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Strongly correlated systems can exhibit unexpected phenomena when

broughtin astate far from equilibrium. An example is many-body
localization, which prevents generic interacting systems from reaching
thermal equilibrium even at long times"*. The stability of the many-body
localized phase has been predicted to be hindered by the presence of
smallthermal inclusions that act as a bath, leading to the delocalization
of the entire system through an avalanche propagation mechanism®®,
Here we study the dynamics of a thermal inclusion of variable size when
itis coupled to amany-body localized system. We find evidence for
accelerated transport of thermalinclusion into the localized region.

We monitor how the avalanche spreads through the localized system and
thermalizes it site by site by measuring the site-resolved entropy over time.
Furthermore, we isolate the strongly correlated bath-induced dynamics
with multipoint correlations between the bath and the system. Our results
have implications on the robustness of many-body localized systems and
their critical behaviour.

One of the founding principles of statistical physics is that a generic
macroscopic system can equilibrate on its own. This means that local
fluctuations in energy, magnetization or particle density can relax
towards thermal equilibriumbecause interactions allow different parts
ofthe systemto serve asreservoirs to each other. This universal picture
hasbeen challenged by theidea of many-body localization (MBL), which
suggests that systems with strong disorder can evade thermalization
eveninthe presence of interactions"** ™, In one-dimensional systems,
astable MBL phase canbe argued as follows: matrix elements of local
operators decay exponentially with separation between two points,
whereas the density of states increases exponentially with the sys-
temsize. For strong disorder, matrix elements can, thus, be argued to
decay faster than the density of states increases, ultimately inhibiting
relaxation.

However, the existence of MBL remains a subject of debate, since
it is unclear when those conditions are fulfilled'***. For instance, by

introducingasmallregion with weak disorder, part of the system may be
delocalized and thus give rise to local operators with non-exponential
decay®>>***, Those local weakly disordered regions occur naturally
inrandomly disordered systems, when potential offsets on consecu-
tive lattice sites accidentally coincide??%****¢, The dynamics in MBL
systems in the presence of a thermal region have been predicted to
occurinso-called quantumavalanches, which imply that these regions
grow by absorbing nearby disordered regions®”. Under which condi-
tions quantum avalanches can arise, run out of steam or propagate
without halt determines the fate of MBL at long evolution times. Their
understandingis, thus, closely connected to discerning thermalization
ininteracting many-body systems.

Perturbative bath-induced relaxation can often be capturedinthe
context of Fermi’s golden rule (Fig. 1a, left). In this picture, the relaxa-
tionrate I; = gl.zpbath atadistance of i sites away from the bathis given
by the product of the bath’s constant density of states p,,,, and coupling
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Fig.1|Bath-induced quantum avalanches. a, Two scenarios at an interface of
athermal bath (clean) and alocalized (disordered) region: the bath penetrates
logarithmically slow and localization remains robust (left), or an avalanche
thermalizes the disordered region site by site (right). b, Fluorescence pictures
of a two-dimensional Mott insulator at unity filling, and of the initialized one-
dimensional system of L sites. Projected optical potentialsisolate the system
and apply site-resolved offsets onto the disordered region (blue). ¢, Protocol:
theinitial state is brought far from equilibrium through a quantum quench by
abruptly enabling tunnelling along all the neighbouring links and then evolve
under the Hamiltonian, until we detect the site-resolved atom number witha
fluorescence picture. d, System dynamics are governed by the Bose-Hubbard
model with tunnelling energy/and on-site interaction energy U, extended by a
disorder potential withamplitude Win the disordered region.

rate g; « Je /%o, where §,. is the localization length of the MBL system
and/isthe tunnellingrate between neighbouring sites. Consequently,
within a perturbative description, MBL remains robust against alocal
bath, with abath penetrationinto the MBL region thatincreases loga-
rithmically in time.

Quantum avalanches, in contrast, are predicted to emerge from
dynamics beyond this simple picture (Fig. 1a, right). A more accurate
description ought to takeinto account that the density of states of the
bath grows whenthe first disordered site thermalizes and hence merges
with the bath. This feedback effect enhances the relaxation rate I'; for
the next localized sites, giving rise to accelerated bath penetration
into the disordered region faster than logarithmically in time. Even-
tually, these non-perturbative relaxation processes may lead to a full
delocalization of the systemif the density of states grows faster than
the decay in the coupling rates.

Studying quantum avalanches within disordered systems remains
a challenge due to both statistical rareness of a sufficiently large
thermal inclusion and the large timescales over which the inclusion
spreads through the system. Consequently, theoretical approaches
often consider disordered systems that are locally coupled toathermal
bath that represents the rare region®. Within this canonical setting,

several signatures have been proposed to identify quantumavalanches
through their short-term dynamics, including speedup compared
with logarithmic spreading’, and back-action on the bath’. However,
high demandsinlocal control have so far hindered their experimental
observation.

