boundary induced dynamical
regime acts as a signature of linear, nearly-linear, or sublinear
light cones.

To demonstrate that the q.s. regime is not a finite-size
effect, we show in Fig. 15(a) the single-site magnetizations of
a spin close to the boundary at r = 6 for different system sizes
and different α. For a given α, one can determine the time at
which finite-size effects kick in by observing when the data
for different system sizes N = 32, 64 no longer overlap. Note
that for α = 4, the q.s. regime develops before the finite-size
effects appear.

Finally, we set α = 2.5, which yields a long-range model
[65] with algebraic light cones [52], and study the resulting
local order profiles due to the q.s. regime. In all of our t-
DMRG calculations on long-range TFIC, we Kac-normalize
the interaction term by dividing it by

∑L
1 1/rα , and hence

approximate the QCP as h̃c = J , which in the thermodynamic
limit is a good approximation when α > 1 [74]. This is per-
formed because the QCP is actually not well-defined for a
finite-size system, and finite-size fluctuations are expected to
shift the “critical point” to smaller values. Therefore, we first
determine the DCP based on the total magnetization [26]. Fig-
ure 15(b) shows the total magnetization for various transverse
field strengths. One sees that the total magnetization crosses
the time axis within the interval hdc/h̃c ∈ (1.06, 1.07), which
pins down the DCP of the model quenched from a polarized
state [26]. The observation that hdc > h̃c points to the fact that
the QCP is initially underestimated.

Since the accessible simulation times are significantly lim-
ited, we set the infrared and ultraviolet cutoffs as tl = 6 and
t∗ = 2 [Fig. 16(a)]. Remarkably, we find that the single-site
order profiles at different sites dip at the same h/h̃c value,
suggesting a crossover in the interval of hcr/h̃c ∈ (1.15, 1.2).
We note that unlike in previous sections where we observe
|C1(t )| > |C3(t )| > |C6(t )| > ... in the ordered phase, here for
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FIG. 16. (a) Single-site order profiles calculated with t-DMRG
for the long-range TFIC, with α = 2.5 and system size N = 32, at
different sites r = 1, 3, 6 when a UV temporal cutoff of t∗ = 2 and
an infrared temporal cutoff of tl = 6 are applied. (b) Finite-time anal-
ysis curves for r = 3 are calculated with t∗ = 0 and tl = 2, 3, 4, 5, 6,
from top to bottom. Since there is no crossing point, finite-time
analysis fails.

the long-range model we do not observe such an ordering.
This is because of the presence of algebraic, instead of linear,
light cones for α = 2.5, which wash away the differences
in the single-site magnetization of nearby sites, and hence
make the system less locally connected. Strengthening this
argument, we also find that the finite-time analysis fails for
this model. Figure 16(b) shows time-averaged magnetizations
at r = 3 between a UV cutoff t∗ = 0 and various infrared
cutoffs tl = 2, 3, 4, 5, 6, from top to bottom. The curves do
not intersect at any point, unlike what we observed for n.n.n.
TFIC models.

The crossover region might be probing the actual QCP
hc, as it appears above the DCP determined with total mag-
netization at hdc/h̃c ∈ (1.06, 1.07), and this is expected in
long-range models for quenches from the ferromagnetic phase
[18,75,76]. To test this idea, we apply finite-size analysis
with N = 16 and N = 24. This analysis accentuates the short-
ness of accessible times as the system size increases: A
system size-dependent infrared cutoff tl (N ) = 6RN , where
RN = N/32, corresponds to tl = 4.5 and tl = 3 for N =
24 and N = 16, respectively, throughout the entire set of
transverse-field values. An additional challenge in the long-
range models is the oscillations with large amplitudes [77] as
seen in Fig. 14(c). This feature particularly becomes signifi-

