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Conventional superconductivity emerges from pairing of charge carriers—electrons
or holes—mediated by phonons'. In many unconventional superconductors, the
pairing mechanism is conjectured to be mediated by magnetic correlations?, as

captured by models of mobile charges in doped antiferromagnets’. However, a precise
understanding of the underlying mechanism in real materials is still lacking and
hasbeen driving experimental and theoretical research for the past 40 years. Early
theoretical studies predicted magnetic-mediated pairing of dopantsin ladder
systems*®, in which idealized theoretical toy models explained how pairing can
emerge despite repulsive interactions’. Here we experimentally observe this long-
standing theoretical prediction, reporting hole pairing due to magnetic correlations
ina quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders
with mixed-dimensional couplings', we suppress Pauli blocking of holes at short
length scales. This results in a marked increase in binding energy and decrease in pair
size, enabling us to observe pairs of holes predominantly occupying the same rung
of theladder. We find a hole-hole binding energy of the order of the superexchange
energy and, uponincreased doping, we observe spatial structures in the pair
distribution, indicating repulsion between bound hole pairs. By engineering a
configuration in which binding is strongly enhanced, we delineate a strategy to
increase the critical temperature for superconductivity.

Unconventional superconductivity in materials such as heavy fermion
systems', iron pnictides, layered organic materials®, cuprate super-
conductors™ and twisted bilayer graphene®, arises in the vicinity of
magnetically ordered states. A common mechanism consisting of
dopant pairing mediated by magnetic fluctuations is thus believed to
beatthe heart of these superconducting states?, but a detailed under-
standing of the underlying physics remains akey problemin quantum
many-body physics.

A promisingtool toexplore strongly correlated quantum systemsis
analogue quantum simulation using ultracold atoms'. Recent experi-
mental progress investigating doped antiferromagnets has been made
using single-site resolved fermionic quantum gas microscopes’ %,
which provide microscopicreal-space correlations complementary to
the spectroscopic and transport measurements performed in solids.
They typically simulate the Fermi-Hubbard model, consisting of itin-
erant spin-1/2 fermions within a single band of a periodic lattice. Even
though the two-dimensional Fermi-Hubbard model displays many
characteristics also found in the high-temperature (high-7) super-
conducting cuprates’, the existence of pairing and superconductivity
in this model remains a subject of debate®?*,

To shed light on the pairing mechanism in doped Mott insulators,
several theoretical studies considered doped Fermi-Hubbard and

t—/ladders (see Eq. (1))**%%, in which accurate numerical solutions
can be obtained using the density-matrix renormalization group
(DMRG) method?®. In solid-state experiments, ladder materials have
alsobeenshowntodisplay superconductivity”?. A paradigmatic case
for theoretical investigation, which exhibits large binding, is the regime
in which interchain magnetic exchange is larger than single-particle
interchain hopping’. These parameters could, however, not bejustified
microscopically for condensed matter systems and are unphysical in
the framework of a pure Fermi-Hubbard system (Methods). The key
motivation for our work was to provide an experimental realization of
this system that has been considered only a theoretical abstraction.
We achieve this by extending Fermi-Hubbard ladders at large interac-
tions with a potential offset, effectively realizing a mixed-dimensional
(mixD) system™.

The essential physics of our experiment is captured (Methods) by
the t-/Hamiltonian

H=) P-t; & ,&,+hc)P+ ) j,.j(s,.-sj— ;’J, 1
ij)o [(A)]

where P projects to the subspace without double occupancies; the
hoppingenergyist;=t,(t,) and the superexchange energyis/;=/, (J,)
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Fig.1|Hole pairingin mixD ladders. a, Binding mechanismin the ¢-/ladders.
Depicted are ladder systems with spin exchange/, > J, that form strong singlet
bondsalongthe rungs. When asingle hole from (i) moves through the system,
asillustratedin (ii), it breaks the spin order by displacing the singlet bonds.
(iii) The magnetic energy cost can be avoided if the second hole restores the
spinorder by moving together with the first hole. b, Pauli blocking of holes.
Owingto their fermionic nature, holes repel each other along all directions
according to the tunnellingamplitudes ¢, and ¢,. Close-distance hole pairs are

for nearest-neighbour sitesi, jonthe sameleg (rung). c +(¢; ;) denotes
the creation (annihilation) operator of a fermion on site i with spin
o=",%; 8§, and /i, are the on-site spin and density operators and h.c.
means Hermitian conjugate. The mixD system is described by equa-
tion (1) for ¢, = 0, which we realize by suppressing tunnelling, but not
spin exchange, using a potential offset along the rungs. We also realize
the bare Fermi-Hubbard system without additional potential offset
and¢, >/, (inthefollowing this is denoted as a standard ladder).

The pairing of holes in a model exhibiting only repulsive interac-
tions*>* can be understood from the competition of hole delocalization
andspinorder along the rungs, asillustrated in Fig. 1a. If ahole moves
through the system, it displaces these spins creating an energetically
unfavourable magnetic configuration. Therefore, asingle holebecomes
dressed by a cloud of disturbed correlations and forms a polaron with
reduced mobility”®?°. If a second hole moves along with thefirst hole, it
canrestore the order in the spin sector, causing the two holes to form
a highly mobile bound pair.

