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Quantum many-body scarring is a paradigm
of weak ergodicity breaking arising due to the
presence of special nonthermal many-body eigen-
states that possess low entanglement entropy, are
equally spaced in energy, and concentrate in cer-
tain parts of the Hilbert space. Though scars
have been shown to be intimately connected to
gauge theories, their stability in such experimen-
tally relevant models is still an open question,
and it is generally considered that they exist
only under fine-tuned conditions. In this work,
we show through Krylov-based time-evolution
methods how quantum many-body scars can be
made robust in the presence of experimental er-
rors through utilizing terms linear in the gauge-
symmetry generator or a simplified pseudogener-
ator in U(1) and Z, lattice gauge theories. Our
findings are explained by the concept of quan-
tum Zeno dynamics. Our experimentally feasi-
ble methods can be readily implemented in ex-
isting large-scale ultracold-atom quantum simu-
lators and setups of Rydberg atoms with optical
tweezers.

1 Introduction

The thermalization of closed quantum systems
under unitary time evolution [1, 2] has intrigued
physicists for decades due to the counterintu-
itive picture of thermalization in the absence of
a reservoir. Even though a pure quantum state
has zero entropy throughout its entire unitary
time evolution, quantum entanglement [3, 4, 5, 6]
can be a guiding principle in understanding the
“thermalization” of its constituent subsystems
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based on the concepts of statistical mechanics.
The entropy of entanglement between different
subsystems can cause them to equilibrate, and
for generic nonintegrable models and typical
initial states, local observables can then be de-
scribed by thermal ensembles in the long-time
limit in accordance with the eigenstate thermal-
ization hypothesis (ETH) [7, 8, 9, 10]. This has
been demonstrated experimentally in a Bose-
Hubbard optical lattice [11].

However, it has been shown that ETH can
be violated in several ways. When the system
is integrable [12], for example, it has infinitely
many conserved local integrals of motion (LI-
OMs), which prevent it from thermalizing. In-
stead, it equilibrates to a generalized Gibbs en-
semble [13, 14]. Closely related to integrabil-
ity, interacting systems with quenched disorder
can also violate ETH and exhibit many-body lo-
calization (MBL) [15, 16, 17, 18], with emergent
LIOMs that prevent thermalization. Quenched-
disorder MBL has also been demonstrated ex-
perimentally in ultracold-atom setups [19, 20].
And more recently, it has been shown that even
disorder-free interacting spin models can exhibit
so-called Stark MBL in the presence of a con-
stant magnetic field [21], with emergent dynam-
ical quasi LIOMs [22]. Stark MBL has also been
experimentally observed in a trapped-ion quan-
tum simulator [23].

Interestingly, many-body localization can still
occur in disorder-free spatially homogeneous
quantum many-body models, even when the lat-
ter are nonintegrable [24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35]. This usually occurs when the
underlying model hosts a local gauge symme-
try, and the initial state is prepared in a super-
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position of an extensive number of gauge su-
perselection sectors. Upon quenching such an
initial state, disorder-free localization (DFL) can
arise, where the initial state’s superposition over
the symmetry sectors dynamically generates an
effective disorder over the corresponding back-
ground charges of these gauge sectors. DFL has
been shown to vanish in the presence of errors
breaking the local symmetry [28], but recent
theoretical works have demonstrated that DFL
can be stabilized or even enhanced using linear
gauge protection schemes that we will discuss
and employ in this work [36, 37, 38].

The above paradigms of strong ergodicity
breaking are also complemented by a different
form of weak ergodicity breaking occurring in
nonintegrable models hosting quantum many-
body scars [39, 40, 41, 42]. These are special
nonthermal eigenstates characterized by anoma-
lously low entanglement entropy, although they
can be in the bulk of the system far away from
the ground state. They also are roughly equally
spaced in energy, and cluster in a cold subspace
weakly connected to the rest of the Hilbert space
[43, 44, 45, 46, 47, 48]. As such, preparing an ini-
tial state in this cold subspace and then quench-
ing it will result in scarred dynamics in the form
of persistent oscillations beyond local relaxation
timescales, significantly delaying the onset of
thermalization [49, 50, 51]. Itis important to note
that quantum many-body scars are not directly
connected to any underlying symmetry of the
model, and, in contrast to DFL, a superposition
over different symmetry sectors is not required
for the emergence of nonthermal dynamics.

The Rydberg-atom setup [49], in which quan-
tum many-body scarring was first observed, im-
plemented an Ising-type spin model that has
since been shown to map onto the spin-1/2
U(1) quantum link model (QLM) [52]. The
latter is a quantum link formulation of lattice
quantum electrodynamics in (1 + 1) dimensions,
which has recently also been implemented in
large-scale ultracold-atom quantum simulators
[53, 54]. Moreover, scars have recently also been
shown to exist in a Z; lattice gauge theory (LGT)
[55, 56] and in higher-dimensional gauge the-
ories as well [57]. Given that quantum many-
body scarring is known not to be stable against
perturbations [58], and in light of an impres-
sive experimental effort towards realizing gauge

theories in synthetic quantum matter devices
[59, 60, 61, 62, 63, 62, 64, 65, 66, 67, 53, 54, 68],
it is important to investigate methods that may
protect scarred dynamics in the presence of er-
rofrs.

