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We simulate the dissipative dynamics of a mesoscopic system of long-range interacting particles which can
be mapped into non-Hermitian spin models with a P7 symmetry. We find rich P77 phase diagrams with
‘PT-symmetric and P77 -broken phases. The dynamical regimes can be further enriched by modulating tunable
parameters of the system. We outline how the P77 symmetries of such systems may be probed by studying their
dynamics. We note that systems of Rydberg atoms and systems of Rydberg ions with strong dipolar interactions
are particularly well suited for such studies. We present a viable proposal for implementing non-Hermitian
physics with P77 symmetry in Rydberg systems. We show that for realistic parameters, long-range interactions
allow the emergence of new P7T -symmetric regions, generating new P7 phase transitions. In addition, such
PT-symmetry phase transitions are found by changing the configurations of the Rydberg atoms. We propose a
postselection scheme on an ensemble of Rydberg ions described by an effective three-level system. Detecting
the population dynamics, the system shows an oscillatory behavior in the 777 -unbroken phase and a stationary

population for long times in the P77 -broken phase.
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I. INTRODUCTION

Closed quantum systems evolve with unitary dynamics
according to the Schrodinger equation; the Hamiltonian of
such a system is Hermitian and the eigenenergies are real. A
dissipative quantum system evolves with nonunitary dynam-
ics, which, in some cases, can be approximately described
according to a non-Hermitian Hamiltonian [1-3]. Some of
these systems are invariant under the simultaneous application
of parity (P) and time-reversal (7) symmetry operators [4]. If
all the eigenenergies of the non-Hermitian Hamiltonian are
real, a system is said to preserve P7 symmetry, otherwise
if part of the spectrum is complex, P7T symmetry will be
broken [5]. The critical values that limit the P77 -unbroken
and P7T -broken phases are the exceptional points [6,7]. Also,
the existence of a continuous set of exceptional points that
limit regions with P7T -unbroken and P7 -broken phases are
called exceptional lines [8—10]. The P77 symmetry of several
dissipative quantum systems has been studied in different con-
texts, e.g., in optics [11-16], in photonics [17-20], in quantum
many-body systems [7,21-40], in systems with topological
models [41-51], and in curved space [52]. The P7T transi-
tion was verified experimentally for a cold-atomic dissipative
Floquet system, in which the P7-symmetry transitions can
occur by tuning either the dissipation strength or the coupling
strength [53]. Recently, models with Floquet P77 -symmetric
modulation showed a P7T-symmetry transition in square-
wave modulation [54,55] and were experimentally demon-
strated in a system of noninteracting cold fermions [53]. Ex-
perimentally, a single trapped ion was used to investigate the
dynamics of P77 -symmetric non-Hermitian systems [56,57].
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In this work we investigate the non-Hermitian dynam-
ics of a mesoscopic system of few particles coupled via
long-range interactions among them [58]. We find that the
interactions and geometric arrangement of coupled spins en-
rich the PT phase diagrams (Sec. II). The P7T phase can
be determined by probing the system’s dynamics, and recon-
structing the system’s eigenenergies (Sec. Il A). We also find
that by modulating system parameters the P77 nonequilibrium
dynamical phase diagrams can be further enriched (Sec. II B).
Our analysis is inspired by recent experiments with ultracold
Rydberg atoms and ions, which are well suited for experimen-
tally probing these effects. We show that Rydberg platforms
are promising for the investigation of P7T -symmetric non-
Hermitian systems (Sec. III). Furthermore, our model can be
generalized to more complete Rydberg atom models and more
complex systems [59-70] and can also be implemented on
other experimental platforms [71,72].

II. MODEL

We consider a system of N particles each with two internal
levels and loss channels to a third auxiliary state. Particles
interact via long-range exchange interactions. We are moti-
vated by recent works with strongly interacting Rydberg ions
[73], and our model was designed to match this system. In
Sec. III we describe in more detail about how this model can
be experimentally implemented using Rydberg ions.