However, this process only dominates in the mixD case, whereas in
the standard ladders ¢, is the dominating energy scale. In the latter,
binding competes with the repulsion of holes due to Pauli blocking,
rendering tight pairs energetically unfavourable (Fig. 1b). Pairing
between holes can still occur, but only with a small binding energy
E, </, ***and atlarge pair sizes®*. By realizing mixD ladders, we strongly
suppress the Pauli repulsion between holes along the rung (Fig. 1b),
thus engineering a system with strong hole attraction. This binding
mechanism is protected by the spin gap and thus persists up to high
temperatures of the order/,.

We realize ladders of length L = 7 in our Fermi-gas microscope with
independently tunable optical lattices and single-site resolved optical
potential shaping. The mixD t—/systemis derived as an effective model
from fermionic atoms in a two-leg ladder-shaped lattice potential
described by the Hubbard parameters U (on-site interaction), ?H, £
(tunnelling amplitudes) and with a potential offset 4 between the two
legs. For large U/tH, U/E, the system s effectively described by the t-/
model and its distinct parameters as in equation (1). ForU>A>7,
tunnelling along the rungs is suppressed tot, =0, whereas tunnelling
along the leg is unaffected 4= tu' and spin exchange is given by
J = 2tl/(U+A)+2tl/(U A)(refs.*3%) and Ji= 4t‘/U

Our experiment begins by preparing a balanced mixture of the
lowest two hyperfine states of °Li, which we load into an engineered
ladder geometry similar to our previous work®. We first load atoms
into uncoupled legs of equal potential and then apply an optical
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thus energetically unfavourable. In mixD systems, a potential offset A between
thetwolegs suppressestunnelling ¢, and Paulirepulsion only occurs along the
legs. Holes on the same rung can thus benefit from the binding mechanism,
forming tightly bound pairs withalarge binding energy. ¢, Average density of
themixDL =7ladder systemwithA4 = U/2.d, Single experimental shot with

two holes on the same rung, exemplifying the bunching of holesin the mixD
system.a.u., arbitrary units.

potential offset 4 to one of the legs using light shaped by a digital
micromirror device (DMD). We subsequently connect both legs
by slowly lowering the lattice potential in the rung direction (for
details see Methods). The offset between the two legs prevents the
atoms from tunnelling along the rungs, such that we end up with
roughly equally populated legs. Occupationreadoutis achieved with
single-site spin and charge resolution®, To highlight the influence
of Paulirepulsion on hole pairing, we compare the mixD 4 = U/2 case
with the standard ladder system at 4 = 0. Both systems are realized
in the strong rung-singlet regime, with/,/J, = 21(5) in the mixD case
with enhanced spin exchange and/,//, =16(3) in the standard lad-
ders, where numbers in parentheses denote the uncertainty on the
last digit. The mixD systemis governed by the energy scales of rung
spin exchange and leg tunnelling with¢,//, = 0.7(1). The strong rung
coupling keeps the spatial extent of hole pairs small while staying in
the regime in which spin correlations and hole motion compete on
acomparable energy scale. For larger ¢, the binding energy is even
expected to grow'® but becomes harder to observe in systems of
limited sizes because of increased pair sizes.

Figure 1c shows the average density of the mixD system. Quantum
fluctuations, which are biased towards the lower leg, as well as prepara-
tionimperfectionslead toasmallresidual density imbalance between
the two legs. For the data analysis (except Fig. 1c) we only take into
account ladders without double occupancies (doublons), such that
holes arising from doublon-hole fluctuations do not contribute to our
observations. Unless otherwise mentioned, we furthermore restrict
the data torealizations with two to four holes per ladder and limit the
occupationimbalance between the legs to one hole.

To probe the pairing of holes in our system, we evaluate the hole-
hole correlator

AhAh
(2)(,)_7 5 <n,n,) _1

rljr <n><n)

with normalization A, the number of sites i,j at distance r and ﬁ:‘ the
hole-density operator at positioni. The function g(hZ)(r)is aconnected
two-point density correlator that is negative if the presence of a hole
at position i makes it less likely to find a second hole at distance r
and positive if it makes it more likely. The correlator is bounded
by -1<g2(r) < (1/n,— 1) with hole density n, = N,/2L, where N, is the
number of holes in the system.



a b
02r o MixD 0.05}
o ¢ s
-~ 0 2 2 0
- Q g
? O > NN S L S— E—
= d [}
&s — 2 hehrt h o
[o)) @ 0 + +
w
-0.05
¢} Standard
g4l L L L
0 2 4 6 -5 0 5
Distance |d| (sites) Distance d (sites)
c d
0.1F -0.2
g ¢ = .90
=2 S -04 o o
8c d o ¢ 8
01} -« )
6 o
-0.6
0.2 L L . . L L L
2 4 6 0 2 4 6

