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Magnetically mediated hole pairing in 
fermionic ladders of ultracold atoms

Sarah Hirthe1,2 ✉, Thomas Chalopin1,2, Dominik Bourgund1,2, Petar Bojović1,2, 
Annabelle Bohrdt3,4, Eugene Demler5, Fabian Grusdt2,6,7, Immanuel Bloch1,2,7 & 
Timon A. Hilker1,2

Conventional superconductivity emerges from pairing of charge carriers—electrons 
or holes—mediated by phonons1. In many unconventional superconductors, the 
pairing mechanism is conjectured to be mediated by magnetic correlations2, as 
captured by models of mobile charges in doped antiferromagnets3. However, a precise 
understanding of the underlying mechanism in real materials is still lacking and  
has been driving experimental and theoretical research for the past 40 years. Early 
theoretical studies predicted magnetic-mediated pairing of dopants in ladder 
systems4–8, in which idealized theoretical toy models explained how pairing can 
emerge despite repulsive interactions9. Here we experimentally observe this long- 
standing theoretical prediction, reporting hole pairing due to magnetic correlations 
in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders 
with mixed-dimensional couplings10, we suppress Pauli blocking of holes at short 
length scales. This results in a marked increase in binding energy and decrease in pair 
size, enabling us to observe pairs of holes predominantly occupying the same rung  
of the ladder. We !nd a hole–hole binding energy of the order of the superexchange 
energy and, upon increased doping, we observe spatial structures in the pair 
distribution, indicating repulsion between bound hole pairs. By engineering a 
con!guration in which binding is strongly enhanced, we delineate a strategy to 
increase the critical temperature for superconductivity.
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Unconventional superconductivity in materials such as heavy fermion 
systems11, iron pnictides12, layered organic materials13, cuprate super-
conductors14 and twisted bilayer graphene15, arises in the vicinity of 
magnetically ordered states. A common mechanism consisting of 
dopant pairing mediated by magnetic fluctuations is thus believed to 
be at the heart of these superconducting states2, but a detailed under-
standing of the underlying physics remains a key problem in quantum 
many-body physics.

A promising tool to explore strongly correlated quantum systems is 
analogue quantum simulation using ultracold atoms16. Recent experi-
mental progress investigating doped antiferromagnets has been made 
using single-site resolved fermionic quantum gas microscopes17–22, 
which provide microscopic real-space correlations complementary to 
the spectroscopic and transport measurements performed in solids. 
They typically simulate the Fermi–Hubbard model, consisting of itin-
erant spin-1/2 fermions within a single band of a periodic lattice. Even 
though the two-dimensional Fermi–Hubbard model displays many 
characteristics also found in the high-temperature (high-TC) super-
conducting cuprates3, the existence of pairing and superconductivity 
in this model remains a subject of debate23,24.

To shed light on the pairing mechanism in doped Mott insulators, 
several theoretical studies considered doped Fermi–Hubbard and 

t−J ladders (see Eq. (1))4–6,8,25, in which accurate numerical solutions 
can be obtained using the density-matrix renormalization group 
(DMRG) method26. In solid-state experiments, ladder materials have 
also been shown to display superconductivity27–29. A paradigmatic case 
for theoretical investigation, which exhibits large binding, is the regime 
in which interchain magnetic exchange is larger than single-particle 
interchain hopping7. These parameters could, however, not be justified 
microscopically for condensed matter systems and are unphysical in 
the framework of a pure Fermi–Hubbard system (Methods). The key 
motivation for our work was to provide an experimental realization of 
this system that has been considered only a theoretical abstraction. 
We achieve this by extending Fermi–Hubbard ladders at large interac-
tions with a potential offset, effectively realizing a mixed-dimensional 
(mixD) system10.

The essential physics of our experiment is captured (Methods) by 
the t−J Hamiltonian
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for nearest-neighbour sites i, j on the same leg (rung). ĉi σ,
†  (ĉi σ, ) denotes 

the creation (annihilation) operator of a fermion on site i with spin 
σ = ↑,↓; ˆiS  and n̂i are the on-site spin and density operators and h.c. 
means Hermitian conjugate. The mixD system is described by equa-
tion (1) for t) = 0, which we realize by suppressing tunnelling, but not 
spin exchange, using a potential offset along the rungs. We also realize 
the bare Fermi–Hubbard system without additional potential offset 
and t) > J) (in the following this is denoted as a standard ladder).

The pairing of holes in a model exhibiting only repulsive interac-
tions30,31 can be understood from the competition of hole delocalization 
and spin order along the rungs, as illustrated in Fig. 1a. If a hole moves 
through the system, it displaces these spins creating an energetically 
unfavourable magnetic configuration. Therefore, a single hole becomes 
dressed by a cloud of disturbed correlations and forms a polaron with 
reduced mobility19,20. If a second hole moves along with the first hole, it 
can restore the order in the spin sector, causing the two holes to form 
a highly mobile bound pair.

However, this process only dominates in the mixD case, whereas in 
the standard ladders t) is the dominating energy scale. In the latter, 
binding competes with the repulsion of holes due to Pauli blocking, 
rendering tight pairs energetically unfavourable (Fig. 1b). Pairing 
between holes can still occur, but only with a small binding energy 
Eb ≪ J)

32,33 and at large pair sizes34. By realizing mixD ladders, we strongly 
suppress the Pauli repulsion between holes along the rung (Fig. 1b), 
thus engineering a system with strong hole attraction. This binding 
mechanism is protected by the spin gap and thus persists up to high 
temperatures of the order J).

