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Floquet topological systems with flat bands: Edge modes, Berry curvature,
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Results are presented for Floquet systems in two spatial dimensions where the Floquet driving breaks an
effective time-reversal symmetry. The driving protocol also induces flat bands that correspond to anomalous
Floquet phases where the Chern number is zero and yet chiral edge modes exist. Analytic expressions for the
edge modes, Berry curvature, and orbital magnetization are derived for the flat bands. Results are also presented
for the static Haldane model for parameters when the bands are flat. Floquet driving of the same model is
shown to give rise to Chern insulators as well as anomalous Floquet phases. The orbital magnetization for these
different topological phases are presented and are found to be enhanced at half filling by the broken particle-hole
symmetry of the Haldane model.
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I. INTRODUCTION

Floquet driving can give rise to new topological phases that
have no analog in static systems [1–28]. The growing activity
in this field is in no small part due to the experimental feasibil-
ity of Floquet band engineering [29–33]. A topic that has been
more elusive is detecting these new topological phases, where
the experimental tools usually employed are transport [34]
and direct exploration of the spectra through angle resolved
photoemission spectroscopy (ARPES) [35].

Recent studies have shown that Floquet driving that breaks
an effective time-reversal symmetry (TRS) can induce a large
orbital magnetization, which is a linear response of the Flo-
quet system to a small perturbing magnetic field [36]. In the
absence of Floquet driving, and in thermal equilibrium, orbital
magnetization is well studied theoretically [37–39], and there
have also been some experiments that directly or indirectly
measure the orbital magnetization [40,41]. Two dimensional
(2D) Floquet systems that break TRS can also show anoma-
lous phases where the Chern number of the bands are zero,
and yet chiral edge modes exist [3]. The latter gives rise to
a quantized orbital magnetization when the bulk states are
localized by spatial disorder [42–44]. Even in the absence of
disorder, the orbital magnetization of Floquet systems with
broken TRS can be significant [36]. This observation opens
up the possibility of performing transport and ARPES in the
presence of a perturbing magnetic field, the latter making the
measurements more sensitive to any Floquet induced topology
due to the induced orbital magnetization.

This paper builds on recent results where a general formula
for the orbital magnetization for Floquet systems in the ab-
sence of spatial disorder, was derived [36]. In this paper, we
apply this formula to the cases where the bands are flat, and
also to Floquet systems with broken particle-hole symmetry

where such a broken symmetry helps to enhance the orbital
magnetization at half filling.

The paper is organized as follows. In Sec. II the models
that will be studied are introduced. In Sec. III, analytic results
for the edge modes, Berry curvature, and the orbital magne-
tization are presented in the limit of flat bands. In Sec. IV,
results are presented for the orbital magnetization for the static
Haldane model [45] for the case where the bands are flat [46].
Following this, the Floquet-driven Haldane model is studied,
and results for the orbital magnetization for Chern insulator
phases and for anomalous Floquet phases are given. Finally
we present our conclusions in Sec. V. Intermediate steps in
the derivation of analytic expressions are provided in three
appendices.

II. MODELS

We study two classic models, one of graphene [49] and
the other of the Haldane model [45]. We study these two
models both under periodic boundary conditions (i.e., on a
torus) and on a cylinder. The cylindrical geometry has the
advantage that it shows edge modes, and is particularly helpful
for identifying anomalous Floquet phases where the Chern
number does not fully characterize the number of chiral edge
modes. For example, one may have bands with zero Chern
number, and yet chiral edge modes can exist [3].

We employ the Floquet driving protocol of Ref. [1] where,
for the case of graphene, within a drive cycle, the three
nearest-neighbor (NN) hopping parameters are modulated
cyclically. When we Floquet drive the Haldane model, the NN
hopping parameters are similarly modulated, but we keep the
next-nearest-neighbor (NNN) hoppings and the flux constant
in time.
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FIG. 1. (a) Schematic of static graphene with a zigzag boundary.
The dotted and solid black lines indicate different coupling strengths
on the cylinder, resulting in an effective Su-Schrieffer-Heeger model
[47,48]. (b) Schematic of Floquet-driven graphene with a zigzag
boundary. The first, second, and third steps of the Floquet protocol
are represented by green solid, purple dashed, and orange dotted lines
respectively.

On a cylindrical geometry, we take the x direction to be
periodic and the y direction to be open, with a total number of
N ∈ even sites. The convention for the distances between NN
sites is chosen to be

δ1 = a(0,−1), δ2 = a
2

(
√

3, 1), δ3 = a
2

(−
√

3, 1), (1)

where a is the lattice spacing.

FIG. 2. (a) Static Haldane model on a cylinder with a zigzag
boundary. The black and purple dotted lines connect odd (green) and
even (orange) sites, respectively, whose coupling strengths differ on
the boundary due to broken TRS [second line of Eq. (5)]. Horizontal
lines denote NNN couplings, and on the boundary these again con-
tribute differently for even and odd sites [third line of Eq. (5)]. The
TRS breaking phase φ is either positive or negative depending on
the direction of the arrows. (b) Floquet-driven Haldane model on a
cylinder where the first, second, and third steps of the protocol are
represented by green solid, purple dashed, and orange dotted lines
respectively. The NNN couplings are pictured as gray and indicate
that they are not driven but remain fixed at a nonzero value.