Distance |d| (sites) Number of holes N,

Fig.2|Hole pairing in mixD versus standard ladders. a, Hole-hole correlator
£2(d, 1)betweensites on opposite legs (asillustrated in the inset) for mixD
(blue) and standard (brown) ladders with two to four holes per ladder. The strong
correlationatd= 0 correspondsto two holes onthe same rung. Correlations at
thisdistance are strongly enhanced in the mixD system (pairing) and strongly
suppressedinthe standardladders (repulsion). The bluelineis calculated
using MPS at finite temperature k;7= 0.8/, and corrected by the experimental
detection fidelity (Methods). b, Excess events 6,(d) of the same data, that s, the
likelihood of finding holes at distance d compared with the infinite-temperature
distribution. ¢, Hole-hole correlation onthe same leg g:f)(d, 0)inthe mixD
system, showing that holes repel each other withinthe sameleg. A finite-size
offset correction has been applied to this subfigure (Methods). d, Spin-spin
correlations C(0, 1) for spins on the same rung depending on the number of
holesinthesystem.Thelinesrepresentlinearfits. The larger slope indicates
that the spin order of the standard system (brown) is more strongly disturbed
by holes than the spin order of the mixD system (blue), where paired holes leave
thespinorderlargely unperturbed. Theerror bars denote ones.e.m.and are
smaller than the marker when not visible. Errorbarsina,candd are estimated
using bootstrapping.

By evaluating the correlation for holes in opposite legs r= (d, 1), we
observe a strong positive signal at distance |d| = 0 in the mixD system
ofgf)(o, 1) = 0.15(2). This corresponds to two holes bunching on the
samerung (Fig.2a). The fast decrease of correlations for |d| > O indicates
thatthe holesareinatightly boundstate. We findaminimumat|d| =1,
whichwe attribute to the effect of additional holesin the system. These
holes are repelled from the hole pair (see also Fig. 4), leading to the
weak modulationat larger distances which dominates over the extent
of the hole pair at short distances.

By contrast, in the standard ladders of ¢, >/, a strong repulsion of
holes from the same rungis the dominant feature leading to anegative
£2(0,1)(Fig. 2a). This shows that tightly bound pairs are energetically
unfavourable in the standard ladder system.

The attraction (mixD) and repulsion (standard) of holes are also
visible in the occurrences of hole distances. In Fig. 2b we plot the
histograms of holes found at a mutual distance d as described by
Ond) =2isj-a1) ((ﬁ?ﬁ'}) - nd), where subtracting the global hole density
n, removes the uncorrelated distribution. These excess events §,(d)
can beinterpreted as the likelihood of the hole distance d occurring
beyond the probability of a random distribution.

The hole-hole correlator on the same leg (Fig. 2c) shows the effect
of hole mobility in the mixD system. It exhibits a minimum at nearest

neighbours caused by the Fermi repulsion of holes due to the leg tun-
nelling being proportional to t,and abroad maximum around |d| = 4.
This is the largest mutual distance the two holes can assume without
occupying the edge of the system, which is energetically expensive
owing to the hard walls blocking hole movement.

We investigate the magnetic origin of the pairing mechanism using
the spin correlator

PR AP R CH RN )

i~j=r

c(r)= J\L/,

where (), denotes the expectation value for singly occupied sites.
Inthe doped mixD system we find strong nearest-neighbour spin cor-
relations along the rung of C(0, 1) =-0.38(1), indicating a high singlet
fraction, as well as a significant coupling of these bonds along the leg
with nearest-neighbour spin correlations of C(1, 0) = -0.10(1). Resolv-
ing the rung spin correlations through the number of holes in the sys-
tem shows a decrease in correlation strength with growing hole
number (Fig. 2d). This can be explained by unpaired holes breaking
singletbonds because of their mobility along the ladder. The standard
system, which does not display pairing, shows a more rapid loss of
correlation strength compared to the mixD system, in which a signifi-
cant fraction of holesisboundin pairs. Thisbehaviour is directly related
to the magnetic origin of pairing, asillustrated in Fig. 1. We attribute
the lower correlation strength of the mixD system in the absence of
holes to heating caused by the application of the tilt. The much stronger
effect of hole doping on spin correlationsis, however, unaffected by a
small difference in temperature. The slight alternating behaviour of
C(0,1) atlow hole numbers in the mixD system, in particular the strong
spin correlations for two holes, is reminiscent of the low-temperature
behaviour for which rung pairs are dominant over thermal excitations
and only odd hole numbers lead to unpaired holes (Supplementary
Information).

We estimate the binding energy of the paired state in the mixD sys-
tem from the experimental data, by comparing it with an analytically
tractable effective Hamiltonian. The approachis based onthe assump-
tion that the system is reasonably close to the uncoupled rung limit
and the bound state can thus be described by two holes on the same
rung (for details on the calculation, see Methods). Using the measured
and detection-fidelity-corrected probability to find a rung pair and
our estimated temperature of k;7=0.77(2) /, (Methods), we find an
experimental binding energy of

F,=0.82(6) J,.

This is consistent with DMRG calculations giving a binding energy
of Ethe°= 0,81 /, and boosts the binding energy by an order of magnitude
compared with standard ladders at the same interaction strength and
with symmetric coupling (see also Methods). Such a substantial
increase in pairing strength is an essential ingredient in the quest for
higher temperature superconductivity.

