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The mechanism underlying charge transport in strongly correlated quantum systems, such as
doped antiferromagnetic Mott insulators, remains poorly understood. Here we study the expansion
dynamics of an initially localized hole inside a two-dimensional (2D) Ising antiferromagnet at variable
temperature. Using a combination of classical Monte Carlo and a truncated basis method, we reveal
two dynamically distinct regimes: A spin-charge confined region below a critical temperature T ⇤,
characterized by slow spreading, and a spin-charge deconfined region above T ⇤, characterized by an
unbounded di↵usive expansion. The deconfinement temperature T ⇤

⇡ 0.65Jz we find is around the
Néel temperature TN = 0.567Jz of the Ising background in 2D, but we expect T ⇤ < TN in higher
dimensions. In both regimes we find that the mobile hole does not thermalize with the Ising spin
background on the considered time scales, indicating weak e↵ective coupling of spin- and charge
degrees of freedom. Our results can be qualitatively understood by an e↵ective parton model, and
can be tested experimentally in state-of-the-art quantum gas microscopes.

Introduction.– In the field of high-Tc superconductiv-
ity emerging from correlated insulating parent states [1],
understanding the properties of individual charge car-
riers in doped 2D antiferromagnets (AFM) has been a
central goal. While a magnetic, or spin-, polaron forms
at low doping, experiments observe a cross-over from a
polaronic metal at low doping to a Fermi liquid at high
doping [2]. Although the ground state properties of mag-
netic polarons at low doping are essentially agreed upon
[3–11], their fate at elevated temperatures or non-zero
doping, as well as their far-from equilibrium dynamics,
remains poorly understood.

Recently, ultracold atom experiments have ventured
into this regime [12]. In equilibrium, the dressing cloud
of a magnetic polaron has been observed for the first time
[13], and the dynamical spreading of an initially localized
hole in 2D has revealed a significant slow-down associated
with the presence of spin-correlations [14]. Theoretical
work on the dynamical properties of doped holes has
revealed signatures of parton [15] and string formation
[15–19] at low temperatures, and predicted di↵usive or
sub-di↵usive spreading at infinite temperatures depend-
ing on the interactions between the spins [15, 20, 21].

Here we study the non-equilibrium dynamics of an ini-
tially localized single dopant in a thermal 2D Ising back-
ground, see Fig. 1a). While previous studies addressed
this problem in the limits of infinite temperature with
[15] or without [20, 21] Ising interactions Jz, and at zero
temperature with Ising couplings [22], we systematically
tune the temperature T across the Ising critical point
at TN = 0.567Jz. Combining numerical Monte-Carlo
and truncated basis methods, we reveal two regimes with
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FIG. 1. We study the spreading of an initially localized hole in
a thermal Ising background at temperatures T , a). The root
mean square (rms) distance from the origin, shown for M =
10, reveals slow (fast) spreading at low (high) temperatures,
b). We study the long-time value of the inverse rms distance
to extrapolate its value in the thermodynamic limit when our
finite-size cut-o↵ M ! 1, c). Plotting the result for di↵erent
temperatures, d), reveals a dynamically confined (deconfined)
regime at low (high) temperatures. We show plots for t/Jz =
3; symbols in b)-d) correspond to same data.

qualitatively distinct hole dynamics, see Fig. 1. By com-
paring our results to an e↵ective parton model, we argue
that the low-temperature behavior corresponds to spin-
charge confinement, whereas spin and charge are decon-
fined at high-temperatures, see Fig. 1d).
Further, we study the thermalization dynamics of the

mobile hole. We find that after a few tunneling times
the hole quickly realizes a steady-state which di↵ers sig-
nificantly from the thermal state, especially in the de-
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confined regime at high temperatures. This finding is
interesting since the t � Jz model is neither believed to
be integrable nor localizing [23, 24].