The two levels of each particle are labeled by [1) and |2).
A third level, |0), represents all the states to which |1) and |2)
can decay, with decay rates I'y and I',, respectively. States |1)
and |2) are coupled with the coupling strength €2, as shown

©2022 American Physical Society
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FIG. 1. (a) Linear configuration of interacting four-particles.
Zigzag configurations parametrized by angle a: (b) three-particle
zigzag and (c) four-particle zigzag. (d) Level scheme of the internal
structure of the particles leading to an effective non-Hermitian dy-
namics. Each particle has two levels, |1) and |2), which are coupled
with strength €2 and which decay to a third state |0) with rates I"; and
I',, respectively.

S

in Fig. 1. The ith and jth particles interact with the strength
Vij, which can be assumed to be a, e.g., dipolar (o< |i — ™
interaction. When written in terms of spin operators, the inter-
action takes the form of an XY exchange interaction between
particles i and j.

The system is described by the density operator p(¢) which
evolves according to the master equation

dp@) 1

dt _E(

N
Heep(t) — pOHL) +T1 Y Crp@)Cy

n=1
N
+T2 ) Cip()CyT, ey
n=1

where C; = |0)(1]| and C, = |0)(2] are the collapse operators
of the states |1) and |2) to the auxiliary state |0).
The effective non-Hermitian Hamiltonian Heg reads

N
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where T = [1)(1] + [2)(2] is the identity operator and I' =
(I'y = I')/2. The operators are o, = [1)(1] — |2)(2]|, 6, =

64 +6_, and 6, = —i(64 — 6_), and the raising and lower-
ing operators are 6, = |2)(1] and 6_ = |1)(2], respectively.

We focus on the evolution in the {|1) , |2)} manifold, which
results in normalized populations p!, for each one of the
particles. This can be achieved by enfploying a postselection
scheme; experimental sequences conclude with a projective
measurement of the populations of the levels of each ion.
Only experiments in which the ion remains in the {|1), |2)}
manifold are included in the analysis [74]. This approach is
a generalization to a mesoscopic number of qubits of a state
tomography in a single dissipative transmon qubit realized in
Refs. [75,76]. Clearly, increasing the number of ions makes

postselection extremely inefficient, at least for long times,
due to the exponentially decaying probability that the system
populates the {|1), |2)} manifold for each ion.

We notice that, for the case of a single ion, it is possible to
derive the populations p; »(#) of the upper state manifold from
the population of the auxiliary |0) state. See Appendix A for
the detailed calculation.

Importantly, upon subtracting the identity I we obtain a
non-Hermitian P77 -symmetric Hamiltonian:

. S, 4 Vi (nini o ainj
fpr =Y (@8] —iT6))+ Y “2(si6] +6/8]). (3)

Using the parity operator, P = &y, and the time-reversal op-
erator, 7 = K, where K is the complex conjugate operator,
one can show that Hps in Eq.(3) is P7 symmetric, i.e.,
(PT)Hpr(PT)~' = Hps. Throughout this work we deter-
mine whether P7 is preserved or broken from the eigenvalues
of Apr: When Hpr has real eigenvalues the P7 symmetry
is preserved, otherwise the P77 symmetry is broken. Whether
the P77 symmetry is preserved or broken depends on the
relative strengths of the dissipative part of the Hamiltonian
(") and the nondissipative part of the Hamiltonian (€2 and the
interactions V;;).

In the following sections we consider the P7 -symmetry
phase diagrams of different configurations of interacting par-
ticles and when the system parameters are modulated.

A. Different configurations of interacting particles
1. Single particle

For a single-particle system (N = 1), the eigenvalues of
Hpy are Ay = +I/2/(/T)> — 1. The PT symmetry is
preserved when ©/I" > 1 and the eigenvalues are real. The
PT symmetry is broken when Q/I" < 1 and the eigenval-
ues are imaginary. The exceptional point occurs at Q/T" =
1 and the eigenvalues coalesce and Ay = 0. A system of
noninteracting single particles was experimentally studied
using ultracold atoms in Ref. [53] and for a single ion in
Refs. [56,57].

In the rest of this work, we calculate the eigenvalues of
Hp7 (and thus its P7 symmetry) numerically for different
experimentally relevant configurations with realistic interac-
tions.