In this work, we explore the potential of re-
cently proposed linear gauge protection schemes
[69, 70, 38] in making scarred dynamics robust
against errors in modern quantum-simulation
platforms for gauge theories [71, 72, 73, 68, 74,
75]. These methods have previously shown re-
liable stabilization of gauge symmetry up to
impressive timescales [69, 76, 70, 77], but have
mostly been tested on local observables under
generic conditions. It is not clear how they will
fare when it comes to protecting fine-tuned fea-
tures such as quantum many-body scars espe-
cially as pertaining the hallmark revivals they
incur in the fidelity, which is a global quan-
tity and therefore can be very sensitive to er-
rors. As we show here numerically using time-
evolution methods based on Krylov subspaces,
linear gauge protection mitigates experimentally
prevalent errors and renders scarring robust up
to experimentally relevant timescales.

The rest of the paper is organized as follows:
In Sec. 2, we show how linear gauge protection
can be efficiently used to restore two main types
of scarred dynamics in error-prone implementa-
tions of the U(1) QLM. We then show in Sec. 3
the generality of these schemes by demonstrat-
ing how they protect scarred dynamics in the Z»
LGT in the presence of errors inspired from a
recent ultracold-atom experiment [65]. We con-
clude in Sec. 4 and supplement our work in Ap-
pendix A with supporting numerical results in-
cluding those considering different kinds of er-
rors and protection schemes.

2 U(1) quantum link model

The spin-1/2 U(1) quantum link model is de-
scribed by the Hamiltonian [78, 79, 80]

L
Ho—JZ %25
(1)

where the first term describes the annihilation
and creation of charged matter, whose occupa-
tion at matter site j is described by the Pauli ma-
trix 67, along with the concomitant action from

9; Jj+laj+1 + H. C
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Figure 1: (Color online). Product states relevant to
the quenches in the U(1) quantum link model (1), the
dynamics of which we numerically calculate using Krylov
subspace methods. The vacua |vac) and |vac) are the
doubly degenerate ground states of Eq. (1) at 4 — oo in
the physical sector éj |¢) = 0, Vj. They both break the
global Z5 symmetry of this model. They lead to resonant
scarring when they are quenched with Eq. (1) at x = 0.
The charge-proliferated or “polarized” state |CP) is the
nondegenerate Zy-symmetric ground state of Eq. (1) at
1 — —oo in the physical sector éj |¢) =0, Vj. It leads
to detuned scarring when quenched by Hamiltonian (1)
with a finite mass around p = —0.84.J. Unless otherwise
stated, we employ in our numerics a system size of L, =
L = 12 lattice sites and Ly = L — 1 = 11 gauge links
with open boundary conditions.

the gauge field, described by the spin-1/2 rais-
ing operator §;rj 41 at the link between sites j and
j +1,in order to preserve Gauss’s law. The elec-
tric field at this link is represented by the spin-1/2
operator 5% ;.. The fermionic mass is denoted
by p, and the energy scale is set by J > 0. The
U(1) QLM is a simplified lattice version of quan-
tum electrodynamics where the U(1) gauge field
is represented by a spin-1/2 operator.

Gauss’s law is described by the discretized
generator of the U(1) gauge symmetry,

Gj= (=17 (n;+ 81+ 5,11, (2)

with 1 < j < L due to open boundary condi-
tions, and where we have used 7; = (&j +1)/2.
The gauge symmetry of Eq. (1) manifests in the
latter commuting with Eq. (2) at every site j:
[Hy,G;] = 0, V). In the eigenbasis of the gen-
erator @j, the Hamiltonian Hy can be block-
diagonalized, with each block corresponding to
a unique gauge superselection sector defined by
the set of eigenvalues g = (g2,93,...,95-1) of
G;. The Hamiltonian (1) drives dynamics within
each superselection sector, but does not couple
different sectors due to its gauge symmetry.

In a realistic implementation of Hy, unavoid-
able errors will arise that may explicitly break

gauge invariance. For example, experimentally
relevant errors for Eq. (1) may take the form [66]
A L-1

iy =
j=1

(6‘&;1 +a UJ_H +57,11), (3

which represent the creation or annihilation of
matter without a change in the electric-field
configuration, or vice versa, thereby violating
Gauss’s law. Such errors pose serious problems
to gauge-theory simulations in general, and con-
trolling them becomes crucial.

Recently, a gauge symmetry-protection
scheme linear in the gauge-symmetry gener-
ators has been proposed, VHg = ]L_Ql ¢;Gj,
where the coefficients c; can be tailored such that
the U(1) gauge symmetry generated by G, is sta-
bilized in the faulty theory H = Hy+\H,+VHg
up to well-defined timescales [69]. The pro-
tection sequence c; is said to be compliant if
it is integer and satisfies >, c] (95 — 9") =
0 < g = gtar, Vi € {2,. — 1}, where
ghr = (g, g}f‘r,..., gt ) is the target gauge
sector. At sufficiently large V/, the linear pro-
tection term stabilizes gauge invariance up to
times exponential in V. Since we are interested
in large-scale implementations of the U(1) QLM
such as those recently realized in ultracold
atoms [53, 54], such a compliant sequence is
not ideal because it grows exponentially with
system size for a fixed V. In keeping with ex-
perimental relevance, the noncompliant sequence
¢j = (—1)’ has been employed in numerical
benchmarks, showing excellent stabilization of
gauge invariance up to all accessible evolution
times in both exact diagonalization and infinite
matrix product state calculations [69, 76].