We realize ladders of length L = 7 in our Fermi-gas microscope with 
independently tunable optical lattices and single-site resolved optical 
potential shaping. The mixD t−J system is derived as an effective model 
from fermionic atoms in a two-leg ladder-shaped lattice potential 
described by the Hubbard parameters U (on-site interaction), t t, )

∼ ∼  
(tunnelling amplitudes) and with a potential offset ∆ between the two 
legs. For large U t U t/ , / )

∼ ∼ , the system is effectively described by the t−J 
model and its distinct parameters as in equation (1). For ∼U ∆ t> > ) ,  
tunnelling along the rungs is suppressed to t) = 0, whereas tunnelling 
along the leg is unaffected, t t= ∼ , and spin exchange is given by 
J t U ∆ t U ∆= 2 /( + ) + 2 /( − )) )

2
)
2∼ ∼ (refs. 35,36) and J t U= 4 /

2∼ .
Our experiment begins by preparing a balanced mixture of the 

lowest two hyperfine states of 6Li, which we load into an engineered 
ladder geometry similar to our previous work37. We first load atoms 
into uncoupled legs of equal potential and then apply an optical 

potential offset ∆ to one of the legs using light shaped by a digital 
micromirror device (DMD). We subsequently connect both legs 
by slowly lowering the lattice potential in the rung direction (for 
details see Methods). The offset between the two legs prevents the 
atoms from tunnelling along the rungs, such that we end up with 
roughly equally populated legs. Occupation readout is achieved with 
single-site spin and charge resolution38. To highlight the influence 
of Pauli repulsion on hole pairing, we compare the mixD ∆ ≈ U/2 case 
with the standard ladder system at ∆ = 0. Both systems are realized 
in the strong rung-singlet regime, with J)/J∥ = 21(5) in the mixD case 
with enhanced spin exchange and J)/J∥ = 16(3) in the standard lad-
ders, where numbers in parentheses denote the uncertainty on the 
last digit. The mixD system is governed by the energy scales of rung 
spin exchange and leg tunnelling with t∥/J) = 0.7(1). The strong rung 
coupling keeps the spatial extent of hole pairs small while staying in 
the regime in which spin correlations and hole motion compete on 
a comparable energy scale. For larger t∥, the binding energy is even 
expected to grow10 but becomes harder to observe in systems of 
limited sizes because of increased pair sizes.

Figure 1c shows the average density of the mixD system. Quantum  
fluctuations, which are biased towards the lower leg, as well as prepara-
tion imperfections lead to a small residual density imbalance between 
the two legs. For the data analysis (except Fig. 1c) we only take into 
account ladders without double occupancies (doublons), such that 
holes arising from doublon–hole fluctuations do not contribute to our 
observations. Unless otherwise mentioned, we furthermore restrict 
the data to realizations with two to four holes per ladder and limit the 
occupation imbalance between the legs to one hole.

To probe the pairing of holes in our system, we evaluate the hole–
hole correlator
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with normalization Nr  the number of sites i, j at distance r and n̂h
i  the 

hole-density operator at position i . The function rg ( )h
(2)  is a connected 

two-point density correlator that is negative if the presence of a hole 
at position i makes it less likely to find a second hole at distance r  
and positive if it makes it more likely. The correlator is bounded  
by g n−1 ≤ ( ) ≤ (1/ − 1)h

(2)
hr  with hole density nh = Nh/2L, where Nh is the 

number of holes in the system.
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Fig. 1 | Hole pairing in mixD ladders. a, Binding mechanism in the t−J ladders. 
Depicted are ladder systems with spin exchange J) ≫ J∥ that form strong singlet 
bonds along the rungs. When a single hole from (i) moves through the system, 
as illustrated in (ii), it breaks the spin order by displacing the singlet bonds.  
(iii) The magnetic energy cost can be avoided if the second hole restores the 
spin order by moving together with the first hole. b, Pauli blocking of holes. 
Owing to their fermionic nature, holes repel each other along all directions 
according to the tunnelling amplitudes t) and t∥. Close-distance hole pairs are 

thus energetically unfavourable. In mixD systems, a potential offset ∆ between 
the two legs suppresses tunnelling t) and Pauli repulsion only occurs along the 
legs. Holes on the same rung can thus benefit from the binding mechanism, 
forming tightly bound pairs with a large binding energy. c, Average density of  
the mixD L = 7 ladder system with ∆ ≈ U/2. d, Single experimental shot with  
two holes on the same rung, exemplifying the bunching of holes in the mixD 
system. a.u., arbitrary units.
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By evaluating the correlation for holes in opposite legs r = (d, 1), we 
observe a strong positive signal at distance ∣d∣ = 0 in the mixD system 
of g (0, 1) = 0.15(2)h

(2) . This corresponds to two holes bunching on the 
same rung (Fig. 2a). The fast decrease of correlations for ∣d∣ > 0 indicates 
that the holes are in a tightly bound state. We find a minimum at ∣d∣ = 1, 
which we attribute to the effect of additional holes in the system. These 
holes are repelled from the hole pair (see also Fig. 4), leading to the 
weak modulation at larger distances which dominates over the extent 
of the hole pair at short distances.

