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DESIGN OF DIRK SCHEMES WITH HIGH WEAK STAGE ORDER

ABHIJIT BISWAS, DAVID KETCHESON, BENJAMIN SEIBOLD, AND DAVID SHIROKOFF

ABSTRACT. Runge-Kutta (RK) methods may exhibit order reduction when applied to cer-
tain stiff problems. While fully implicit RK schemes exist that avoid order reduction via
high-stage order, DIRK (diagonally implicit Runge-Kutta) schemes are practically impor-
tant due to their structural simplicity; however, these cannot possess high stage order. The
concept of weak stage order (WSO) can also overcome order reduction, and it is compati-
ble with the DIRK structure. DIRK schemes of WSO up to 3 have been proposed in the
past, however, based on a simplified framework that cannot be extended beyond WSO 3. In
this work a general theory of WSO is employed to overcome the prior WSO barrier and to
construct practically useful high-order DIRK schemes with WSO 4 and above. The result-
ing DIRK schemes are stiffly accurate, L-stable, have optimized error coefficients, and are
demonstrated to perform well on a portfolio of relevant ODE and PDE test problems.

1. INTRODUCTION

This paper focuses on Runge-Kutta (RK) methods for initial value problems
u'(t) = f(t,ut)), u(0) =ug; u e R™, f:RxR™ = R™. (1)
Let u, and wu,4+1 denote the numerical approximations to the true solution at times ¢,, and

tht1 = tn + At, respectively, where At is the time step size. One step of the RK method
reads as

S
j=1
via the stage approximations
S
gi:un+AtZaijf(tn+cht,gj), i=1,2,...,s. (3)
j=1

The parameters A = (a;;);; € R®*® and b= (b,...,b)T,@= (c1,...,c5)T € R® that define
the s-stage RK scheme are displayed via the Butcher tableau
cl A
S

Throughout this work, we assume that the abscissas vector ¢ is related to A via
c= Ae, (4)

where € € R? is the vector of ones. Schemes for which A is lower-triangular are called
diagonally implicit Runge-Kutta (DIRK) methods. Because the DIRK stage equations can
be solved in sequence (whereas a fully-implicit RK method requires simultaneous solution of
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all stages), these methods are of particular practical interest due to their implementation-
friendly structure and cost efficiency.

One major drawback of RK methods is that they may exhibit order reduction [8, 9, 11, 12,
25, 33, 36, 17], i.e., the numerical solution of certain stiff problems [8] converges more slowly
than what the formal order of the scheme would suggest. While there exist time-stepping
methods that are devoid of order reduction, like linear multi-step methods (LMMs) [22], the
practical importance of RK methods (as well as related approaches that are equivalent to RK
methods [14]) renders the question “how can order reduction be avoided in RK methods?”
central.

Order reduction may manifest in multiple shapes and forms. For explicit RK integration of
mildly stiff IBVPs (e.g., advection), techniques to avoid the phenomenon have been developed
n [1, 3, 4, 12, 27]. For stiff ODE problems, order reduction can be explained in terms of
stiff limits [28, 17]. Order reduction in PDE IBVPs, first pointed out in [13, 15], manifests
in an interesting geometric fashion, in a way that the time-stepping error produces spatial
boundary layers [32]. Foundational work on the numerical analysis of order reduction includes
[23, 24, 33, 36], and rigorous error analysis for RK methods applied to linear PDEs has been
developed in [5, 16, 25, 34].

In the stiff setting, implicit Runge-Kutta (IRK) methods with high stage order [17] can
remedy the order reduction phenomenon. Unfortunately, high stage order requires a fully
implicit RK structure, while the DIRK methods [19] are limited to low stage order [20].
Approaches aimed at bridging this gap include a weaker criterion than stage order that
diminishes order reduction specifically for ROW methods applied to linear problems [34].
Similar conditions were proposed in [25], albeit without providing numerical schemes that
satisfy those conditions. In a similar spirit, the concept of weak stage order (WSO) was
proposed in [32], which is a generalization of the conditions stated in [29]. More recently,
[30, Chapter 6] and [31] extended the weak stage order conditions to generalized-structure
additively partitioned Runge-Kutta (GARK) methods.

Like stage order, WSO imposes certain algebraic relations between the Runge-Kutta co-
efficients, but with two key differences: (a) WSO remedies order reduction only for certain
problems; however, (b) the WSO conditions are compatible with the DIRK structure. A
special case of WSO, called the WSO eigenvector criterion, has been studied in [20]: DIRK
schemes up to order 4 and WSO 3 have been provided. At the same time, a barrier theorem
was proved [20, 7]: for high-order DIRK schemes, the WSO eigenvector criterion cannot be
extended beyond WSO 3.

2. THE ORDER REDUCTION PHENOMENON

In this section we review the order reduction phenomenon in the context of stiff ODEs.
Prothero and Robinson [28] introduced a family of problems of the form

w=Xu—ao)+¢'(t), u0)=muy, withRe(\)<0. (5)

Here ¢(t) is any smooth function that varies at a moderate rate (i.e., ¢'(t) = O(1)), while A
is a parameter that allows one to make the problem (5) arbitrarily stiff. If «(0) = ¢(0), then
for any A € C, (5) has the solution u(t) = ¢(t). If Re(\) < —1, the problem (5) is stiff, and
solutions different from ¢(t) decay rapidly back to ¢(t).
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Equation (5) provides a useful model for analyzing the truncation errors of a Runge-Kutta
scheme for a stiff problem. One may introduce the following local truncation errors (LTEs)
[17]: Ej; a+(ty) for the intermediate stages, and Ea(t,) for the final step update. The LTEs
characterize the failure of the exact solution u(t) = ¢(t) to satisfy the RK scheme, and are
obtained as the residuals of substituting g; = ¢(t,, +¢;At), u, = ¢(t,), and uyy1 = (b, + At)
into the RK scheme (2)—(3) applied to problem (5). Upon Taylor-expanding about t,, the
LTEs are [8]:

. k
Eltn) = 3. (22 8 0 ©)
k>1
k S
Ealts) =3 (]EJA_t)l)' $ bkt - % o®(t,) | (7)
k>1 T =t

where E(t,) := [E1at(tn), Eoat(tn), - . ., Esa(tn)]?. Here the vector
k) .= Agk—1 — %a’“, for k> 1,

is called the kth stage order residual (it will play an important role later), ¢(*)(¢,) is the
kth derivative of ¢ at t,,, and &~ := [clf, cg, . ,clg]T denotes component-wise exponentiation.
Notice that (4) implies 7() = 0.