At each momentum point k and for a zigzag boundary (see
Fig. 1), the Hamiltonian is

H (t ) = −
∑

j,k

[J1(t )(c†
2 j,kc2 j+1,k + H.c.) + {c†

2 j,kc2 j−1,k (J2(t )eika
√

3/2 + J3(t )e−ika
√

3/2) + H.c.}]. (2)

The couplings J1,2,3(t ) are periodically modulated according to the following protocol [1]:

(1) J1 = λJ; J2 = J3 = J for nT < t ! nT + T/3, (3a)

(2) J2 = λJ; J1 = J3 = J for nT + T/3 < t ! nT + 2T/3, (3b)

(3) J3 = λJ; J1 = J2 = J for nT + 2T/3 < t ! nT + T, (3c)

with T being the period. Note that λ = 1 corresponds to the static case. In what follows, we will express all energies in units of
T −1. Denoting the quasienergies by ε, we will choose the Floquet Brillouin zone (FBZ) to be between ε ∈ [−π ,π ]. The driving
scheme outlined above goes by the name of quantum walks [50] and is an alternative to shining light on graphene [34,35] or
periodically modulating an optical lattice [51,52]. In fact, it has recently been shown that the above driving protocol can be
implemented in Rydberg gases [53].

For the protocol of Eqs. (3), the Floquet unitary is

U = U3U2U1, (4)

where Un = e−iHnT/3 and

Hn = H (mT + (n − 1)T/3 < t < mT + nT/3),

with n = 1, 2, 3 and m is an integer.
The second model we study is the Haldane model with the NN hoppings modulated according to Eqs. (3). On a cylindrical

geometry (see Fig. 2), the model is

H (t ) =
∑

j,k

[J1(t )(c†
2 j,kc2 j+1,k + H.c.) + {c†

2 j,kc2 j−1,k (J2(t )eika
√

3/2 + J3(t )e−ika
√

3/2) + H.c.},

+ t2{(e−ika
√

3/2e−iφ + eika
√

3/2eiφ )c†
2 j−1,kc2 j+1,k + H.c.} + t2{(e−ika

√
3/2eiφ + eika

√
3/2e−iφ )c†

2 j,kc2 j+2,k + H.c.}

+ t2{(e−ika
√

3eiφ + eika
√

3e−iφ )c†
2 j−1,kc2 j−1,k + (e−ika

√
3e−iφ + eika

√
3eiφ )c†

2 j,kc2 j,k}]. (5)
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The first line represents the usual NN hopping terms also
encountered in graphene. The second and third lines represent
the NNN hopping with an amplitude t2 and a TRS breaking
flux φ.

We are interested in studying the orbital magnetization for
these models. In general, when TRS is broken, a perturbing
magnetic field can induce an orbital magnetization. This linear
response behavior has been extensively studied for systems in
thermal equilibrium [37–39], where the orbital magnetization
M is simply proportional to the rate at which the free-energy
F changes when a perturbing magnetic field B is applied,
i.e., F = F (B = 0) + M · B. In the Floquet context, it was
shown that the orbital magnetization of a Floquet eigenstate,
averaged over one drive cycle, is equal to the rate of change
of the quasienergy due to the applied magnetic field [43].
Thus the total orbital magnetization averaged over one drive
cycle is related to the O(B) shift of the quasienergy of each
Floquet eigenstate, but weighted with the occupation of the
Floquet eigenstate. At O(B), the occupation of the Floquet
eigenstates does not change, as at O(B) only virtual processes
can occur, and any change in the occupation requires real
inelastic process. With this as the starting point, and under
the assumption that the occupation of the Floquet eigenstates
is given by the Fermi-Dirac distribution function, the orbital
magnetization averaged over one drive cycle is [36]:

M = − e
2h̄

Im
[ ∑

nk

fnk

× 〈∂kφnk(t )|(εnk + HF − 2µ) × |∂kφnk(t )〉
− f ′

nk(εnk − µ)

× 〈∂kφnk(t )|(εnk − HF ) × |∂kφnk(t )〉
]
. (6)

Above, fnk represents the Fermi-Dirac distribution at a tem-
perature β−1 and at a chemical potential µ. f ′

n,k denotes
derivative of the Fermi function with respect to the energy.
The combination f ′(x)x ensures that the second term only
contributes at nonzero temperatures. εn,k is the quasienergy
labeled by the band n and the quasimomentum k. |φnk(t )〉 is
the corresponding Floquet quasimode, while HF = H (t ) − i∂t
or, equivalently, HF T = i ln U is the Floquet Hamiltonian. In
addition, the notation O denotes time average over one drive
cycle, i.e., O =

∫ t+T
t dt ′O(t ′)/T . In the absence of a drive, the

above expression reduces to the orbital magnetization of static
systems, excluding corrections to the orbital magnetization
coming from changes to the entropy [37–39].

The above form of the orbital magnetization is also natural
if one notes that the orbital magnetization is proportional to
the average of r × v = r × i[H, r] in each eigenstate, with
r being the position operator and v = ṙ being the velocity
operator. Noting that r acts as ∂k on momentum eigenstates,
the above expression for the orbital magnetization with its
dependence on the Berry curvature, the quasienergy, and the
Floquet Hamiltonian, naturally emerges [37,38].