By contrast, in the standard ladders of t) > J), a strong repulsion of 
holes from the same rung is the dominant feature leading to a negative 
g (0, 1)h

(2)  (Fig. 2a). This shows that tightly bound pairs are energetically 
unfavourable in the standard ladder system.

The attraction (mixD) and repulsion (standard) of holes are also 
visible in the occurrences of hole distances. In Fig. 2b we plot the  
histograms of holes found at a mutual distance d as described by 
δ d n n n( ) = ∑ (& ^ ^ ' − )dh − =( ,1)

h h
h
2

i j i j , where subtracting the global hole density 
nh removes the uncorrelated distribution. These excess events δh(d) 
can be interpreted as the likelihood of the hole distance d occurring 
beyond the probability of a random distribution.

The hole–hole correlator on the same leg (Fig. 2c) shows the effect 
of hole mobility in the mixD system. It exhibits a minimum at nearest 

neighbours caused by the Fermi repulsion of holes due to the leg tun-
nelling  being proportional to t∥ and a broad maximum around ∣d∣ = 4. 
This is the largest mutual distance the two holes can assume without 
occupying the edge of the system, which is energetically expensive 
owing to the hard walls blocking hole movement.

We investigate the magnetic origin of the pairing mechanism using 
the spin correlator
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where & 's denotes the expectation value for singly occupied sites.  
In the doped mixD system we find strong nearest-neighbour spin cor-
relations along the rung of C(0, 1) = −0.38(1), indicating a high singlet 
fraction, as well as a significant coupling of these bonds along the leg 
with nearest-neighbour spin correlations of C(1, 0) = −0.10(1). Resolv-
ing the rung spin correlations through the number of holes in the sys-
tem shows a decrease in correlation strength with growing hole 
number (Fig. 2d). This can be explained by unpaired holes breaking 
singlet bonds because of their mobility along the ladder. The standard 
system, which does not display pairing, shows a more rapid loss of 
correlation strength compared to the mixD system, in which a signifi-
cant fraction of holes is bound in pairs. This behaviour is directly related 
to the magnetic origin of pairing, as illustrated in Fig. 1. We attribute 
the lower correlation strength of the mixD system in the absence of 
holes to heating caused by the application of the tilt. The much stronger 
effect of hole doping on spin correlations is, however, unaffected by a 
small difference in temperature. The slight alternating behaviour of 
C(0, 1) at low hole numbers in the mixD system, in particular the strong 
spin correlations for two holes, is reminiscent of the low-temperature 
behaviour for which rung pairs are dominant over thermal excitations 
and only odd hole numbers lead to unpaired holes (Supplementary 
Information).

We estimate the binding energy of the paired state in the mixD sys-
tem from the experimental data, by comparing it with an analytically 
tractable effective Hamiltonian. The approach is based on the assump-
tion that the system is reasonably close to the uncoupled rung limit 
and the bound state can thus be described by two holes on the same 
rung (for details on the calculation, see Methods). Using the measured 
and detection-fidelity-corrected probability to find a rung pair and 
our estimated temperature of kBT = 0.77(2) J) (Methods), we find an 
experimental binding energy of

E J= 0.82(6) .b )

This is consistent with DMRG calculations giving a binding energy 
of E J= 0.81 )b

theo  and boosts the binding energy by an order of magnitude 
compared with standard ladders at the same interaction strength and 
with symmetric coupling (see also Methods). Such a substantial 
increase in pairing strength is an essential ingredient in the quest for 
higher temperature superconductivity.

To gain a better understanding of the system dependencies, we probe 
the influence of temperature and doping on the rung pairing strength. 
In our experimental regime, nearest-neighbour spin correlations along 
the rung stand in strong direct relation with the temperature of the 
system and can therefore be used as an effective thermometer. A map-
ping between the two is obtained by comparing average nearest- 
neighbour spin correlations to finite-temperature matrix product state 
(MPS) calculations (Methods). We observe that the rung hole–hole 
correlation g (0, 1)h

(2)  increases with increasing spin correlation strength 
(Fig. 3a), and the onset of pairing occurs in the experimental system 
around temperatures of the order of the spin exchange J). The highest 
correlations reached, g = 0.3(1)h

(2) , are still smaller than the theoretically 
achievable values of g > 1.2h

(2)  for very low temperatures, showing the 
temperature limitations of the experiment. The repulsion of the 
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Fig. 2 | Hole pairing in mixD versus standard ladders. a, Hole–hole correlator 
g d( , 1)h

(2)  between sites on opposite legs (as illustrated in the inset) for mixD 
(blue) and standard (brown) ladders with two to four holes per ladder. The strong 
correlation at d = 0 corresponds to two holes on the same rung. Correlations at 
this distance are strongly enhanced in the mixD system (pairing) and strongly 
suppressed in the standard ladders (repulsion). The blue line is calculated  
using MPS at finite temperature kBT = 0.8 J) and corrected by the experimental 
detection fidelity (Methods). b, Excess events δh(d) of the same data, that is, the 
likelihood of finding holes at distance d compared with the infinite-temperature 
distribution. c, Hole–hole correlation on the same leg g d( , 0)h

(2)  in the mixD 
system, showing that holes repel each other within the same leg. A finite-size 
offset correction has been applied to this subfigure (Methods). d, Spin–spin 
correlations C(0, 1) for spins on the same rung depending on the number of 
holes in the system. The lines represent linear fits. The larger slope indicates 
that the spin order of the standard system (brown) is more strongly disturbed 
by holes than the spin order of the mixD system (blue), where paired holes leave 
the spin order largely unperturbed. The error bars denote one s.e.m. and are 
smaller than the marker when not visible. Error bars in a, c and d are estimated 
using bootstrapping.
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standard system remains mostly constant in our temperature regime, 
as it is governed by the energy scale t) ≫ J), kBT.