2. Linear chain of particles

Next we consider a equidistant linear chain of particles,
in which the interaction strength falls with the cube of the
separation V;; = V/|i — j13, such as a dipolar interaction. We
numerically calculated the eigenvalues of Hp; for systems
with two, three, and four particles and found the P77 symme-
try of I-?pq— depends on the relative strengths of 2, I', and V,
as shown in Figs. 2(a)-2(c).

The PT-symmetry phase diagrams become richer with
increasing N. While the N =2 case shows a single P7T-
symmetry-preserving region, more regions are present in the
N =3 and N = 4 cases. P77 symmetry is preserved when all
eigenvalues are real (orange regions), otherwise it is broken
(other regions). P77 phase transitions occur along exceptional
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FIG. 2. PT-symmetry phase diagrams for interacting particle systems. The symmetry of P77 is preserved when all eigenvalues are real
(orange regions), otherwise it is broken (shaded blue regions). P7T -phase transitions occur along exceptional lines (red lines). Panels (a), (b),
and (c) show results for N = 2, 3, and 4 particles in the linear configuration; the diagrams get richer to increase the number of particles. Panels
(d) and (e) show results for particles in a triangular and tetrahedral configuration, respectively. Panels (f) and (g) show results for N = 3 and
N = 4 particles in zigzag configurations. In panel (f) the zigzag configuration becomes an equilateral triangle at « = 7 /3, and the symmetry
of the system is increased. In panels (f) and (g) we set 2 = 10T". (h) Color bar with the number of nonreal eigenvalues.
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FIG. 3. PT phase diagrams for two-particle systems when V (¢)
is sinusoidally modulated at frequency wg. P77 symmetry is pre-
served when all the eigenvalues of the time-evolution operator have
unit modulus (orange regions). (a) 2 X wg with V =T. (b) ' X wg
withV = Q. (c) V x wp with Q = 10I". Red lines denote exceptional
lines.

lines (red lines) Note that when V' = 0, the exceptional point
at Q/T" = 1 (for the single-atom case) is recovered.

Figure 4 displays the dynamics of the populations in the
PT -symmetric and PT -broken phases after postselection. In
Fig. 4(a) we observe an oscillatory behavior of populations
of Her for the region that is P7 symmetric. In Fig. 4(b) the
region that is P77 broken is shown. Here the population of
state |1) decays and state |2) increases. For longer times the
populations saturate to a fixed value.

3. Equilateral triangular and tetrahedral configurations

Next we consider three particles arranged in an equilateral
triangle configuration and four particles arranged in a tetrahe-
dral configuration. We have V;; =V for each of the particle
pairs. We determine whether or not Hp is P7 -symmetry
preserving by numerically calculating its eigenvalues as the

~
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FIG. 4. Populations of Hy for the states |1) (blue solid line)
and |2) (orange dotted line) for two interacting particles from the
master equation without the quantum jump term. (a) Population in
the PT -unbroken phase with the parameters 2 = 10I" and V = 2T,
showing the oscillatory behavior between the two states |1) and |2).
(b) Population in the P7T -broken phase with Q = 2I" and V = 10T,
where the population of state |1) decays and then saturates to a fixed
value, and the population of state |2) increases and also saturates at
a fixed value. We use pf’)z to designate the population of the particle
labeled by the index i = 1, 2, 3, and 4 in states |1) and |2). The time
axis ¢ has units of 1/T.

parameters €2, I', and V are varied; the P77 phase diagrams are
shown in Figs. 2(d) and 2(e). These phase diagrams are less
rich than the diagrams for the linear chains [see Figs. 2(b) and
2(c)]. We posit that the symmetry of the equilateral triangle
and tetrahedral configurations constrains the dynamics and
leads to a single P77 -symmetry region.

4. Zigzag configurations

Next we consider three-particle and four-particle zigzag
configurations, parametrized by the angle o as shown in
Figs. 1(b) and 1(c); the PT phase diagrams are presented
in Figs. 2(f) and 2(g). As in the previous subsection, the ith
and jth atoms interact with dipolar interactions. We define
the interaction scale V|, = V between nearest neighbors; the
interaction strengths between other atom pairs follow from
geometrical arguments and are explicitly described in Ap-
pendix B. In computing the eigenvalues of Hpr, we varied
V and «, and we set Q2/I" = 10.