The numerical approximation error at time t,, is then defined as €,, := u, —@(t,). It satisfies
the same linear recursion as the RK scheme, with a forcing prescribed by the LTEs (6) and

(7):
ens1 = R(Q)en + (0T (1 — CAT'E(tn) +Eni(tn) - (8)
=1(¢)
Here ¢ := AAt, and R(z) (z € C) is the stability function:
det(I — zA + zébT) ©
det(I — zA) ’
Inspecting the expressions (6), (7) and (8) above, we see that the following conditions influence
the order of the local error:

R(z):=1+42bT(I—zA)"'e=

B(&) - pTek1 = % for k=1,2,....¢; (10)
IE 7k =0 for k=1,2,...,&; (11)
S(€) : b7 AR = 0 for k>0, j+k<¢; (12)
T(€) : b A e = % for k=1,2,...,€. (13)

The conditions B(§), C(§) are widely used and known as simplifying assumptions; they
determine the order of accuracy of the quadrature and subquadrature rules on which the RK
method is based [10]. Notice that B(p) implies Ea; = O(AtP*1). Here we have introduced
notation for the additional conditions 7" and S since they play an important role below. The
conditions T'(§) determine the order of accuracy of the method for non-stiff linear problems.
The conditions S(§) have appeared for instance in [2]. The conditions B(p), S(p), and T'(p)
are necessary (though not sufficient) for a method to be of order p for general problems.
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Notice that if B(p) and T(p) hold, then the first and last terms in (8) are O(A#P*). Tt
remains only to bound the second term,

Z(¢) = ¢bT(I - ¢A) T E(tn)

which is the one that causes order reduction in the stiff setting and on which we focus herein.

In the classical RK theory, i.e., in the non-stiff case, the scheme’s convergence is studied
in the limit At — 0 with ( = O(At). A Neumann expansion in || < 1 of ((I — (A)~! =
CI+ C2A + (PA% + .- then leads to the terms like b7 AF®) in Z(¢) with £ > 0, so that
condition S(p) guarantees the one-step error is O(AtP+1).

In the case of stiff problems, we are interested in time steps that are large relative to the
fastest time scale of the problem dynamics, which is ﬁ for the Prothero-Robinson problem,

i.e., we want |A\|/At > 1. Hence, we study the convergence of errors under the simultaneous
limits At — 0 and ( — —o0, i.e., A = —oo faster than At — 0. In this case (! is small
and a Neumann expansion yields (I — CA)™' = —A" YT — ¢ 1A )= A"t - ¢~tA-t -
¢(72A72 + ..., leading to the terms like bT A7*) but with £ < 0. These quantities are not
guaranteed to vanish by the order conditions, and this in general leads to order reduction.

One way to avoid order reduction is to use schemes with high stage order.

Definition 2.1 (Stage order). The stage order of a RK scheme is ¢ = min{qi, g2}, where
q1,q2 are the largest integers such that B(q1) and C(g2) hold.

Stage order ¢ implies that every stage of the scheme is an approximation accurate to at
least order ¢, and in particular that the method itself has order at least ¢. Furthermore, for a
scheme with stage order ¢, it can be shown that the local error is O(At4*!) even in the stiff
regime, thus avoiding order reduction. Unfortunately, DIRK schemes are restricted to low
stage order; see e.g. [20] for a proof of the following well-known result.

Theorem 2.2. The stage order of an irreducible DIRK scheme is at most 2. The stage order
of a DIRK scheme with non-singular A is at most 1.

In the next section, we describe a criterion, called weak stage order (WSO), that is weaker
than the stage order conditions but compatible with the DIRK structure. We show later
that high order DIRK schemes with high WSO avoid order reduction for a certain class of
problems, including the Prothero-Robinson problem (5).

3. WEAK STAGE ORDER, ORDER CONDITIONS, AND THEIR RELATIONSHIP

Since DIRK schemes cannot have high stage order, a weaker condition, referred to as
weak stage order (WSO), was introduced [20, 32]. High weak stage order can alleviate order
reduction in linear problems, and, in contrast to high stage order, is compatible with a DIRK
structure.

—.

The idea behind WSO is to prescribe conditions on (A, b) that increase the accuracy of the
problematic error term Z(¢) in (8), via the following fact: it holds that Z(¢) = O(AtI), if

bT(I—cA)'#R =0, fork=1,...,q. (14)
Weak stage order is thus formulated to ensure that (14) holds.
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Consider the following space, which is the direct sum of Krylov subspaces generated by the
stage order residuals {7?(1),7_"(2), e ,7"’(‘1)}:

K, := span {7_"(1), A7 AT D) A2 ,As_li:(q)} : (15)

Note that by definition, and through application of the Cayley-Hamilton theorem, K, is an
A-invariant subspace (that is AV € K, for any v € K;). It will also be helpful to define the

set of RK coefficients (A, 5) such that b L K,, namely:
W, = {AERSXS,EE R* | 574770 =0, for 0<j<s—1,1< kgq}. (16)
Weak stage order can be defined in one of two equivalent ways.

Definition 3.1. (Weak stage order, version 1) The weak stage order q of an s-stage RK
scheme (A,b) is the largest integer for which b L K, i.e., (A,b) € W,. If b L K, holds for
every q > 1, then ¢ = oco.

The second abstract version makes use of invariant subspaces.

Definition 3.2. (Weak stage order, version 2) The weak stage order q of an s-stage RK
scheme (A,b) is the largest integer for which there exists an A-invariant vector space V' such
that: 7% € V for 1 <k < qand bTy =0 for ally € V. If 7% € V for all k > 1, then

q = 00.

These two definitions of weak stage order are equivalent (i.e., taking V = K|, in defini-
tion 3.2). Moreover, weak stage order is the most general criterion to guarantee (14), thereby
avoiding order reduction in (stiff) linear problems [20].

In addition to the set of schemes that satisfy the WSO equations, we also introduce the
set of pth order schemes:

V= {A € R*** b e R® | (A,b) satisfy all order conditions up to order p} . (17)

A list of all order conditions up to p = 5 is given in Table 1.

We now discuss the polynomial equations defining RK schemes with order p and WSO g,
i.e., the set W, N'V,. Notice that the solutions to the WSO equations (i.e., schemes in W)
are of the same form as the conditions S(§) (12), but they are required to hold for a larger
set of values j, k. Since the conditions (12) appear explicitly in the RK order conditions as
formulated by Albrecht [2], there is some overlap or redundancy between the conditions for
WSO ¢ that define W, and the conditions for order p that define V,. In the more widely
used formulation of RK order conditions due to Butcher (which we will also employ later),
one instead has the related conditions (cf. (1))

k!
((+1)!

The expressions appearing in the WSO conditions are just linear combinations of these ¢y :

(bf,k — bTAZ—ké-‘k -

=0 V0O<k<(<p-1.

N N 1 1
b AI7R) = pT AI (Aa’f—l - E5k> = Gkt~ Ojkk V) 20,k 21,

Therefore, if a method has WSO ¢ then each of the conditions ¢, = 0 for 1 < k < ¢ is
equivalent. When constructing RK schemes with high WSO, we can therefore pick just one
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Order T(p) B(p) Related Additional
to S(p) Order Conditions
p=1 bTe =1
p=2|bTAe = %
p=3 bTA2e — L pTE2 — %
p=4lbAe=LvT =1 pTa? =L bpTcAc=1
p=5|bTAle= L pTet =1 pTA%2 = L bTC%Ac= L bTCAc? = L
bTA = 55 bTCA%E = 55 bTAC AT = 4
bTDAC = 5

Table 1. Order conditions (in Butcher’s notation): Here D = diag(Ac), C' = diag(¢), and ¢ = Aé.