Of course, it is not guaranteed that the Floquet eigenstates
will be occupied according to the Fermi-Dirac distribution
function. In fact, when the system is coupled to an ideal
reservoir in thermal equilibrium, it is only in the limit of

high-frequency driving that the Floquet eigenstates acquire
a thermal equilibrium occupation. For general driving proto-
cols, the occupations can be quite complicated by depending
upon the details of the reservoir and the system-reservoir
coupling [54–61]. Another natural choice of the occupation
probability is a quench occupation probability which is simply
given by the mod square of the overlap of the Floquet eigen-
states with the eigenstates before the drive was switched on,
and weighted by the occupation of the undriven states. Such
a quench distribution was already considered in the study of
the orbital magnetization in Ref. [36], where it was shown
that a quench occupation can be more sensitive to van Hove
singularities and can even take larger values than for a thermal
occupation of the bands. In addition, if the Floquet eigenstates
are too different from the eigenstates of the undriven system,
the effective temperature can be very high, and that can in
turn smooth out many features. Hence, for the purpose of
highlighting the key physics and still keeping the discussion
simple, we assume that the occupation probabilities are given
by a Fermi-Dirac distribution function.

For a two-band model, with the Floquet bands labeled by
n = u, d , the above formula simplifies to

M = − e
2h̄

Im
∑

k

[
( fdk − fuk)(εdk + εuk − 2µ)Fxy(k, t )

− (εdk − εuk)Fxy(k, t )
∑

n=d,u

f ′
nk(εnk − µ)

]
. (7)

Above, Fxy(k, t ) is the Berry curvature averaged over one drive
cycle. Since in this paper we will be working with a Floquet
unitary U that generates stroboscopic time evolution rather
than a time-dependent Hamiltonian, and therefore we will not
have information on the micromotion within a drive cycle, we
will replace Fxy(k, t ) in the above equation by Fxy(k), where
Fxy is the curvature obtained from the eigenmodes of U .

It is interesting to note that due to the term εdk + εuk in
Eq. (7), when the bands break particle-hole symmetry (i.e.,
εdk + εuk (= 0), the orbital magnetization is enhanced relative
to the case of particle-hole symmetric systems. This will be
apparent when we study the Haldane model for generic values
of the flux φ.

Before we present our results, note that while the orbital
magnetization for the disorder-free system depends on the
Berry curvature, the values taken by it will be nonuniversal
as the integral involves the product of the Berry curvature
and the quasienergy. When states are localized due to spatial
disorder, Ref. [43] showed that the orbital magnetization is
quantized and equal to the 3D winding number introduced in
Ref. [3]. For our case, the bulk states are conducting, which
causes the orbital magnetization to acquire both topological
and nontopological contributions that are difficult to separate.

III. ANALYTIC EXPRESSIONS IN THE FLAT-BAND LIMIT

In this section, we will obtain analytic expressions for flat
bands. Perfectly flat bands are obtained on taking the follow-
ing limits:

JT → 0; λ → ∞; λJT/3 = π/2, (8)
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FIG. 3. (a) Band structure of driven graphene with zigzag boundaries for small detuning parameter JT/3 = 0.01 × π/2 from the flat-band
limit while keeping λJT/3 = π/2 fixed. The bands are not perfectly flat because JT (= 0. (b). Berry curvature for the model on a torus for the
same parameters. The integral of the Berry curvature over the BZ vanishes, i.e., C = 0. (c). Orbital magnetization per unit area on the torus,
in units of −e/h̄T , for the same parameters with a temperature β−1 = 0.05 × JT/3 (blue circles), and a temperature β−1 = 0.05 × λJT/3
(yellow diamonds). Vertical red lines denote the band edges.

with the unitaries taking the simple form

U1 = eiπ/2(c†
2 j,kc2 j+1,k+ H.c.), (9a)

U2 = eiπ/2(c†
2 j,kc2 j−1,keika

√
3/2+ H.c.), (9b)

U3 = eiπ/2(c†
2 j,kc2 j−1,ke−ika

√
3/2+ H.c.). (9c)

In this limit, the effect of periodic driving can be visualized
in terms of the tunneling of the fermions between NN sites
at each application of Ui. Depending on the order of the uni-
taries, e.g., either U3U2U1 or U1U2U3, one can set the direction

of the chirality. We are interested in the stroboscopic time
evolution corresponding to

[U ]†c j,k[U ] = [U3U2U1]†c j,k[U3U2U1] =
∑

l

Ũ j,l cl,k .

The matrix Ũ is a unitary matrix. The above linear relation
between fermion operators after a stroboscopic time step, and
before, is due to the free fermion nature of the problem. For
the unitaries corresponding to Eq. (9), Ũ takes the following
form for an eight-site system (see Appendix A for details):

Ũ =





−eika
√

3 0 0 0 0 0 0 0

0 0 −ie−ika
√

3 0 0 0 0 0

0 −ieika
√

3 0 0 0 0 0 0

0 0 0 0 −ie−ika
√

3 0 0 0

0 0 0 −ieika
√

3 0 0 0 0

0 0 0 0 0 0 −ie−ika
√

3 0

0 0 0 0 0 −ieika
√

3 0 0

0 0 0 0 0 0 0 −e−ika
√

3





, (10)

where the basis explicitly is (c1,k, c2,k, . . . , c8,k ). The
quasienergies are obtained from i ln Ũ . (For an analytic ex-
pression for U itself in terms of the number operators, see
Appendix C). Because Ũ is block diagonal, one can easily
generalize it to the thermodynamic limit. In other words, as
the number of sites is increased, and stays even, the second
and third rows keep repeating, whereas the first and last rows
incorporate the edge modes.