To explain the effect of doping on the pair binding, we adjust the 
correlator g h

(2) to compensate for the intrinsic density-dependent 1/nh 
scaling. The resulting correlator g nh

(2)
h does not significantly change 

on increasing the number of holes per leg (Fig. 3b). This is in agreement 
with a system of independent pairs for the mixD system. For the stand-
ard system, hole repulsion is determined by the tunnelling strength t) 
and is therefore also not significantly influenced by density.

We further investigate the behaviour of several pairs, as their inter-
play is a key aspect for the competition between superconductivity 
and charge (density) order23,39. For simplicity, we identify the bound 
state as two holes occupying the same rung. We thus define the pair 
operator n̂x

p which is equal to 1 if both sites of rung x are occupied by a 
hole, and 0 otherwise. Pair interactions are then quantified by the pair–
pair correlator
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in analogy with the hole–hole correlator g h
(2). We evaluate g pair

(2)  on a 
subset of our data in which at least two pairs are present in the system. 
In the case of ladders containing four to five holes (Fig. 4a), we find a 
peak in the correlator at distance ∣d∣ = 4, whereas it peaks at distances 
∣d∣ = 2 and ∣d∣ = 4 for the ladders containing six to seven holes. The pairs 
thus arrange in a spatial structure for which they maximize both their 
mutual distance and the distance to the edges of the system. This repul-
sion between pairs is an indication of the comparably high mobility of 
pairs in mixD settings, which could be further enhanced by increasing 
the leg tunnelling t∥ in larger systems. Such highly mobile pairs can 
potentially reach very high critical temperatures10 and can be an impor-
tant ingredient for high-TC superconductivity.

To investigate the pair interactions numerically, we perform 
finite-temperature MPS simulations on a system with the same param-
eters as in the experiment (L = 7, t∥/J) = 0.7). Here pair interaction is 
directly revealed by the density of pairs n& ˆ 'x

p , which shows strong  
spatial dependence in the low-temperature regime (Fig. 4b) with an 
average distance of ∣d∣ = 4 (∣d∣ = 2) for a system with four (six) holes.  

The presence of sharp edges fixes the phase of the density modulation, 
thus leading to its visibility in the pair density as a direct consequence 
of our open boundary conditions and small system size. Such a modu-
lation of the pair distribution is reminiscent of Friedel oscillations of 
indistinguishable fermions near an impurity40 and of charge-density 
waves41. Larger systems are needed to distinguish between these effects.

In this work, we have demonstrated the direct observation of hole 
pairing in a quantum gas microscope setting. We have realized a para-
digmatic model that reaches hole binding at high temperatures close 
to the spin-exchange energy and small pair size by engineering doped, 
mixD fermionic ladders. We confirm the effective mixD description, 
predicting that the suppression of Pauli repulsion enables the forma-
tion of a bound state.

This allows us to experimentally investigate the pairing mechanism 
based on hole motion and magnetism, thereby emphasizing the rele-
vance of magnetic correlations as a potential origin of the charge carrier 
pairing underlying unconventional superconductivity. Furthermore, 
we have seen signs of significant mobility of the bound pairs through 
their repulsive interaction. Our approach with strongly bound and 
mobile pairs can lead to high critical temperatures and therefore can 
push the current temperature limits of high-TC superconductors10. 
Possible techniques to modify the interplay of kinetic and exchange 
energies in solid-state systems in the spirit of the mixD setting include 
changing lattice geometry and spin polarization42, or controlling kinetic 
energy and the topology of electrons by varying the twist angle in moiré 
systems such as twisted graphene43. Our approach might also be real-
ized in real materials as dynamical superconductivity using Floquet 
engineering to alter the effective exchange interactions44. Within the 
scope of quantum simulations, our technique can be readily extended 
to higher dimensions using bilayer quantum gas microscopes38,45,46, 
and to even higher binding energies and pair mobility in larger sys-
tems at t∥ > J), or stripe formation at higher leg numbers47. Our results 
thus pave the way for the measurement of collective phases of bound 
pairs such as crystallization and superfluidity, and shed light on their 
competition23,39,48,49.
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Methods
Experimental sequence
In each experimental run, we prepare a cold atomic cloud of 6Li in a 
balanced mixture of the lowest two hyperfine states ∣F m= 1/2, = ± 1/2'F . 
For evaporation, we confine the cloud in a single layer of a staggered 
optical superlattice along the z direction with spacings as = 3 µm and 
al = 6 µm, and depths V E= 51s R

s  and V E= 120l R
l , where E h Ma= /(8 )α

αR
2 2  

denotes the recoil energy of the respective lattices (α = s, l), and M is 
the mass of an atom. The atoms are harmonically confined in the 
xy plane and the evaporation is performed by ramping up a magnetic 
gradient along the y direction (see ref. 38). The final atom number is 
adjusted by the evaporation parameters.