(p,q) | np | # redundant eq. W redundant ¢; ¢,k kept
(3,2) | 4 1 P21 P11, P22
(3,3) | 4 1 $2.1 1,1, P22
(4,3) | 8 3 2.1, P32, 031 | P11, P22, 933
(4,4) | 8 3 2.1, P32, 031 | P11, P22, 933
$2,1,$3.2, P43 | O1,1, P2,2, 033
5’ 4 17 6 ) 3 ) 3 3 3
(5.4) 3.1, 04,2, Pa1 a4
$2,1,$3.2, P43 | O1,1, P2,2, 033
5’ 5 17 6 ) 3 ) 3 3 3
(5.5) $3.1, 04,2, Pa1 D44

Table 2. Given order p and WSO ¢, the numbers n, and W are the total, and redundant
number of order condition, respectively. The last two columns show which ¢, we retain, vs.
discard as redundant (since they are already implied by WSO and the retained conditions).

¢ox = 0 from each equivalent family. Table 2 summarizes which order conditions we keep
(and which we discard as redundant) in the construction of W, NV,

Meanwhile, the WSO equations independently contain some redundancy; the Cayley-
Hamilton theory used in definition 3.1 overestimates the set of equations required to define
an invariant subspace K,. The following section discusses how to construct a low-dimensional
subspace K, by removing redundant equations in the definition of W,.

4. RESULTS FROM WEAK STAGE ORDER THEORY

In this section we summarize key theoretical results from the companion paper [7]—which
we use here to construct DIRK schemes with WSO greater than 3. The main results consist
of (i) lower bounds on the number of stages required to obtain WSO greater than 3 (in terms
of the order p); and (ii) formulas for constructing K.

To start, we first introduce the minimal polynomial for K, which plays a central role in
the results. Let d = dim(K,) denote the dimension of K, and wj;, for j = 1,...,d, be a basis
for K,. Let

W .= (1171"&172‘ s ’wd) S RSXd .
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Since the column space of W is A-invariant, there is a square matrix B € R®*¢ such that
AW =WB. (18)

Equation (18) simply states that each vector Aw; can be expressed as a linear combination
of vectors w;, fori =1,...,d.

The minimal polynomial [6, Chapter 8 & 9A] (see also [21, Chapter XIV §2]) p(z) of a
matrix B is the (non-zero) monic polynomial of smallest degree for which p(B) = 0. While
it is often the case (for instance when the eigenvalues of B are distinct) that the minimal
polynomial is the characteristic polynomial, in general p(x) may be of lower degree than
charp(x) when B has repeated eigenvalues (e.g., if B = I is the s x s identity matrix then
p(z) = x — 1 while charp(x) = (x — 1)°).

We define the minimal polynomial P(x) of K, as the minimal polynomial of B in (18).
Note that P(x) is intrinsic to the subspace K, and remains invariant under a change of basis.
That is, if W' = WT for an invertible matrix 7" is an alternative basis for K, then (18) reads
AW' = W'B" where B’ = T~'BT is just a conjugation of B. Since P(B) = 0 is equivalent
to P(B’) =0, the P(z) does not depend on the choice of basis for K.

The minimal polynomial P(z) of K, satisfies several important properties which follow
from the linear algebra of matrices restricted to invariant subspaces. We summarize them
here (without proof), along with their implications for DIRK schemes with WSO.

1

a) P(x) is the lowest degree (non-zero', monic®) polynomial that satisfies

P(A)W =0, YuekK,. (19)

Due to the Krylov structure of K, relation (19) can be restated in terms of the vectors
T} as:

P(A)T, =0, fork=2,...,q. (20)

b) P(x) divides the characteristic polynomial of B. Thus,
deg(P) < dim(K,) .

c) P(z) divides the characteristic polynomial of A. Hence, every root of P(x) is an
eigenvalue of A. For DIRK schemes, the roots of P(z) are then a subset of the
diagonal entries of A, i.e., {a11,a92,...,ass}

We now may summarize the key results from [7]. The first result is a limitation theorem on
high WSO.

Theorem 4.1. (from [7]) A DIRK scheme with invertible A and minimal polynomial satis-
fying deg(P) < 1 is limited to WSO q < 3.

The practical implication of theorem 4.1 is that WSO ¢ > 3 requires a minimal polynomial
deg(P) > 2. The next theorem demonstrates how the WSO ¢ impacts the number of stages
s required to achieve a given order p.

Theorem 4.2. (from [7]) An s-stage DIRK scheme with n. distinct abscissa values, order
p > 1, and weak stage order ¢ < 2n.—1 (with K, and P(x) defined in (15) and (20)) satisfies

s—p+1—0>dim(K,) > [gJ7

n the case when K, = {0}, P(z) =1 is the constant polynomial.
2The highest-power coefficient is 1.
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where o = 1 if the method is stiffly accurate, and o = 0 otherwise.

A classical result in RK theory (e.g. [17, Theorem 4.18]) is that DIRK schemes have order
limited to p < s+ 1. Theorem 4.2 highlights that the “gap” in this bound is exactly what
enables WSO q.

Our goal here is to construct schemes with ¢ > 3. Motivated by the implications of theorem
4.1 and theorem 4.2, we choose dim(K,) as small as possible, that is dim(K,;) = 2 (and hence
deg(P) < 2). Theorem 4.2 then requires the number of stages to be s > p + 1+ o, and
limits ¢ to ¢ < 5 (which suffices for this work; however, the theory also allows for ¢ > 5 if
dim(K,) > 2). Furthermore, the following theorem (also from [7]) characterizes the roots of
P(z) when ¢ > 3:

Theorem 4.3. (Minimal polynomial when deg(P) = 2; [7]) Consider an irreducible DIRK
scheme with invertible A and WSO q > 3. If K, has a minimal polynomial with deg(P) = 2,
then

P(z) = (z —a1)(x — aze) . (21)

Note that P(x) in (21) is valid for both cases a1 = age and aj; # ags.

We turn our attention to constructing spaces K, = span{wi, s} with dim(K,) = 2 and
deg(P) = 2 (otherwise, via theorem 4.1, deg(P) € {0,1} would result in WSO 3 or less).
Theorem 4.3 requires:

(A—all,[)(A—CLQQI)’lEj :O, j = 1,2 . (22)

If Wy, are chosen as eigenvectors of A, then (without loss of generality) the solution to (22) is
exactly one of:

When ail 75 asg A’lﬁl = a11u71 and A’lﬁg = aggwg s (23)

When a1 = ass : AWy = ajywy and AWy = ay Wy + Wy . (24)

Note that no other solution to (22) is allowed: neither of the monomials (A—a111) or (A—agel)

in (22) can individually annihilate both vectors in K,; otherwise the degree of P would be 1.