The first and last rows of Ũ clearly show that there
are chiral edge modes with a dispersion ka

√
3 on one end

of the cylinder and −ka
√

3 on the other end. Moreover,
close to k = 0, these edge modes cross the Floquet zone
boundaries ε = ±π , while at the edges of the momentum
Brillouin zone, ka = ±π/

√
3, the edge modes cross the cen-

ter of the FBZ, ε = 0. Thus we recover the edge modes
of an anomalous phase where edge modes of the same

chirality exist on either sides of the bulk bands. There are
also bulk states with all the bulk states having the same two
quasienergies ε = ±π/2. Thus, the bulk bands are perfectly
flat and highly degenerate. Although we work with zigzag
boundaries to derive the flat-band limit, armchair bound-
aries can also lead to flat bulk bands and chiral edge modes
[1].

A plot of the spectrum is shown in Fig. 3(a). The parame-
ters are slightly detuned from the perfectly flat band limit. The
results agree with the analytic expressions. The chiral edge
modes are clearly visible and so are the two bands, whose
centers are located at ε = ±π/2.

We now turn to the discussion of the Berry curvature and
the orbital magnetization of the flat bands. For this, we now
impose periodic boundary conditions, i.e., consider a torus
geometry. In the limit corresponding to Eq. (8), the Floquet
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unitary on a torus takes a simple form

UF =
∏

n

e−iHnT/3 = −i
∏

n

[cos(k · δn)σx − sin(k · δn)σy]

=
(

0 −ieik·δ̄

−ie−ik·δ̄ 0

)
. (11)

Above, δ1 − δ2 + δ3 = (−
√

3,−1) ≡ δ̄. Equation (11) im-
plies that U 2

F = −I . Hence two periods of driving guarantees
localization in the bulk. In other words, a fermion that started
tunneling in the bulk will always stay in the bulk, leading to
localized bulk states. However, this localization is absent for
the eigenstates of UF .

On diagonalizing UF , the quasienergies are ε = ±π/2, as
expected, while the quasimodes are

|ψ±〉 = 1√
2

(
eik·δ̄

±1

)
. (12)

It is straightforward to see that the Berry curvature is zero
because we have a spinor that lies completely in the x − y
plane. Only when we are slightly detuned from the flat band
limit, the curvature becomes nonzero, but small, as seen in
Fig. 3(b). From Eq. (7), zero Berry curvature implies that the
orbital magnetization is also zero.

To obtain a nonzero result for the Berry curvature, we will
now perturb around the limit in Eq. (8). There are two ways
to perturb around the flat-band limit. One is to take JT to
be nonzero but small JT , 1 while keeping λJT/3 = π/2
fixed. A second way involves keeping JT = 0, but tuning the
parameters as follows:

JT → 0; λ → ∞; λJT/3 = π/2 + ξ ; ξ , 1. (13)

We show the results of the former approach numerically in
Fig. 3, while analytically treating the perturbation in Eq. (13).
Hence, in what follows we will perform a systematic expan-
sion in powers of ξ . Both perturbation methods result in the
same qualitative structure for the orbital magnetization.

Denoting the two bands as n = ±, we find (Appendix B)

εnk = ±π

2
± ξε1(k) ± O(ξ 2), (14)

where

ε1(k) = cos(
√

3kx ) + 2 cos
(

3ky

2

)
cos

(√
3kx

2

)
. (15)

In addition, we find that the Berry curvature is (see Ap-
pendix B for details)

Fxy(k) = −
√

3
2

ξ

[
cos(

√
3kx ) + 2 cos

(√
3kx

2
− 3ky

2

)
+ cos

(√
3kx

2
+ 3ky

2

)]
+ O(ξ 3). (16)

On integrating the Berry curvature over the momentum Brillouin zone, we indeed obtain C = 0. Despite the Chern number
vanishing, a nonzero Berry curvature will be important for obtaining a nonzero orbital magnetization. We discuss this further
below.

For computing the orbital magnetization, we need the difference in occupations of the two bands. We find this to be (see
Appendix B)

fdk − fuk = sinh (βπ/2)
cosh (βπ/2) + cosh (βµ)

+ ξ
[1 + cosh (βπ/2) cosh (βµ)]

[cosh (βπ/2) + cosh (βµ)]2 βε1(k) + O(ξ 2). (17)

We also note that εdk + εuk = 0 based on assumptions of Eq. (13).
We also need the following expression to compute the part of the orbital magnetization that contributes only at nonzero

temperature (Appendix B):

−
∑

n=d,u

f ′
nkβ(εnk − µ) = 2e2γ +

(
e−2βµγ −

(1 + e2γ − )2 − γ +

(1 + e2γ + )2

)