In this work, we explore the dynamics of an MBL system coupled
toathermalinclusion (Fig. 1) and observe phenomena that suggest the
presence of non-perturbative avalanche processes. Our experimental
protocol starts by preparing a Mott-insulating state with one ¥Rb atom
on eachsite of atwo-dimensional optical lattice (Fig. 1b). The systemis
placedin thefocus of ahigh-resolutionimaging system through which
we project site-resolved repulsive potentials onindividual lattice sites.
We isolate a one-dimensional system of L lattice sites from the Mott
insulator and add potential offsets to the lattice sites. At this point,
the system remainsin the product state of one atom per lattice site. We
then performaquantum quench by abruptly reducing thelattice depth
(Fig.1c). The subsequent non-equilibrium dynamics are described by
the Bose-Hubbard Hamiltonian:

ﬂ:JZ@MM+hq

+ I H =D+ W S iy,
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where d: (dyisthecreation (annihilation) operator foraboson onsite
iand ni; = d; d;isthe particle number operator. Thefirst term describes
the tunnelling between all the neighbouring lattice sites, and the sec-
ond term represents the on-site repulsive interactions. The last term
introduces asite-resolved energy offset. We set h; = O for all the lattice
sitesin the clean region of size L ..,,, whereas the energy offsets in the
disorderedregion of size L follow a quasi-periodic disorder distribu-
tion h;=cos(2mBi + @) for 1/ =1.618, phase ¢ and amplitude W. The
quasi-periodic distribution avoids nearby lattice sites to coincidentally
have similar energy offsets, which inhibits the presence of secondary
rare regions within the disordered region®. After a variable evolution
time, we read out the site-resolved atom number by fluorescence imag-
ing. Theapplied unitary evolution preserves the initial purity 0f 99.1(2)%
persite®*°, All the observables are averaged over 200 disorder realiza-
tions with different ¢ values. The tunnelling time 7=7%//=4.3(1) ms
(with the reduced Planck constant #), the interaction strength
U=2.87(3)/and the number of disordered ites L ;= 6 remain constant
inall the experiments.

We first use the full site-resolved readout of our microscope to
investigate the local transport dynamics in the system. The connected
density-density correlations (any) = (i) — () detect correla-
tions between the particle numbers on sites i and; (ref. 15). Negative
values of (), signal anti-correlated density fluctuations and thus
particle motion between the involved sites (Fig. 2a). In the following,
we consider a system with L, = 6 at disorder strength W=9.1/ for
different evolution times T after the quantum quench. At the beginning
of evolution (7= 01), we do not detect any correlations, because the
initial state is a product state. After short evolution times (T < 7L), we
observe the buildup of spatially dependent anti-correlations in the
system. Within the clean region, all the lattice sites develop mutual
anti-correlations, signalling delocalized particles. In contrast, the
anti-correlationsin the disordered region remain short ranged, indicat-
ing localized particles. Overall, these properties persist up to long
evolution times (7> tL). To quantify the emergence of a bath, we
extract the mean and variation of the off-diagonal correlations in the
clean region (Fig. 2b). We find that within a few tunnelling times, the
clean region reaches its steady state with similar correlations across
all the pairs of sites, indicating that it starts to act as a thermal bath to
the disordered region.

For long evolution times (7> 7L), we additionally observe the
buildup of anti-correlations between the lattice sites in the clean and
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Fig.2|Accelerated transport across the clean-disorder interface. a, Density
correlations for all the pairs of sites in a system consisting of L e,, = L4, = 6 at
disorder strength W= 9.1/. After aquantum quench, an uncorrelated initial state
(left) develops separate dynamics within each subsystem (centre), followed by
slow particle transport across the clean-disorder interface (grey dashed lines)
for evolution times much greater than L .,, and Ly (right). The cuts show the total
density correlations g (i) of the clean region with site i (that is, the average of

top six rows, excluding the diagonal), featuring homogeneous coupling among
the cleansites, and approximately exponentially decaying anti-correlations with
the distance of the disordered site from the interface. The error bars denote the

standard deviation among the different entries. b, Correlations within the clean
regionreach asteady state within few tunnelling times, indicating the emergence
ofabath. The error bars denote the standard deviation among the different
entries. ¢, Decay length &, of the total density correlations accelerates at long
evolution times. For asmaller cleanregion of L., = 2, contrarily, the correlations
continue to grow logarithmically. The error bars denote the standard error of the
mean. The solid lines inall the panels show the prediction from exact numerics
without free parameters, with shaded areasinaand b denoting the standard
deviation among the different entries. The error bars are below the marker size,
ifnot visible.

disordered regions, which is evidence for transport dynamics across
the interface (Fig. 2a, right). Each disordered site is similarly
anti-correlated to all the clean sites, which confirms that the clean
regionactsasaheat bath for the disordered region. Motivated by this
picture, we extract the mean correlations of the clean region
82(D) = (MiMy)_|jet .., bY averaging the correlations of each site i with
all cleanssitesj (Fig. 2a, cuts). The results are consistent with an expo-
nential decay with distance from the clean region, in agreement with
the Fermi’s golden rule picture of exponentially decaying couplings
between the bath and MBL.