cant as we approach the boundary. Figure 17(a) demonstrates
how the order profile at h/h̃c = 0.5 would change with dif-
ferent infrared cutoffs tl (N )/RN and system sizes. The order
profiles are also affected by the oscillations, in particular for
early infrared cutoffs, e.g., tl (N ) = 6RN . As the averaging
interval increases with increasing tl , we notice that the oscil-
lations are damped and the dependence on the cutoff becomes
less pronounced. Again due to oscillations, comparison be-
tween the order profiles of different system sizes becomes
less reliable, as can also be seen in Fig. 17(a) where the
ordering between different system sizes keeps changing as
we change tl (N )/RN . While the trend of the data suggests
that the oscillations continue to be damped and the order-
ing possibly converges as we increase the infrared cutoff,
we cannot confirm this conclusion due to limited simulation
times. Therefore, both to alleviate the effects of oscillations
and to utilize the accessible times as much as possible, we
adopt an infrared cutoff that is a function of both system size
and the transverse field tl (N, h) = RNtmax(N = 32, h) where
tmax(N = 32, h) is the longest time accessible in our t-DMRG
calculations for the largest considered system size N = 32 at
each h. While this adaptive approach helps to decrease the
effect of oscillations on the order profiles, in particular deep
in the ferromagnetic phase, it does not completely eliminate
the effect, which is possible only by increasing the simulation
times. Figures 17(b) and 17(c) show the order profiles of dif-
ferent sizes at r = 1 and r = 3, respectively. We observe that
the order profile of N = 32 tends to decrease at much smaller
h than where the crossover resides due to aforementioned
limited simulation times. It is also worth noting that finite-size
scaling for models with power-law interaction profiles faces
the additional challenge that the profile tails will look differ-
ent for different system sizes, and this becomes particularly
nontrivial near criticality. As a result of the above, whether
the observed crossover profile is actually a transition cannot
be answered conclusively.

VI. CONCLUSIONS AND OUTLOOK

We have studied the q.s. regime at sites close to the edge in
both integrable and nonintegrable TFICs, and have shown the

FIG. 17. Order profiles calculated with t-DMRG for the long-range TFIC at different system sizes N = 16, 24, 32 with α = 2.5 (a) at site
r = 1 and h/h̃c = 0.5 with respect to different infrared cutoffs parametrized as tl (N )/RN ; (b) at r = 1 with respect to h/h̃c with an infrared
cutoff of tl (N, h); (c) at r = 3 with respect to h/h̃c with an infrared cutoff of tl (N, h). All subfigures use a UV cutoff of t∗ = 0.
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necessity of the zero modes to stabilize this dynamical regime.
Based on analytical arguments and numerical evidence, we
demonstrated the presence of nonanalyticity in the dynam-
ical order profiles of integrable TFIC and near-integrable
TFIC treated with qMFT. This suggested a dynamical critical
point that coincides with the QCP in the integrable TFIC
and slightly shifts from the corresponding QCP in the near-
integrable model. Therefore, we conclude that the single-site
observables are able to extract QCP in short-range interacting
models independently of integrability, measurement location
and initial state so long as r ! N/2 and hi < hc.

We performed t-DMRG calculations to obtain the order
profiles of single-site observables at various sites in open-
boundary nonintegrable TFICs. The models that we studied
range from locally connected with next-nearest-neighbor in-
teractions to power-law decaying interactions. Our qMFT and
t-DMRG results for the location of the DCP in near-integrable
model agree, as we found h!=0.1

dc ∈ (1.1, 1.15) with t-DMRG
for system sizes N " 120. Finite-size analysis for the strongly
nonintegrable model determined the DCP to be in the interval
of h!=1

dc ∈ (2.3, 2.35), independent of the measurement sites,
and to be shifted from the QCP at hc ≈ 2.46. Whether this
shift is related to finite-size effects, or due to interactions as
argued in [20], is a question that needs further elaboration in
the future. We find that the finite-time analysis with single-site
observables matches well with the finite-size analysis in the
near-integrable model, whereas there is a mismatch between
the two analyses in the strongly nonintegrable model. We
argue that this is likely because of a change in the light cone
structure as the transverse field increases, which is yet to be
explored.