+ 1
8
βε1(k)ξ [(2 − 4γ − tanh γ −)sech2γ − − (2 − 4γ + tanh γ +)sech2γ +] + O

(
ξ 2), (18)

where γ ± = β(π ± 2µ)/4 is a dimensionless quantity. Thus, the orbital magnetization per unit area is found to be

M/A = eµ
h̄

ξ
[1 + cosh (βπ/2) cosh (βµ)]

[cosh (βπ/2) + cosh (βµ)]2

∫
dk

(2π )2
Fxy(k) βε1(k) − e

16h̄
ξ [{4(µ − π ) + 4πγ − tanh γ −}sech2γ −

+ {4(µ + π ) − 4πγ + tanh γ +}sech2γ +]
∫

dk
(2π )2

Fxy(k) βε1(k). (19)

Substituting for Fxy(k) from Eq. (16) and ε1(k) from Eq. (15), we obtain

M/A = ξ 2 2
3

e
h̄

[
µβ

[1 + cosh (βπ/2) cosh (βµ)]

[cosh (βπ/2) + cosh (βµ)]2 − β

16
{4(µ − π ) + 4πγ − tanh γ −}sech2γ −

− β

16
{4(µ + π ) − 4πγ + tanh γ +}sech2γ +

]
+ O(ξ 3). (20)
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FIG. 4. (a) M/A in units of −e/h̄T versus β the inverse temperature for µ = π/2, JT/3 = 10−4 × (π/2 + ξ ) and λJT/3 = π/2 + ξ .
Here we plot M/A for different ξ = 0.16, 0.016, 0.0016 (diamonds, filled squares and circles, respectively). Solid-red line is ∝ β3. (b) M/A
in units of −e/h̄T versus the detuning ξ , at a low temperature of β ≈ 1/1.6 × 106 and µ = π/2. We choose λJT/3 = π/2 + ξ and JT/3 =
(π/2 + ξ ) × [0, 10−2, 10−4] corresponding, respectively, to filled squares, diamonds, and circles. As β → ∞ and JT/3 → 0, M/A ∝ ξ for all
ξ . On detuning with small but nonzero JT/3 , 1, the linear trend saturates as ξ → 0.

Figure 3(c) shows the orbital magnetization for driven
graphene slightly detuned from the flat-band limit where a
nonzero Berry curvature and hence a nonzero orbital magneti-
zation is induced. The orbital magnetization peaks at the band
centers µ = ±π/2 and vanishes elsewhere, which is captured
by our analytical expression Eq. (20). When the temperature
increases, the width of the peaks broaden.

We now discuss the limit where the chemical potential lies
in one of the bands so µ = π/2, and the temperature is high,
β → 0. In this limit, we obtain

M/A = ξ 2 e
h̄

π3β3

12
+ O(ξ 3). (21)

Figure 4(a) demonstrates the orbital magnetization calcu-
lated numerically from Eq. (7) and plotted with respect to
β. Different detunings ξ are chosen with JT/3 = 10−4 ×
(π/2 + ξ ) and λJT/3 = π/2 + ξ . In addition, the chemical
potential is chosen to lie in the band, µ = π/2. Consistent
with the high-temperature limit of our analytical expression,
we observe M/A ∝ β3 for β → 0. For low temperatures β →
∞, the orbital magnetization becomes independent of β. In
this regime of low temperatures, we also explore how the
orbital magnetization depends on the detuning ξ , finding it
to be linear in ξ , Fig. 4(b), in contrast to quadratic scaling
in ξ in the high-temperature limit, Eq. (21). Figure 4(b) also
gives the scaling in ξ in the flat-band limit JT → 0, λ → ∞,
and for small deviation from it realized by taking JT , 1 but
nonzero. In the flat-band limit, the linear scaling persists as
ξ → 0, however, it eventually saturates to a nonzero value for
JT , 1.

It is interesting to compare our analytic expression in
Eq. (20) to that obtained in Ref. [62] for a completely lo-
calized and disorder-free system. They found (setting e =
h̄ = 1) the orbital magnetization per unit area to be M/A =
T −1/(eα + 1), where α plays the role of a chemical potential
α ≡ βµ. We note that Ref. [62] assumes a Floquet protocol
that gives UF = I on a square lattice in the absence of a back-
ground gauge field. When the vector potential is introduced
with minimal coupling, the Floquet unitary becomes diago-

nally distributed with phases determined by the flux picked
up by the fermions. Hence, the resulting orbital magnetization
is built on the localized bulk states and the background gauge
field. In contrast, in our calculation, the Floquet unitary result-
ing after one period of driving does not lead to localized bulk
bands, and hence it is not diagonally distributed, see Eqs. (10)
and (11) (and also Appendix C for the Floquet unitary in Fock
space). In this sense, Eq. (20) contains both topological and
nontopological contributions.

IV. ORBITAL MAGNETIZATION OF THE HALDANE
MODEL: STATIC AND FLOQUET

We now turn to the Haldane model Eq. (5). We first dis-
cuss the static case which corresponds to λ = 1 in Eqs. (3).
It was shown [46] that for parameters where the flux φ =
arccos(3

√
3/43) and ratio of the NNN to NN hopping is

t2 = J/(12
√

3/43), the model in fact has a flat band. The
Haldane model also breaks particle-hole symmetry for general
flux. In particular, for the chosen parameters only one of the
bands is flat. We first study the orbital magnetization of the
static model.