The PT phase diagrams depend on the angle « as a result
of the dependence of interaction strengths V;; on «. We note
that in the three-particle configuration when o = % [black
dashed line in Fig. 2(f)] the configuration becomes an equilat-
eral triangle, and we posit that the increased symmetry of the
configuration is linked to the crossovers of exceptional lines.
In the case of the four-particle configuration, when & = 7 in
Fig. 1(c), we find the square configuration. The P7T phase
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transitions of the linear configurations of N =3 and N =4
particles are retrieved in the limit « — 7.

B. System with time-dependent parameters

The PT -symmetry phase diagrams can be enriched further
by periodically modulating the parameters 2, V, or I' with
the characteristic frequency wg [53]. When the parameters are
modulated, the eigenvalues of Hp7 become time dependent.
Then, to study P7 symmetry, instead of calculating whether
the eigenvalues of Hp are real, we use the eigenvalues of the
time-evolution operator

Gpr(t) = e PT!, 4)

When all the eigenvalues of pr(i—’;) have a unitary modulus,
PT symmetry is preserved, otherwise it is broken.

We adapt the interaction term in Hpr [Eq. (3)] for a
two-particle system from V — V sin(wgt) and calculate the
PT-symmetry phase diagrams as the system parameters are
varied. In each diagram in Fig. 3, wr and either 2, I', or V are
varied, while the other two parameters are fixed.

We see that modulation enriches the phase diagrams, be-
cause new P7T -broken regions appear when the unmodulated
model is in the P7 -symmetric phase (see Fig. 3). Note that
this behavior clearly occurs in Fig. 3(c), where V varies with
wr, showing a phase transition in the P7T-symmetric phase
with = 10T of the unmodulated model [see Fig. 2(a)].

In Appendix D, we show the P7T phase diagrams for sys-
tems of one and two particles when square-wave modulations
are applied.

III. PROPOSAL FOR AN EXPERIMENTAL
IMPLEMENTATION

Systems of Rydberg atoms and systems of Rydberg ions
are well suited for implementing the Hamiltonian in Eq. (2).
They can be exquisitely controlled [61,64,65,77] and they
exhibit strong dipolar interactions [65]. In a Rydberg system
we envisage states |1) and |2) being Rydberg S/, and P,
states, with principal quantum numbers around 50. The XY
interaction of the form of Eq. (2) can be achieved by coupling
the Rydberg S/, and P/, states using a near-resonant mi-
crowave field; an interaction of this form was used to entangle
two trapped ions [73]. Laser light and microwave radiation are
used to control systems of Rydberg atoms or ions, including
preparing the particles in different states and measuring them
in different bases.

By dressing the Rydberg state to other Rydberg or low-
lying states, the parameter values can be adjusted across large
ranges, which will allow the P7T phase diagrams of Figs. 2
and 3 to be studied. With 33Sr* Rydberg S;/» and Py, states
with principal quantum numbers around 50, the Rydberg
states decay due to natural decay and transitions driven by
black-body radiation, with a rate of ' ~ 27 x 10 kHz. I" can
be tuned by changing the principal quantum number (higher
states have lower decay rates), or else I' can be increased by
adding an additional decay channel using a near-resonant laser
field; for instance, I' can easily be increased to 27 x 2 MHz
by using a 306-nm laser field which couples 1S}/, <> 6P;/; in
the 3Sr* experiment.

The coupling strength 2 between |1) and |2) (that is, the
Rydberg S/, and Py, states), can be tuned between 0 and
27w x 500 MHz by changing the intensity of the coupling
microwave field.

The interaction strength V' can be tuned between 0 and
~2m x 10 MHz by changing either the principal quantum
number of the Rydberg states (lower states interact more
weakly), by changing the distance between the ions, or else by
changing the detuning of the microwave field from the S/, <
Py, resonance [73]. Typical ion separations are around 4 pm.