Togainabetter understanding of the system dependencies, we probe
theinfluence of temperature and doping on the rung pairing strength.
Inour experimental regime, nearest-neighbour spin correlations along
the rung stand in strong direct relation with the temperature of the
systemand cantherefore be used as an effective thermometer. A map-
ping between the two is obtained by comparing average nearest-
neighbour spin correlations to finite-temperature matrix product state
(MPS) calculations (Methods). We observe that the rung hole-hole
correlation gff’(o, 1)increases withincreasing spin correlation strength
(Fig. 3a), and the onset of pairing occurs in the experimental system
around temperatures of the order of the spinexchange/,. The highest
correlations reached,gf) =0.3(1), arestillsmaller thanthe theoretically
achievable values ofgf) >1.2 for very low temperatures, showing the
temperature limitations of the experiment. The repulsion of the
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Fig.3| Temperature and doping dependence of hole pairing. a, Rung hole-
holecorrelation gh 2(0,1)for the mixD (blue) and standard (brown) ladders
binned by the rung spin correlations C(0, 1) of the system. The temperature of
the mixD system (top axis) is estimated by comparing the spin correlations
(lower axis) with the theoretical values. The solid line is calculated using MPS
andis corrected by the experimental detection fidelity. We see unbinding of
pairsatlowsingletstrength, thatis, high temperature. b, The hole correlator
scaled with the hole density gh 2(0,1) n,depending on the number of holes per
leg for the mixD (blue) and standard (brown) ladders. Within our error bars,
we find the hole binding tobeindependent of doping. Theinset shows the
correlator g 2(0,1), where the dashed lineis afit with theinherent 1/n,, scaling
ofthe correlator. Error bars denote the bin width of the spin correlations (a) and
thes.e.m.ofthecorrelator (aandb).

standard system remains mostly constantin our temperature regime,
asitisgoverned by the energyscalet, >/, k;T.

To explain the effect of doping on the pair binding, we adjust the
correlator g(Z)to compensate for the intrinsic density-dependent 1/n,,
scaling. The resultmg correlator gff)nh does not significantly change
onincreasing the number of holes per leg (Fig. 3b). Thisisinagreement
with asystem of independent pairs for the mixD system. For the stand-
ard system, hole repulsion is determined by the tunnelling strength ¢,
and is therefore also not significantly influenced by density.

We further investigate the behaviour of several pairs, as their inter-
play is a key aspect for the competition between superconductivity
and charge (density) order®®. For simplicity, we identify the bound
state as two holes occupying the same rung. We thus define the pair
operator A% whichis equal tolif both sites of rung xare occupied by a
hole, and O otherwise. Pair interactions are then quantified by the pair-
pair correlator

(2) (d)=— z [ (A% nx+d> 1]’ (3)

palr <np><n5)(+d>

in analogy with the hole-hole correlator g2, We evaluate g(Z)r ona
subset of our datainwhich atleast two pairs are presentin the system

In the case of ladders containing four to five holes (Fig. 4a), we find a
peakinthe correlator at distance |d| = 4, whereas it peaks at distances
|d|=2and|d| = 4 for theladders containing six to seven holes. The pairs
thus arrangein aspatial structure for which they maximize both their
mutual distance and the distance to the edges of the system. This repul-
sionbetween pairs is anindication of the comparably high mobility of
pairsin mixD settings, which could be further enhanced by increasing
the leg tunnelling ¢, in larger systems. Such highly mobile pairs can
potentially reach very high critical temperatures' and can be animpor-
tantingredient for high-T. superconductivity.

To investigate the pair interactions numerically, we perform
finite-temperature MPS simulations on a systemwith the same param-
eters asin the experiment (L =7, ¢,//, =0.7). Here pair interaction is
directly revealed by the density of pairs (/i}), which shows strong
spatial dependence in the low-temperature regime (Fig. 4b) with an
average distance of |d| = 4 (|d| = 2) for a system with four (six) holes.
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Fig.4|Distribution of runghole pairs in the mixD system. a, Measured
pair-pair correlation gg;ir(d)ofrung hole pairsinthe experimental system.
The upper plot shows the pair-pair correlation for four to five holes, that s,

up totwo pairs, inthe system. The lower plot shows the pair-pair correlation for
six toseven holes, thatis, up to three pairs in the system. A finite-size offset
correction hasbeen applied to the curves (Methods). Error bars were estimated
using bootstrapping.b, Theoretical (MPS) results for the density of rung pairs
inthe system for temperatures from 0.1/, t0 0.7/,. The upper plot shows the
pair density for four holes. The lower plot shows the pair density for six holes.
Inboth cases, the pairs maximize their respective distance, while also avoiding
the edge of the system.

The presence of sharp edges fixes the phase of the density modulation,
thusleadingtoits visibility in the pair density as adirect consequence
of our open boundary conditions and small system size. Sucha modu-
lation of the pair distribution is reminiscent of Friedel oscillations of
indistinguishable fermions near an impurity*° and of charge-density
waves*., Larger systems are needed to distinguish between these effects.

In this work, we have demonstrated the direct observation of hole
pairingina quantum gas microscope setting. We have realized a para-
digmatic model that reaches hole binding at high temperatures close
tothe spin-exchange energy and small pair size by engineering doped,
mixD fermionic ladders. We confirm the effective mixD description,
predicting that the suppression of Pauli repulsion enables the forma-
tion of abound state.