Figure 5(a) shows the spectrum of the static model on a
cylinder for the above-mentioned parameters. The flatness of
the lower band is apparent. Moreover, C = 1, and this gives
rise to a pair of chiral edge modes, one on each end of the
cylinder. The Berry curvature of one of the bands is shown in
Fig. 5(b). Despite the dispersion of the two bands being very
different, the Berry curvature of one band is exactly negative
to the Berry curvature of the other band. Figure 5(c) shows
the orbital magnetization. The temperature chosen (β−1 =
0.05JT/3) is small as compared to the hopping strength, thus
when µ goes out of the band edges, the magnetization rapidly
falls to zero. As the chemical potential traverses a band, the
orbital magnetization peaks, with the sign of the orbital mag-
netization being opposite in the two bands due to the opposite
signs of the Berry curvature. Moreover, as the chemical po-
tential traverses the gap between bands it changes linearly
as follows: M/A = −(e/h̄)Cµ/2π . The broken particle-hole
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FIG. 5. Results for the static Haldane model with t2 = J/(12
√

3/43) and φ = arccos(3
√

3/43). (a) Spectrum on the cylinder with edge
modes. (b) Berry curvature for the torus geometry. (c) Orbital magnetization per unit area on the torus, in units of −e/h̄T for temperature
β−1 = 0.05 × JT/3. Vertical red lines denote the band edges.

symmetry is apparent in the nonzero value of the orbital
magnetization when µ = 0, i.e., at half filling, and by the fact
that the orbital magnetization is not perfectly antisymmetric
around µ = 0.

We now Floquet drive the Haldane model. The protocol
used is the same as that for graphene, Eqs. (3), and with
all other parameters held fixed in time. We choose φ =
arccos(3

√
3/43) and t2 = J/(12

√
3/43), the same as in the

static Haldane model. In addition, we set JT = π/8 while we
vary the anisotropy parameter λ.

Figure 6 shows results for three different values of λ. In
particular, λ = 5 [Figs. 6(a) and 6(d)] gives a regular Chern
insulator with C = 1, and a corresponding pair of chiral edge

modes. λ = 7 [Figs. 6(b) and 6(e)] gives an anomalous Flo-
quet phase with C = 0 and two pairs of chiral edge modes.
λ = 15 again gives a regular Chern insulator with C = 1 and a
pair of chiral edge modes, but with these edge modes travers-
ing the Floquet zone boundary. The Floquet zone center for
this case hosts edge modes, but they are not topological edge
modes as they do not start from one bulk band and terminate
on another. Therefore, the edge modes at the zone center may
be removed without a gap closing.

We note that the Floquet spectrum folds in Figs. 6(a) and
6(b) due to the broken particle-hole symmetry of the Haldane
model. Accordingly, we observe that the edge modes do not
appear exactly at ε = 0 and ε = ±π . In such cases one has

FIG. 6. (a)–(c) Spectra on a cylinder for N = 100. (d)–(f) Orbital magnetization per unit area in units of −e/h̄T for the model on the torus
for temperature β−1 = 0.05 × JT/3. All figures are for JT = π/8, t2 = J/(12

√
3/43) and φ = arccos(3

√
3/43) but different λ. (a), (d) λ = 5

with C = 1 where the edge modes are inherited from the static model. (b), (e) λ = 7 with C = 0. This is an anomalous phase that shows two
pairs of chiral edge modes. (c), (f) λ = 15 with C = 1. Note the shifts in the quasienergy in (d), (e) by −0.5 and −0.44, respectively. This is
needed for the proper calculation of the Berry curvature. See text for the details.
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to unfold the band to perform the Berry curvature and orbital
magnetization calculations. We unfold by simply adding an
overall energy shift to the Hamiltonian and hence shifting
the Floquet spectrum. Due to the periodicity of the Floquet
spectrum, the resulting bands still lie between [−π ,π], see
red vertical lines in Figs. 6(d)–6(e). Thus, for low enough tem-
peratures, we observe vanishing orbital magnetization outside
the band-edges, and therefore at µ = ±π , Figs. 6(d)–6(e).

Due to the broken particle-hole symmetry of the Haldane
model, the orbital magnetization per unit area for these three
cases is nonzero at half filling. In contrast, particle-hole sym-
metric systems such as Floquet driven graphene have zero
orbital magnetization at half-filling. In addition, the orbital
magnetization of the Floquet-driven Haldane model shows
qualitatively the same behavior as that of the static Haldane
model (Fig. 5) in that it vanishes outside the band edges,
its variation with µ between the two bands is proportional
to C, and it changes signs between the two bands. Although
the anomalous phase with two pairs of edge modes in Fig.
6(e) exhibits an orbital magnetization which is significantly
larger in magnitude than the Chern insulator phase in Fig. 6(d)
with only one pair of edge modes, let us emphasize that the
bulk modes here are delocalized, and contribute to the orbital
magnetization significantly. Therefore, it is not really possible
to differentiate the effect of topological edge modes from bulk
modes on the orbital magnetization.

V. CONCLUSIONS

We presented results for a Floquet system in two spatial
dimensions, where the Floquet drive breaks an effective TRS.
We explored regular Chern insulator phases as well as anoma-
lous Floquet phases where the Chern number cannot fully
characterize the edge modes of the system. In particular, we
explored anomalous phases where the Chern number is zero
and yet chiral edge modes exist in the system.