Model.– Some of the most relevant aspects of hole dy-
namics in AFM environments can be captured by the
t � Jz Hamiltonian [22, 25] in d = 2 dimensions,

Ĥ = �t
X

hi,ji,�

P̂
⇣
ĉ†

i,� ĉj,� + h.c.
⌘
P̂ + Jz

X

hi,ji

Ŝz
i Ŝz

j , (1)

where the first term Ĥt is the nearest-neighbor (NN) hop-
ping with amplitude t, ĉj,� annihilates a fermion of spin �

at site j and P̂ is a projector to the subspace without dou-
ble occupancies. The second term ĤJz denotes NN AFM
Ising interactions of the spins Ŝz

j =
P

�(�1)� ĉ†

j,� ĉj,�
with strength Jz > 0.

While the t�Jz model constitutes a strong simplifica-
tion, it captures several aspects relevant to experiments
on strongly correlated electrons in cuprates, e.g. the for-
mation of string patterns [22, 23, 26]. Although the Ising
background ĤJz itself is classical, the non-commuting
hopping term Ĥt allows to couple most spin states to
each other already by a single mobile dopant; even in a
perfect Néel background at zero temperature, Trugman
loops lead to coherent hole motion [22, 24, 27]. This ren-
ders Ĥ a truly quantum Hamiltonian.

In the following, we study quantum quenches starting
from an undoped thermal Ising state described by the
density matrix ⇢̂0 = e��ĤJz /Z0, where � = 1/T is the
inverse of temperature T and we set kB = 1. At time
⌧ = 0 a single hole is created in the origin at j = 0 and
the initial state is ⇢̂(0) =

P
� ĉ0,� ⇢̂0 ĉ†

0,�.
Numerical technique.– To calculate the time-evolved

density matrix ⇢̂(⌧) with a single hole, we leverage the
classical nature of the Ising background ĤJz . Specifically,
we sample thermal initial spin states, dope them with one
hole, and calculate their time-evolution by a truncated-
basis method [16, 17, 28].

For a given eigenstate | ni of the 2D Ising Hamilto-
nian, we obtain an initial one-hole state | n

1 i = ĉ0,�0 | ni
by removing the fermion at the origin with spin �0. Re-
peated applications of the terms in Ĥt then generate new
states which we add to the truncated basis {| n

⌫ i}⌫=1...dM

used for numerical time evolution. In this process, or-
thonormality is guaranteed by projecting each new state
onto all previous states. Since Ĥt is applied in each
step, the total number of iterations M corresponds to
the largest number of hops the hole can perform in the
truncated basis without retracing its path; the dimension
dM of the truncated basis grows exponentially with M
and depends on the initial configuration n.

To study the thermal properties of the expansion dy-
namics, the thermal average over the ensemble of back-
ground spin states {| ni}n=1...N – i.e. the ensemble of
the Ising model at a given temperature T – must be per-
formed. We achieve this using a standard Metropolis
Monte Carlo algorithm to obtain a large number (N =

100) of representative samples for desired temperatures
T . For each of these samples | ni, the corresponding
truncated base {| n

⌫ i}⌫ is generated and the Schrödinger
equation is solved on the restricted subspace starting
from the initial state | n(⌧ = 0)i = | n

1 i ⌘ ĉ0,�0 | ni.
Estimators for expectation values of observables such

as the root mean square (rms) distance of the hole to the
origin rrms can then be obtained by averaging the results
obtained for each sample n,

rrms(⌧) ⇡
1

N

NX

n=1

0

@
X

j

j2h n(⌧)|n̂h
j | n(⌧)i

1

A
1/2

(2)

with n̂h
j =

Q
�(1 � ĉ†

j,� ĉj,�) the hole density on site j
which we evaluate in the truncated basis.
Numerical results.– In Fig. 1b) we show typical numer-

ically obtained time-traces of the hole’s rms distance, for
t/Jz = 3 and M = 10. We observe slow spreading of the
hole at low temperatures well below the Ising transition
at TN, and faster spreading at high temperatures above
TN. At longer times corresponding to a few tunneling
events (typically we go up to times ⌧max = 15/t), both
curves saturate. However, this is partly due to the finite
dimension of the restricted basis we employ.
We analyze the dependence of the long-time limit

r�1
rms(⌧max) on the number of iterations M , correspond-
ing to the maximum number of allowed tunneling events,
in Fig. 1c). For high temperatures, we observe scaling
consistent with r�1

rms(⌧max) ' M�1/2, i.e. the rms dis-
tance grows quickly and indefinitely. A scaling ' M�1/2

with the square root of the number of allowed steps is
expected from a classical random walk; this is true even
at zero temperature for Jz = 0, see Ref. [21].
On the other hand, for low temperatures compared to