To modulate the system parameters (as described in
Sec. IIB), the laser light intensity or the microwave field
strength can be modulated, alternatively these fields may be
detuned and the detuning may be modulated. Modulation fre-
quencies wg between 0 and ~2m x 100 MHz are achievable.

Ions are routinely trapped in both linear and zigzag config-
urations [78], while the configurations of atoms in dipole traps
can be highly controlled [79]. We simulated systems with in-
teractions V;; ~ 1/ rfj, which has no angular dependence. An
interaction of this form can be achieved in a system with dipo-
lar interactions when the particles are in a one-dimensional
(two-dimensional) configuration when their dipole moments
are perpendicular to the chain (plane) of the particles.

The protocol involves postselecting the results, i.e., remov-
ing instances in which the Rydberg states decayed to state |0).
This can be achieved using fluorescence detection to distin-
guish population in |0) from that in |1) and |2). However, since
fluorescence detection usually takes more time (~1 ms) than
typical Rydberg-state lifetimes, to reliably achieve postselec-
tion the experimentalist may need to transfer population in
|0) to an auxilliary state |0") before conducting postselection.
In 88Sr+, for example, |0) is the ground state 55, and the
metastable 4Ds,, state can serve as an auxiallary state |0’)
for hiding population, population can be transferred between
these states with high fidelity using a 674-nm laser pulse.

To probe the Hpr dynamics (Fig. 4) the system should
be allowed to evolve for different time durations, such that
the oscillation period N%” can be resolved. The interesting
dynamics has Q ~ I', and I' ~ 27 x 10 kHz for typical Ry-
dberg systems. Timing resolutions of ~10 ns are routinely
achieved in experiments, and so probing the Hp7 dynamics
should not be problematic from a timing perspective.

IV. CONCLUSIONS

In this work we showed that platforms with few par-
ticles with long-range binary interactions are an excellent
playground for studying P7 -symmetry phase transitions. We
find the P77 -symmetry phase diagrams become richer as the
symmetry of the system is reduced. By modulating the sys-
tem parameters the phase diagrams can be further enriched.
We outline how the P7 symmetry of a system can be de-
termined experimentally, by measuring the evolution of the
populations in different states. We expect systems of Rydberg
atoms or ions, which exhibit strong dipolar interactions, are
particularly suited for experimental studies of the phenom-
ena discussed in this work. We provided realistic predictions
for the verification of the dynamical regimes described in
the previous sections in Rydberg-ion platforms. In addition,
P T -symmetry phase transitions were found by changing the

023309-5



JOSE A. S. LOURENCO et al.

PHYSICAL REVIEW A 106, 023309 (2022)

configurations of the Rydberg atoms. This investigation gen-
eralizes previous theoretical and experimental research on
effective single-particle models to a many-body environment
with direct applications to quantum simulations and quantum
information processing.
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APPENDIX A: SYSTEM POPULATION WITH PT
DYNAMICS FROM THE EXPERIMENTAL py FOR A
SINGLE ION

Consider the master equation for the effective Hamiltonian
(2) written as follows:

dp@t) _

| I s
i ;[Heffp(t)—p(tmgﬁ]

1 r r ~ 'y
=—,[—i( ‘; 2>i><r>+HpTﬁ<r)—f><r>H§>T}

4
(AL)

where we use /i = 1. For the effective Hamiltonian in Eq. (2),
we can choose the density matrix in the form below:

p(t) = p(t) exp (—T'1), (A2)
and we find
dp(t) _ (4P
7 =exp( Ft)( 7 Fp(t)>, (A3)
where
dp(t 1 . .
% = ~(Hprp(t) = PO}, (A4)
This result can be verified using
p(t) = exp(—iHpT)P(0) exp(iH ), (A5)

with p(0) = p(0). Consider the master equation Eq. (A4)
written as follows:
dp@t) 2,_, ,_. ' _
TR li(pax —6:p) — 5(0110 + pé6,). (A6)
Using the master equation, Eq. (A6), we determine the

following optical Bloch equations of the P77 -symmetric non-
Hermitian Hamiltonian for p():

dpn(t) Q

— i (Ba1 — P12) — T, A7

o i (P21 — P12) P22 (A7)
dpn) .Q _ .