This allows us to experimentally investigate the pairing mechanism
based on hole motion and magnetism, thereby emphasizing the rele-
vance of magnetic correlations asa potential origin of the charge carrier
pairing underlying unconventional superconductivity. Furthermore,
we have seen signs of significant mobility of the bound pairs through
their repulsive interaction. Our approach with strongly bound and
mobile pairs can lead to high critical temperatures and therefore can
push the current temperature limits of high-T. superconductors™.
Possible techniques to modify the interplay of kinetic and exchange
energiesinsolid-state systems in the spirit of the mixD settinginclude
changing lattice geometry and spin polarization*’, or controlling kinetic
energy and the topology of electrons by varying the twist angle inmoiré
systems such as twisted graphene*®. Our approach might also be real-
ized in real materials as dynamical superconductivity using Floquet
engineering to alter the effective exchange interactions**. Within the
scope of quantum simulations, our technique can be readily extended
to higher dimensions using bilayer quantum gas microscopes>¥454¢,
and to even higher binding energies and pair mobility in larger sys-
temsat¢, >/,, or stripe formation at higher leg numbers*. Our results
thus pave the way for the measurement of collective phases of bound
pairs such as crystallization and superfluidity, and shed light on their
competition?*3%484°,
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Methods

Experimental sequence

In each experimental run, we prepare a cold atomic cloud of °Liin a
balanced mixture of the lowest two hyperfine states |F=1/2, my = +1/2).
For evaporation, we confine the cloud in a single layer of a staggered
optical superlattice along the z direction with spacings a, = 3 pm and
a,=6 um, and depthsV, =51 £ and ;=120 E}, where E& = h*/(8Ma2)
denotes the recoil energy of the respective lattices (a=s, 1), and Mis
the mass of an atom. The atoms are harmonically confined in the
xy plane and the evaporation is performed by ramping up a magnetic
gradient along the y direction (see ref. *). The final atom number is
adjusted by the evaporation parameters.

We adiabatically load the cloud into an optical lattice in the xy plane
with spacings a,=1.18 um and a,=1.15 pm. Simultaneously, we apply a
repulsive potential using a DMD, which both compensates for the
harmonic confinement of the Gaussian-shaped lattice beams and shapes
thesystemintoageometry of four2 x 7 ladders following the procedure
described in ref. ¥. The DMD is also used to apply a spin-independent
optical potential offset 4 between sites along the rung direction. The
loadingis performedinthree steps (Extended Data Fig.1). (1) Afirst stage,
inwhichthetwo legs of eachladder are nearly disconnected, is reached
by ramping the lattice depths toV, =3 E} and V,=20 E¥ in100 ms.
(2) The optical potential offset A (see Potential offset calibration) is
applied to onelegofeachladder by instantaneously (<20 ps) switching
the pattern of the DMD. (3) The lattice depths are ramped linearly to
their final valuesV, =12 Fz andV, = 6 £} in100 ms.

Interactions between the atoms are set by the s-wave scattering
length a,, which we adjust by applying a magnetic field close to the
broad Feshbach resonance of °Liaround 830 G. The scattering length
isincreased from a, = 350a; during evaporation, with a; being the Bohr
radius, to a,=1,310qg in the final configuration. The resulting system
isdescribed by the Fermi-Hubbard model and an additional potential
offset A. Our parameters are the repulsive on-site interaction
U=hx4.29(10) kHz, tunnelling#, = h x 78(10)Hzand, = h x 303(23)Hz
andthe offset4 = 0.5Uor 4 = 0 depending on the configuration (mixD
orstandard).AsU/Z,, U/f” >14,the system canbe effectively described
by the t~/model (see also ‘From the Fermi-Hubbard to the t-/model’).
Note that we use 7, fu for the tunnelling parameters in the Hubbard
model, and¢,, ¢, in the -/ model. Along the legs, the tunnel coupling
isindependentofdandist, = fH = h x 78(10)Hz, yielding aspin exchange
ofJ, = hx5.7(1.5) Hz. Along the rungs, the mixD system (4/U = 0.5) yields
t, =0and an enhanced spin exchange/, = h x 114(42) Hz. Without the
potential offset, that is, in the standard system (4 = 0), tunnelling is
unaffected, leadingtot, = = hx 303(23) Hzand/, = h x 86(13) Hz.

Potential offset calibration

We realize the mixD system by applying alocal spin-independent light
shift 4 to one ofthelegs oneachladder. The amplitudeis directly propor-
tional to the light intensity, whichis controlled by the DMD. Calibration of
the offset is performed by running the experimental sequence described
abovefor differentlightintensities, and measuring the density of doubly
occupiedsites (doublons) inthe system. Anincrease of doublonsis seen
when4 = U, thatis, when the lowest band of the upper legbecomes reso-
nant with the interaction band of the lowest leg (Extended Data Fig. 2).
This calibration was repeated several times throughout data collection,
with typical shift of the doublon peak of around 10%. We attribute these
calibrationdifferences to driftsin the beam shape of the light thatis sent
to and diffracted from the DMD, yielding an overall estimation of the
uncertainty on 4 of about +15%. Such uncertainty in 4 is not critical for
realizing a mixD setting and mostly influences the value of /,.