Jz, we find r�1
rms(⌧max) ! const. > 0 as M�1/2 ! 0, in-

dicating slow spreading of the hole, bounded by a finite
length scale rmax

rms at time ⌧max. We notice that for much
longer times, on the order of ⌧T & 100/t [22], Trugman
loop e↵ects are expected to lead to very slow but un-
bounded growth of rrms [24]; however, these physics play
no role on the time-scales up to ⌧max considered here.
Finally, we repeat the procedure described above for

more values of the temperature T , in particular around
the Néel transition temperature TN = 0.567Jz. The re-
sulting extrapolated r�1

rms(T ; ⌧max, M�1/2 ! 0) are plot-
ted over temperature in Fig. 1d). At a critical tempera-
ture around T ⇤ ⇡ 0.65Jz close to but distinctly above TN,
we find an abrupt change of behavior, with unbounded
(bounded) growth of rrms above (below) T ⇤. This is a
main result of this Letter and, as discussed below, we
interpret it as a dynamical signature of a confinement
(T < T ⇤) to deconfinement (T > T ⇤) transition of the
spin and charge sectors.
We performed a similar analysis as in Fig. 1 for a dif-

ferent value of t/Jz = 1. The extrapolated long-time
inverse rms distances are compared to the previous case
in Fig. 2. We find similar qualitative behavior, and re-
markably the transition temperature T ⇤ does not change
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FIG. 2. We show long-time rms distances of a single hole
extrapolated to M�1/2

! 0 as a function of temperature,
rrms(T ; ⌧max,M

�1/2
! 0), for two ratios of t/Jz = 1 (upper

solid curve) and t/Jz = 3 (lower solid curve). We compare our
results to predictions by an e↵ective spinon-chargon model
(dashed curves) capturing the qualitative behavior. We indi-
cate TN and our estimate for T ⇤ = 0.65Jz by vertical lines.

for di↵erent t/Jz. Overall the charge dynamics is only
weakly a↵ected by the spin background for T > T ⇤, while
it depends strongly on the value of Jz/t when T < T ⇤.
These observations indicate a strikingly di↵erent inter-
play of spin and charge in the two regimes.

At the given accuracy of our finite-size extrapolation
M�1/2 ! 0, stating error bars on T ⇤ is challenging. We
find our numerics most consistent with T ⇤ = 0.65(5)Jz.

E↵ective parton model.– To obtain physical insight into
our numerical results, we compare them with predictions
by an e↵ective parton model [29, 30] of the t� Jz model
[22]. First we note that the initial creation of the hole
changes both the spin- and charge quantum numbers,
associated with the two global U(1) symmetries of the
t � Jz model, by one; the initial state thus corresponds
to a local spinon-chargon pair.

In the subsequent dynamics, the chargon can move by
distorting the surrounding spins. Since the Ising inter-
action is classical and generates no dynamics of its own,
the spinon remains localized at the origin. Hence, the
resulting spin configuration is determined entirely by the
chargon’s path; di↵erent paths may be assumed to be dis-
tinguishable up to self-retracing components, since they
will lead to di↵erent spin configurations in the majority
of the cases. I.e., the chargon motion e↵ectively creates a
memory of the hole’s path through the spin background,
in the form a of a (sometimes called geometric) string ⌃
of displaced spins connecting the spinon to the chargon.
At low temperatures, most strings lead to an increase of
the net classical Ising energy ĤJz , which acts as a poten-
tial energy, or string tension, for the chargon.