We adiabatically load the cloud into an optical lattice in the xy plane 
with spacings ax = 1.18 µm and ay = 1.15 µm. Simultaneously, we apply a 
repulsive potential using a DMD, which both compensates for the  
harmonic confinement of the Gaussian-shaped lattice beams and shapes 
the system into a geometry of four 2 × 7 ladders following the procedure 
described in ref. 37. The DMD is also used to apply a spin-independent 
optical potential offset ∆ between sites along the rung direction. The 
loading is performed in three steps (Extended Data Fig. 1). (1) A first stage, 
in which the two legs of each ladder are nearly disconnected, is reached 
by ramping the lattice depths to V E= 3x

x
R  and V E= 20y

y
R  in 100 ms.  

(2) The optical potential offset ∆ (see Potential offset calibration) is 
applied to one leg of each ladder by instantaneously (<20 µs) switching 
the pattern of the DMD. (3) The lattice depths are ramped linearly to 
their final values V E= 12x

x
R and V E= 6y

y
R in 100 ms.

Interactions between the atoms are set by the s-wave scattering 
length as, which we adjust by applying a magnetic field close to the 
broad Feshbach resonance of 6Li around 830 G. The scattering length 
is increased from as ≈ 350aB during evaporation, with aB being the Bohr 
radius, to as ≈ 1,310aB in the final configuration. The resulting system 
is described by the Fermi–Hubbard model and an additional potential 
offset ∆. Our parameters are the repulsive on-site interaction 
U = h × 4.29(10) kHz, tunnelling t h= × 78(10)∼  Hz and t h= × 303(23))

∼  Hz 
and the offset ∆ ≈ 0.5U or ∆ = 0 depending on the configuration (mixD 
or standard). As ∼ ∼U t U t/ , / ≥ 14) , the system can be effectively described 
by the t−J model (see also ‘From the Fermi–Hubbard to the t−J model’). 
Note that we use ∼ ∼t t,)  for the tunnelling parameters in the Hubbard 
model, and t), t∥ in the t−J model. Along the legs, the tunnel coupling 
is independent of ∆ and is ∼t t h= = × 78(10) Hz, yielding a spin exchange 
of J∥ = h × 5.7(1.5) Hz. Along the rungs, the mixD system (∆/U ≈ 0.5) yields 
t) = 0 and an enhanced spin exchange J) = h × 114(42) Hz. Without the 
potential offset, that is, in the standard system (∆ = 0), tunnelling is 
unaffected, leading to ∼t t h= = × 303(23)) )  Hz and J) = h × 86(13) Hz.

Potential offset calibration
We realize the mixD system by applying a local spin-independent light 
shift ∆ to one of the legs on each ladder. The amplitude is directly propor-
tional to the light intensity, which is controlled by the DMD. Calibration of 
the offset is performed by running the experimental sequence described 
above for different light intensities, and measuring the density of doubly 
occupied sites (doublons) in the system. An increase of doublons is seen 
when ∆ ≈ U, that is, when the lowest band of the upper leg becomes reso-
nant with the interaction band of the lowest leg (Extended Data Fig. 2). 
This calibration was repeated several times throughout data collection, 
with typical shift of the doublon peak of around 10%. We attribute these 
calibration differences to drifts in the beam shape of the light that is sent 
to and diffracted from the DMD, yielding an overall estimation of the 
uncertainty on ∆ of about ±15%. Such uncertainty in ∆ is not critical for 
realizing a mixD setting and mostly influences the value of J).

Suppression of rung tunnelling
The potential offset ∆ t)≫ ∼  between the two legs shifts the energy  
levels between neighbouring sites and thus suppresses tunnelling 

along the rungs47. Doublon–hole pairs, however, become biased in the 
mixD system and appear predominantly as double occupancy on the 
leg with lower potential and corresponding empty site on the upper 
leg. Although in the standard system doublon–hole pairs along the 
rung appear with probability ∼t U∝( / ))

2 (ref. 46), the potential offset in 
the mixD case lowers the energy difference between the singly occupied 
state and the doublon–hole pair to U − ∆. This effect can be seen in the 
density of the mixD system in Fig. 1c. In Extended Data Fig. 3, we plot 
the same data after removing ladders containing double occupancies. 
The density imbalance mostly disappears, indicating minimal tunnel-
ling during preparation.

Detection
The data presented in the main text originate from two types of meas-
urement: (1) charge-resolved and (2) spin-charge-resolved measure-
ments. In both cases, the detection procedure starts by ramping the 
xy lattices to E43 xy

R  within 250 µs, effectively freezing the occupation 
configuration. In the case of spin-resolved measurements (2), a Stern–
Gerlach sequence separates the two spin species into two neighbour-
ing planes of the vertical superlattice, which are then separated by 
21 µm from one another using the charge pumping technique described 
in ref. 38. Finally, fluorescence images are taken using Raman sideband 
cooling in our dedicated pinning lattice with an imaging time of 1 s  
(ref. 50). For a charge-only measurement (1), only one plane is populated 
by atoms, whereas in the case of a fully resolved measurement (2) two 
planes are populated by the two different spin species. The fluorescence 
light of the atoms is then collected through a high-resolution objective 
and imaged onto a camera. For a fully spin-resolved measurement (2), 
the fluorescence of both planes is collected simultaneously and imaged 
on the camera, allowing the reconstruction of the atomic distribution 
of both spins with a single exposure. A charge-only measurement only 
allows the reconstruction of the atomic configuration, without any 
spin information.