We demonstrated the presence of a q.s. regime even in
long-range power-law interacting TFIC for α = 3 and α =
2.5, where in the former one could still observe a signifi-
cant difference in the single-site magnetization of the spin
in the middle and close to an edge, pointing to nearly-linear
light cones hosted in the system. Increasing the range of
interactions to α = 2.5 decreases the differences between
sites, emphasizing the long-range nature of the model and
expectantly the finite-time analysis fails. The order profiles
at α = 2.5 for different sites dip at the same transverse field
hcr/h̃c < 1.2 suggesting a crossover, which is found to be
larger than the calculated DCP based on total magnetization
at hdc/h̃c = (1.06, 1.07). Given that the crossover dip appears
after hdc/h̃c, and since the calculations were based on an esti-
mate of QCP h̃c, it is an interesting direction to check whether
the crossover point hcr probes the actual QPT. Our data is
significantly limited to early times, especially as we approach
the transition boundary, and hence is currently inconclusive to
answer this question.

Our setup is experimentally convenient, because (i) open-
boundary chains are a more natural setup than their periodic
counterparts in most quantum simulators, and (ii) spatially
minimal probes are readily accessible in modern quan-
tum simulators [48]. Most theoretical works have naturally
focused on infinite or periodic chains to utilize the transla-
tional symmetry [20,77,78], which removes site dependency
of the local order profiles within the ordered phase. In this
sense, our paper complements the literature via explicitly
demonstrating the potential of spatially minimal measure-

ments in open-boundary chains and hence exploiting the
boundary effects in probing criticality.
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APPENDIX A: INDEPENDENCY OF THE RESULTS FROM
TEMPORAL CUTOFFS

We first test whether our results depend on the choice of
ultraviolet (UV) cutoff t∗. The results in the main text are
produced with a fixed UV cutoff of t∗ = 10, for all h. How-
ever, none of our results depend on the choice of UV cutoff:
Figures 18(a)–18(k) all show the same qualitative behavior for
single-site nonequilibrium phase diagrams for various choices
of UV cutoff. Figures 18(a)–18(c) complement the t∗ = 10
data in the main text by showing the nonequilibrium phase
diagrams of the single-site magnetization at r = 3, 9, 12. Fig-
ures 18(d)–18(g) exhibit another fixed UV cutoff of t∗ = 20,
whereas Figs. 18(h)–18(k) demonstrate the results of a para-
metric UV cutoff for all studied sites. The parametric UV
cutoff is determined as follows: We roughly estimate the onset
of the q.s. regime as the time required for the quasiparti-
cles to reflect back from the edge closest to the observation
site. Therefore, the estimate can be mathematically stated as
t∗ = 2α!x/vq, where the distance !x = r − 1 is the distance
between the observation site, r = 3, 6, 9, 12 and the closest
edge site, r′ = 1, in our case. The parameter α is a tuning
parameter, as our analytical formula is only an estimate. In
fact we find that α = 2 presents phase diagrams qualitatively
the same as those of other t∗, for all r that we studied.

The long-time asymptotic value of J1(4t )/2t is t−3/2,
which is what we observe in Fig. 5(a) not only for the edge
but for all probe sites r. Let us note that the same holds for the
near-integrable model treated with qMFT [Fig. 8(c)] as well
as the disordered phase in both models [Figs. 5(b) and 8(d)].
Therefore, it is straightforward to find how the time-averaged
magnetization, e.g., single-site dynamical order parameters,
scale with the system size at the QCP and in the disordered
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FIG. 18. The single-site nonequilibrium phase diagrams of the integrable TFIC with a UV temporal cutoff of t∗ = 10 for (a) C3(t ), (b) C9(t )
and (c) C12(t ); with a UV temporal cutoff of t∗ = 20 for (d) C3(t ), (e) C6(t ), (f) C9(t ) and (g) C12(t ); with a UV temporal cutoff of t∗ = 2α!x/vq