Formally, in our e↵ective parton model we replace the
original t � Jz Hilbertspace by a space spanned by or-
thogonal string states |⌃i with the spinon in the origin.
States |⌃i in the e↵ective Hilbert space correspond to

unique states | ⌃i in the t�Jz Hilbertspace, but the op-
posite is not true. The e↵ective Hamiltonian Ĥe↵ consists
of a tunneling term with amplitude t between adjacent
strings, and a potential energy term including the Ising
interactions; see [31] for a detailed definition. At T = 0,
the dynamics obtained within this parton model is closely
related to Brinkman and Rice’s retraceable path approx-
imation [32]; at T > 0 we average over thermal initial
states | ni as before.
Our intuitive physical picture above has its limita-

tions. First, e↵ects of loops are ignored; e.g., Trugman
loops [24] and their generalizations to Ising configurations
other than the Néel state e↵ectively introduce spinon mo-
tion. Such processes are very slow and can be treated
in a tight-binding approximation [22]. Second, not all
physical states | ⌃i are orthogonal for di↵erent ⌃; in
particular, if a plaquette along the path of the chargon
has ferromagnetically aligned spins, paths along oppo-
site directions around this plaquette are indistinguishable
[14, 20, 21] and the corresponding quantum states have
nonzero overlap. Our full numerical simulations intro-
duced earlier systematically include these imperfections
by constructing an orthonormalized restricted basis set.
The number of iterations M corresponds to the maxi-
mum string length `max considered in the parton theory.
In Fig. 2 we compare our earlier results to predictions

by the e↵ective parton model (dashed lines). We find
qualitatively similar behavior, in particular the transi-
tion temperature T ⇤ is correctly captured by the e↵ective
model. This allows us to analyze the two qualitatively
distinct dynamical regimes below and above T ⇤ within
the simpler parton theory next.
Thermal spin-charge deconfinement.– Well below the

Néel temperature, T ⌧ TN , some spins will be thermally
excited but magnetic order remains. Here the hole’s
movement is restrained in a similar way as for T = 0
[23], resulting in confinement of the spinon and the char-
gon. Around TN , the short-range correlations between
the spins decrease rapidly, which may lead to a profound
change in the behavior of the hole since these correlations
provide a measure of the energy increase resulting from
the chargon’s movement. Specifically, the average energy
hĤJz i` of a string with length `, i.e. the string tension, is
determined by local spin-correlations [22]. Notably, this
does not imply that any change of behavior happens at
exactly TN , which is only a measure of long-distance cor-
relations that do not directly a↵ect the chargon’s motion.
Instead, the dynamical behavior changes at T ⇤ 6= TN in
general (although T ⇤ and TN are closely related).
We can estimate T ⇤ by considering the interplay of

energy E and entropy S of string states in the e↵ective
parton model and ignoring quantum fluctuations / t.
Taylor-expanding the string energy after averaging over
the thermal spin-background and di↵erent string con-
figurations with the same length ` allows us to write
E(`) ' hĤJz i` = E0 + `� + `2�0/2 + .... Assuming a
microcanonical ensemble of strings, where all states of a
given length ` are occupied equally, the entropy becomes
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S ' ` log(z � 1) where z is the coordination number of
the lattice (z = 4 in the 2D square lattice we consider).
Hence the free energy

F = E � TS ' E0 + `(� � T log(z � 1)) (3)

is minimized for ` = 0 (confined partons) when T < T ⇤

and for ` ! 1 (deconfined partons) when T > T ⇤. The
thermal deconfinement transition takes place at

T ⇤ = �/ log(z � 1). (4)

As emphasized above, the string tension � depends
only on the local spin correlations. Since these depend on
temperature, Eq. (4) needs to be solved self-consistency
for T ⇤ with � = �(T ⇤). Using this procedure we predict
T ⇤ = 0.65Jz, remarkably close to the observed value.

Another consequence of Eq. (4) is that T ⇤ becomes
small in higher dimensions. In a d-dimensional hyper-
cubic lattice z = 2d; since � = O(TN) is on the order of
the Néel temperature, T ⇤/TN ' 1/ log(d) ! 0. Hence
we expect that T ⇤ is systematically below TN in high di-
mensions, further supporting our claim that the observed
change of dynamical behavior at T ⇤ is not a mere reflec-
tion of the Ising transition at TN.