Although a static bath spectrum causes bath correlations to pen-
etrate the MBL logarithmically in time, a signature of quantum ava-
lanche is an accelerated increase, faster than logarithmically in time.
To test this picture, we quantify the correlation decay into the disor-
deredregion by measuring the average distance §; = —ZieLdi ixgd3i)
from the clean region over which anti-correlations form (Fig. 2c). At
short times, the decay length & increases logarithmically in time, but
accelerates atlong evolution times. We contrast this observation with
asystem having L., = 2, where we do not find any accelerating trans-
portdynamics.

We next examine the local thermalization dynamics across the
system. The microscopic readout enables us to measure the full atom
number distribution on each site (Fig. 3a). Lattice sites in the clean
region show a distribution corresponding to a thermal ensemble,
whereas lattice sites in the disordered region show a distribution with
enhanced probability for one particle, the initial state of the system.
We quantify the site-resolved thermalization dynamics with the
entropy per particle s; = —Zmp(ni) log p(n;)/{n;) on site i from the
atom number distributions. We observe reduced thermalization
dynamics of the disordered sites with increasing distance from the
interface (Fig.3b,c). Moreover, the datasuggest that the dynamics are
first stationary until thermalization sets in with a delay that increases
with thesite’sdistance fromthe interface. This pictureis confirmed by
our exact numerical calculations.

Theaccelerated transportindicates that the long-term dynamics
aredrivenby processes that go beyond a perturbative coupling to the

bath. We investigate this effect through multipoint correlations™*.
The presence of non-zero three-point connected correlations (M),
signals the presence of entanglement among all the involved lattice
sites, which cannot be explained in a perturbative, semiclassical
description. We evaluate the connected correlations
8I)) = (i) Jkery..,among two disordered itesiandjand clean
site k, averaged over all possible k values (Fig. 4a). We find a strong
dependence ontheinvolved disordered sites: correlations are strong
close to the interface, whereas they become weaker for distant sites.
We quantify this behaviour by considering the correlations as a func-
tion of the meandistance d = (i +)/2of the two disordered sites from
the clean region (Fig. 4b). Indeed, the correlations decrease with
increasing distance fromthe cleanregion, comparable to decay length
&4 This demonstrates that the accelerated transport is driven by
many-body processes, a key property for quantum avalanches. We
quantify the presence of many-body correlations at different disorder
strengths by taking their average as g (i, )|; e, (Fig. 4c,d). The cor-
relations are present throughout the covered disorder range with a
maximum at intermediate strengths, close to the estimated critical
point of the system®.

In conclusion, we experimentally realized a clean-disordered
interface and studied the emerging thermalization dynamics. We
observed an accelerated intrusion of the bath in the MBL system, its
evolution into thermal equilibrium site after site and the many-body
correlations between the two subsystems—the hallmarks of quantum
avalanches. In future, our experiments can be readily extended in
many ways. For example, by increasing the system size of the disor-
deredregion, one could explore theinterplay atintermediate disorder
strengths in a quantitative way through its scaling behaviour, that is,
by increasing the system size at constant ratio of L, and L, which
may provide insights into the critical behaviour of the transition. An
interesting extension would also be the influence of the statistical
distribution of the disorder on the critical behaviour of the system.
Furthermore, engineering other heterostructures with quantum gas
microscopes may provide anavenue to study phenomenainthe physics
of interfaces or to build atomtronic devices.
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Fig. 3 |Site-resolved thermalization dynamics. a, Atom-number probability
distribution for the edge sites in the clean region (left) and the disordered region
(right), measured after 1007 in a system consisting of L., = L4 = 6 at disorder
strength W= 9.1/. b, Local entropy per particle s; = —; p, log p,/{ri;)for selected
disordered sites, extracted from the atom number distribution on eachsitei. The
entropy grows after a stationary evolution whose length increases with distance
fromtheinterface (dashed grey line). For a smaller clean region of L ,, =2, in
contrast, the growth is absent. Traces are vertically offset for better visibility.

¢, Local entropy s;, offset by s,(17) for all the disordered sites. The solid lines
(barsina) show the prediction from exact numerics without free parameters.
The error bars denote the standard error of the mean (below the marker sizein a).
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