Let us now investigate the efficacy of the
single-body staggered gauge protection scheme,

L—-1
VHe =V > (-1)YG;, (4)
Jj=2

in stabilizing quantum many-body scarring in
the U(1) QLM. Even though this scheme has been
shown to protect the dynamics of local observ-
ables [69, 76], how it will fare when it comes to
global quantities such as the fidelity is still an
open question. Quantum many-body scars re-
quire specific fine-tuning in the initial state and
the quench Hamiltonian in order to emerge in
an experiment, and the fidelity has been a main
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Figure 2: (Color online). Scarring dynamics in the U(1) quantum link model for a zero-mass quench starting in a
vacuum initial state, where unavoidable experimental errors are denoted by A\, against which we protect using the
term VHg = VZ;;QI(—I)jCA?j. The results are obtained for Ly, = L = 12 matter sites and Ly = L —1 = 11 gauge
links with open boundary conditions using a Krylov-based time-evolution scheme. (a) The fidelity shows periodic
revivals in the ideal case (solid yellow curve in the inset, dotted yellow curve in main plot). However, in the presence
of errors (A = 0.5J here), the fidelity quickly decays (dotted red curve in inset). Upon adding the linear gauge
protection term the fidelity is restored to that of the ideal case at sufficiently large protection strength V' (different
shades of blue). (b,c) Characteristic of many-body scarring is persistent oscillations in local observables such as the
(b) electric flux and (c) charge conjugate. Such oscillations are quickly damped in the presence of unprotected errors
(red solid curve), but are reliably restored upon employing linear gauge protection (different shades of blue), exactly
reproducing the ideal case (yellow dotted curve) at sufficiently large yet experimentally feasible values of V' for all
investigated evolution times. (d) We can connect the robustness of quantum many-body scarring to the stability
of gauge invariance. Whereas the gauge violation quickly grows to a maximal-violation steady state in the case of
unprotected errors, upon adding linear gauge protection we see that it gets suppressed oc A\?/V? at sufficiently large

V.

quantity used to probe their existence [51]. For
these reasons, it is important to assess how well
modern protection schemes can stabilize them.

2.1 Resonant scarring

We now prepare the system in the vacuum ini-
tial state |vac) depicted in Fig. 1. This is one of
two doubly degenerate ground states of Eq. (1)
at ;1 — oo in the physical sector Gj lp) = 0, V7.
Quenching this initial state with the Hamilto-
nian (1) at 4 = 0 (resonantly) is known to lead
to scarring behavior, and was first observed in
the form of persistent oscillations in local ob-
servables in a Rydberg-atom setup [49, 52]. We
shall refer to this as resonant scarring. Let us now
numerically investigate how scarring dynamics
is affected in the presence of errors such as (3),
and how the single-body protection scheme (4)
can mitigate them. Unless otherwise specified,
our results are obtained from time-evolution

methods based on Krylov subspaces [81, 82],
for a chain of L, = L = 12 matter sites and
Lg = L — 1 = 11 gauge links, with open bound-
ary conditions. This is the system size at which
finite-size effects are no longer relevant over the
times we probe [39].

We first compute the dynamics of the fidelity,

()

where |1)(t)) = e~ |vac) and H = Hy + \H; +
V>, (1) G j,inFig.2(a). Intheidealized case of
no errors, we see consistent revivals up to all ac-
cessible evolution times indicating nonthermal
behavior; see solid yellow curve in the inset, dot-
ted yellow curve in main plot. In between two
revivals, there is “state transfer” from the ini-
tial state |vac) to the second vacuum [vac) (see
Fig. 1), and back to |vac). The revival period
is determined by the energy spacing between
the roughly equally spaced scar eigenstates of

F(t) = | (vaclp(t)) |,
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the quench Hamiltonian [40]. Upon introduc-
ing even perturbative errors (results shown for
A = 0.5J) without protection (V' = 0), the fidelity
exhibits ergodic behavior, quickly decaying to
zero; see dotted red curve ininset. Upon employ-
ing the gauge protection scheme (4), however,
we find that nonthermal behavior is restored in
the fidelity (different shades of blue), and even
quantitative agreement with the ideal case over
all evolution times is achieved at moderate val-
ues of the protection strength V' > 8.J.

A prominent feature of scarred dynamics is
persistent oscillations in local observables [49].
As such, we calculate the dynamics of the electric
flux and the chiral condensate

L-1
5<t>=ﬁz<—w’ (O] 5111 ko), (6a)
j=1
1 L
) =72 WDl [e®), (6b)
7j=1

respectively. The electric flux serves as an order
parameter, which is nonzero when the global Z;
symmetry of Eq. (1) is spontaneously broken.
The chiral condensate measures how strongly
the chiral symmetry related to fermions in the
model is spontaneously broken. The corre-
sponding results are shown in Fig. 2(b,c). We
see in the case of unprotected errors (V = 0)
that both observables show quick relaxation to
their thermal value (red solid curves). Upon
adding the gauge protection term (4), we find
that oscillations are revived (different shades
of blue), with excellent quantitative agreement
with the ideal case (yellow dotted curves) al-
ready at V' = 8J up to all investigated evolution
times, indicating robust scarring dynamics.