where !x = r − 1 with r being the single-site observable location and α = 2 is a tuning parameter for (h) C3(t ), (i) C6(t ), (j) C9(t ) and (k)
C12(t ). (l-o) The single-site nonequilibrium phase diagrams with an initial state as the ground state of an initial Hamiltonian with hi = 0.1 and
a UV temporal cutoff of t∗ = 10 for (l) C3(t ), (m) C6(t ), (n) C9(t ) and (o) C12(t ). The behavior is qualitatively the same as the results of hi = 0.
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FIG. 19. The system size scaling of time-averaged single-site magnetizations at the critical point hc with an initial state at hi = 0 and
cutoff (a) t∗ = 10, (b) t∗ = 20, (c) t∗ = 2α!x/vq and α = 2, and (d) for an initial state at hi = 0.1 and a UV temporal cutoff of t∗ = 10. A
downward trend can be seen with aN−b where b ≈ 1 in all curves. In each subfigure, the curves from up to bottom represent the single sites
r = 3, 6, 9, 12, respectively. More precisely, the fit parameter b for r = 3, 6, 9, 12 are (a) b = 0.99 ± 0.08, b = 0.93 ± 0.09, b = 0.91 ± 0.03,
b = 0.94 ± 0.07, (b) b = 0.9 ± 0.01, b = 0.89 ± 0.1, b = 0.81 ± 0.08, b = 0.93 ± 0.02, (c) b = 1.2 ± 0.03, b = 0.93 ± 0.1, b = 0.82 ± 0.1,
b = 0.91 ± 0.01, and (d) b = 1.01 ± 0.09, b = 0.94 ± 0.08, b = 0.91 ± 0.03, b = 0.92 ± 0.07 respectively.

phase,

Cr (h ! hc) = 1
(N/vc − t∗)

∫ N/vc

t∗
t−3/2dt

= −2
1

(N/vc − t∗)
t−1/2

∣∣∣∣
N/vc

t∗

= −2
1

(N/vc − t∗)

(
1√

N/vc
− 1√

t∗

)

= −2
(4hc)3/2

N3/2 − 4t∗hc
√

N
+ 2

4hc

(N − 4t∗hc)
√

t∗
.

(A1)

Note that t∗, the ultraviolet cutoff, has to be introduced in
the first line to prevent a nonphysical divergence. A series
expansion for Eq. (A1) when N → ∞ gives,

Cr (h ! hc) = 8√
t∗

(
N
hc

)−1

− 16
(

N
hc

)−3/2

+ 32
√

t∗
(

N
hc

)−2

+ O(N−5/2). (A2)

According to Eq. (A2), the dynamical order parameter at
the QCP decreases as ∝ 1/N for all probe sites r and becomes
0 in the thermodynamic limit. We numerically confirm this
prediction in Figs. 19(a)–19(c) with fits of the form N−b where
b ≈ 1. Let us note that the analytical expression is only exact

asymptotically in time, and the numerics take into account the
early-time behavior of |Cr (t )| too. Hence, it is not surprising
to see b ≈ 1 instead of b = 1 in the numerics.

APPENDIX B: INITIAL STATE INDEPENDENCE
OF THE RESULTS

In this section, we change the initial state to the ground
state of an initial Hamiltonian with hi = 0.1, and test whether
any of our results depend on the initial state. Figures 18(l)–
18(o) show the single-site nonequilibrium phase diagrams
computed with this initial state. We do not observe a change
in the qualitative behavior. The single-site magnetization at
the critical point still decreases with increasing system size in
Fig. 19(d) by exhibiting b ≈ 1.