Thermalization dynamics.– Finally, we study how the
mobile hole reaches a steady state when it spreads and
interacts with the spin background. One would generi-
cally expect the isolated charge to equilibrate to a ther-
mal state at the same temperature T as the Ising spins.
However, we observe pronounced deviations from this ex-
pected behavior.

In Fig. 3 we calculate the average kinetic energy hĤti
of the hole, defining a local observable, which quickly re-
laxes to a steady state in a few tunneling times. Next we
compare the steady-state result to a thermal ensemble at
temperature T . To this end, we sample n = 1...N ther-
mal background spin configurations | ni as described
above, introduce a hole, and apply a finite-temperature
Lanczos method [33] to describe the hole separately for
each n. The thermal average of N�1

P
nhĤtin over all

samples n is shown in Fig. 3.
At high temperatures, T & T ⇤, the thermal ensem-

ble deviates significantly from the steady state for both
considered values of t/Jz. Within the e↵ective parton
model we attribute this behavior to the fact that the
free energy is strongly dominated by the entropic contri-
butions from a large number of long string states when
T > T ⇤. Hence, in the post-quench dynamics the char-
gon can quickly populate these long-string states, which
leads to the observed steady-state behavior. We expect
much longer times would be required for the local kinetic
energy to equilibrate too. We checked this picture by
calculating string-length distributions and find that they
quickly resemble the thermal ensemble [31].

At low temperatures, T . T ⇤, we see in Fig. 3 that
hĤti becomes thermal for t/Jz = 1, whereas it remains
non-thermal for larger t/Jz = 3 at the considered times.
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FIG. 3. The mobile dopant reaches a steady state (black) over
a few tunneling times, as can be seen from its average kinetic
energy hĤti. We consider a) t/Jz = 3 and b) t/Jz = 1,
and use the truncated-basis method described in the main
text. The gray curves are the expectation value at earlier
times, starting at ⌧ = 0 and increasing in steps of �⌧ = 1/t.
Comparison of our results to a thermal ensemble (red) at the
same temperature T as the spin-background shows that the
steady state is pronouncedly non-thermal in many cases.

In the latter case we believe that the significant separa-
tion of time scales in combination with the discrete spec-
trum of the Ising background leads to excessive thermal-
ization times. To exchange energy with the spin environ-
ment, the chargon has to perform loops, which requires
overcoming high energy barriers [24]. Indeed at low tem-
peratures we find signatures for unoccupied loop states
in the hole dynamics, which would be occupied in the
thermal ensemble [31].
Summary and Outlook.– We have established two tem-

perature regimes T 7 T ⇤ with distinct dynamical behav-
ior of an initially localized hole moving in an Ising AFM.
The observed dynamical transition at T ⇤ can be inter-
preted as thermal spinon-chargon deconfinement. While
we cannot distinguish the deconfinement temperature
T ⇤|2D & TN from the Néel temperature TN in our 2D
simulations with absolute certainty, we expect from an-
alytical arguments that T ⇤ < TN in higher dimensions.
Further, we studied thermalization dynamics of a single
hole in the t�Jz model and revealed stable steady-states
with non-thermal properties both in the confined and de-
confined regimes.
Our theoretical analysis can be tested and extended
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experimentally using ultracold atoms in optical lattices
[12]. To realize the required Ising interactions, Rydberg
dressing appears to be the most promising candidate. In
particular this allows to realize AFM couplings for bosons
[34, 35] or fermions [36]. For a single dopant the quan-
tum statistics plays no role, extending the number of ex-
isting experimental setups that can address the quench
dynamics studied in this Letter. Hence another possibil-
ity is to use spin-dependent interactions [37–39] to realize
a bosonic model with AFM couplings.