It is interesting to note in the case of robust
scarring (V' 2 8J) that the period of oscillation
for the electric flux (6a) is roughly the same as
that of the fidelity (5), but the chiral conden-
sate (6b) has half the period of the latter. The fi-
delity revivals indicate that the wave function is
returning very close to its initial state |vac). How-
ever, in-between two revivals, the wave function
very closely approaches the second degenerate
vacuum |vac), which corresponds to an infinites-
imally small fidelity in the middle of two consec-
utive revivals. Since the electric flux is the or-
der parameter associated with the spontaneous
breaking of a global Z; symmetry in this model,

it is at a local maximum when the wave func-
tion approaches the second vacuum |vac), itself
of maximal order (see Fig. 1). When the fidelity
revives, however, the order parameter is again at
a local minimum, corresponding to the vacuum
|[vac), which has minimal order and in which
the system was initially prepared. On the other
hand, the chiral condensate is not an order pa-
rameter, and therefore need not have the same
period as the fidelity. Instead, we find that the
chiral condensate has half the period of the lat-
ter. This makes sense when noticing that the
matter-field configuration must be the same for
both vacua |vac) and |vac) (zero chiral conden-
sate), as shown in Fig. 1. As such, when the wave
function is near the second vacuum, it must give
rise to a local minimum in the chiral condensate,
just like at the initial state, but the chiral con-
densate must also be at a local minimum when
it goes back to the first vacuum. This therefore
requires the chiral condensate to have double the
frequency of the fidelity and electric flux.

We now investigate the connection between
the robustness of scarring and the stability of
gauge invariance in the dynamics of this quench.
For that purpose, we compute the gauge viola-
tion

X(t) = 5 2 (WO (G = g™ ), (7)

the dynamics of which are shown in Fig. 2(d).
We recall here that we work in the gauge sector
g}ar = 0, Vj. In all cases, one can show through
time-dependent perturbation theory [83] that the
gauge violation (7) grows oc A\?t? at early times
in the presence of errors, A = 0.5J. Without
any protection, the gauge violation grows until
it plateaus into a maximal-violation steady state
at a timescale o< 1/\. Once the gauge protection
is turned on, however, we see that beginning at
a timescale < 1/V there is a suppression of the
value of this plateau o< A?/V?, as can be derived
in degenerate perturbation theory [83]. The be-
havior of the gauge-violation dynamics shows
that the robustness of scarring is directly con-
nected to a stable gauge symmetry.

2.2 Detuned scarring

In a recent ultracold-atom experiment [51], a
tilted Bose-Hubbard optical lattice that maps
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Figure 3: (Color online). Same as Fig. 2 but for a
nonzero-mass quench starting in the charge-proliferated
(polarized) initial state. The qualitative picture remains
unchanged.

onto the U(1) QLM in the physical sector g5 =
0, Vj, has been employed to investigate scar-
ring behavior for a detuned quench starting in
a Mott-insulator state. We shall refer to this as
detuned scarring. This is equivalent to quenching
the charge-proliferated state |CP) in Fig. 1 with
Hamiltonian (1) at nonzero p. The state |CP) is
the ground state of Eq. (1) at ¢ — —oo in the
physical sector.

We perform this quench in our numerical
simulations, where we start in the charge-
proliferated state |CP) and quench it with Hamil-
tonian (1) at p = —0.84.J, which is within the op-
timal range to generate scarred dynamics for this
initial state [51]. We see consistent revivals in the
fidelity dynamics for the ideal case in Fig. 3(a)—
yellow solid curve in inset, yellow dotted curve
in main plot—indicating nonthermal scarred be-
havior. However, as soon as errors are included
(here we set A = 0.5J), the fidelity quickly de-
cays and remains mostly vanishing throughout
the whole time evolution (red dotted curve in

inset). As in the case of its resonant counter-
part, we can make detuned scarring also robust
by introducing the gauge protection scheme in
Eq. (4), the corresponding dynamics of which
are shown in different shades of blue. Even at the
smallest considered value V' = 2.J of the protec-
tion strength, the fidelity displays small revivals
up to relatively long evolution times. Already
at the experimentally friendly value of V' = 16.J,
we find very good quantitative agreement with
the ideal case (yellow dotted curve).

Turning to local observables, we see the same
qualitative picture in the dynamics of the chiral
condensate (6b) in Fig. 3(b). In the ideal case,
it shows persistent oscillations over all accessi-
ble evolution times, in keeping with scarred dy-
namics (yellow dotted curve). In the presence of
errors without protection, the dynamics shows
faster relaxation, with only strongly damped os-
cillations (red solid curve). Upon employing
gauge protection, however, the revivals in the
chiral condensate become prominent again. For
the moderate value of V' = 16J, the quantitative
agreement with the ideal case is very good over
the accessible evolution times. Unlike in the case
of resonant scarring, here we find that the chiral
condensate has the same period as the fidelity.
This lies in the fact that the charge-proliferated
state is nondegenerate. This means that half-
way between two revivals in the fidelity, the
wave function is not required to exhibit the same
matter-field configuration by passing through a
second degenerate state.

Just as in the case of resonant scarring, we find
that the stability of gauge symmetry is directly
connected to the robustness of quantum many-
body scars in this case as well. As shown in
Fig. 3(c), the gauge violation is suppressed into a
plateau of value ox A\?/V? at sufficiently large V/,
and this reflects in the robustness of the corre-
sponding scarring dynamics in the fidelity and
chiral condensate in Fig. 3(a,b).