Suppression of rung tunnelling
The potential offset 4> £, between the two legs shifts the energy
levels between neighbouring sites and thus suppresses tunnelling

along the rungs*. Doublon-hole pairs, however, become biased in the
mixD system and appear predominantly as double occupancy on the
leg with lower potential and corresponding empty site on the upper
leg. Although in the standard system doublon-hole pairs along the
rung appear with probability (¢, /U)? (ref. *%), the potential offset in
the mixD case lowers the energy difference between the singly occupied
state and the doublon-hole pair to U - A. This effect can be seenin the
density of the mixD system in Fig. 1c. In Extended Data Fig. 3, we plot
the same data after removing ladders containing double occupancies.
The density imbalance mostly disappears, indicating minimal tunnel-
ling during preparation.

Detection

The data presented in the main text originate from two types of meas-
urement: (1) charge-resolved and (2) spin-charge-resolved measure-
ments. In both cases, the detection procedure starts by ramping the
xy lattices to43 ER’ within 250 ps, effectively freezing the occupation
configuration. Inthe case of spin-resolved measurements (2), a Stern—
Gerlach sequence separates the two spin species into two neighbour-
ing planes of the vertical superlattice, which are then separated by
21 pumfromone another using the charge pumping technique described
inref., Finally, fluorescenceimages are taken using Raman sideband
cooling in our dedicated pinning lattice with an imaging time of 1 s
(ref.>°). For acharge-only measurement (1), only one plane is populated
by atoms, whereas in the case of a fully resolved measurement (2) two
planes are populated by the two different spin species. The fluorescence
light of the atoms s then collected through a high-resolution objective
andimaged ontoacamera. Forafully spin-resolved measurement (2),
the fluorescence of both planesis collected simultaneously and imaged
onthe camera, allowing the reconstruction of the atomic distribution
ofbothspins with asingle exposure. A charge-only measurement only
allows the reconstruction of the atomic configuration, without any
spininformation.

The imaging technique and the pumping procedure both impact
our overall detection fidelity. The imaging fidelity, which takes into
account atom losses and atom displacement during the imaging pro-
cedure, is estimated by comparing two consecutive fluorescence pic-
tures of the same atomic distribution, and we obtain an average
imaging fidelity 7, ;= 98.7(1)% and F; ,= 98.2(2)% per atom for charge-
only and full-spin-charge resolution, respectively. The pumping fidel-
ity is estimated by comparing the average number of atoms detected
after pumping to the average number of atoms before pumping, and
we obtain an average pumping fidelity of 7, = 97.6(1) %, taking into
account theslight discrepancy between F, and 7, ,. We deduce an over-
all detection fidelity of 7= 7, ;= 98.7(1)% and F,= F, ,7,=95.8(1)% in
the case of charge-only and full-spin-charge resolution, respectively.

Data statistics
We have taken approximately 19,000 experimental shots, iterating
between mixD 4 = U/2 and standard 4 = 0. Here 61% of the shots have
charge-only resolution and 39% have full spin and charge resolution.
The ladders are very sensitive to small drifts in the DMD pattern
relative to thelattice sites. We thus keep track of the ladder potential
by continuous automatic evaluation of the charge distribution and
automatic feedback to the DMD pattern. If the average leg-to-leg
occupation imbalance of standard ladders exceeds two holes, we
dismiss therespective set of data due to the uncontrolled driftinthe
potential. For data analysis we then only take into account ladders
without double occupancies and with aleg-to-leg occupationimbal-
ance of maximally one hole. This leaves us with more than 24,000
individual ladders, about half of which contain between two and four
holes (Extended Data Fig. 4a). Most ladders show a magnetization
|M?| <2, with M? = Z,-ﬁf (Extended Data Fig. 4b). Figures and values
given in the main text, unless otherwise mentioned, are filtered for
two to four holes.



Numerical simulations using DMRG

We numerically simulate the -/ model, equation (1) in the main
text, using MPS. For the mixD (¢, = 0) case, we set the parameters to
J,/J.=0.047,t,/J, = 0.7.Inthe standard (¢, > 0) case, the parameters are
J/J.=0.06,t,/J,=09and¢t,//, =3.57.This corresponds to the t--/model
derived fromaFermi-Hubbard model with U/t, =14.16,t,/t, =0.26 and,
in the mixD case, A4/U = 0.5. We use the TeNPy package®* to perform
the MPS simulations. To simulate systems at finite temperature, we
use the purification method>**, in which the Hilbert space is enlarged
by anauxiliary site a(i) per physicalssitei. The finite-temperature state
ofthe physical systemis obtained by tracing out the auxiliary degrees
of freedom. We start from an infinite-temperature state, in which the
physical and auxiliary degrees of freedom on each site are maximally
entangled. In particular, we implement an entangler Hamiltonian® to
preparetheinfinite-temperature state of the t--/model. We work in the
grand canonical ensemble and thus introduce achemical potential i to
control the average number of holes in the system. Starting from the
infinite-temperature state, we then use the W*-time-evolution method*
to perform imaginary time evolution up to the desired temperature.
Depending on the system size, model (standard ¢~/ versus mixD or
Fermi-Hubbard), doping and temperature (finite temperature versus
ground state), we use abond dimension between x =50 and y = 400. For
the finite-temperature calculations, we use an imaginary time step of
dt/J, = 0.025. We have carefully checked our results for convergence in
thebond dimension and the size of the time step. We have benchmarked
the MPS calculations by comparing with exact diagonalization for small
system sizes and find the same results.