We identified certain parameters for which the Floquet
bands of an anomalous Floquet phase with C = 0 are flat.
We then derived expressions for the edge and bulk modes
[Eq. (10)], the Berry curvature [Eq. (16)], and the orbital
magnetization [Eq. (20)] to leading nontrivial order in the
flatness of the bands [the latter quantified by ξ , cf. Eq. (13)].
Since the Chern number is zero, the integral of the Berry
curvature in Eq. (16) over the momentum Brillouin zone
vanishes. Nevertheless, the nonzero Berry curvature makes
the orbital magnetization nonzero. We showed that the orbital
magnetization is peaked when the chemical potential lies in
the band. Furthermore, we explored the high-temperature and
low-temperature properties of the orbital magnetization (cf.,
Fig. 4).

We also presented results for the orbital magnetization
away from the flat-band limit. In this context, we explored the
Floquet-driven Haldane model, where we showed that the bro-
ken particle-hole symmetry of the Haldane model enhances
the orbital magnetization at half filling. In addition, this orbital
magnetization was large even in the anomalous Floquet phase
with C = 0.

While Floquet driving is an active area of study, linear
response properties of these systems that go beyond Hall
conductivity need to be further explored. In this paper, we

explored the orbital magnetization which is a linear response
to a weak perturbing magnetic field. Other forms of linear re-
sponses, such as response of the system to weak strains, could
help further uncover measurable consequences of Floquet-
induced topology. Studying the effect of interactions when the
Floquet bands are flat is also a natural direction of study.
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APPENDIX A: DERIVATION OF EQ. (10)

For the first site, we have

U †
3 c1,kU3 = ic2,keika

√
3/2, (A1)

U †
2 c2,kU2 = ic1,keika

√
3/2, (A2)

U †
1 c1,kU1 = c1,k . (A3)

Thus,

U †c1,kU = −c1,keika
√

3. (A4)

Repeating for the next site,

U †
3 c2,kU3 = ic1,ke−ika

√
3/2, (A5)

U †
2 c1,kU2 = ic2,ke−ika

√
3/2, (A6)

U †
1 c2,kU1 = ic3,k . (A7)

Thus,

U †c2,kU = −ic3,ke−ika
√

3. (A8)

Repeating for the third site,

U †
3 c3,kU3 = ic4,keika

√
3/2, (A9)

U †
2 c4,kU2 = ic3,keika

√
3/2, (A10)

U †
1 c3,kU1 = ic2,k . (A11)

Thus,

U †c3,kU = −ic2,keika
√

3. (A12)

Therefore, the matrix Ũ for an eight-site system has the form
of Eq. (10).

APPENDIX B: DERIVATION OF EQ. (20)

We consider the limit in Eq. (13). For this case, denoting

UF (k) = ε(k) +
∑

i

di(k)σi, (B1)

λJT/3 = π/2 + ξ , (B2)
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where ε(k) is the coefficient of the identity matrix and d1, d2, d3 are the coefficients of the Pauli matrices. We find these to be

ε(k) = cos3(JλT/3) − cos(JλT/3) sin2(JλT/3)
[

cos(
√

3kx ) + 2 cos
(

3ky

2

)
cos

(√
3kx

2

)]
, (B3)

d1(k) = −i sin(JλT/3) cos2(JλT/3)
[

cos(ky) + 2 cos
(

ky

2

)
cos

(√
3kx

2

)]
+ i sin3(JλT/3) cos(

√
3kx + ky), (B4)

d2(k) = −i sin(JλT/3) cos2(JλT/3)
[

sin(ky) − 2 sin
(

ky

2

)
cos

(√
3kx

2

)]
+ i sin3(JλT/3) sin(

√
3kx + ky), (B5)

d3(k) = i cos(JλT/3) sin2(JλT/3)
[

sin(
√

3kx ) − 2 sin
(

3ky

2

)
cos

(√
3kx

2

)]
, (B6)

with the eigenvalues and eigenfunctions being

E± = ε(k) ±
√

d2
1 (k) + d2

2 (k) + d2
3 (k) = ε(k) ± d (k),

(B7)

ψ± = 1√
2d (k)(d (k) ± d3(k))

(
d3(k) ± d (k)

d1(k) − id2(k)

)
. (B8)

We will use the following formula for the Berry curvature:

Fxy(k) = 1
2d3(k)

εabcda∂xdb∂ydc. (B9)

It is helpful to note that ε(k) = −ξε1(k) + O(ξ 3), where ε1(k)
is given in Eq. (15). In addition, d1(k) = i cos(

√
3kx + ky) +

O(ξ 2), d2(k) = i sin(
√

3kx + ky) + O(ξ 2), d3(k) = O(ξ ).
Thus d2(k) = −1 + O(ξ 2). Thus, to the lowest order in ξ ,
the Berry curvature is given by Eq. (16). It is straightforward
to see that the integration of the Berry curvature over the
Brillouin zone of graphene is zero, corresponding to a Chern
number of C = 0.