2.3 Effective Zeno Hamiltonian

The concept of quantum Zeno dynamics, usually
associated with nonunitary dynamics involving
frequent measurements on the system, can also
be employed in the context of strong continuous
coupling, which is unitary and involves adding a
term to the Hamiltonian with a dominant energy
scale [84, 85, 86, 87]. It can then be employed to
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rigorously show that starting in the physical sec-
tor, the quench dynamics under the faulty theory
H = Hy + M\l + V Hg is effectively reproduced
by the Zeno Hamiltonian [69]

Hyz = Hy + NPoH, Py, (8)

where P is the projector onto the physical sec-
tor, up to a timescale < V/(LVp)? in a worst-case
scenario, with 1y an energy term comprised of a
linear sum in J, p, and X [69]. Here, the eigen-
projectors of V Hg effectively split the Hilbert
space into different nonintersecting quantum
Zeno subspaces, between which couplings are
suppressed up to times at least linear in V' [69].

For the particular experimentally relevant [66]
error in Eq. (3), PoH1Py = 0, and therefore the
Zeno Hamiltonian is exactly the ideal theory:
Hy = Hy. This allows the excellent quantitative,
in addition to the qualitative, agreement at suf-
ficiently large V' between the scarring dynamics
under the faulty theory and that under the ideal
theory over the accessible evolution times. How-
ever, we emphasize here that even if PoH1Po #0,
our linear gauge protection scheme will still sup-
press gauge violations all the same, except that
the effective Zeno Hamiltonian will then be a
renormalized version of Hy.

It is to be noted here that while the concept of
quantum Zeno dynamics is known to stabilize
gauge theories [69], it has hitherto been an open
question as to whether also highly fine-tuned
phenomena such as quantum many-body scars
can be protected under this scheme. Our results
have resolved this question, showing that exper-
imentally feasible single-body gauge terms such
as those in Eq. (4) can make scars robust up to all
experimentally relevant timescales. Indeed, the
evolution times we access in our numerical sim-
ulations are similar to or even longer than those
achieved in modern synthetic quantum matter
setups observing scars [88, 51].

3 Z, lattice gauge theory

Let us now turn our attention to another model
that has received a lot of recent theoretical
[89, 62, 90, 91, 92, 93] and experimental [64, 65]
attention, the Z, lattice gauge theory (LGT). In
(14 1) dimensions, it is described by the Hamil-

tonian

L—1
= Z [J(b;‘%j,jﬂbjﬂ +He) —h6j;.4], (9)
j=1

where IA)}, b; are the creation and annihilation op-
erators of hard-core bosons onssite j, respectively,
with boson-number operator n; = lA);-lA)j, J de-
scribes the hopping processes mediated by the
gauge field 67 ., a Pauli matrix, which resides
on the link connecting the two nearest-neighbor
sites j and j + 1, and h is the strength of an ef-
fective electric field 67 i1 also a Pauli matrix,
on this link, imparting dynamics on the gauge
field. Here, we further fix the bosonic density at
half-filling n = N/L = 1/2, with N = L/2 the
number of bosons and L the number of lattice
sites. The Hamiltonian (9) commutes with the
local generators of the Z; gauge symmetry,

A

Gj = Af—l,j(*l)n Afﬁ-l (10)

Gauge-invariant states satisfy Gj lp) =+ 10),ie.,
there are locally only two possible background
charges g; = £1 corresponding to the underly-
ing Z; gauge symmetry.

Equation (9) can be rewritten in terms of
gauge-invariant local spin operators as [90]

H = Z [ Gi1 = Xjo15 201X 41542)

— hXj 41|, (11)

where
X]}J'Jrl = A;C,j—&—lv (12a)
Zjjr = (08 = 0))6%, (bF, ) +bj41).  (12D)

Notice that the relation n; = (I—Xj_lijj7j+1)/2
holds, and therefore the number of bosons in
Hamiltonian (9) is equivalent to the number of
domain walls in the Hamiltonian (11), which
we keep as a conserved quantum number cor-
responding to a global U(1) symmetry.

Upon defining the model on a dual lattice
where the links are represented by sites, and
upon a spin-basis rotation (z <> z), the Hamilto-
nian in Eq. (11) becomes exactly the same model
considered in Ref. [55]. Here, two towers of
quantum many-body scars have been derived,

56) = i (@2, 03
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Figure 4: (Color online). Sample product states (4 out
of 35 for the system size we use, L,, = L = 12 lat-
tice sites and L, = L — 1 = 11 gauge links with open
boundary conditions), an equal superposition of which
gives an initial state that will lead to scarred dynamics
when quenched by the ideal Z; LGT Hamiltonian (9).
All these product states live in the target gauge sector
g7 = +1,Vj. Each contains three pairs of adjacent
bosons (half-filling) where any two pairs of bosons are
separated by at least one empty lattice site.

with k = 1,2, [QY) = [,,4,...,]), [02) =

1,11, and Z;,4 ‘Qk> = (~1)* ‘Qk> The
parameter m refers to the number of magnons,
defined as the number of spins-1 in ‘Qk >, and
it automatically fixes the number of domain
walls (or bosons) through the relation m = 2N.
In the case of open boundary conditions as
we adopt in this work, N'(L,m) = (“=™71),

m

(@HT =3, ff’f_lc};"“ f’ﬁrl, where j runs from the

second to the second last link, and «a;5) = +,
67 = (67 £i6}) with Pf = [1+ (-1)"Z;)].
Upon imposing Gauss’s law G ) = g5 |),
the states (13) automatically become quantum
many-body scars for the Hamiltonian (9). By
looking at the structure of such a state in addi-
tion to the constraints imposed by Gauss’s law,
Eq. (13) describes quantum states where pairs of
bosons sitting in nearest-neighbor sites can never
reach an interparticle distance smaller than two
lattice sites; see Fig. 4, where we show a few sam-
ples product states. In total there will be 35 such
product states for the system size we use in this
paper (L = 12 sites and 11 gauge links) in the
target sector ¢ = +1.