This forces the vectors w; (j = 1,2) to have distinct eigenvalues when a1y # age, or ws to be
generalized eigenvectors when a1 = a9s.

Finally, the space K, with dim(K,) = 2 has the form
70 = g3+ B, for k=2,3,... ¢, (25)

where ﬁgk), ﬁék) are unknown coefficients to be solved for (along with A). WSO then may be
guaranteed if bl K,, that is:

b, =0, b i, =0. (26)
Together, we will use equations (23) and (24), as well as equations (25) and (26) as a (minimal)
system of equations for weak stage order (with dim(K,) = 2).

As a final remark, we discuss a family of DIRK schemes that satisfy the WSO equations
(23) and (25), yet are reducible to smaller (equivalent) schemes. Identifying and avoiding
reducible DIRK schemes is important for the construction of schemes in the next section.

We say a scheme is r-confluent if the abscissas of its first r stages all coincide, i.e., ¢ =
- = ¢,. DIRK schemes that are r-confluent are equivalent (specifically, S-reducible [17,
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Chapter IV.12]) to a simpler DIRK scheme where one stage replaces stages 1 through r.
Specifically, consider two DIRK schemes in block form

_ (A O R ] «_ (a1 O «_ (b
A= <A21 A22> with b = <52) , and A = <C_L,2*1 A22> with b <b2 (27)

—

where @3, := A€, is a vector consisting of the row sums of Ay; and b = b{ € (where € here
is of length m = number of columns of Ay;). Then, we have

Lemma 4.4. Let (A,b) be an s-stage DIRK scheme with block structure given in (27). If

(A11,by) is an r-confluent scheme with r stages where 2 < r < s, then (A,b) is reducible to
(A*,b%).

Proof. Applying Definition 12.17 in [17], where the partition of equivalent stages (i.e., parti-
tion of the integers {1,...,s}) is taken as S; = {1,2,...,r} and Sy = {r+1}, ..., Ss_, = {s}
shows that the scheme is S-reducible. Then [18, Theorem 2.2] implies that the first r stages
of A yield the same intermediate stage value solutions—and thus can be replaced by a single
stage. O

5. OPTIMIZATION PROBLEM FOR FINDING DIRK SCHEMES WITH DESIRABLE PROPERTIES

In this section we formulate and numerically solve the problem of constructing DIRK
schemes with a prescribed order p and WSO ¢ that are A-stable, stiffly accurate (and hence
L-stable), and have an optimally small error constant. A-priori, the degrees of freedom in
this optimization problem are the coefficients in the matrix A € R*® and the vector b € RS
The constraints are as follows:

(DIRK structure) a;; = 0 for j >

(pth order conditions) (A,b) € Vp, defined in (17);

(weak stage order q) (A,b) € W, defined in (16);

(WSO if dim(K,) = 2) (A, b) satisfy (25), (26), and either (23) or (24);
(stiff accuracy) as; = b; for j=1,...,s;

(non-negative abscissas) ¢; > 0 for j =1,...,s;
(A-stability condition 1)
(A-stability condition 2)
(relaxation of (C.6)) |R(i

a“>0for1<z<8
|R(iy)| <1 for all y € R;
y)| <lforye{y,...,ym}t with 0 <y3 < ... < ypm.

Condition (C.0) enforces the DIRK structure. Conditions (C.1) and (C.2) are simply the
order conditions and weak stage order conditions, respectively, while (C.2’) is a simplified set
of WSO conditions (based on §4) for the special case dim(K,) = 2. Condition (C.3) ensures
stiff accuracy and guarantees that the numerical solution is exact in the limit At — 0 and
¢ — —oo [17]. Tt has the effect of prescribing b in terms of A so that the degrees of freedom
are the matrix A only. Constraint (C.4) ensures that evaluations of f(¢,u) in (1) do not occur
prior to the initial time.

Lastly, conditions (C.5) and (C.6) impose A-stability (see [17, Chapter IV.3 Egs. (3.6),
(3.7)]), which, combined with (C.3), ensures L-stability. Condition (C.6) is, as written, an
infinite set of constraints. While it is possible to recast (C.6) as a finite set of inequali-
ties involving semi-definite matrices (using a connection between non-negative single-variable
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polynomials and polynomials written as a sum of squares), here we take the simpler approach
of approximating (C.6) by imposing it only at a finite set of values on the imaginary axis.
Taking advantage of the symmetry |R(iy)| = |R(—iy)| leads to the weaker set of constraints
(CR.6).

For the purpose of constructing DIRK schemes with high WSO, we denote the set of
equality constraints Cgq and inequality constraints Ciugq by:

Ciq = {(A,b) € R¥** x R® | (C.0), (C.1),(C.2'),and (C.3) hold} ,
Cukq := {(A,b) € R*** x R® | (C.4),(C.5),and (CR.6) hold} .

A feasible scheme is one that satisfies both sets of constraints.

To guide the construction of DIRK schemes that achieve a minimal error, we use the £2-
norm of the residuals of the (p + 1)st order conditions as a proxy for the error, leading to the
objective function:

(Ob) (Objective function) F(A,b) := ||(p + 1)st order conditions||2,.
For instance, for p = 1 and p = 2, the objective function (using ¢ = A¢€) is:
p=1: F(AB)=(5"47-}) .
p=2: F(AD) = (b7A% - %)2 + (57 - %)2

If enough degrees of freedom are allowed, then a feasible scheme of order p may satisfy

-,

F(A,b) = 0, and thus be of order p + 1. However, generally, locally optimal schemes will
not satisfy F'(A,b) = 0 exactly. Altogether, we seek optimal DIRK schemes via the following
constrained minimization problem:

=,

(M) Minimize F(A,b)
Subject to (C.0), (C.1), (C.2"), (C.3) and
(C4), (C.5), (CR.6) .

5.1. Solution to Problem (M). While one can attempt to solve problem (M) directly via
black-box optimization routines, numerical experiments revealed that such a direct approach
becomes highly inefficient as s, p, and ¢ are increased. Plausibly caused by the problem’s lack
of convexity and ill-conditioned constraints, feasible, let alone optimal, solutions are found
increasingly rarely with increasing s, p, and ¢. In order to facilitate a more robust approach,
we instead propose to solve (M) in two major steps: We first construct a feasible scheme;
then, using the feasible scheme as initial guess, we apply a local optimizer to minimize the
objective function.

1. Construction of a feasible scheme: We solve a sequence of sub-problems to find a feasible
scheme satisfying both Cpq and Cryrq. Steps (1A) and (1B) construct a solution satisfying
the equality constraints only. Step (1C) then incorporates the inequality constraints as well.

Step (1A).| This step utilizes a hybrid analytical and numerical approach to find a point

(A,b) in Crq. Below, the substeps (a)—(e) solve the first (s — 1) rows of equation (25) and
make use of the theory from §4; then substep (f) solves the remaining constraints. All
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numerical solutions in this step use MATLAB’s sqp algorithm in fmincon, prescribing a
constant objective function in order to use it simply as an algebraic solver.