We now consider the following term,

εuk + εdk = i ln(E−) + i ln(E+) = i ln (E−E+)

= i ln[ε2(k) − d2(k)]. (B10)

It is then straightforward to see that

εdk + εuk = 0, (B11)

due to preserved particle-hole symmetry. We also need the
difference between the Fermi functions

fdk − fuk = 1
1 + exp[β(ln Ei

+ − µ)]

− 1
1 + exp[β(ln Ei

− − µ)]

= 1

1 + Eiβ
+ e−βµ

− 1

1 + Eiβ
− e−βµ

= e−βµ Eiβ
− − Eiβ

+

1 + Eiβ
+ e−βµ + Eiβ

− e−βµ + (E+E−)iβe−2βµ
.

(B12)

Expanding E± in ξ , one obtains Eq. (17).
We also need to evaluate (εuk − εdk)

∑
n=d,u f ′

nk(εnk − µ)
to O(ξ ). For this, we use that

εnk = ±π

2
± ξε1(k) ± O(ξ 2), (B13)

so εuk − εdk = π + 2ξε1(k) + 2O(ξ 2). Thus, we need to eval-
uate

∑
n=d,u f ′

nk(εnk − µ) to O(ξ ). We write

∑

n=d,u

f ′
nk(εnk − µ) = −

∑

n=d,u

β(εnk − µ)
eβ(εnk−µ)

(1 + eβ(εnk−µ) )2
.

(B14)

Substituting Eq. (B13) in the above expression and expanding
in ξ , we obtain Eq. (18) in the main text.

APPENDIX C: ANALYTIC EXPRESSION FOR THE
FLOQUET UNITARY ON A CYLINDER IN FOCK SPACE

Here we derive an analytical expression for the Floquet
unitary on a cylinder in the limiting case of ξ = 0. The entire
Floquet unitary reads

U = U3U2U1.

When the unitaries at each step are expanded for λ →
∞, JT → 0 but λJT finite, one arrives at the following ex-
pressions:

U1 =
∏

j

[
1 +

{
cos

(
JλT

3

)
− 1

}
(n2 j,k − n2 j+1,k )2 + i sin

(
JλT

3

)
(c†

2 j,kc2 j+1,k + H.c.)
]
,

U2 =
∏

j

[
1 +

{
cos

(
JλT

3

)
− 1

}
(n2 j,k − n2 j−1,k )2 + i sin

(
JλT

3

)
(c†

2 j,kc2 j−1,keika
√

3/2 + H.c.)
]
,

U3 =
∏

j

[
1 +

{
cos

(
JλT

3

)
− 1

}
(n2 j,k − n2 j−1,k )2 + i sin

(
JλT

3

)
(c†

2 j,kc2 j−1,ke−ika
√

3/2 + H.c.)
]
,
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where n j,k = c†
j,kc j,k . Assuming JT λ/3 = π/2 as chosen in the main text, the entire unitary can be computed:

U =
∏

j

[{1 − (n2 j,k − n2 j−1,k )2} + i(e−ika
√

3/2c†
2 j,kc2 j−1,k + H.c.)]

×[{1 − (n2 j,k − n2 j−1,k )2} + i(eika
√

3/2c†
2 jc2 j−1 + H.c.)]

×[{1 − (n2 j,k − n2 j+1,k )2} + i(c†
2 j,kc2 j+1,k + H.c.)]. (C1)

The first two lines above corresponds to the multiplication U3U2 =
∏

j Nj,k , where Nj,k is diagonal in the occupation number
basis and is given by

Nj,k =
[

1 − n2 j,k (1 + e−ika
√

3/2) − n2 j−1,k (1 + eika
√

3/2) + 2n2 j−1,kn2 j,k

{
cos

(√
3ak
2

)
+ 1

}]
. (C2)

Then substituting Eq. (C2) into Eq. (C1), we obtain

U =
∏

j

[Nj,k{1 − (n2 j,k − n2 j+1,k )2} + iNj,k (c†
2 j,kc2 j+1,k + H.c.)]. (C3)

Then elements of the Floquet unitary that are diagonal in the number basis become

Nj,k{1 − (n2 j,k − n2 j+1,k )2} = 1 − (n2 j,k − n2 j+1,k )2 − n2 j,kn2 j+1,k (1 + e−ika
√

3/2)

+[n2 j−1,k (n2 j,k − 1) + (−1)n2 j,k n2 j−1,kn2 j+1,k](1 + eika
√

3/2) + 2n2 j,k[n2 j−1,k − n2 j+1,k

+n2 j−1,kn2 j+1,k]
[

cos
(√

3ak
2

)
+ 1

]
. (C4)

One can see that the first off-diagonal elements (i.e., NN hopping terms) of the Floquet unitary are nonzero,

iNj,k (c†
2 j,kc2 j+1,k + H.c.) = i[1 − n2 j−1,k (1 + eika

√
3/2)](c†

2 j,kc2 j+1,k + H.c.)

+ i
[

− (1 + e−ika
√

3/2) + 2n2 j−1,k

(
cos

(√
3ak
2

)
+ 1

)]
c†

2 j,kc2 j+1,k . (C5)

The above expressions show that after one Floquet cycle, U
is not diagonal but contains hopping terms, indicating that the
bulk bands are delocalized. This is in contrast to the driving

scheme discussed in Ref. [62], where U was completely diag-
onal with the fermion returning back to its starting point at the
end of the Floquet cycle.
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