In the future, similar studies of the SU(2) invariant
t�J model at finite temperature will be interesting. Ex-
perimentally, it is also conceivable to address hole dy-
namics at nonzero hole densities. Another interesting
direction would be to explore thermalization dynamics
of a single hole in the t� Jz model at much longer times
than addressed here. This may be possible using a com-
bination of classical Monte Carlo sampling of the Ising

background, as performed here, with large-scale time-
dependent numerical DMRG (or tensor-network) simu-
lations on extended cylinders [15, 18].
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Appendix A: Additional numerical results

In this supplement, further numerical results obtained
using the truncated-basis method are presented.

1. Dynamical transition signatures

In Fig. 4, additional curves from the data underlying
Fig. 1d) are shown. Distinct behavior for low T < T ⇤

and high T > T ⇤ can easily be recognized after the ini-
tial ballistic expansion of the hole during the first few
tunneling times. In particular, the hole shows similar be-
havior for all considered temperatures T > T ⇤. Indeed,
in a deconfined phase the dynamics of the hole should be
independent of T > T ⇤. While the rms distance might
be expected to increase further over time in a deconfined
phase, a saturation in the data can be explained by the
finite size of the studied system.

These calculations can also be repeated for other values
of t/Jz, see Fig. 5, where the transition occurs around the

a)

b)

FIG. 4. This figure shows the data underlying Fig. 1 of the
main text in more detail, i.e. the initial expansion of the hole,
a), as well as its extrapolation towards an infinite system size
(M ! 1), b), both at t/Jz = 3. In particular, one observes
quantitatively similar behavior for high T = 0.75Jz, 1.0Jz,
consistent with the prediction of a deconfined phase.

a)

b)

FIG. 5. Repeating the calculations of Fig. 1 in the main text
for a lower value of t/Jz = 1 reveals the transition temper-
ature T ⇤ to be essentially independent of the value of t/Jz,
as predicted by Eq. (4). Here, the extrapolation to the ther-
modynamic limit M ! 1, a), as well as the resulting inverse
rms distances of the hole to the origin in the thermodynamic
limit, b), are shown. In b) we indicate TN and our estimate
for T ⇤ = 0.65Jz by dashed / dotted vertical lines.

same T ⇤ as before (within the capabilities of our finite-
size extrapolation). Indeed, this indicates that the lin-
ear approximation of the string potential used in Eq. (4)
successfully captures the essential phenomenology of the
transition.

2. Thermalization dynamics

Similar to the comparison of the average kinetic energy
in Fig. 3 of the main text, other observables may be used
to investigate the thermalization dynamics of the mobile
dopant in the t � Jz model.
In particular, one may note that during the construc-

tion of the truncated basis, a state is added to the ba-
sis during the iteration step corresponding to the num-
ber of hops the hole has to perform to reach this state.
Thus, the iteration step during which a state is added
essentially corresponds to the string length in the spinon-
chargon picture. By calculating the occupation probabil-
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a)

b)

FIG. 6. The iteration step during which a state was added to
the truncated basis may be associated with the string length
of the corresponding state in the parton model. Insight into
the thermalization dynamics may thus be gained by com-
paring the thermal string length distribution (red) with the
steady state distribution (black) reached after several tunnel-
ing times, calculated using the truncated-basis method ex-
plained in the main text. Gray shaded curves correspond to
distributions at earlier times ⌧ , starting at ⌧ = 0 (lightest
gray) and increasing in steps of �⌧ = 1/t. Both the cases
t/Jz = 3, a), and t/Jz = 1, b), show significant di↵erences,
here for T = 0.25Jz. In particular, one observes a peak in
the thermal distribution at ` = 6. This corresponds to the
string length of the shortest possible Trugman loops. These
states are not occupied in the steady state, despite their low
energy. This indicates that much longer times are needed for
the system to thermalize.

ity for all states added during a given iteration ` = 0...M ,
the distribution of string lengths ` may be reconstructed.
The results can be seen in Fig. 6.

It is noteworthy that the thermal distributions show
clearly visible peaks at ` = 6. These peaks may be
explained by the presence of Trugman loops [24] with
low energy, which allow the hole to exchange energy
with the spin lattice. The absence of these peaks in the
long-time averages (obtained by averaging over the inter-
val [20/t, 30/t]) indicates that this exchange has not yet
taken place and thus that much longer times are needed
for the system to thermalize.