(a) Solve (analytically) the first two components of the eigenvectors w1, w(?): there are
two solution branches, one corresponding to (23) and another (24). We restrict our
solutions to the branch (23) where a1 # ags. The alternative case, aj; = agy is also
possible but not pursued here.

(b) Solve (analytically) for ﬁgk), 5§k) in equation (25): the first two rows of (25) uniquely

define ﬁgk), 5§k), and are then automatically satisfied.

(c) Solve (analytically) for the third component/row of (25): the 3 equations in six vari-
ables (ai1,a91,a29,as1,as2,ass) for ¢ = 4 can be solved by parameterizing as, asq,
and ago in terms of a1, ase, and az3. We choose the parameterized branch to avoid
the reducible r-confluent schemes (see §4).

(d) Construct (numerically) the upper 3 x 3 block of A with numerical entries. For ¢ = 4,
we select a11, age, and asgg randomly and use the parameterization in (c) to determine
as1, asi, azy. For ¢ =5, we find a numerical solution to the third component/row of
(25) for 7(® (which via the parameterization is an equation in terms of a1, asg, ass).

(e) Solve (numerically) row by row (from row 4 through s — 1), the (¢ — 1) equations
in (25). When ¢ = 4,5, the rth row yields (¢ — 1) (< r) equations in r variables.
At each row, we numerically find a solution. At the end of this substep, the upper
(s — 1) x (s — 1) block of A is populated with numerical entries.

(f) To satisfy (C.3) we set b7 = (as1,as2, ... ,ass), then solve (numerically) for the last
row of A. Together, this amounts to solving the (¢ — 1) equations from row s in (25)
(i.e., to satisfy (C.2’)) and the non-redundant (cf. §3) order conditions (C.1),

bW, i, e,2.¢%,¢%, 0Ad = [0,0,1, 5,4, 1, §) » (28)
for order p = 4. Order p = 5 requires, in addition to (28):
b7 [Et, C?AG, C ACE, diag(AR) AG, CA?G, ACAT = [1, &, &, &, &, 4.
For instance, a 4th order DIRK scheme with WSO 4, yields 10 equations (7 from (28)
and ¢ — 1 = 3 from row s of (25)) in s variables.

This procedure generates a random scheme that satisfies the equality constraints. For
robustness purposes, we choose to reject (and simply re-start the step) any scheme that has a
coefficient larger than 20 in absolute value (in line with [35]) or fails to satisfy the constraints
to within 10710.

Step (1B).|Step (1A) uses fmincon as a solver with (for computational speed) the residual
error tolerance set significantly larger than machine precision. This generates a first approxi-

mation (A, b) to constraints (C.1), (C.2°), and (C.3). To drive the residuals down to machine
precision, we use the output from step (1A) as a starting point and solve the equations defined

by Crq (again) via a Gauss-Newton iteration.

Step (1C). | In this step we reincorporate the inequality constraints: non-negative abscissae
(C.4) and A-stability ((C.5) and (CR.6)) to construct (fully) feasible schemes. Using the

=,

output (A,b) from step (1B), we call fmincon with the full constraint set and (again) a
constant objective function. The resulting schemes turn out to satisfy the equality constraints
to machine precision, and we observe that they tend to not lie on the boundary of the
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inequality constraints Ciygq. In the occurrence that the optimization solve in this step fails,
we simply restart from step (1A).

Remark 5.1. (SDIRKs and WSO) Restricting to the solution branch defined by (23) in
(1A) rules out singly diagonally implicit Runge-Kutta schemes (SDIRKs), which have all
their diagonal entries identical. SDIRK schemes are of practical interest for their ease of
implementation. While we defer the study of SDIRK schemes to later work, a preliminary
exploration of the other solution branch (24) (albeit with dim(K,) > 2) revealed that SDIRKs
with high WSO do exist, demonstrating that the SDIRK structure is compatible with high
WSO.

2. Optimization: We will refer to schemes by the triple (s,p, q), representing the number
of stages, classical order, and weak stage order, respectively. According to theorem 4.2, a
4th order DIRK scheme with WSO 4 requires at least five stages, and a 5th DIRK scheme
with WSO 4 or 5 requires at least six stages. These are lower bounds that may not be sharp,
and the additional requirements we have imposed (such as A-stability and stiff accuracy) are
likely to further increase the minimum viable number of stages. In numerical searches, we
have found schemes of type (7,4,4), (12,5,4), (12,5,5). Numerical searches failed to find
methods with the corresponding p, ¢ and fewer stages s.

We repeatedly (100,000+ times) solve (M) via local optimization, starting with initial
guesses given by the output of step (1C). This yields a set of locally optimal schemes. We
use MATLAB’s fmincon with the gradient-based sqp algorithm. Among the locally optimal
schemes found in this manner, we have selected one from each class that is close to optimal
in terms of F(A, l_;) and is Pareto-optimal in terms of minimizing F'(A, l_;) and minimizing
max; j |a;j|. We thus provide three schemes, one for each triple (s, p, ¢): DIRK-(7,4,4), DIRK-
(12,5,4), and DIRK-(12,5,5). Since we used the relaxation (CR.6) in place of (C.6), we check
a posteriori that the schemes are in fact A-stable. The stability regions and magnitude of
the stability function along the imaginary axis, shown in Figure 1, confirm this. Scheme

coeflicients are given in appendix A.

6. NUMERICAL RESULTS: LINEAR PROBLEMS WITH AUTONOMOUS OPERATORS

This section presents numerical test cases for ODE and PDE problems with linear operators
with time-independent coefficients (the forcing and solutions may be time-dependent). This
is the class of problems for which WSO is expected to alleviate order reduction.

There are only a handful of theoretical results characterizing for which problems or PDEs
the convergence rate can be guaranteed to be equal to the weak stage order. For example,
Ostermann and Roche [25] examined linear boundary value problems, i.e., u; = Lu + f with
boundary condition Bu = 0, where £ has a complete L? eigenfunction basis with (point
spectrum) eigenvalues satisfying Re(\) < 0 (see Assumptions (3.1) in [25]). Here £ may have
coefficients that depend on space x, but not on time ¢; and f(¢) may be time-dependent.
Then RK schemes satisfying the condition

P —1=(k
Wi(z)=0 forl<k<gq, where Wy(z) := ROI(L — 24) 7D , (29)
R(z)—1
along with Assumptions (2.9) in [25], overcome order reduction. Condition (29) is (essentially)
implied by WSO ¢. In a similar spirit, condition (29) remedies order reduction for Rosenbrock
methods [26] in a more abstract setting where £ is the infinitesimal generator of an analytic
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DIRK-(7,4,4) DIRK-(12,5,4)
200 200
100 100
0 0
-100 -100
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-100 A DIRKA(7,44)
......... DIRK-(12,5,4)
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Figure 1. Stability regions (in C) for the new schemes, DIRK-(7,4,4), DIRK-(12,5,4), and
DIRK-(12,5,5), and |R(iy)| for y € R for the three schemes. Observe that |R(iy)| < 1 along the
imaginary axis, hence these methods are A-stable.

semi-group. While several of the PDEs we test here fall under the framework of known
convergence results in [25], some do not, such as the linear advection equation in §6.5.