The analytical expression for the q.s. value of the edge
magnetization in the ordered phase is,

Cqs
1 (h, hi ) = (1 − h2)(1 − 2hi )1/2

1 − 2hhi
, (B1)

for h, hi < 1. Let us rewrite it in terms of the reduced control
parameter hn = (hc − h)/hc as

Cqs
1 (hn, hi ) = (2 − hn)hn(1 − 2hi )1/2

1 + 2(hn − 1)hi
. (B2)

FIG. 20. The energy gap analysis [(a), (b)] for the near integrable model with DMRG, [(c), (d)] for the effective noninteracting Hamiltonian
derived through qMFT method. [(a), (c)] The critical points are marked hc = 1.1631 ± 0.0037 and hqmft

c = 1.1438 ± 0.0011, respectively.
[(b),(d)] The energy gap scales with system size as 1/N in both.
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FIG. 21. Different boundary conditions are compared for the in-
tegrable TFIC at h = 0.5 and system size N = 24. One can obtain
a q.s. regime with smooth boundary conditions too. OBC, PBC
and SBC stand for open, periodic and smooth boundary conditions,
respectively.

In the vicinity of the transition, hn → 0, we can expand this
expression and find

Cqs
1 (hn → 0, hi ) = a1(hi )hn + O

(
h2

n

)
, (B3)

a1(hi ) = 2 + hi + 3
4 h2

i + 5
8 h3

i + · · · . (B4)

Therefore, one can see that Cqs
1 (hn) ∝ hn in the vicinity of the

transition, hn → 0, regardless of the choice of initial state. The
initial state only changes the coefficient in front of hn, which
is nonuniversal.

APPENDIX C: ENERGY GAP ANALYSIS

Here we present the ground state energy gap analysis of
the near integrable model ! = 0.1 calculated with DMRG.
Then we discuss the single-particle energy gap analysis for
the effective Hamiltonian produced by the qMFT method.

Figure 20(a) shows how the location of the ground state
energy gap minimum scales with system size. This finite-size
scaling analysis computed with DMRG gives hc ≈ 1.1631.
Meanwhile the energy gap at the QCP scales as N−1, which is
shown in Fig. 20(b).

FIG. 22. Benchmarking qMFT analysis. All subfigures compare the results of qMFT, t-DMRG and exact diagonalization (ED) for C3(t )
(see individual legends for system sizes). The external fields are (a) h = 0.5, (b) h = 1.1 and (c) h = 1.2. In all subfigures, the qMFT
magnetization matches sufficiently well with the magnetization of the exact methods, in particular in early times close to QPT and in the
disordered phase where exact methods are constrained either by finite-size (ED algorithm) or finite bond dimension and short simulation times
(t-DMRG algorithm).

The qMFT method provides us an effective Hamiltonian
for the near-integrable model. In Fig. 20(c) we focus on
the minimum of the energy gap of this Hamiltonian. We
observe that location of the minimum scales with the sys-
tem size giving hqmft

c ≈ 1.14378. The energy gap at hqmft
c

scales with the system size as N−1. This result is consistent
with the observation that a critically prethermal regime ap-
pears as we suddenly quench to the vicinity of the DCP of
the near-integrable model in Ref. [50]. Note that the DCP of
the near-integrable model, hdc ≈ 1.1437 is almost equal to the
QCP of the effective qMFT Hamiltonian. Then the duration
of the prethermal regime is actually governed by the QCP
dynamics of the effective qMFT Hamiltonian in [50].

APPENDIX D: CHANGING THE BOUNDARY
CONDITIONS

We demonstrate that the q.s. regime emerges not only
when we introduce hard boundaries [51], but also for smooth
boundaries. A smooth boundary condition can be applied
by smoothly turning off the Hamiltonian parameters to-
wards the edges of the chain [79]. Figure 21 shows the
single-site magnetizations of the integrable TFIC with hard
boundarieas (red-diamonds), smooth boundaries (green-solid)
and periodic boundary condition (blue-dotted). As shown
before [25], the middle of a hard-boundary chain (yellow
triangles) acts like an arbitrary site in a periodic chain.
We thus conclude that the q.s. regime is robust against
altering the boundary conditions, so long as they remain
open.