AL — I'pi1, A8

o 12(,012 P21) + TP (A8)

dp(t Q
PO i~ ), (A9)
dpp@) _ .2
=i - . Al10
o i (P11 — p22) (A10)

In this section, we seek to calculate the population of the
system with P77 dynamics for the experimentally determined
population pg of the auxiliary state |0):

poo = 1 —exp(—TI"1)poo

=1-pn—pi. (A11)
Here py, and p;; are defined as
P2 = exp(=I"t)pn, (A12)
P11 = exp(=T"t)pi1, (A13)
thus,
Poo = exp(I''t)(p2 + p11)
= P2+ Pi1- (A14)

Then, we find the time evolution of pyy and pgo given as
follows:

dpoo(t)

g P (=T'1)T2p2n + Tipn), (A15)
d poo(t) N .
e =T (b2 — p11). (A16)
dt
Therefore, accessing both pgg and d poo/dt, we find
. 1/ 1 dpoo
== - Al7
P22 2<poo+ T dr ) ( )
and
N I 1 dpoo
== -—=—). Al8
P =3 </000 T i ) (A18)

Therefore, the quantities in Eq. (A17) and in Eq. (A18) are nu-
merically calculated from the P7 -symmetric non-Hermitian
Hamiltonian in Eq. (3).

APPENDIX B: INTERACTION STRENGTHS IN
THE ZIGZAG CASE

For three particles, the separations between the particles
satisfy rjp = rp3 and rj3 = 2rp sin (w/2). Thus the interac-
tions strengths are Vi, = Vi3 =V and Vo3 = V/[8 sin® (a/2)].
For four particles we consider the interactions Vi, = Vo3 =
Vas =V /13, Vi3, Via, and Vyy take the following forms:

1%
Viz = m, (BD)
%
24 = ma (BZ)
. 1%
YT+ 4 sin®(a /2) — 4 sin(ay /2) cos(aa + Ba)P2
(B3)

where o, ap, f1, and B, are the angles between particles. For
the forms of the interactions Egs. (B1), (B2), and (B3), we
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FIG. 5. Populations of Rydberg states |1) and |2) for N = 3 and N = 4 interacting particles. (a) and (c) P7T -symmetric phase (2 = 10T
and V' = 2I') with oscillatory behavior of Rydberg-state populations. For N = 3 particles, the population of particle 1 is equal to that of particle

3 by symmetry in pf")

and péi). In the N = 4 case, the population of particle 1 equals the population of particle 4, and similarly for particles 2

and 3. (b) and (d) P7 -broken phase (2 = 2I" and V = 10T") in which the population of p}i) decays and the population of péi ) increases, and

both saturate to a fixed value. The time axis ¢ has units of 1/T".

take the distances rjp = ry3 = r34 = r. Therefore, a; = @y =
a and B; = B> = B, and thus, we find Vi3 = V4 and Vi4:

\%4
[+ 4sin’(@/2) — 4 sin(@/2) cos(o + AP

Via

APPENDIX C: DYNAMICS FOR THREE AND
FOUR PARTICLES

In the dynamics for the cases of three and four particles,
interactions up to next-next-nearest-neighbors are considered.
We chose for the first, second, and third neighbors Vi =V,
Viecond = V/8, and Vinirg = V/27, respectively.

In Fig. 5, we show the normalized populations of H for
N =3 and 4 particles, respectively. In the P7 -symmetric
region, 2 = 10T and V = 2T [see Figs. 5(a)-5(c)], we find
an oscillatory behavior of states |1) and |2) for the popula-
tions of Hegr. In the P77 -broken region [see Figs. 5(b)-5(d)],
Q =2TandV = 10T, the population of pf’) decays and pi')
is depopulated while the population of pg) grows, and both
saturate similar to the case of two particles.