Similar conclusions can be taken from Fig. 7, showing
the string length distributions and rms of the hole den-
sity distributions for a wide range of temperatures across
T ⇤. Interestingly, at high temperatures T > T ⇤, TN these
quantities are relatively close to their thermal values,
in particular for the rms distance. We believe this can
be explained by the fact that the rms distance and the
string length-distributions in the deconfined regime re-
flect the delocalized hole and do not depend sensitively
on its kinetic energy. The latter has not thermalized, as
we demonstrated in Fig. 3 of the main text.

Appendix B: E↵ective parton model calculations

Here we provide details about our e↵ective parton
model calculations. These can be viewed as a simplifi-
cation of the full truncated basis approach discussed in
detail in the main text. As in the full truncated basis ap-
proach, we construct parton states labeled {|⌃ni}⌃ for a
given spin background | ni and perform thermal aver-
ages over n = 1...N Ising configurations afterwards.

1. Physical intuition

When considering the iteration process by which the
truncated bases {| n

⌫ i}⌫ are generated in the full trun-
cated basis approach – successively applying Ĥt, each
time letting the hole hop one site further – one may easily
recognize a striking similarity of these bases to those re-
sulting from a parton-based description of doped holes in
antiferromagnets [15, 22, 23]. Such parton theories con-
sider the doped hole to be composed of two partons con-
nected by a string of displaced spins: a heavy spinon and
a light chargon, carrying the polaron’s spin and charge
degrees of freedom, respectively [30].

2. Parton model Hilbertspace

Since the spinon and the spin background are taken to
be frozen due to the classical nature of the underlying
Ising model, the chargon’s path completely determines
the resulting spin configuration; however only paths de-
fined up to self-retracing components – so-called strings
⌃ – are relevant to determine the final spin configuration.
For a given initial spin configuration | ni, we define the
string-zero state | n

1 i := ĉ0,�0 | ni. Subsequent appli-
cations of individual hole hoppings, defining a string ⌃,
allows to construct string states | n

⌃i defined in the t�Jz

Hilbertspace Ht�Jz .
Importantly, the string states {| n

⌃i}⌃ do not define
an orthonormal basis set. Loops and thermally excited
spins may lead to some strings resulting in identical spin
configurations, causing an overcompleteness of the string
base {| n

⌃i}⌃. This is explicitly taken into account in the
full truncated basis approach, where out of the same set
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a)

b)

c)

d)

FIG. 7. Due to the numerically intractable size of the density matrix of the system at hand, the thermalization dynamics of
the mobile dopant must be studied using suitable observables. Here, the string length distribution, a) as well as the hole’s rms
distance from the origin, b), are shown for t/Jz = 3 [for t/Jz = 1, c) and d), respectively]; legends in a) [in c)] also apply
for b) [for d)]. Significant di↵erences, in particular at low T , indicate that the system does not thermalize at the time scales
considered in these calculations, going up to about 30 tunneling times.

of states the orthonormal subset {| n
⌫ i}⌫ is constructed.

Significantly, the number of overcomplete states is rela-
tively small for all considered temperatures if we consider
AFM couplings Jz > 0. In the next step, this allows us
to replace the original t � Jz Hilbertspace Ht�Jz by an
e↵ective string Hilbertspace.

In mathematical terms, the e↵ective string Hilbert
space is defined as a tensor product

He↵ = H⌃ ⌦ Hsp ⌦ HJz . (B1)

Here H⌃ is the Hilbert space of all geometric strings
connecting the chargon to the spinon; we postulate that
the set {|⌃ni}⌃ defines an orthonormal basis, h⌃n

1 |⌃n
2 i =

�⌃1,⌃2 . Hsp the Hilbert space of possible spinon posi-
tions on the lattice and HJz denotes the Hilbert space of
possible spin configurations on the lattice before the hole
is introduced into the system, i.e. the Hilbert space of
the 2D Ising model. At this level of approximation, only
the chargon is mobile, so only the dynamics in H⌃ will
be considered. Note that while each string state |⌃ni has
a unique corresponding state | n

⌃i in the original t � Jz

Hilbertspace, the opposite is not true: di↵erent string
states in He↵ , |⌃n

1 i ? |⌃n
2 i, may correspond to the same

| n
⌃1

i = | n
⌃2

i in Ht�Jz .