Todirectly compare withthe experimental data, we sample snapshots
from the MPS using the perfect sampling algorithm®. In the evaluation
of the snapshots, we account for the experimental detection fidelity
by randomly placing artificial holes in the MPS snapshots according
toour detection fidelity. We then apply the same filters regarding hole
number and occupation imbalance as for the experimental data and
model the hole number distribution of the experimental data (Extended
DataFig. 4a) by weighting the snapshots accordingly.

For ground-state simulations, for example to obtain the binding
energies, we use the DMRG algorithm and work in a fixed S and par-
ticle number sector.

From the Fermi-Hubbard to the ¢-/model
The Fermi-Hubbard model
H=- Z - Nij (ézT

ToCiothe) +UY A afy;,
(ij),0 i

contains a hopping term and (repulsive) on-site interaction. An addi-
tional potential offset 4 on one of the two legs leads to

Hy=H +4 Y A,
i€(x,y=B)

which cannotbe generally reduced to an effective Hamiltonian with a
tunnelling ¢, (¢,, 4), because in general the physics will depend both
on the underlying Fermi-Hubbard tunnelling amplitude £, and the
offset A. An effective description only exists in the regime £, «4 < U
(as well as for U < 4 and the trivial 4 = 0), where £ is eliminated from
the Hamiltonian by working in a time-dependent basis. We mention
that, evenin this regime, the effective model does not capture the full
physics, but only holds for intermediate timescales for which the
system is in a metastable state. For small tilts|4| <« |£,|, no such meta-
stability exists but instead the system directly equilibrates to a state
inwhichmoreholesareinthe upperleg. Suchasystemisnot described
by an effective Hamiltonian with mixed dimensionality, but by the full
Hubbard model with 4 and , terms.

In the limit of large interactions U> t, where U/t needs to be large
enough to be wellinto the Mott-insulating regime, double occupancies
are suppressed. An expansion to leading order in £ /U yields several
terms, including the ¢~/ model of equation (1) with /= 4?2/U and thus
t>J.Inaddition, the expansionyields terms of the order of £/U (ref. %)
describing next-nearest-neighbour hopping by a (virtual) double occu-
pancy, in analogy with the spin-exchange term.

For our mixD system the only term arising is approximately
tﬁ/U<<jL , tj which is much smaller than the relevant energy scales in
the system and can thusbe omitted. For the standard system there are
more possible combinations of processes, such as approximately ¢,¢,/U,
whichismuchlarger than the processincluding only ¢,, but the system
isstilldominatedby,, t,and/,.Inthe parameter regimeinwhicht, >/,
however, this term becomes increasingly important such that the
Fermi-Hubbard system can eventually not be approximated by the ¢t/
model of equation (1). This explains discrepancies found in the litera-
ture between binding energies calculated in t—/ ladders®*** and in
Fermi-Hubbard ladders® in the same parameter regimes.

Temperature estimation

We estimate the temperature of our system by comparing the measured
rung spin correlations C(0, 1) as defined in equation (2) to the values
calculated from MPS snapshots (Extended Data Fig. 5a). We find that
our average rung spin correlations of C(0, 1) = —0.38(1) for two to four
holes correspond to atemperature of k,7=0.77(2) /.

Our dataare, however, not well described by asingle spin correlation
value, as we see variations both in time and across the four simultane-
ouslyrealized ladders. The temperature estimation for the full dataset
isthereforeanaverage, and the data can contain features of both lower
and higher temperatures. One reason for temperature variations are
driftsinthe apparatus on atimescale of days, affecting in particular the
evaporation stage, which sets the global temperature. Another reason
is the potential shaping, which distributes entropy between the four
ladders and the surrounding bath. We thus attribute a temperature
toeachladder (out of the four ladders we realize simultaneously) and
each pointintimeby averaging the spin correlations of atime window
ofabout +12 h. The resulting spin correlation and temperature distribu-
tion are shown in Extended Data Fig. 5b.

Correlation functions

Evaluating correlators infinite-sized systems with fixed particle num-
ber leads to finite-size offsets, due to self-correlation of the particles.
For our purpose we have to distinguish two cases. For correlations
between different legs, for example, the rung hole correlation g(0, 1),
self-correlation does not cause problems. In the mixD case holes can-
not move from one leg to the other, such that finding a holeinleg A
does not influence the number of holes in leg B. In the standard case
holes are mobile between the legs, but the focus of the analysis still lies
onholesinopposite legs, because we select the datafor low occupation
imbalance. The correlations are thus not influenced by self-correlation.
Correlations within the same leg are, however, strongly affected by
finite-size offsets. We correct for these offsets using

Ahah
1 g N, L
(2) — L |
g.'(d,0)= — -
" Na ifj:%z,m iy M-1 L-1

where N isthe number ofholesinthelegand L isthelength oftheleg. The
same offset correctionis applied to the pair correlator of equation (3) in
the maintext. The offset correction applies adistance independent cor-
rectionand thus affectsthe overall value, but not the shape of the curve.

Binding energy
We estimate the binding energy of holes from the measured correlation
gLZ)(O, 1) of two holes on the same rung. To this end, we simplify the
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mixD ¢t-/ Hamiltonian of equation (1) by neglecting the two smallest
energyscales/,, t,. Thisis partly justified by the fact that both are below
the estimated temperature T of the experiment.