The imaging technique and the pumping procedure both impact 
our overall detection fidelity. The imaging fidelity, which takes into 
account atom losses and atom displacement during the imaging pro-
cedure, is estimated by comparing two consecutive fluorescence pic-
tures of the same atomic distribution, and we obtain an average 
imaging fidelity F = 98.7(1)I,1 % and F = 98.2(2)I,2 % per atom for charge- 
only and full-spin-charge resolution, respectively. The pumping fidel-
ity is estimated by comparing the average number of atoms detected 
after pumping to the average number of atoms before pumping, and 
we obtain an average pumping fidelity of F = 97.6(1)P %, taking into 
account the slight discrepancy between I,F  and FI,b. We deduce an over-
all detection fidelity of F F= = 98.7(1)1 I,1 % and F F F= = 95.8(1)2 I,2 P % in 
the case of charge-only and full-spin-charge resolution, respectively.

Data statistics
We have taken approximately 19,000 experimental shots, iterating 
between mixD ∆ ≈ U/2 and standard ∆ = 0. Here 61% of the shots have 
charge-only resolution and 39% have full spin and charge resolution.

The ladders are very sensitive to small drifts in the DMD pattern 
relative to the lattice sites. We thus keep track of the ladder potential 
by continuous automatic evaluation of the charge distribution and 
automatic feedback to the DMD pattern. If the average leg-to-leg 
occupation imbalance of standard ladders exceeds two holes, we 
dismiss the respective set of data due to the uncontrolled drift in the 
potential. For data analysis we then only take into account ladders 
without double occupancies and with a leg-to-leg occupation imbal-
ance of maximally one hole. This leaves us with more than 24,000 
individual ladders, about half of which contain between two and four 
holes (Extended Data Fig. 4a). Most ladders show a magnetization 
∣M z∣ < 2, with i iM S= ∑ ˆz z

 (Extended Data Fig. 4b). Figures and values 
given in the main text, unless otherwise mentioned, are filtered for 
two to four holes.



Numerical simulations using DMRG
We numerically simulate the t−J model, equation (1) in the main 
text, using MPS. For the mixD (t) = 0) case, we set the parameters to 
J∥/J) = 0.047, t∥/J) = 0.7. In the standard (t) > 0) case, the parameters are 
J∥/J) = 0.06, t∥/J) = 0.9 and t)/J) = 3.57. This corresponds to the t−J model 
derived from a Fermi–Hubbard model with U/t) = 14.16, t∥/t) = 0.26 and, 
in the mixD case, ∆/U = 0.5. We use the TeNPy package51,52 to perform 
the MPS simulations. To simulate systems at finite temperature, we 
use the purification method53,54, in which the Hilbert space is enlarged 
by an auxiliary site a(i) per physical site i. The finite-temperature state 
of the physical system is obtained by tracing out the auxiliary degrees 
of freedom. We start from an infinite-temperature state, in which the 
physical and auxiliary degrees of freedom on each site are maximally 
entangled. In particular, we implement an entangler Hamiltonian55 to 
prepare the infinite-temperature state of the t−J model. We work in the 
grand canonical ensemble and thus introduce a chemical potential µ to 
control the average number of holes in the system. Starting from the 
infinite-temperature state, we then use the W II-time-evolution method56 
to perform imaginary time evolution up to the desired temperature. 
Depending on the system size, model (standard t−J versus mixD or 
Fermi–Hubbard), doping and temperature (finite temperature versus 
ground state), we use a bond dimension between χ = 50 and χ = 400. For 
the finite-temperature calculations, we use an imaginary time step of 
dt/J) = 0.025. We have carefully checked our results for convergence in 
the bond dimension and the size of the time step. We have benchmarked 
the MPS calculations by comparing with exact diagonalization for small 
system sizes and find the same results.

To directly compare with the experimental data, we sample snapshots 
from the MPS using the perfect sampling algorithm57. In the evaluation 
of the snapshots, we account for the experimental detection fidelity 
by randomly placing artificial holes in the MPS snapshots according 
to our detection fidelity. We then apply the same filters regarding hole 
number and occupation imbalance as for the experimental data and 
model the hole number distribution of the experimental data (Extended 
Data Fig. 4a) by weighting the snapshots accordingly.

For ground-state simulations, for example to obtain the binding 
energies, we use the DMRG algorithm and work in a fixed S z

tot and par-
ticle number sector.