Below, the new schemes are denoted by (s, p,q), where s is the number of stages, p is the
classical order, and ¢ is the scheme’s weak stage order. Methods with ¢ = p for ODEs and
q = p — 1 for PDEs yield solutions that converge at the rate p. However, for PDEs, spatial
derivatives of the solution may still exhibit order reduction if ¢ = p — 1. Methods with ¢ = p
for PDE problems also alleviate order reduction in the solution’s derivatives [25, 32].

As references of comparison for our newly devised (high WSO) schemes, we include two
schemes with WSO ¢ = 1, referred to as DIRK-(5,4,1) [17, Chapter IV.6, Table 6.5] which is
A-stable and stiffly accurate; and DIRK-(5,5,1) [19, Table 24, p. 98], which is A-stable but
not stiffly accurate.

In each PDE test problem below, a spatial approximation is chosen so that the spatial
approximation error becomes negligible relative to the temporal error. Hence, the error con-
vergence plots below isolate the temporal error generated by the different DIRK schemes with
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high (and low) WSO. Note that for the different test problems, different spatial approxima-
tion strategies and numbers of grid points are employed to achieve this objective while also
balancing simplicity and computational efficiency.

6.1. Prothero-Robinson ODE test problem. We study the problem (5) with true solu-
tion ¢(t) = et sin(10t) + cos(20t), stiffness parameter A = —10%, initial condition u(0) = ¢(0)
and final time 7" = 10. Figure 2 contrasts high versus low WSO schemes, i.e., DIRK-(7,4,4)
vs. DIRK-(5,4,1), as well as DIRK-(12,5,5) vs. DIRK-(5,5,1). For each scheme we observe
convergence order p for small enough At. However, in line with the theoretical predictions,
for the schemes with ¢ < p the convergence rate is lower (approximately equal to ¢) for larger
values of At, i.e., in the stiff regime.

Linear ODE Linear ODE
DIRK~(7,4,4) & DIRK~(5,4,1) DIRK-(12,5,5) & DIRK~(5,5,1)
4 ||=©=ws04 107} [—@=wso0 5 ]
107" | === WSO 1 108 ||~ WSO 1
5 Slope 4 Slope 5
§10 ..... 10—5 .....
wi10® 5107
-10 L
10712 10 M
107 1073
10-16 L L s L 10-15 f L 1 L
10° 10° 10%¢10° 10% 107 10° 10° 10 g0 10?7 107

Figure 2. Convergence for the Prothero-Robinson test problem using DIRK-(7,4,4): 4th order
DIRK scheme with WSO 4 (blue circles) and WSO 1 (green) (left), and DIRK-(12,5,5): 5th order
DIRK scheme with WSO 5 (blue circles) and WSO 1 (green) (right).

6.2. Heat equation. Next we consider the 1D heat equation
U = Ugy + f for (z,t) € (0,1) x (0,1], w=g(z,t) on {0,1} x (0,1],

with the forcing f(z,t), the boundary conditions (b.c.) and the initial condition (i.c.) cho-
sen such that u(z,t) = cos(20¢)sin(10z + 10). To isolate the temporal error, we use a 4th
order centered finite difference approximation in space on a grid with 10% points. Errors are
computed at the final time T' = 1 using the maximum norm in space. Figure 3 shows the
convergence of function values u and derivatives wu, using the three new high WSO DIRK
schemes, compared with reference WSO-1 DIRK schemes of the respective orders. In agree-
ment with the analysis in [32], for this second-order PDE, the time stepping schemes produce
spatial boundary layers (BLs) of width O(At"?), resulting in a loss of half an order in u, when
g < p. The results confirm the full order of convergence in u and u, when using DIRK-(7,4,4)
and DIRK-(12,5,5), and the full order in u and half order loss in u, with DIRK-(12,5,4).
Note that with the given setup, the spatial approximation error is about 107!, hence the
stagnation of the errors around that value.



DESIGN OF DIRK SCHEMES WITH HIGH WEAK STAGE ORDER 15

Heat Eqn: DIRK-(7,4,4) Heat Eqn: DIRK~(12,5,4) Heat Eqn: DIRK~(12,5,5)
= DIRK-(5,4,1): U = DIRK-(5,5,1): u = DIRK-(5,5,1): u
10" =©=DIRK-(7,4,4): u —©—DIRK-(12,5,4): u 10" =©=DIRK-(12,5,5): u
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Figure 3. Convergence (u blue circles; u, red squares) for heat equation using DIRK-(7,4, 4):
4th order DIRK scheme with WSO 4 (left), DIRK-(12,5,4): 5th order DIRK scheme with WSO
4 (middle), and DIRK-(12,5,5): 5th order DIRK scheme with WSO 5 (right).

6.3. Schrodinger equation. As an example of a dispersive problem we consider
up = ;—ﬁum +f for (z,t) € (0,1) x (0,1.2], w=g(x,t) on {0,1} x (0,1.2],

with the manufactured solution u(x,t) = exp (—(:E — t)2) cos(10x) sin(t), where w = 27 and
k = 20. As above, u,, is approximated by 4th order centered differences on a fine grid with
10* cells. The problem is solved up to final time 7 = 1.2 via different RK schemes, and the
convergence in u and u, is evaluated. Figure 4 shows the results obtained with DIRK-(7,4,4)
(left), DIRK-(12,5,4) (middle), and DIRK-(12,5,5) (right), relative to DIRK-(5,4,1) and
DIRK-(5,5,1) reference methods. Similar convergence results are observed as for the heat
equation: full orders in u and u, are recovered with DIRK-(7,4,4) and DIRK-(12,5,5), while
uy loses a half order with DIRK-(12,5,4).

Schrodinger Eqn: DIRK-(7,4,4) Schrodinger Eqn: DIRK-(12,5,4) Schrodinger Eqn: DIRK-(12,5,5)
——DIRK-(5,4,1):u == DIRK-(5,5,1): u == DIRK-(5,5,1): u
=©=DIRK-(7,4,4): u

1073 == DIRK-(12,5,4): u
== DIRK-(12,5,4): u,

10.3 == DIRK-(12,5,5): u
= DIRK-(7,4,4): u, e ;

1()'5 pr=_slope=4

= slope=5 = slope=5
== = slope=3.5 -5 [== = slope=4.5 -5 == = slope=4.5
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Figure 4. Convergence (u blue circles; u, red squares) for Schrodinger equation using DIRK-
(7,4,4): 4th order DIRK scheme with WSO 4 (left), DIRK-(12,5,4): 5th order DIRK scheme
with WSO 4 (middle), and DIRK-(12,5,5): 5th order DIRK scheme with WSO 5 (right).