As aresult, the Hamiltonian completely decouples into individual
rungs and we can exactly diagonalize the latter. Then, as detailed below,
we perform a canonical calculation of the entire system, with exactly
oneholeoneach of thetwo legs of length L. From the known tempera-
ture T and the rung superexchange /, we obtain a direct relation
between the binding energy £, and the rung-correlation function
2(0,1):

(2)
(1+3e7Ah) (1 ~& %00 ‘°'”j

-1

E,==p"'In )

41+g2(0,1)

where f=1/(k;T).

To use the measured correlation value given in Fig. 2a, we have to
eliminate the density dependence of the g(hZ) correlator. Using the
insights of Fig. 3b, we scale the hole correlator with the hole density ny,.
Using the scaled correlator g:f)nh and the above formula with the
experimentally estimated values for k;7//, = 0.77(2), we obtain the
estimate for the binding energy £, = 0.82(6) /, stated in the main
text. The error derives from the error on the experimental value and
the error on the temperature estimation. If we use the measured
hole correlation for exactly two holes in the system (Fig. 3b), as is
used in the above derivation of (4), we obtain a binding energy of
E,=0.79(9) /.. Both calculations yield results in very good agreement
with the theoretical prediction from DMRG at L = 7 of Ef"*°=0.81/,.
We calculate the binding energy in large systems using DMRG and
find that the value settles quickly to around £, .= 0.78 /.. For length
L =40 rungs we find £, 4, = 0.7805/, and for L = 80 rungs we find
E,50=0.7797J,. This demonstrates that our system with its tightly
bound pairs provides a good approximation to the physics in larger
systems.

In the remainder of this section, we explain the simplified model
used herein more detail and derive fromit equation (4). Asmentioned
in the beginning, we neglect the smallest energy scales ¢, and /. The
eigenstates of each decoupled rung therefore become the two-hole
state|hh), the four spin-hole states|sh, y, o) withlegindexy=0, 1and
spinindex o= 1,V, the spin-singlet state |S) and the three spin-triplet
states|T, m) withm=-1, 0, 1. The corresponding eigenenergies are
€=V, e4=€6=0andes=—/,.Note that we allowed for a variable energy
Vofthe hhstate. For ¢, =/, = 0 we know that V= 0; however, for small
but non-zero couplings ¢, J;, a non-zero renormalization of V= 0 can
be expected. The strength of Vcan be calculated perturbatively®, but
we treat it as a free parameter here, which allows us to go beyond a
perturbative analysis.

Wesstart by defining the binding energy of the simplified modelin the
thermodynamiclimit L > e, To thisend, we compare the ground-state
energy of a system with two independent holes, 2(£,;, - Ey,) =2/, with
the ground-state energy of a system with one pair of bound holes,
E>,— Eqn =V +/,; both are measured relative to the undoped ground
state, £y, = -L/,. The binding energy is then defined as

Eb=2Elh_EOh_E2h=—/L - V.

For E, > 0 (E, < 0) the two-hole ground state is paired (unpaired).

To derive equation (4) we perform a canonical calculation with
exactly one hole per leg. The probability of finding both holes on the
samerunganywhereinthe systembecomes p,, =Le #thz{™Y/ 7, where
we defined the spin Zs= e s + 3¢ P£7 and total partition functions

Z=Le Pzt 4 41 (1 - 1)e 2PEsnz L2, By the definition of the g? func-
tion provided in the main text, we obtain the relation

220,1)= L ®)

in our model by assuming a homogeneous density of (4;) =2/(2L) on
eachsiteand ahomogeneous probability for an existing pair to occupy
aspecific rung of 1/L. Thus (AfA% = p, /L for fixed (i,j) on one rung.
There are thus L identical terms in the sum ofgl(f) and one arrives at
equation (5) by inserting g ;)= L. Simplifying this expression and
solving for E finally yields equation (4).
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Extended DataFig.1|Preparationsequence for mixD systems. a, We first
prepare nearly uncoupled 1D chains in which the leg tunnelling exceeds the
rung coupling. b, While the legs are decoupled, we apply the offset Ato one
leg of theladder. ¢, The final parameters arereached by ramping down the
leg couplingand ramping up the rung coupling. There, the potential offset
Abetweenlegs prevents tunnelling from onelegto the other. Note thatin the
final configuration/, > J,.
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Extended DataFig.2 | Calibration of the optical potential offset.

The experimental sequenceis run for different value of A inaregime close to
unitoccupancy of the lattice. tunnelling from one leg to the other is suppressed
aslongas|A-U|>0.WhenA - U, tunnellingis possible,and anincreased number
of doublonsinthe systemis measured.
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Extended DataFig. 3 | Density of the mixD system without doublons.
The density of the mixD system, where only ladders without double occupancies
aretakenintoaccount.
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Extended DataFig.4|Holeand magnetizationstatistics. a,b, Experimental
distribution of holes per ladder (a) and total magnetization (b) for the data
showninFig.2a-c,and Fig.3a.
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Extended DataFig. 5| Temperature estimation. a, Singlet strength versus
temperature. The calibration of temperature is performed using MPS data
containing two to four holes. b, Experimental singlet strength and ¢, inferred
temperature distributions. We evaluate our rung spin correlations C(0, 1) on
the mixD system, using atime window of about 24 h. The temperatureis
extracted from C(0, 1) using the MPS simulation (a).
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