From the Fermi–Hubbard to the t−J model
The Fermi–Hubbard model

∑ ∑t c c U n n= − − (ˆ ˆ + h.c.) + ˆ ˆ
i j σ

ij i σ j σ
i

i i
& , ',

,
†

, ,↑ ,↓H ∼

contains a hopping term and (repulsive) on-site interaction. An addi-
tional potential offset ∆ on one of the two legs leads to

∑∆ n= + ˆ ,∆
i x y B

i
∈( , = )

H H

which cannot be generally reduced to an effective Hamiltonian with a 
tunnelling ∼t t ∆( , )) ) , because in general the physics will depend both  
on the underlying Fermi–Hubbard tunnelling amplitude ∼t) and the 
offset ∆. An effective description only exists in the regime ≪ ≪∼t ∆ U)  
(as well as for U ≪ ∆ and the trivial ∆ = 0), where ∼t) is eliminated from 
the Hamiltonian by working in a time-dependent basis. We mention 
that, even in this regime, the effective model does not capture the full 
physics, but only holds for intermediate timescales for which the  
system is in a metastable state. For small tilts ≪ ∼∆ t) , no such meta-
stability exists but instead the system directly equilibrates to a state 
in which more holes are in the upper leg. Such a system is not described 
by an effective Hamiltonian with mixed dimensionality, but by the full  
Hubbard model with ∆ and ∼t) terms.

In the limit of large interactions U ≫ t, where U t/∼ needs to be large 
enough to be well into the Mott-insulating regime, double occupancies 
are suppressed. An expansion to leading order in t U/∼  yields several 
terms, including the t−J model of equation (1) with ∼J t U= 4 /

2
 and thus 

t ≫ J. In addition, the expansion yields terms of the order of t2/U (ref. 58) 
describing next-nearest-neighbour hopping by a (virtual) double occu-
pancy, in analogy with the spin-exchange term.

For our mixD system the only term arising is approximately 
t U J t/ ,2

)≪ , which is much smaller than the relevant energy scales in 
the system and can thus be omitted. For the standard system there are 
more possible combinations of processes, such as approximately t∥t)/U, 
which is much larger than the process including only t∥, but the system 
is still dominated by t), t∥ and J). In the parameter regime in which t∥ ≫ J), 
however, this term becomes increasingly important such that the 
Fermi–Hubbard system can eventually not be approximated by the t−J 
model of equation (1). This explains discrepancies found in the litera-
ture between binding energies calculated in t−J ladders25,34 and in 
Fermi–Hubbard ladders59 in the same parameter regimes.

Temperature estimation
We estimate the temperature of our system by comparing the measured 
rung spin correlations C(0, 1) as defined in equation (2) to the values 
calculated from MPS snapshots (Extended Data Fig. 5a). We find that 
our average rung spin correlations of C(0, 1) = −0.38(1) for two to four 
holes correspond to a temperature of kBT = 0.77(2) J).

Our data are, however, not well described by a single spin correlation 
value, as we see variations both in time and across the four simultane-
ously realized ladders. The temperature estimation for the full dataset 
is therefore an average, and the data can contain features of both lower 
and higher temperatures. One reason for temperature variations are 
drifts in the apparatus on a timescale of days, affecting in particular the 
evaporation stage, which sets the global temperature. Another reason 
is the potential shaping, which distributes entropy between the four 
ladders and the surrounding bath. We thus attribute a temperature 
to each ladder (out of the four ladders we realize simultaneously) and 
each point in time by averaging the spin correlations of a time window 
of about ±12 h. The resulting spin correlation and temperature distribu-
tion are shown in Extended Data Fig. 5b.

Correlation functions
Evaluating correlators in finite-sized systems with fixed particle num-
ber leads to finite-size offsets, due to self-correlation of the particles. 
For our purpose we have to distinguish two cases. For correlations 
between different legs, for example, the rung hole correlation g (0, 1)h

(2) , 
self-correlation does not cause problems. In the mixD case holes can-
not move from one leg to the other, such that finding a hole in leg A 
does not influence the number of holes in leg B. In the standard case 
holes are mobile between the legs, but the focus of the analysis still lies 
on holes in opposite legs, because we select the data for low occupation 
imbalance. The correlations are thus not influenced by self-correlation. 
Correlations within the same leg are, however, strongly affected by 
finite-size offsets. We correct for these offsets using


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where Nl is the number of holes in the leg and L is the length of the leg. The 
same offset correction is applied to the pair correlator of equation (3) in 
the main text. The offset correction applies a distance independent cor-
rection and thus affects the overall value, but not the shape of the curve.

Binding energy
We estimate the binding energy of holes from the measured correlation 
g (0, 1)h

(2)  of two holes on the same rung. To this end, we simplify the 
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mixD t−J Hamiltonian of equation (1) by neglecting the two smallest 
energy scales J∥, t∥. This is partly justified by the fact that both are below 
the estimated temperature T of the experiment.