6.4. Advection-diffusion equation. This example demonstrates that DIRK schemes with
high weak stage order avoid order reduction when applied to problems with physical boundary
layers. We consider the 1D linear advection-diffusion equation

Ut + Uy = Vg + f(z,t) for (z,t) € (0,1) x (0,1],
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with the true solution u(x,t) = cos(5t) sin(10z + 10), Dirichlet b.c., and viscosity v = 1073.
The advection term dominates, and the outflow boundary condition at x = 1 leads to a
physical boundary layer of width O(v). All spatial derivatives are approximated via 4th-order
centered differences on a grid with 10* cells, and errors are evaluated at 7' = 1. The results
shown in Figure 5 exhibit the expected convergence in u and u, for DIRK-(7,4,4) (left),
DIRK-(12,5,4) (middle), and DIRK-(12,5,5) (right). In particular, the results confirm that
physical boundary layers do not interfere with the schemes’ remedy of order reduction.

Adv Diff Eqn: DIRK-(7,4,4) Adv Diff Eqn: DIRK-(12,5,4) Adv Diff Eqn: DIRK-(12,5,5
=== DIRK-(5,4,1): u ==DIRK-(5,5,1): u == DIRK-(5,5,1): u
1072 [=©=DIRK-(7,4,4): u =©=DIRK-(12,5,4): u 1073 b=©=DIRK-(12,5,5): u

== DIRK-(7.4,4): u_
-4 [ s|ope=4
10 == = slope=3.5
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e 5lOPE=5
10-5 == = slope=4.5
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Figure 5. Convergence (u blue circles; u, red squares) for the advection-diffusion equation using
DIRK-(7,4,4): 4th order DIRK scheme with WSO 4 (left), DIRK-(12,5,4): 5th order DIRK
scheme with WSO 4 (middle), and DIRK-(12,5,5): 5th order DIRK scheme with WSO 5 (right).

6.5. Linear advection equation. To illustrate order reduction, and its remedy, in problems
with only first-order spatial derivatives, we consider

u +uy =0 for (x,t) € (0,1) x (0,1],

with Dirichlet b.c. at = = 0, final time 7" = 1, and the true solution a traveling wave u(x,t) =
sin(2m(z—t)). Again, 4th-order centered differences with 10% cells are used to approximate 9.
For this first-order problem, the numerical boundary layer due to order reduction now is of
thickness O(At), hence we expect a loss of a full order in u, when ¢ < p. This is demonstrated
in Figure 6: DIRK-(12,5,4) recovers 5th order in u and 4th order in u,. Moreover, DIRK-
(7,4,4) and DIRK-(12,5,5) recover their full orders of convergence for both u and u;. It is
interesting to note that for this specific test problem, the reference schemes with ¢ = 1 turn
out to exhibit third-order convergence, instead of the expected second order. We do not have
an explanation for this interesting behavior; however, note that this is not in contradiction
to any of the theory.

6.6. Heat equation with spatially varying coefficient. The examples above are re-
stricted to differential operators with constant coefficients. To demonstrate that our schemes
remedy order reduction for more general problems, we consider the heat equation

up = (K(2)ug), + f for (z,t) € (0,1) x (0,1], u=g on{0,1} x (0,1],
with spatially varying diffusion coefficient x(z) = cos(x 4 0.1). The forcing f(x,t), the b.c.,
and the i.c. are chosen so that the true solution is u(x,t) = cos(20t) sin(10z + 10). We used
6th-order centered differences with 103 cells to approximate the spatial derivatives and the

problem is solved till 7' = 1. Figure 7 confirms that the high WSO schemes recover the
expected convergence orders, just as they did for the constant-coefficient heat equation.
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Figure 6. Convergence (u blue circles; u, red squares) for the linear advection equation using
DIRK-(7,4,4): 4th order DIRK scheme with WSO 4 (left), DIRK-(12,5,4): 5th order DIRK
scheme with WSO 4 (middle), and DIRK-(12,5,5): 5th order DIRK scheme with WSO 5 (right).

Var Coeff Heat Eqn: DIRK-(7,4,4) Var Coeff Heat Eqn: DIRK-(12,5,4) Var Coeff Heat Eqn: DIRK-(12,5,5)
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Figure 7. Convergence (u blue circles; u, red squares) for heat equation with spatially varying
diffusion coefficient x(x) = cos(x + 0.1) using DIRK-(7,4,4): 4th order DIRK scheme with WSO
4 (left), DIRK-(12,5,4): 5th order DIRK scheme with WSO 4 (middle), and DIRK-(12,5,5): 5th
order DIRK scheme with WSO 5 (right).

6.7. An equation with a fourth-order spatial derivative. To demonstrate that our
schemes remove order reduction for PDEs with more than one boundary condition, we consider

Up = —Uggar + f for (x,t) € (0,1) x (0,1] , (30)

with both “Dirichlet” and “Neumann” boundary conditions on each side, i.e., u(0) = go(t),
u(l) = g1(t), uz(0) = ho(t), ug(1) = hi(t), and the forcing f such that the manufactured
solution is u(z,t) = cos(15t). The final time is 7' = 1. In this equation, the 4th order spatial
derivative is approximated by a 2nd-order centered finite difference on a fine grid of 10* cells.

The convergence results, obtained with the new high WSO DIRK schemes, as well as the
reference WSO 1 schemes, are shown in Figure 8. The schemes with ¢ = p recover the
full order of convergence for both v and u,. The time-stepping schemes produce numerical
boundary layers whose width scales like O(At% ), leading to % order loss per derivative for the
schemes that have ¢ < p.
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Figure 8. Error convergence (u blue; u, red) for equation (30) using DIRK-(7,4,4): 4th order
DIRK scheme with WSO 4 (left), DIRK-(12,5,4): 5th order DIRK scheme with WSO 4 (middle),
and DIRK-(12,5,5): 5th order DIRK scheme with WSO 5 (right).

6.8. Two-dimensional linear advection-diffusion equation. In principle, the presence
of corners (non-smooth domain boundaries) may be an additional source of error that could
lead to order reduction. Here we examine a two-dimensional PDE problem in a square domain
and demonstrate that our schemes remedy order reduction also in this setting. We consider
the advection-diffusion equation

U+ ug + Uy = V(Uge + uyy) + f(2,y), (2,y) € [-1,1]%,

with v = 0.1, the forcing f, the boundary conditions and initial condition chosen such that
2
the manufactured solution is u(z,y,t) = exp(—7¢t) sin(mx + F) sin(7y + 7).
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Figure 9. Error convergence (u blue; |Vu| red) for a two-dimensional linear advection equation
using DIRK-(7,4,4): 4th order DIRK scheme with WSO 4 (left), DTRK-(12,5,4): 5th order DIRK
scheme with WSO 4 (middle), and DIRK-(12,5,5): 5th order DIRK scheme with WSO 5 (right).