Preparing our system in an initial state [¢p)
that is an equal superposition of these product
states, and quenching with Eq. (9) at J = 1 and
h = 0.3.J, we find that scarring behavior is ev-
ident in the dynamics of the fidelity, shown in
Fig. 5(a) as a yellow dotted curve in the main
plot, and a yellow solid curve in the inset. It is to
be noted that the scarring here is not as promi-

T o ‘ : " ideal
@) N V-
< ™ —_—V =2
€l —_—)] =2
01 I 0.0 H —/J = 2"
= ol
Na 0 5 10 47 15 20 25 30
v h/J =03
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Figure 5: (Color online). Restoring scarred dynamics
in the Zy LGT in the presence of experimentally rele-
vant errors (14) by employing the linear gauge protec-
tion scheme given in Eq. (17), based on the principle
of the local pseudogenerator given in Eq. (15). (a) Fi-
delity dynamics shows nonthermal revivals in the ideal
case (yellow dotted curve in main plot, yellow solid curve
in inset), but in the presence of unavoidable errors, the
revivals vanish and the behavior of the fidelity is ther-
mal (red dotted curve in inset). Linear gauge protection
at moderate values of the protection strength qualita-
tively restore nonthermal revivals in the fidelity dynamics
(different shades of blue), albeit they are quantitatively
different from the ideal case due to a renormalization of
the gauge theory (see text). (b) The electric flux exhibits
persistent oscillations in the ideal case, which vanish in
the presence of errors. Linear gauge protection qualita-
tively restores these persistent oscillations, indicative of
robust scarred dynamics. (c) As in the case of the U(1)
QLM in Sec. 2, the robustness of scars in the presence
of linear gauge protection is directly connected to the
suppression of gauge violations.

nent as in the case of the U(1) QLM discussed
in Sec. 2, and this has already been shown to be
the case in Ref. [56]. Nevertheless, the behavior
of the fidelity shows clear nonthermal revivals,
a hallmark of scarred dynamics.

Inspired by a recent implementation of a build-
ing block of Eq. (9) in an ultracold-atom experi-
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ment [65], we introduce the gauge-breaking error
term

L
Z { [bTbﬂH 7710] jo1 T 1205 541) + He }

j=1
+ (n3iy = maitj41)55 4 (14)

where the coefficients 7; = 0.5110, 2 = —0.4953,
n3 = 0.7696, and 74 = 0.2147 are determined by
an optimal value of a dimensionless driving pa-
rameter in the Floquet setup of Ref. [65]. We
emphasize that we are not driving our system,
but only performing global quenches. The aim
of the Floquet setup employed in the experiment
of Ref. [65] was merely to obtain an effective Flo-
quet Hamiltonian in the form of Eq. (9), but sub-
leading orders in Floquet theory lead to errors
such as those of Eq. (14).

Upon quenching by Hy + A, with A = 0.5,
we see that the fidelity quickly decays and re-
mains vanishing in value up to all accessible
evolution times, indicative of thermal behavior,
as shown in the inset of Fig. 5(a). This shows
the pernicious effect of such errors, even when
they are perturbative. It is therefore crucial to
protect against such gauge-breaking processes
by the introduction of an experimentally feasi-
ble technique. However, just by looking at the
local generator (10), one notices that it is experi-
mentally quite challenging to implement, being
a three-body term. In contrast, we recall that the
local generator of the U(1) QLM is composed of
only single-body terms; see Eq. (2).

This problem can be resolved by employing a
local pseudogenerator (LPG) [70],

VIG == 5—?_17‘7'6'};]‘_’_1 + 2ﬁ], (15)
which is composed of single and two-body
terms, and acts identically to G; of Eq. (10) in
the target sector, but not necessarily outside of it:

W |6)

One can then utilize the concept of quantum
Zeno subspaces by employing the linear protec-
tion scheme [70]

=|¢) <= Gilp)=|¢).  (16)

—1) 45

VHy = vz W

J

W;. (17)

At sufficiently large V' and when starting in a
state in the target sector, quenching with the

faulty Hamiltonian H=Hy+\H,+VH w gives
rise to the effective Zeno Hamiltonian of the same
form as Eq. (8), but with Hy given in Eq. (9), \H;
given in Eq. (14), and where P, is the projec-
tor onto the target gauge sector. However, un-
like the errors (3) in the case of the U(1) QLM,
the errors (14) do not satisfy PyH,Py = 0, since
they also include gauge-invariant processes. The
term Py H, Py will project out all gauge-breaking
processes in Hj, but keep the gauge-invariant
ones in the Zeno Hamiltonian, thereby renor-
malizing the Z, gauge theory. However, we em-
phasize that these renormalizing terms, being
gauge-invariant, preserve the Z, gauge symme-
try of Hy, are short-range, and are qualitatively
similar to terms found in H,.