As a result, the Hamiltonian completely decouples into individual 
rungs and we can exactly diagonalize the latter. Then, as detailed below, 
we perform a canonical calculation of the entire system, with exactly 
one hole on each of the two legs of length L. From the known tempera-
ture T and the rung superexchange J) we obtain a direct relation 
between the binding energy Eb and the rung-correlation function 
g (0, 1)h

(2) :

 













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








E β
g

= − ln
(1 + 3e ) 1 −

4(1 + (0, 1))
(4)

βJ g
L

b
−1

− (0, 1)
− 1

h
(2)

) h
(2)

where β = 1/(kBT).
To use the measured correlation value given in Fig. 2a, we have to 

eliminate the density dependence of the g h
(2) correlator. Using the 

insights of Fig. 3b, we scale the hole correlator with the hole density nh. 
Using the scaled correlator g nh

(2)
h and the above formula with the 

experimentally estimated values for kBT/J) = 0.77(2), we obtain the 
estimate for the binding energy Eb = 0.82(6) J) stated in the main  
text. The error derives from the error on the experimental value and 
the error on the temperature estimation. If we use the measured  
hole correlation for exactly two holes in the system (Fig. 3b), as is 
used in the above derivation of (4), we obtain a binding energy of 
Eb = 0.79(9) J). Both calculations yield results in very good agreement 
with the theoretical prediction from DMRG at L = 7 of E J= 0.81b

theo
). 

We calculate the binding energy in large systems using DMRG and 
find that the value settles quickly to around Eb,∞ = 0.78 J). For length 
L = 40 rungs we find Eb,40 = 0.7805 J) and for L = 80 rungs we find 
Eb,80 = 0.7797 J). This demonstrates that our system with its tightly 
bound pairs provides a good approximation to the physics in larger 
systems.

In the remainder of this section, we explain the simplified model 
used here in more detail and derive from it equation (4). As mentioned 
in the beginning, we neglect the smallest energy scales t∥ and J∥. The 
eigenstates of each decoupled rung therefore become the two-hole 
state ∣hh', the four spin-hole states y σsh, , '∣  with leg index y = 0, 1 and 
spin index σ = ↑,↓, the spin-singlet state S'∣  and the three spin-triplet 
states mT, '∣  with m = −1, 0, 1. The corresponding eigenenergies are 
*hh = V, *sh = *T = 0 and *S = −J). Note that we allowed for a variable energy 
V of the hh state. For t∥ = J∥ = 0 we know that V = 0; however, for small 
but non-zero couplings t∥, J∥, a non-zero renormalization of V ≠ 0 can 
be expected. The strength of V can be calculated perturbatively22, but 
we treat it as a free parameter here, which allows us to go beyond a 
perturbative analysis.

We start by defining the binding energy of the simplified model in the 
thermodynamic limit L → ∞. To this end, we compare the ground-state 
energy of a system with two independent holes, 2(E1h − E0h) = 2J), with 
the ground-state energy of a system with one pair of bound holes, 
E2h − E0h = V + J); both are measured relative to the undoped ground 
state, E0h = −LJ). The binding energy is then defined as

E E E E J V= 2 − − = − .b 1h 0h 2h )

For Eb > 0 (Eb < 0) the two-hole ground state is paired (unpaired).
To derive equation (4) we perform a canonical calculation with 

exactly one hole per leg. The probability of finding both holes on the 
same rung anywhere in the system becomes p L Z Z= e /βE L

hh
−

S
−1hh , where 

we defined the spin Z = e + 3eβE βE
S

− −S T  and total partition functions 

Z L Z L L Z= e + 4 ( − 1)eβE L βE L−
S

−1 −2
S

−2hh sh . By the definition of the g(2) func-
tion provided in the main text, we obtain the relation

g
p L

L
(0, 1) =

/

(1/ )
− 1 (5)h

(2) hh
2

in our model by assuming a homogeneous density of n L& ˆ ' = 2/(2 )i  on 
each site and a homogeneous probability for an existing pair to occupy 
a specific rung of 1/L. Thus n n p L& ˆ ˆ ' = /i j

h h
hh  for fixed (i, j) on one rung. 

There are thus L identical terms in the sum of g h
(2) and one arrives at 

equation (5) by inserting L=(0,1)N . Simplifying this expression and 
solving for Eb finally yields equation (4).
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Extended Data Fig. 1 | Preparation sequence for mixD systems. a, We first 
prepare nearly uncoupled 1D chains in which the leg tunnelling exceeds the 
rung coupling. b, While the legs are decoupled, we apply the offset ∆ to one  
leg of the ladder. c, The final parameters are reached by ramping down the  
leg coupling and ramping up the rung coupling. There, the potential offset  
∆ between legs prevents tunnelling from one leg to the other. Note that in the 
final configuration J) ≫ J∥.



Article

Extended Data Fig. 2 | Calibration of the optical potential offset.  
The experimental sequence is run for different value of ∆ in a regime close to 
unit occupancy of the lattice. tunnelling from one leg to the other is suppressed 
as long as ∣∆ − U∣ > 0. When ∆ ~ U, tunnelling is possible, and an increased number 
of doublons in the system is measured.



Extended Data Fig. 3 | Density of the mixD system without doublons.  
The density of the mixD system, where only ladders without double occupancies 
are taken into account.
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Extended Data Fig. 4 | Hole and magnetization statistics. a,b, Experimental 
distribution of holes per ladder (a) and total magnetization (b) for the data 
shown in Fig. 2a–c, and Fig. 3a.



Extended Data Fig. 5 | Temperature estimation. a, Singlet strength versus 
temperature. The calibration of temperature is performed using MPS data 
containing two to four holes. b, Experimental singlet strength and c, inferred 
temperature distributions. We evaluate our rung spin correlations C(0, 1) on 
the mixD system, using a time window of about 24 h. The temperature is 
extracted from C(0, 1) using the MPS simulation (a).
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