To ensure the spatial error is negligible, we use a spectral method on a 2D tensor-product
grid with 30 Chebyshev points in each direction. We solve the problem up to T' = 1. Errors
are plotted in Figure 9. The schemes with high WSO successfully avoid order reduction for
this problem.
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7. NUMERICAL RESULTS: TIME-DEPENDENT LINEAR AND NONLINEAR OPERATORS

The weak stage order conditions (see §2) are derived based on a linear problem in which
the coefficient of the linear term is time-independent. Here we explore the question whether
these conditions are also sufficient to alleviate order reduction for more general problems.

7.1. Heat equation with temporally varying coefficient. We revisit the variable-coefficient
heat equation of §6.6, but now allowing x to vary also in time:
u = (k(z,t)uy), + f for (z,t) € (0,1) x (0,1}, w=g on {0,1} x (0,1] .

We consider two different diffusion coefficient functions, one of which varies slowly in time,
k(z,t) = cos(0.1¢40.2), and another that oscillates rapidly in time, k(z,t) = 1+0.5 cos(30t +
0.1). In both cases, the spatial derivatives are approximated using 6th-order centered differ-
ences with 103 cells, and the errors are evaluated at time 7' = 1. Figure 10 shows that all high
WSO schemes practically alleviate order reduction for the slowly-varying coefficient case. In
contrast, for the rapidly-varying coefficient case, the schemes suffer from order reduction and
do not produce clean high-order convergence results. That being said, the new high WSO
schemes do turn out to yield smaller errors than the WSO-1 reference methods.

Var Coeff Heat Eqn: DIRK-(7,4,4)

Var Coeff Heat Eqn: DIRK-(12,5,4)
k(x,t)=cos(0.1t+0.2)
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Figure 10. Convergence (u blue circles; u, red squares) for heat equation with diffusion coeffi-
cient (x,t) = cos(0.1¢ + 0.2) (top) and k(z,t) = 14 0.5cos(20t) (bottom) using DIRK-(7,4,4):
4th order DIRK scheme with WSO 4 (left), DIRK-(12,5,4): 5th order DIRK scheme with WSO
4 (middle), and DIRK-(12,5,5): 5th order DIRK scheme with WSO 5 (right).
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7.2. Stiff nonlinear PDE: viscous Burgers’ equation. As a stiff nonlinear PDE problem,
we study the viscous Burgers’ equation,

up + uty = Vg, + f for (x,t) € (0,1) x (0,1], w=g on {0,1} x (0,1], (31)

with the true solution u(x,t) = cos(t), and the viscosity constant v = 0.1 (i.e., the main
source of stiffness are the differential operators themselves). Here we choose a particularly
simple manufactured solution to demonstrate that high weak stage order schemes do not fully
remedy order reduction for nonlinear problems. However, we observe that these schemes still
perform better than schemes with WSO 1 in terms of accuracy and convergence order. This
is important in the context of the demonstration in [20] that DIRK schemes with WSO up to
3 can exhibit clean and full order of convergence, even though problem (31) is nonlinear and
thus outside the class of (linear) problems for which WSO is known to improve the accuracy
of the LTE.

Viscous Burgers Eqn Viscous Burgers Eqn Viscous Burgers Eqn
DIRK~(7,4,4): u(x,t)=cos(t) DIRK-(12,5,4): u(x,t)=cos(t) DIRK-(12,5,5): u(x,t)=cos(t)
m=f= DIRK-(5,4,1): U = DIRK-(5,5,1): U = DIRK~(5,5,1): U
10 =©=DIRK-(7,4,4): u =©=DIRK-(12,5,4): u =©=DIRK-(12,5,5): u
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Figure 11. Convergence for the viscous Burgers’ equation using DIRK-(7,4,4), DIRK-(12,5,4),
and DIRK-(12,5,5).

Again, 6th-order centered differences with 10 cells are used to approximate the spatial
derivatives, and the errors are evaluated at time 7' = 1. Figure 11 shows the convergence
results for our new DIRK schemes with WSO 4 and 5 for the same test problem. We see
that the high WSO schemes indeed turn out to generate a convergence order of 3, which is
better than what schems with WSO 1 achieve, but there remains a reduction of order for the
schemes of order above 3 considered here.

7.3. Stiff nonlinear ODE: Van der Pol oscillator. To demonstrate that DIRK schemes
with high weak stage order do not remedy order reduction for all types of problems, we
consider, as a key benchmark example for stiff nonlinear ODE, the Van der Pol oscillator,
i—jzy, %Zu(l—w2)y—w,

with stiffness parameter p = 500, initial condition (x(0),y(0)) = (2,0), and final time 7" = 10.
For a range of time steps from At = 0.5 to At ~ 2.44 x 1074, different DIRK schemes are
applied, with Newton’s method used to solve the nonlinear problems up to machine precision.
The reference solution is calculated via the standard explicit RK4 method with time step
At = 1075, Figure 12 shows the convergence for DIRK-(7,4,4) and DIRK-(12,5,5), clearly
indicating that the high WSO in the DIRK schemes does not suffice to remove order reduction
in the stiff regime (1072 < At < 1071).
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Figure 12. Convergence for the Van der Pol oscillator using DIRK-(7,4,4): 4th order DIRK
scheme with WSO 4 (blue circles, left), and DIRK-(12,5,5): 5th order DIRK scheme with WSO
5 (blue circles, right).

8. CONCLUSIONS AND OUTLOOK

The results of this work can be seen as a reinforcement of the usefulness of weak stage
order, which can remove order reduction in Runge-Kutta schemes applied to linear problems
with time-independent operators. A key theoretical contribution of this paper is that it
has been shown that WSO can indeed be extended beyond WSO 3 (which is important
because a special case of WSO had previously been shown to be limited to WSO 3 [20]).
Moreover, utilizing a general theory of WSO [7], three concrete new DIRK schemes, DIRK-
(7,4,4), DIRK-(12,5,4), and DIRK-(12,5,5), have been constructed with high WSO and
other desirable properties: stiff accuracy, L-stability, and optimized error constants. These
new schemes have been demonstrated to be practically useful, as they successfully address
the order reduction problem in a variety of test problems, both those covered by the theory
(linear problems with time-independent operators), as well as some (but not all) problems
beyond the scope of the theory.

Because the new schemes have the standard form of RK methods, they can be easily
incorporated into existing software and thus may be immediately useful for practitioners who
seek to remedy order reduction while using DIRK time stepping.

The results presented here give rise to several further questions and research directions.
First, problem (M) in §5 that characterizes optimal DIRK schemes is a polynomial opti-
mization problem. While successfully solved via generic approaches herein, tailored modern
optimization methods that yield provably globally optimal solutions represent a natural next
step. Second, the number of stages used by the schemes provided here (7 and 12 stages, re-
spectively) is larger than the theoretical minimum number of stages implied by the theorems
we provide. Both sharp bounds and concrete DIRK schemes that realize the minimum num-
ber of stages remain to be found. Third, specific explorations of WSO for EDIRKSs (a;; = 0),
SDIRKs (all a;; identical), and also explicit RK schemes, remain practically relevant open
directions of research.
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APPENDIX A. LisT oF NEw DIRK SCHEMES

See Table 3 for the new DIRK schemes with high weak stage order.
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