The effect of this renormalization is seen in the
corresponding fidelity dynamics of Fig. 5(a) for a
quench under the faulty theory H = Hy+\H, +
V Hyy (shades of blue). Even though we find that
already at small values of V' the fidelity again
exhibits nonthermal revivals, the latter converge
with V toarevival profile quantitatively different
from that of the ideal theory, although qualita-
tively as nonthermal. Nevertheless, it is impres-
sive that scarred dynamics is still robust despite
this renormalization, and we clearly see its sig-
nature in the fidelity, which is a global quantity
quite susceptible to errors.

We now look at the corresponding dynamics
of the electric flux, which for the Z5 LGT is de-
fined as

1

(W) 6541 l0@),  (18)

1

1 L

.
Il

with |1 (t)) = et |¢)y), and where [t) is the
initial scar state. The result is shown in Fig. 5(b).
Whereas in the ideal case we see persistent oscil-
lations up to all accessible evolution times, upon
introducing the errors (14) at A = 0.5J with-
out protection, the dynamics equilibrates rather
quickly and the oscillations are damped, indica-
tive of expected thermalization. Persistent oscil-
lations are revived upon utilizing the linear pro-
tection (17) in the LPG (15), which at sufficiently
large V' converges to a scarred dynamics that is
not quantitatively identical to the ideal case, but
qualitatively similar and exhibiting persistent os-
cillations. We note that we do not compute the
matter density here since it is always constant at
0.5 due to the global U(1) symmetry of the Zy
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LGT.

Finally, we look at the gauge violation (7) with
g = +1, Vj, in Fig. 5(c). We see a clear con-
nection between a suppressed gauge violation
and a more robust scarring dynamics. How-
ever, the suppression of the gauge violation does
not seem as effective here as in the case of the
U(1) QLM, and we attribute this to the choice
of noncompliant sequence [6(—1)7 + 5]/11 used.
The gauge-violation plateau does not settle into
a value o< A?/V2 for the range of values we con-
sider for the protection strength. However, as we
show in the Appendix A, for different newly de-
veloped protection schemes, this controlled be-
havior can also be achieved.

4  Conclusion

In summary, we have demonstrated that recently
proposed experimentally feasible linear gauge
protection schemes render scarred dynamics ro-
bust in two paradigmatic systems, the U(1) quan-
tum link model and the Z, lattice gauge theory.
This is remarkable because fine-tuned phenom-
ena such as quantum many-body scars require
persistent revivals in the fidelity itself, which in-
dicate that the wave function is localized in a
cold subspace containing the initial state. Such
a global quantity as the fidelity is more suscepti-
ble to errors, but our numerical simulations show
that it is nevertheless well-restored through the
considered gauge protection schemes. We note
that the Z, scars are reproduced qualitatively,
not quantitatively, in the presence of certain
experimentally relevant errors that renormalize
the gauge theory, showing the generality of our
approach in stabilizing a unique physical phe-
nomenon.

In addition to the fidelity, we have also com-
puted local observables such as the electric
flux and the matter density (chiral conden-
sate), which under ideal dynamics exhibit per-
sistent oscillations up to all accessible evolution
times. Even though unprotected errors wash
out these oscillations, linear gauge protection at
experimentally feasible values of the protection
strength can restore these persistent oscillations,
and in some cases does so quantitatively relative
to the ideal case.

We have also computed the gauge violation
dynamics, which demonstrate a direct connec-

tion with the restored scarring behavior. The
more gauge violations are suppressed, the bet-
ter restored is the scarring dynamics. This im-
plies that leakage out of the target gauge sector
exposes its quantum many-body scars to other
subspaces in the total Hilbert space that couple
nontrivially with the scars, leading to thermal
behavior when no protection is employed. We
have explained our findings with the concept
of quantum Zeno subspaces, through which the
target sector is energetically isolated from other
gauge sectors up to times at least linear in the
protection strength. As our results demonstrate,
scarring dynamics is robust under linear gauge
protection at moderate values of the protection
strength up to timescales that are relevant to
modern synthetic quantum matter implementa-
tions of gauge theories.

Given the experimental feasibility of the lin-
ear gauge protection schemes that we have em-
ployed in this work, we expect our results to
be directly implementable in modern quantum-
simulation realizations of lattice gauge theo-
ries, including ultracold-atom optical lattices
and Rydberg-atom setups with optical tweez-
ers. Furthermore, we expect our linear gauge
protection schemes to apply equally well to re-
cently discovered quantum many-body scars in
the spin-S U(1) quantum link model for S > 1/2
[94].
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Figure 6: (Color online). Dynamics of the mid-chain
entanglement entropy in the U(1) QLM. (a) Quench of
the vacuum state with H = ﬁ0+Aﬁ1+VfIG at u =0,
with Hy, AH1, and V He; given in Egs. (1), (3), and (4),
respectively. For reference, we include the result for the
quench of the charge-proliferated (polarized) state with
Hy at ;o = 0 (green solid curve). (b) Quench of the po-
larized state with H = ﬁ0+/\fll+VﬁG at u = —0.84J,
and that of the vacuum with Hj at u = —0.84J. In
both cases, linear gauge protection at sufficiently large
V reproduces the localized scarred dynamics of the ideal
case (yellow dotted curve), which exhibits an anoma-
lously low and slowly growing mid-chain entanglement
entropy over the considered time-evolution window. In
our numerics, we have employed open boundary condi-
tions with L, = L = 10 mattersitesand Ly, = L—1 =9
gauge links.

part of and supported by Provincia Autonoma
di Trento, the ERC Starting Grant StrEnQTh
(project ID 804305), the Google Research Scholar
Award ProGauge, and Q@TN — Quantum Sci-
ence and Technology in Trento.