APPENDIX D: SQUARE-WAVE MODULATION OF
PARAMETERS IN Hp

The Floquet theory applied to P7 symmetry allows
the identification of P7 -broken phase transitions even in
PT-symmetric regions where the eigenvalues of the P7T-
symmetric Hamiltonian are real [53]. The Hamiltonian of the
periodically modulated system is given by

Ht)=Ht+T), (D1)

where T is the modulation period. In the case of one parti-
cle, the periodically modulated P7 -symmetric Hamiltonian

is given by

N Q(t I
Apry = 205 4 LD (D2)

2 2

For a single particle the propagator reads

Gpr(t) =77
.. HpT
= cos (E+t)I — isin (E4t) . (D3)
+

where [ is the 2 x 2 identity matrix and E. are the eigenvalues
of Hp. The parameter that indicates the P77 phase transition
is given by

_lei| —lex]

ANe= ————
ler] + lea]

(D4)

where e; and e, are the eigenvalues of Gp7. When Ae = 0,
PT symmetry is preserved, while when Ae # 0, PT symme-
try is broken.

The coupling 2 is fixed and the dissipation I" is modulated
between I'y and O with the Floquet modulation frequency wy.
Using the following square-wave modulation for 0 <7 < T,
where T = 27 /wy is the period of modulation,

() = {g(’

0<t <m/wy,
0 T/wyg <t <2 /wy.

(D5)

0<t<T/2, [Ty
T2<t<T, ~

The time evolution of the system over one period of the driv-
ing is the product of the propagators for the static Hamiltonian
associated with each step:

Gpr(t) = e iHPTID")=Tolt ,—iHpT[()=0]r , (D6)
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(d)

FIG. 6. PT phase transition diagrams for Hamiltonians of one and two atoms with square-wave modulation. In the case of one atom, the
‘PT phase transition is represented by Ae. The PT -unbroken phase occurs in A, = 0 and the P77 -broken phase consists of the colored region
for Ae > 0. (a) and (b) PT transition of one atom propagator in Eq. (D7). (c) and (d) P7 -phase transition of the propagator of two atoms in

Eq. (A13) from eigenvalues with the module different from 1.

where T = T /2. Therefore, replacing the modulation condi-
tions, we find

G 2 . 6x .Y 4 -6x
— | =exp|—i| — —i—6, |7 |exp| —i—m |,
PT wo P 2w 20 ° P 2w

where w = wy/Q, y = Ny/R, and v = V;/Q2. Then, we study
the P77 phase diagram of the modulated periodic dissipation
I" and the Rabi frequency 2. The modulation in I" is shown
in Fig. 6(a), in which the peaks are nonzero values for Ae.
When Ae vanishes the system is in the P’7 -unbroken phase.
Figure 6(b) shows the square-wave modulation in €2 similar

to Eq. (D4), where again there are P7T transition regions. The
colored region describes the P77 -broken phase, where Ae > 0
and the dark blue region describes the P77 -unbroken phase at
Ae = 0.

The previous approach describes the time period for one
particle. Now, we study the model of two particles in Eq. (3)
with periodic modulation. We analyze the phase transition
through the relationship of Ae in Eq. (D4). Note that for two
particles the P7T -symmetric non-Hermitian Hamiltonian has
four eigenvalues and Ae has a nonzero value when one of
the eigenvalues has a modulus different from 1, indicating the
breaking of P77 symmetry. First, we consider the square-wave
modulation for the V interaction similar to Eq. (D5), and we
keep €2 and T fixed. The propagator then reads

N R N S A1a2  Ala N S T S R
G'pT(T):GXp|:—l<%(O’X2+UXI)—l%( z,2+011)+—(x1 ,3+U_\} f))n]exp[—z<%( XZ+GXI)—1%( Zz—|-0’zl))7'[:|.

In Fig. 6(c), we use w =1, in this case, we have the
regime in which the Rabi frequency €2 is equal to the Floquet
frequency wy. Note that in the noninteracting regime v = 0,
the P77 symmetry is preserved for values of y < 1, and for
values of y > 1 the PT symmetry is broken, presenting an
exceptional point in y = 1 described by the red dot, which
in this static case also presents the same exceptional point.

The exceptional line is given by the red line that separates the
P T -symmetric and PT -broken regions.

We take the modulation for the I' dissipation, whose prop-
agator is given through square-wave modulation in the form
of Eq. (D5). Setting v =T, we find the PT phase transi-
tion diagram, which also has symmetry-breaking phases [see
Fig. 6(d)].
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