APPENDIX E: BENCHMARKING THE QMFT METHOD

Figure 22 compares the results of qMFT, t-DMRG and
exact diagonalization (ED) at h = 0.5 and h = 1.1 in the or-
dered phase and h = 1.2 in the disordered phase. We observe
that the qMFT analysis can even capture the correct frequency
of the oscillations at early times and the general trend of the
magnetization successfully, although it does not totally match
with the exact methods, which is expected due to the fact that
it is an approximate method that averages out the interactions.
In Fig. 22(a), both the ED and t-DMRG magnetizations show
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FIG. 23. The time evolution of magnetizations calculated with t-DMRG for weakly interacting TFIM with !/J = 0.1 at N = 96 are
compared with respect to different maximum bond dimensions, χm = 100 and χm = 200, which is introduced as an approximation in the
t-DRMG algorithm to simulate for longer times, see Sec. IV C. The comparison is shown in subfigures (a) at h/J = 1.3 and (b) at h/J = 1.
(a) With increasing bond dimension, a downward moving envelope appears in the t-DMRG result, emphasized by the dotted-gray arrow,
agreeing with the qMFT results in the disordered phase. The solid-black arrow points to the effects of finite bond dimension. (b) The qMFT
result at N = 1440 is compared with the t-DMRG results. We notice the convergence of the t-DMRG result with greater χm (red-solid) to the
qMFT result (green-dotted) for a small time interval that was accessible, before showing the effects of finite bond dimension.

finite-size effects in the form of quantum revivals (solid-blue
and red-dashed-dotted). The finite-size effects of these meth-
ods can also be clearly seen in Figs. 22(b) and 22(c). As we
approach the QCP and in the disordered phase, the match
between the exact methods and the qMFT does not survive
past t = 10. This is either because of the finite-size effects,
as apparent in ED magnetization, or the finite maximum bond
dimensions set in the t-DMRG algorithm, see Sec. IV C for
more details. In order to demonstrate the effects of finite bond
dimension, we compare the magnetizations calculated with
t-DMRG for different maximum bond dimensions. Figure 23
shows these magnetization at h/J = 1.3 in subfigure (a) and at
h = 1 in subfigure (b). We observe that the magnetization with
bigger maximum bond dimension, χm = 200 departs from the
magnetization with χm = 100 at around t ≈ 10, exhibiting a
downward envelope and hence agreeing with the qMFT mag-
netizations in the disordered phase, see Fig. 23(a). This feature
is shown with a grey-dotted arrow. As time increases, the mag-
netization with χm = 200 starts to exhibit features similar to
those of the magnetization with χm = 100, e.g., recurrences,
as pointed out with a black-solid arrow. We note that these
are effects of finite maximum bond dimension set in our t-
DMRG algorithm. One could predict that as the maximum
bond dimension χm increases, such effects will occur later in
time, and instead the magnetization will follow closely to that

of qMFT magnetization with an oscillatory downward trend.
However, there is a trade-off between the maximum bond
dimension and the maximum accessible simulation time, and
simulating longer times while achieving a satisfactory preci-
sion for the magnetization is simply out of our computational
reach. Figure 23(b) shows the same comparison between dif-
ferent χm alongside with the qMFT result at h = 1, which is
a point in the ordered phase. The t-DMRG result with χm =
100 shows an upward trend as time increases, in contrast to
the qMFT result, which reaches a plateau, as expected from
our theory based on noninteracting fermions. We also plot
the magnetization with χm = 200 and observe that the mag-
netization of greater maximum bond dimension approaches
that of the qMFT results, departing from the t-DMRG result
with χm = 100 for a small interval of time. Additionally we
notice that the magnetization with χm = 200 (red-solid) also
demonstrates effects of finite maximum bond dimension in
later times with a recurrence similar to what is observed in
the magnetization with smaller bond dimension χm = 100
(blue-star). Therefore, we argue that as χm increases, the
t-DMRG result should converge to the qMFT result. This
observation reveals an interesting feature where the ap-
proximate qMFT result can be obtained in full quan-
tum dynamics only with sufficiently large maximum bond
dimensions.
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