A Supporting results

Here, we provide supplemental numerical re-
sults in support of the main conclusions of our
work.

A.1 Mid-chain entanglement entropy

We now consider the behavior of the mid-
chain entanglement entropy Sy,/»(t), shown in
Fig. 6(a,b) for the cases of resonant and detuned
scarring, respectively, in the U(1) QLM (1) in the
presence of experimentally relevant errors (3)
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10°
_f©
=
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—V/ = 2!
104 \ \ \ \ ==
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Figure 7: (Color online). Same as Fig. 5 but with the
errors of Eq. (19) instead of those in Eq. (14). The
qualitative picture is the same, but we further achieve
much better quantitative agreement with the ideal case
at larger values of V', because now PoH, Py = 0.

and with linear gauge protection (4).

In the ideal case (A = V = 0), we see that
the scarred dynamics (yellow dotted curve) ex-
hibit anomalously low mid-chain entanglement
entropy with significantly slower growth com-
pared to the case of the same quench but starting
in a nonscar initial state (green solid curve) such
as the charge-proliferated state in Fig. 6(a) and
the vacuum state in Fig. 6(b).

Upon introducing errors (A = 0.5J) and with-
out protection (V' = 0), we see a fast growth in
the mid-chain entanglement entropy even when
starting in the correct initial scar state. How-
ever, upon turning on the linear gauge protec-
tion, we find that the entanglement entropy is
suppressed, and its growth is slowed down, in-
dicating that scars are trapping the dynamics in
a low-entropy subspace. At a moderate value
V' = 16J of the protection strength, we already
find excellent quantitative agreement with the
ideal case for all evolution times in Fig. 6.

We note that due to numerical overhead, the
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Figure 8: (Color online). Same as Fig. 7, but employing
the Stark gauge protection term (20) instead of Eq. (17).
The quantitative agreement with the ideal case is excel-
lent for both (a) the fidelity and (b) the electric flux, but
(c) additionally we now see a controlled gauge violation
suppressed oc A2/V2.

results of Fig. 6 are computed for an open chain
with L, = L = 10 matter sites and Lg=L-1=
9 gauge links with open boundary conditions.

A.2 Different kinds of gauge-breaking errors

In Sec. 3, we have considered the errors (14),
which are inspired from a recent ultracold-atom
experiment based on a Floquet setup used to en-
gineer a building block of a Z, LGT [65]. As
we have explained, these errors contain also
gauge-invariant processes, which renormalize
the emergent gauge theory due to quantum Zeno
dynamics up to timescales at least linear in V.
However, in other setups different errors may
arise. Let us now choose a different error of the
form

R L
AHp =)
J

1
(b;r»bj.g_l + bjb;[_H + (Afij_,_l). (19)
1

This corresponds to the gauge-noninvariant pro-
cesses of matter annihilation or creation with-
out the simultaneous change in the electric-field
configuration required to satisfy Gauss’s law,
and vice versa. In particular, this error satis-
fies ﬁoﬁ Py = 0, meaning that the emergent
Zeno Hamiltonian is the same as the ideal the-
ory up to an error of the order O(tVZL?/V). We
now repeat the quench results of Fig. 5 but with
the error of Eq. (19), with the corresponding re-
sults provided in Fig. 7. We find that in this
case the quantitative agreement of the fidelity
and electric-flux dynamics at sufficiently large V/
with those of the ideal case is much better than in
Fig.5. However, the gauge violation still does not
show a controlled suppression oc A?/V?, and this
may be an issue with the protection scheme (17)
itself. Indeed, there are various ways of choosing
the LPG coefficients in such linear gauge protec-
tion terms, and different coefficients will achieve
a better partition of the gauge sectors into quan-
tum Zeno subspaces [36]. In the following, we
shall explore a recently introduced protection
scheme that solves the problem and leads to a
controlled gauge violation at sufficiently large
yet experimentally feasible values of V.

A.3 Stark gauge protection

Recently, Stark gauge protection (SGP),

VHscp =V > jWj, (20)
J

has been introduced, showing superior perfor-
mance compared to Eq. (17) in stabilizing and
enhancing disorder-free localization in the U(1)
QLM and Z, LGT [38]. Even though the states
considered in Ref. [38] are superpositions over
an extensive number of gauge sectors rather than
fine-tuned scar states in a target gauge sector, it
will be interesting to investigate the power of
SGP in protecting scarred dynamics. We there-
fore repeat the quench of Fig. 7 but with SGP in-
stead of Eq. (17), and present the corresponding
results in Fig. 8. The quantitative agreement in
the fidelity and electric-flux dynamics with those
of the ideal theory at a given value of V is signif-
icantly better under SGP compared to Eq. (17),
albeit the qualitative performance is the same.
However, the dynamics of the gauge violation
is qualitatively far better compared to Eq. (17),
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where under SGP we see a controlled plateau
oc A2/V? at sufficiently large values of V.
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