3. Parton model Hamiltonian

We derive the e↵ective parton Hamiltonian by match-
ing its matrix elements in the e↵ective string Hilbertspace
with the corresponding matrix elements of the original
t � Jz Hamiltonian in the t � Jz Hilbertspace; i.e.:

h⌃n
2 |Ĥ

(n)
e↵ |⌃n

1 i = h n
⌃1

|Ĥ| n
⌃2

i. (B2)

We start by the hopping term. One easily confirms that
the NN tunneling term Ĥt translates into a NN hopping
term of equal amplitude between adjacent string states
h⌃2,⌃1i. Representing strings ⌃ as sites of a Bethe lat-
tice (as done e.g. in Ref. [22]), Ĥt thus maps to an e↵ec-
tive single-particle hopping problem on the Bethe lattice
described by the e↵ective Hamiltonian

Ĥt
e↵ = �t

X

h⌃2,⌃1i

(|⌃2ih⌃1|+ h.c.) . (B3)

Note that Ĥt
e↵ is independent of the index n labeling the

original spin background | ni for which we construct the
string states. This is a consequence of postulating that
string states in He↵ are orthonormal, and represents a
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key simplification as compared to the full truncated basis
method.

Next we construct ĤJz,(n)
e↵ which defines a potential

energy for the string. To this end, we only consider di-
agonal contributions in Eq. (B2), with ⌃1 = ⌃2. This
yields a string potential

V (n)
⌃ = h n

⌃|ĤJz | n
⌃i (B4)

corresponding to the energy of the lattice after the char-
gon has moved along the string starting from the given
initial configuration | ni. It should be emphasized that

V (n)
⌃ depends not only on the string ⌃, but also on the

spinon position (taken to be fixed at the origin j = 0
here) and the initial spin configuration | ni 2 HJz .

The resulting potential energy in the e↵ective Hamil-
tonian reads

ĤJz,(n)
e↵ =

X

⌃

V (n)
⌃ |⌃nih⌃n|. (B5)

Together, the e↵ective parton Hamiltonian becomes

Ĥ(n)
e↵ = Ĥt

e↵ + ĤJz,(n)
e↵ , (B6)

where only the second term depends on n on the right
hand side of the equation.

4. Thermal averages

Similar to the truncated basis approach, thermal prop-
erties of the e↵ective parton model can be accessed by us-
ing a Monte Carlo algorithm to sample initial spin states
| ni. For each of the n = 1...N samples, the string po-
tential V⌃ can be calculated up to a maximum depth of
the Bethe lattice `max at which the Hilbert space must be
truncated due to computational limits. The results, e.g.
dynamics as considered in our paper, can be calculated
separately for each n and be averaged over all N samples
in the end.

In our numerical simulations, we typically used N =
100 and considered maximum string lengths of up to
`max = 11.

5. E↵ective string potential

As a concrete application, we calculate the average

string potential. I.e. we start from a thermal ensem-
ble of N Ising states | in at temperature T and sample
S` strings ⌃` of a given length ` but with random orien-
tations. Averaging over these string configurations yields

V (`, T ) =
1

N

NX

n=1

1

S`

X

⌃`

V (n)
⌃`

. (B7)

The results are shown in Fig. 8, showing the string
potential to be approximately linear ' �` in ` both for

FIG. 8. By sampling both thermal states of the Ising system
as well as strings of varying length, the potential acting on the
strings can be calculated as a function of the temperature T .
At fixed T the potential is approximately linear everywhere.

temperatures below and above T ⇤. Around T ⇡ 0.5Jz,
close to TN and T ⇤, a sharp drop of the linear string
tension � can be observed.
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